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a b s t r a c t

In social network recommendation systems, the rating score prediction accuracy of the collaborative
filtering (CF) method depends on both the extraction of the nearest neighbors and the calculation of
user/project similarity. Based on a similar principle to user/project behavior, this paper uses themaximum
intersection method to extract the optimal neighbor candidate set, and presents a weighted adjusted
cosine similarity method to compute user/project similarity. Furthermore, to optimize the weights of
the method, a novel optimization method called the discrete quantum-inspired shuffled frog leaping
(DQSFL) algorithm is proposed, which is based on the shuffled frog leaping algorithm and quantum
information theory. The DQSFL algorithm uses quantum movement equations to search for the optimal
location according to the co-evolution of the quantum frog colony. The experiments demonstrate that the
CF recommendation method based on DQSFL can effectively solve the rating data sparseness problem in
the similarity computation process to improve the accuracy of the rating score prediction, and provide a
better recommended result than traditional CF algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the continuous development of Internet applications, data
resources on the Web grow explosively every day, which causes
a serious contradiction between user requirements and the huge
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amount of complex data resources. In order to solve these con-
tradictions, a personalized recommendation system is proposed
to extract useful information from vast amounts of information
for users, which has been used for a wide range of applications.
Personalized recommendation technology recommends various
resources to users by studying user behaviors and interests, and
was initially applied in e-commerce personalized service.With the
fast development of social networks, recommendation systems are
also widely used in social networks [1]. Different from traditional
recommendation systems that use content filtering and then ana-
lyze the results directly for recommendation, collaborative filter-
ing (CF) algorithms first analyze the user’s interests and behaviors,
and search for users who are similar to the current user, and then
recommend projects to the current user by analyzing the rating
scores of similar users on different projects and predict the rating
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scores for these projects. CF is currently one of the most successful
technologies andhas beenwidely used in commercial personalized
recommendation systems [2].

Goldberg et al. [3] first proposed a recommendation system
based on the basic idea of the CF algorithm, the principle on which
it is based being as follows: compare the current user’s behaviors
or preferences with those of other users, and find users whose
behaviors and preferences are similar or identical to the current
user, and then recommend products with high predicted scores to
the current user based on the scores from similar users. In a certain
sense, CF recommendation systems are attributed to a rating score
prediction process. There are two key issues in the rating score
prediction process, the extraction of a nearest neighbor candidate
set and the calculation of user similarity. The extraction of the near-
est neighbor candidate set is an important factor which directly
affects the accuracy of the rating score prediction. If the extraction
of the nearest neighbor candidate set is improper, it will result in
the candidate set comprising users who are not the current user’s
neighbors which reduces the accuracy of the similarity calculation
and leads to lower efficiency rating score prediction. The latter
is a common problem existing in CF algorithms, which is called
the rating data sparseness problem [4]. Themaximum intersection
method allows the selected collection of the nearest neighbors
to have the most common user rating with the current project,
thus avoiding the rating data sparseness problems in the direct
computation of user similarity. Hence, this paper uses the method
to extract neighbors.

User similarity can be calculated by different metrics, such as
relevant similarity, cosine similarity, adjusted cosine similarity
and Euclidean distance [5]. Different calculation methods directly
affect the accuracy of rating score prediction. In order to improve
prediction accuracy, this paper proposes a new similarity calcula-
tion method called weighted correction cosine similarity (WCCS),
and designs a novel modified optimization algorithm to optimize
the weights in WCCS.

In recent years, many intelligent optimization algorithms, such
as particle swarm optimization (PSO) [6], genetic optimization [7]
and artificial immune network [8], have been introduced to opti-
mize the CF algorithms used for recommendation systems. How-
ever, all the optimization algorithms have the dimension disaster
problem when used to solve multiple-dimensional discrete opti-
mizationproblems,which lead to a slowconvergence rate andpoor
performance. Compared to traditional optimization algorithms,
the shuffled frog leaping (SFL) algorithm, which has increased in
popularity in recent years, has a faster convergence rate in solv-
ing continuous optimization problems. Therefore, in this paper,
we propose a novel modified SFL algorithm called the discrete
quantum-inspired shuffled frog leaping (DQSFL) algorithm, which
introduces quantum computing into the SFL algorithm for quan-
tization and discretization in order to optimize the weights of
CF algorithms effectively. The experimental results demonstrate
that the proposed algorithm can effectively improve prediction
accuracy.

The contributions of this paper are as follows: (1) it combines
the shuffled frog leaping algorithm and quantum information the-
ory with the optimal location; and (2) it improves the rating score
prediction accuracy of the CF method.

The rest of the paper is organized as follows. Section 2 describes
the related work, such as the CF recommendation method, the
SFL algorithm and quantum computing. The DQSFL algorithm is
proposed and detailed in Section 3. Section 4 provides details
on the proposed CF algorithm. The experiment and analysis of
the proposed CF algorithm are provided in Section 5. Finally, we
conclude the paper in Section 6.

2. Related work

2.1. CF recommendation method

The Collaborative Filtering (CF)method, originated in the 1990s
and has undergone 20 years of research and application. Depend-
ing on the different objects used for the CF method, Sarwar et al.
divide CF systems into user-based CF systems and project-based CF
systems [2]. The user-based CF method makes recommendations
for users according to user similarity on the assumption that asso-
ciated relationships exists between users with similar behaviors or
preferences, while the project-based CF method provides recom-
mendations according to the correlation by assuming that there
must be correlation relationship between projects. Breese et al.
divides CF systems into model-based CF systems and memory-
based CF systems by considering the different algorithms used
for CF systems [9]. A model-based CF system learns and trains
related complicated data collaborative models using data mining
algorithms or statistical methodswhichwill be applied in practical
data prediction,whereas amemory-based CF system calculates the
similarity between two users/projects or weights for computing
scores, and then selects the best users/projects with the highest
scores. In addition, for amemory-basedCF system, similarity calcu-
lation is important, where themain similarity metrics have a Pear-
son correlation coefficient, cosine similarity and adjusted cosine
similarity [10–12]. The rating score prediction of a CF recommen-
dation system has two purposes as follows: first, to determine the
recommended object by predicting the scores; and second, to ease
score matrix sparsity. The most common method for rating score
prediction is the weighted average method, which predicts scores
by calculating the similarities of multiple neighbor users/projects.
However, the weighted average method suffers from the rating
data sparseness problem in the process of determining nearest
neighbors.

Zhang et al. use BP neural networks to predict the score of
the user/project to reduce the data sparsity of the nearest neigh-
bor candidate set [13]. This algorithm avoids the disadvantages
existing in the dimensional reduction method and the Intelligent
Agent method, however, it needs a long time to train the model,
and the status of the model obtained from the algorithm is not
always stable, which has a negative impact on the accuracy of the
prediction score results.

Generally speaking, the most common method for solving the
rating data sparseness problem includes clustering analysis and
matrix decomposition. Cluster analysis restricts the search area
of the nearest neighbor candidate set in the nearest cluster and
extracts the recommended result by using a cluster centroid. The
latter method improves the recommendation speed, but reduces
the recommendation quality, which does not fundamentally solve
the problem. Somematrix decompositionmethods were proposed
in [14,15], whereas Kim solved the rating data sparseness problem
by using the multi-level association rule mining method in [16].

In this paper, we use the maximum intersection method to
extract the nearest neighbors based on the project-based CF al-
gorithm when using a user-project score matrix for rating score
prediction, which can partially solve the rating data sparseness
problem.

2.2. Shuffled frog leaping algorithm and quantum computing

In 2003, Eusuff et al. first proposed a novel bionic intelligent
optimization algorithm called SFLA in [17], which combines a
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memetic algorithm based on meme evolution and particle swarm
optimization based on population behaviors. This algorithm is
based on a simple concept, less parameters, higher calculation
speed and stronger global search optimization capability. Luo et al.
proved the global convergence of SFLA by solving the differential
equation to analyze the trajectory of SFLA [18]. Elbeltagi et al. [19]
made a comparison of SFLA with a genetic algorithm (GA), particle
swarm algorithm, and ant colony algorithm, and then analyzed
their optimization performance. SFLA is mainly used to solve the
continuous multi-objective optimization problem, such as wa-
ter resource allocation, piers maintenance, workshop operation
process arrangements and other practical application problems.
Hence, we use SFLA discretization for optimizing the weights of CF
algorithms in recommendation systems.

Quantum computing with its unique computational perfor-
mance has caused widespread interest in the scientific world.
In 1996, Narayanan proposed a quantum-inspired genetic algo-
rithm (QGA), and was the first to introduce quantum comput-
ing into optimization algorithms, fusing quantum computing and
evolutionary computing research [20]. Subsequently, the results
of world-wide research include the quantum-inspired ant colony
algorithm, the quantum-inspired simulated annealing algorithm,
and the quantum-inspired immune algorithm and so on [21–23].
Taking the quantum-inspired genetic algorithm as an example, it
employs amulti-state qubit to encode genes and uses the quantum
rotation gate to realize chromosome evolution while introducing
the dynamic adjustment mechanism used for rotation angle and
quantum crossover into the optimization process, which achieves
better performance than conventional genetic algorithms.

The quantum evolutionary algorithmbreaks through the classic
information system limitations with a strong global optimization
ability, but poor convergence capability. With the advantages of
being simple, fast and easy for realization, it is possible for SFLA
to accelerate the quantum evolutionary algorithm convergence
rate. In addition, the quantum evolutionary algorithm is likely
to address the key issues in SFLA research, such as dividing the
population structure, information sharing among populations, etc.
If the two algorithms are combined, high efficiency can be main-
tained on the basis of obtaining better optimization results. At
present, the combination of the two algorithms is still relatively
rare. Zhang [24] proposed the use of the quantum SFLA in neural
network optimization and Ding [25] introduced a rapid rough
property reduction algorithm based on quantum leapfrog coevo-
lution.

Because the optimization of the weights of the CF algorithm is
a discrete optimization problem, we propose a novel optimization
algorithm called quantum-inspired shuffled frog leaping (DQSFL)
algorithm, which introduces quantum computing into the SFL al-
gorithm for quantization and discretization in order to optimize
the weights of CF algorithms effectively.

3. Discrete Quantum-inspired Shuffled Frog Leaping algorithm
(DQSFL)

3.1. Quantum position of DQSFL

The quantum position of a quantum frog can be represented by
a string of qubits, and the quantum position of quantum frog i is
defined as

vi = [vi1, vi2, . . . , vil] =

[
αi1 αi2 . . . αil
βi1 βi2 . . . βil

]
(1)

Therein (1), qubit is the minimum information unit, which
satisfies⏐⏐αij
⏐⏐2 +

⏐⏐βij
⏐⏐2 = 1, j = 1, 2, . . . , l. (2)

Furthermore, to make the DQSFL algorithm more concise and
efficient, we define the qubits αij and βij in the region 0 ≤ αij ≤ 1
and 0 ≤ βij ≤ 1 respectively, and the evolution of quantum
frog populations is assumed as the update process of the quantum
position. Hence, we define the quantum rotation angle as ∆θ t+1

ij ,
and quantum rotation gate U

(
∆θ t+1

ij

)
can be defined as

U
(
∆θ t+1

ij

)
=

[
cos∆θ t+1

ij − sin∆θ t+1
ij

sin∆θ t+1
ij cos∆θ t+1

ij

]
(3)

The qubit j of quantum frog i is vt
ij = [αt

ij, β
t
ij]

T , which is updated
according to the quantum rotation gateU(θ t+1

ij ). Therefore, there is
an update process as follows:

vt+1
ij = abs

(
U
(
∆θ t+1

ij

)
vt
ij

)
= abs

([
cos∆θ t+1

ij − sin∆θ t+1
ij

sin∆θ t+1
ij cos∆θ t+1

ij

]
vt
ij

)
(4)

If quantum rotation angle θ t+1
ij is zero, we use quantum NOT

gateW to update the qubit vt
ij in some small probability, where

vt+1
ij = Wvt

ij =

[
0 1
1 0

]
vt
ij (5)

3.2. DQSFL algorithm

In the DQSFL algorithm, the quantum frog group first produces
the quantum positions and common positions of h quantum frogs
respectively, and both quantum and common positions have l
dimensions. The position set of each quantum frog can be rep-
resented by x = {x1, x2, . . . , xh}. After t iterations, the quantum
position of quantum frog i is vt

i =
[
vt
i1, v

t
i2, . . . , v

t
il

]
, and its com-

mon position can be obtained from the relevant quantum position,
which has xti =

[
xti1, x

t
i2, . . . , x

t
il

]
, i = 1, 2, . . . , h. Each quantum

frog updates its quantum position by the guidelines of the global
extreme value and subgroup extreme value, and then determines
its own common position according to the measurement of the
quantum states. The local optimal value of quantum frog i is noted
as pti =

[
pti1, p

t
i2, . . . , p

t
il

]
, i = 1, 2, . . . , h, which is the best

position of the quantum frog. The global extreme value can be
noted as ptg =

[
ptg1, p

t
g2, . . . , p

t
gl

]
, which is the optimal solution of

all the local extreme values after t iterations. Let quantum frogs
be in descending order by the fitness values related to their local
extreme values, and be divided in to q (q =

h
r ) subgroups. In frog

subgroup k(k = 1, 2, .., q), the optimal value of the subgroup is
ptk =

[
ptk1, p

t
k2, . . . , p

t
kl

]
. The updating functions of the quantum

rotation angle and qubit position for the worst quantum frog i can
be given by

∆θ t+1
ij = e1

(
ptkj − xtij

)
+ e2

(
ptgj − xtij

)
(6)

vt+1
ij =

{
Wvt

ij, ptkj = xtij = ptgj and ηt
ij < c1

abs
(
U
(
∆θ t+1

ij

)
vt
ij

)
else (7)

Therein (6) and (7), j = 1, 2, . . . , l, and e1, e2 denote leap step
length, which represents the impact of the global optimal value
and subgroup optimal value on the quantum rotation angle and
c1 ≤ 1/l denotes the qubit mutation probability that the quan-
tum rotation angle is zero. The leap length needs to be carefully
designed. Because a large leap step lengthmay result in premature
convergence, while a small one may slow down the convergence
speed. Therefore we did a number of experiments to compare and
select a better leap step length. In addition, introducing a new
leap equation into the iterative equation improves information
exchange among populations in order to determine the quantum
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Table 1
Example of standard project configuration file.

1 2 3 4 6 7

Rating Age Gender Occupation Date Project genre
4 24 1 47 1990-1-2 10

rotation angle and position. According to quantum position tests,
the common position of the quantum frog can be given by

xt+1
ij =

{
1 γ t+1

ij > (αt+1
ij )2

0 γ t+1
ij ≤ (αt+1

ij )2
(8)

Therein (8), γ t+1
ij is a random number that satisfies a uniform

distribution between [0,1], and αt+1
ij is the probability of the quan-

tum state vt+1
ij being zero. In this paper, the quantum position of

the worst quantum frog in each subgroup is updated according to
Eqs. (6) and (7). If the fitness of the worst frog is improved, replace
the original extreme with the new position, otherwise it remains
unchanged.

4. CF recommendation method based on DQSFL

To improve the quality of the recommendation system, this sec-
tion presents one novel optimizationmethod for recommendation
systems based on DQSFL, which is at the basis of the related prin-
ciple of the CF algorithm. The major procedures in the rating score
prediction algorithm are described in the following subsection.

4.1. Establish project configuration

Project configuration files are the basis of calculating the
distance and similarity between projects. After establishing the
project configuration files, it needs the nearest neighbor set to
calculate the similarity relationship of projects. Let profile(j) denote
the configuration file of project j, and each file has K rows which
represent K characteristics of the configuration files. Each project
configuration contains two parts: (1) the variable part, which
comprises score of user characteristics such as career, gender, age
and each user score for this project; and (2) the fixed part, which
comprises the name, date and types of this project. Let profile(j, i)
denote the configuration file of user i for project j. An example of a
standard project configuration file is illustrated in Table 1.

The first column in Table 1 shows the project score, and the
second shows age, which can be standardized as

age(i) − min(age)
max(age) − min(age)

(9)

The third and four column represent the gender and occupation
of the user respectively. The last two column are the attributes of
the project. In this paper, all the variables in the files have been
normalized by using (9).

4.2. Selecting the nearest neighbor candidate set and computing
neighbor similarity

In this subsection, selecting the nearest neighbor set involves
the following: (1) select the nearest neighbor set by using themax-
imum intersection method; (2) determine the weighted adjusted
cosine similarity by using the DQSFL optimization algorithm; (3)
to maintain the efficiency and timeliness of the recommendation
system, model the project module and user module by offline
computing and store the related data results.

First, we select the project configuration file candidate set based
on the principle of user behavior similarity, assuming that there are
more evaluations froma certain commonuser for the sameproject,

which demonstrates that these two users have more similarity in
their behaviors. Hence, rank the neighborswho have common user
scores with the current project in descending order, and select the
former n neighbors as the candidate set, which is represented by
the following equation:

Si,j = R (i, :) ∗ R(j, :)′ (10)

Here Si,j represents the size of the intersection of project i and
j, R (i, :) and R (j, :) represent the score vectors of project i and j.
Since the higher Si,j, the more common user scoring items the two
projects have, we can use it to select the most suitable nearest
neighbors. Afterwe sort the scores in descending order, the highest
scored n projects are chosen to the candidate set.

After selecting the nearest neighbor candidate set, we compute
the weighted adjusted cosine similarity. The similarity between
two projects/users not only depends on user scores, but is also
affected by user characteristics. Therefore, a similarity calculation
needs to consider the combination of user information and project
information. Taking into account the different influence degree
of each characteristic factor on scores, we add a weight for each
characteristic, and use theDQSFL algorithm to optimize thisweight
to obtain the optimal solution.

Since the probabilitymagnitude of a qubit in a two-bit quantum
system has the property

⏐⏐αij
⏐⏐2 +

⏐⏐βij
⏐⏐2 = 1. This paper takes

⏐⏐αij
⏐⏐2

directly as the relative weight of the first attribute in the project
configuration file, and

⏐⏐βij
⏐⏐2 as the relative weight of another at-

tributes. When each quantum position of the quantum frog is K -
bit encoded (K is equal to the number of attributes). Through the
relative values of the weights, the actual weight of each attribute
can be obtained by the equationw1+w2+..+wk = 1. Substituting
the actual weights into the similarity calculation formula, the final
fitness value is obtained.

Assume W (A) represents a potential solution for characteristic
weights of the current project configuration files, and A denotes
a weight set which contains K weight values, which implies the
quantum positions of a quantum frog with K qubits. When the
quantum frogs leap, these characteristics are continuously ad-
justed until the optimal weight set is found. Here, we use the
modified cosine function to compare the similarity and distance
between project configuration files. Let similarity(A, j) denote the
similarity between the current projectA andneighbor project j, and
is defined as:

similarity (A, j) =

n∑
i=1

AW · jW
∥AW∥ ∥jW∥

(11)

In (11), W is a K × K matrix, and each value of the matrix rep-
resents the weight value of each characteristic, and n denotes the
number of users with common scores between the two projects.

After calculating similarity (A, j), we store the nearest cosine
distance obtained from the project configuration file in the system.
Here, we use the offline method of storing cosine distances for
rating score prediction. We only use these distances when rating
score prediction begins, and only update these similarity values
for a certain time. However, if the recommendation system has
very frequent behaviors of user scoring, we also can use the online
method to store and employ the related similarity values.

4.3. Weight optimization based on DQSFL

In this subsection, we use the DQSFL algorithm to optimize the
characteristic weights of the current project configuration file in
order to find the optimal characteristics for the project.

(1) Quantum frog. As described previously, the quantum po-
sition of each quantum frog represents a potential solution set
consisting of K qubits. The frogs search for the optimal solution
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by leaping continuously for multiple iterations. When the position
of one particular frog results in the fitness function having the
optimal value, the quantum position of this frog will be the global
optimal position for all frogs.

(2) Fitness function. In this experiment, assuming all the charac-
teristic weights of each project are stable, a single fitness function
exists as a result of only one optimal solution existing in the current
project. We define this fitness function as the average prediction
error between the rating score predictions for the two projects.
Hence, the expression of the fitness function is given by

fitness =
1
n

n∑
i=1

{(
meanA + k

m∑
i=1

similar(A, j)

× (vote(j, i) − meani)

)
− vote(A, i)

}
(12)

Where n denotes the number of users with common scores
between the current project A and the neighbor project j. Let
meanA denote the average score for the current project A, and
similarity(A, j) denotes the similarity of the current project A and
the neighbor projectj. Let vote(j, i) represent the score of project
j from user i, meani denotes the average score from user i, and
vote(A, i) represents the actual score of project A from user i.

(3) The major procedures of the DQSFL algorithm.
Step 1. Initialize the quantum frog population. Use equal-

magnitude to initialize the quantum positions of h quantum frogs.
The initial value of all probabilitymagnitudes (2∗h∗ l) is 1/

√
2 and

v1
i is the initial quantum position of the ith frog. Here l represents

the solution space dimension which is the number of attributes
used to compute the similarity here. The measurement state of vt

i
is the normal position of the quantum frog xti , which is also the
possible solution to the optimization. Test the common positions
of these frogs to derive the initial local extreme value p1i .

Step 2. Compute the fitness values corresponding to the posi-
tions of quantum frogs. Rank the quantum frogs in the descending
order of fitness value, and then divide them into q subgroups. Each
subgroup contains r quantum frogs that satisfies h = q ∗ r. The
division method is: the ith frog is divided into the kth subgroup
that satisfies k = i%q. The current optimal position found by the
kth frog subgroup is denoted by ptk and the global optimal solution
is ptg .

Step 3. Update the quantum position of the worst quantum frog
in each subgroup according to Eqs. (6) and (7).

Step 4. Test the quantum position vt
i of each quantum frog to

obtain the position xti according to Eq. (8).
Step 5. Calculate the fitness values of each frog. If the new posi-

tion of a certain quantum frog xt+1
i is better than pti , then the local

optimal value is replaced by xt+1
i , that is pt+1

i = xt+1
i ; otherwise

pt+1
i = pti remains unchanged. Each subgroup completes ϕ times

meta-evolutions.
Step 6. Quantum frogs are regrouped according to the newly ob-

tained fitness value. Update the optimal position of each subgroup
ptk and the global optimal value ptgof the whole frog group. Repeat
step 3∼5.

Step 7. Determine whether the convergence condition is satis-
fied or whether the maximum iterations has been reached. If not,
increase the number of iterations by one and repeat step 6. If yes,
terminate the algorithm and output the global optimal position of
the quantum frogs.

This paper uses the square of the probability amplitude (
⏐⏐αij
⏐⏐2or⏐⏐βij

⏐⏐2) as the relative weight of the attribute, therefore, it is only
necessary to convert the relativeweight into the absoluteweight to
calculate the similarity. The workload of initializing and updating
the positions of all the quantum frogs is h∗ l or h∗K (h denotes the
number of the quantum frogs, l is the qubits of a quantum frog and

K indicates the number of attributes, l and K are equal). However,
in each iteration of a subgroup, only the l qubits of the worst frog
needs to be updated, so the workload is l. The worst case is that the
maximumnumber ofmeta-evolution iterationsϕ is reached, so the
workload of updating subgroup is ϕ∗ l. The ranking of fitness needs
h∗log h. Assume themaximumglobal iterations is set to F , the total
time consumption of DQSFL is h ∗ l + F ∗ h∗ log h + F ∗ q∗ (ϕ ∗ l).
By setting the proper value of the population of quantum frogs, the
max global iterations F and meta-evolution iterations ϕ, the time
overhead of the algorithm can be controlled.

4.4. Rating score prediction and recommend

After obtaining the optimal weights of the configuration files
of the nearest neighbor project and the current project by using
DQSFL algorithm, we start to predict the scores.

(1) Rating score prediction. The expression of rating score pre-
diction is defined as Eq. (13). Let n be the number of selected
neighbors, k is the standard parameter, and the sum of the cosine
distances is 1. The other major parameters in this expression are
illustrated in Table 2.

P_vote(A, i) = meanA + k
n∑

j=1

(similarity(A, j)

× (vote(j, i) − meani)) (13)

Because the scores of the current project have already known,
the accuracy of the prediction result can be represented by Mean
Absolute Error (MAE), which can be calculated as

MAE =
1
n

n∑
m=1

|Yim − Sim| (14)

Where Yim denotes the predicted score and Sim denotes the
actual score.

(2) Recommend. The recommendation methods of recommen-
dation systems are different due to the use of different recom-
mendation algorithms. There are two main methods as follows:
first, recommend interesting projects to the current user when
extracting the nearest neighbors with similar interests; second,
extract the nearest neighbors, and make a rating score prediction
for the current project and user, and then rank the predicted scores
in order to recommend the ones with higher scores.

5. Performance evaluation

In this section, we firstly test and analyze the performance
of the DQSFL algorithm and compare it with other traditional
optimization algorithms such as GA, QGA and PSO. Furthermore,
we conduct experiments to measure the performance of the rec-
ommendation system using the CF algorithm based on DQSFL, and
compare it with other traditional algorithms.

5.1. Testing and analyzing DQSFL

(1) Test Design. Function optimization is a classic application of
artificial intelligence algorithms and is also one of the commonly
used evaluation methods. In order to test convergence speed and
capacity, we select two classic benchmark functions to test the
minimum extreme value for the DQSFL algorithm. The potential
solution is encoded with binary information, the bit length of
which is 20. The number of simulations is set to 200, and the
population in all the intelligent optimization algorithms is set to
25. The simulation result is computed by the statistical average
method. The parameter settings of the other traditional optimiza-
tion algorithms, such as GA, QGA and PSO, can be found in [6,20]. In
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Table 2
The Notations of major parameters in (13).

Symbol Explanation

P_vote(A, i) the predicted score for the current project

meanA the average score for current project A

vote(A, i) the configuration file of user i scoring for project A

similar(A, j) the nearest cosine similarity value of the configuration
files of project A and j

vote(j, i) the score of project j from user i

meani the average score of all the projects from user i

Fig. 1. Convergence curve of Schwefel function.

Fig. 2. Convergence curve of Rastrigin function.

DQSFL, we define the fitness function as the optimization function,
and the position which corresponds with the minimum extreme
value of the fitness function is the optimal solution. The major
parameter settings are set as follows: there are 4 frog subgroups in
the frog population: two subgroups have e1 = 0.05 and e2 = 0.04;
and the other two subgroups have e1 = 0.05 π and e2 = 0.04 π ;
and all the subgroups havec1 = c2 = 0.1/l, where l is the
dimension number of the solution space.

Table 3
Comparison of Schwefel function test.

Algorithm Optimal value Execution time (s)

DQSFL 1.806 × 10−2 2.96
PSO 3.951 × 10−1 3.87
QGA 8.669 × 100 3.05
GA 4.595 × 101 4.27

Table 4
Comparison of Rastrigin function test.

Algorithm Optimal value Execution time (s)

DQSFL 8.157 × 10−6 3.15
PSO 5.557 × 10−1 3.34
QGA 7.932 × 10−1 2.98
GA 2.486 × 101 3.52

An example of the classic Schwefel function is:

F1 (y) = 2 × 418.9828 +

2∑
i=1

−yi sin
(√

|yi|
)

,

− 500 ≤ yi ≤ 500, i = 1, 2. (15)

An example of the classic Rastrigin function is:

F2 (y) =

2∑
i=1

(y2i − 10 cos (2πyi) + 10),

− 5.12 ≤ yi ≤ 5.12, i = 1, 2. (16)

(2) Result Analysis. Both the classic Schwefel function and
Rastrigin function are complex multimodal functions with a large
number of local minimum extreme values, hence it is easy tomake
the search fall into the local optimal solution. Figs. 1 and 2 illustrate
the convergence curves of these two functions using different op-
timization algorithms, respectively. As shown in Figs. 1 and 2, it is
known that GA, QGA and PSO algorithms have similar convergence
speed and accuracy, both of which are much lower than the DQSFL
algorithm. Therefore, the proposed DQSFL algorithm should have
great potential for application. We also know the test performance
of the benchmark function for GA, QGA and PSO is not always
stable, and is easy to fall into a local convergence. Compared to
the traditional algorithms, DQSFL has a great advantage in terms
of convergence speed and accuracy, the reason for this being that
the combination of quantum computing and the SFL algorithm
can preserve better population diversity to search for the optimal
solution.

Tables 3 and 4 show the comparison of the average optimal
values and execution time of the mentioned algorithms when
performing the function optimization test (100 statistical results).
From the results, we can see that they have little difference in the
total execution time, but the optimization capability of DQSFL is
obviously better than the others. By improving the quantum cod-
ing or finding the more suitable updating parameters, the DQSFL
algorithm has a great potential for improving the time efficiency.
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(a) Experiment Set C. (b) Experiment Set B. (c) Experiment Set A.

Fig. 3. The comparison results of the maximum intersection method and randommethod.

(a) Experiment Set C. (b) Experiment Set B. (c) Experiment Set A.

Fig. 4. Comparison results of weighted adjusted cosine similarity (proposed), Weighted Euclidean distance and cosine similarity.

5.2. Experiment using the CF algorithm based on DQSFL

(1) Experiment Design. The experiment employs theMovieLens
[26] movie evaluation dataset for recommendation, which con-
tains 943 users, 1682 projects (here this denotes movies) and ten
thousand score records. In this experiment, we use the character-
istics of this dataset namely: three user features of age, occupation
and gender; and 18 project types such as action, adventure, anima-
tion and so on.

To ensure the accuracy of the rating score predictions, the
whole dataset is divided into Part A, Part B and Part C to conduct
three cross-experiments. For each experiment, we select any two
parts as the experimental project training set, which is used to
train weighted adjusted cosine similarity and modified Euclidean

distance weights. The remaining part is used as the experimental
set to verify the effectiveness of the optimization results. The three
cross-experiment datasets are set as follows: (1) both A and B
are training sets, and C is the experimental set; (2) both A and C
are training sets, and B is the experimental set; (3) both B and C
are training sets, and A is the experimental set. Moreover, each
experiment can be divided into two subgroups as follows:

• Randomly select 10 projects as the current projects, and
employ the maximum intersection method to extract the
nearest neighbor set, where the number of projects is n
(n = 10, 11, . . . , 30).

• Randomly select 10 projects as the current projects, and
employ the randommethod to extract the nearest neighbor
set, where the number of projects is n (n = 10, 11, . . . , 30).
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For the training set, the parameters of the DQSFL algorithm
are initialized as follows: the quantum frog number is N = 40,
the other parameters are the same as those used in the previous
experiment and the maximum iteration times areM = 1000.

The differences in extracting the nearest neighbor set in experi-
ments 1 and 2 verify the effectiveness of themaximum intersection
method for improving the rating score prediction accuracy.

Furthermore, we design two contrasting experiments to verify
the effectiveness of weighted adjusted cosine similarity and use
DQSFL to optimize the weights for the rating score prediction.
Because researchers has verified that rating score prediction with
weighted Euclidean distance outperforms one with relevant sim-
ilarity, only modified Euclidean distance and traditional cosine
similarity are used for contrasting experiments. The details are
described as follows.

• Weighted modified Euclidean distance

The experiment process of rating score prediction with
weightedmodified Euclidean distance is similar to the rating score
prediction experiment with weighted adjusted cosine similarity.
When computing similarity, the Euclidean distance can be calcu-
lated as

euclidean(A, j) =

√ z∑
i=1

22∑
f=1

wf × diffi,j(A, j)2 (17)

where A denotes the current project, j denotes the project selected
from the project configuration process, wf denotes the weight of
characteristic f of the current project, z represents the number of
users who score the current project, and diffi,j(A, j) represents the
difference between the characteristics of the current project A and
the selected project j.

In this experiment, we keep the current project and nearest
neighbor candidate set identical for the standard experiment, and
do not change the parameter setting of the DQSFL algorithm. In
the prediction process, the weights obtained from the training set
optimization are used as parameters to establish the rating score
prediction equation according to (11) by using weighted modi-
fied Euclidean distance instead of weighted modified cosine when
computing similarity. Finally, the Mean Absolute Error of (14) is
used to evaluate the results. Therefore, the lower the predicted
score, the higher the accuracy of the recommendation method.

• Traditional cosine similarity

To verify the effectiveness of using DQSFL to optimize weighted
adjusted cosine similarity, we make traditional cosine similarity
as the contrasting experiment for rating score prediction. This
experiment is also divided into two groups: in the training set,
the current project and the nearest neighbor candidate set of the
standard experiment is used to test the similarity value according
to cosine similarity; in the experiment set, the related calculation
equation is established to predict scores.

(2) Result Analysis. Fig. 3 shows the performance curves of the
three cross-experiments as described in 5.1.1. In Fig. 3, the x axis
shows that the scale of the nearest neighbor candidate set is from 5
to 25, and the y axis denotes the Mean Absolute Error of the rating
score prediction of the 10 current projects. As shown in Fig. 3, the
accuracy results of the maximum intersection method are overall
higher than the randommethod results.

After the three cross-experiments, Fig. 4 illustrates the per-
formance comparison of the three similarity calculation methods,
weighted adjusted cosine similarity optimized by the DQSFL algo-
rithm, weighted Euclidean distance and cosine similarity. In Fig. 4,
the x axis represents the 10 current projects, and the y axis denotes
the rating score predictions of these 10 current projects. We use

the maximum intersection method to select the nearest neighbor
candidate set, the scale of which is 16. As shown in Fig. 4, the rating
score prediction accuracy performance when using the weighted
cosine similarity optimized byDQSFL significantly outperforms the
other two methods.

Hence, according to previous performance analysis, using the
maximum intersectionmethod andweighted adjusted cosine sim-
ilarity based on the DQSFL optimization algorithm obviously im-
proves the rating score prediction accuracy of the CF algorithm,
thereby enhancing the quality of the recommendation system.

6. Conclusions and future work

In this paper, we proposed a novel collaborative filtering al-
gorithm to improve the rating score prediction accuracy of the
recommendation system in social networks. In the proposed col-
laborative filtering algorithm, we use the maximum intersection
method to extract the nearest neighbor candidate set and com-
pute the weighted adjusted cosine similarity to rate the score
prediction, which can partially avoid the rating data sparseness
problem. To optimize the weights of the CF algorithm, we pro-
posed a novel optimization method, named DQSFL, which intro-
duces quantum computing into the SFL optimization algorithm.
Moreover, we tested the DQSFL performance against other opti-
mization methods and experiment on the proposed CF algorithm
with other traditional recommendation algorithms. A comparison
of the performance results shows that the DQSFL optimization
algorithm has a better capability of searching for optimal solutions
and can optimize discrete optimization problems, and the rating
score prediction accuracy of the CF based on DQSFL outperforms
other traditional recommendation algorithms,which improves the
quality of social network recommendation systems.

However, there remains a lot of work to do in the future. The
special feature of quantum coding can improve the capability of
storage and computation of the traditional algorithms. Quantum-
inspired frog algorithm has powerful global optimization ability.
However, the frog leaping algorithm itself has the problem of long
optimization time. It is necessary to further study the design of the
quantum coding methods and the related parameters (including
the leap step length, frog population, meta-evolution and global
communication iterations). In addition, MovieLens is just a small-
scaled database. To deploy the DQSFL-based collaborative filtering
algorithm on the actual social networks or recommendation plat-
forms to detect its performance is also what we need to do.
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