
Future Generation Computer Systems 86 (2018) 1008–1018

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

QoS-aware Big service composition using MapReduce based
evolutionary algorithm with guided mutation
Chandrashekar Jatoth a,b, G.R. Gangadharan a,*, Ugo Fiore c, Rajkumar Buyya d

a Institute for Development and Research in Banking Technology, Hyderabad, India
b SCIS, University of Hyderabad, Hyderabad, India
c Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Italy
d Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne,
Australia

h i g h l i g h t s

• The problem of producing service composition with an optimal QoS attribute that satisfies the customer requirements is a complex and challenging
issue, especially in a Big service environment.
• Proposal of a novel MapReduce-based Evolutionary Algorithm with Guided Mutation .
• An optimal service composition method in Big Service Environment provides the best performance concerning feasibility and scalability.
• By performing T -test and Wilcoxon signed rank test at 1% level of significance, we observed that our proposed method outperforms other methods.

a r t i c l e i n f o

Article history:
Received 1 December 2016
Received in revised form 30 March 2017
Accepted 16 July 2017
Available online 21 July 2017

Keywords:
Web service
Big data
Quality of Service (QoS)
MapReduce
Meta-heuristic algorithm

a b s t r a c t

Big services are the collection of interrelated services across virtual and physical domains for analyzing
and processing big data. Big service composition is a strategy of aggregating these big services from
various domains that addresses the requirements of a customer. Generally, a composite service is created
from a repository of services where individual services are selected based on their optimal values
of Quality of Service (QoS) attributes distinct to each service composition. However, the problem of
producing a service compositionwith an optimalQoS value that satisfies the requirements of a customer is
a complex and challenging issue, especially in a Big service environment. In this paper, we propose a novel
MapReduce-based Evolutionary Algorithm with Guided Mutation that leads to an efficient composition
of Big services with better performance and execution time. Further, the method includes a MapReduce-
skyline operator that improves the quality of results and the process of convergence. By performing
T -test and Wilcoxon signed rank test at 1% level of significance, we observed that our proposed method
outperforms other methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Big services are collections of interrelated web services for han-
dling and dealing with big data, having the properties of customer
focus, massiveness, complexity, heterogeneity, convergence, cred-
ibility, and value across physical and virtual domains [1]. Big ser-
vice composition consists in aggregating services from multiple
domains to create a composite or aggregated, big service that
addresses customer requirements [1]. A composite big service is

* Corresponding author.
E-mail addresses: jcshekar@idrbt.ac.in (C. Jatoth), GRgangadharan@idrbt.ac.in

(G.R. Gangadharan), ufiore@unina.it (U. Fiore), rbuyya@unimelb.edu.au (R. Buyya).

complex in nature and should be able to scale with the growth of
data volumes and to improve adaptability and maintainability of
diversified data.

Several web services provide similar functionality with dif-
ferent non-functional properties, specified as Quality of Service
(QoS) attributes. Individual services are selected based on their
QoS attributes so that the constraints and preferences specific to
each service composition can be satisfied by the overall QoS of
the composite service. The QoS of a composite service is defined
by attributes such as cost, response time, availability, reliability,
and throughput. However, producing a service composition with
an optimal QoS value that satisfies the customer requirements

http://dx.doi.org/10.1016/j.future.2017.07.042
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.07.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.07.042&domain=pdf
mailto:chandrashekar.jatoth@gmai
mailto:GRgangadharan@idrbt.ac.in
mailto:ufiore@unina.it
mailto:rbuyya@unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2017.07.042

C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018 1009

is a complex task, especially in a Big service environment. QoS-
aware service composition is as a NP-hard optimization problem.
Numerous studies inclusive of exact, heuristic and meta-heuristic
algorithms have been proposed to solve QoS-aware web service
composition [2]. Genetic algorithms (GA) [3–7] have been widely
used for solving QoS-aware service composition. The selection
efficiency is, however, related with the number of candidate ser-
vices [8].

As the computational intelligence algorithms requiremore iter-
ations and more execution time to find the near-optimal solution,
parallelization becomes attractive [9]. An efficient parallelized
algorithm is faster than its sequential counterpart. The parallel
algorithm should handle large amounts of data and scale well with
a growing number of computing nodes. However, depending on
the nature of the algorithm, some problems can be encountered
such as inefficient communication, unfair load balancing, and node
failure, which make the process of scaling of the algorithm to large
numbers of processors very difficult.

In this paper, we propose a novel MapReduce-based Evolution-
ary Algorithm with Guided Mutation (MR-EA/G) for Big service
composition. The salient contributions of this paper are as follows:

• Anovelmethod for pre-selection of services offering theQoS
value required for the user’s satisfaction, which improves
the quality of the result and speeds up the process of con-
vergence using a novel MapReduce-Skyline operator.
• A novel MapReduce-based Evolutionary Algorithm with

Guided Mutation (MR-EA/G) that reduces computational
time and increase convergence rate.
• An empirical analysis illustrating the performance of MR-

EA/G in terms of feasibility, scalability, and optimality with
different QoS attributes for solving Big service composition.

The rest of the paper is organized as follows. Section 2 describes
the modeling of QoS-aware Big service composition. The proposed
method MR-EA/G is described in Section 3. Section 4 presents
performance evaluation. Related work is discussed in Section 5
followed by concluding remarks in Section 6.

2. Modeling of QoS-aware big service composition

A composite service T is a fusion ofmmultiple tasks (or abstract
services) T = {t1, . . . , tm}. Each task ti can be realized by one
service in a specific set of ki candidate services Ci = {si1, . . . , s

i
ki
}.

The sets Ci of candidate services are subsets of the set of available
concrete services S = {s1, . . . , sn}. The services in the set Ci are
similar in functionality but may differ in their QoS attributes.

Let Q =
{
q1, . . . , qp

}
be the QoS attributes. For a QoS attribute

q ∈ Q , denote with q(si) the value of that QoS attribute for a
particular service si.

Let w : Q ↦→ [0, 1] be a function giving the preference for each
attribute: w(q) specifies the user preference for attribute q ∈ Q .

Let C = {c1, . . . , cp} be a set of QoS constraints given by the
user, where ck is a constraint on QoS attribute k in a composite
service.

QoS attributes can be considered as positively and negatively
monotonic [10,11]. The process of service composition should
map to higher values for positively monotonic QoS attributes and
lower values for negativelymonotonic QoS attributes. For example,
throughput, availability, and reliability are positively monotonic
attributes, while price and response time are negativelymonotonic
attributes. The list of QoS attributes and their description is re-
ported in Table 1. Before evaluating the utility function (or fitness
function) of a composite service, we calculate the normalized value

of each QoS attribute as follows [10,12,13]:

vq(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if qmax
= qmin

qmax
− x

qmax − qmin if q is negative

x− qmin

qmax − qmin if q is positive

(1)

where qmax and qmin aremaximumandminimumvalues of the QoS
attribute q for all candidate services and x is the attribute value of
a service respectively. With a slight abuse of notation, vq(i) will be
used to mean vq(q(i)).

The values of global QoS attributes are the aggregate values of
QoS attributes of selected services for each task ti, 1 ≤ i ≤ m. The
best composition is obtained by maximizing the utility function
values of the global QoS attributes according to the user’s prefer-
ence. The user’s preference is expressed asweightswi where i is the
QoS attribute. These user preferences are obtained by Analytical
Hierarchy Process (AHP)method. The scale thatweuse for pairwise
comparison is the one adopted by Saaty [14], ranging from 1 to 9
with the meaning reported in Table 2. The pairwise comparison of
attributes was made with the help of domain experts. The weights
of each criterion are described in Table 3. To check the consistency
of the calculated weights, we obtain the consistency ratio (CR)
≤ 0.1. This ratio tells that our matrix is consistent and weights are
valid.

Let Aq be the aggregation functions of QoS attribute q which
computes the global value of q for the composition. Generally, a
utility function evaluates the multi-dimensional QoS attributes of
a composite service [12,10,13]. In this paper, we use the Simple
AdditiveWeightmodel as a utility function. The utility functions of
the normalized attributes are assumed to be linear. Thus the goal
of the optimization is to find X that maximizes the global utility
function computed as follows (similar to the scheme proposed
in [10]):

d(X) =
m∑
i=1

∑
q∈Q

w(q)Aq
(
vq(i)

)
subject to constraints: Aq

(
vq(i)

)
≤ Aq

(
vc
q(i)

)
;

having
∑
q∈Q

w(q) = 1 (2)

where Aq
(
vc
q(i)

)
denotes the global constraints given by the users

and vq(i) computed by the aggregation functions. The global QoS
attribute is computed by recursively applying the aggregation
functions to the building blocks that form the structure of the
composition [3]. For example, the global response time would be
the sum of response times of individual candidate services when
the services are executed in sequence and would be the maximum
of response times of individual services when the services are
executed in parallel. In practice, diverse composition structure, for
example, sequential, parallel, conditional, and loop can be engaged
in a composition plan. In our paper, we have considered the tasks
to be sequential in the composition plan and other plans are trans-
formed into sequential model [11,15]. The aggregation functions
for each of the QoS attributes considered are as follows:

APr(i) =
∑

j

Pr
(
sij
)
, ATh(i) = min

j
Th

(
sij
)
,

AAv(i) =
∏
j

Av
(
sij
)
,

ARe(i) =
∏
j

Re
(
sij
)
, ARt(i) =

∑
j

Rt
(
sij
)

1010 C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018

Table 1
List of QoS attributes and their description.

S.No QoS attributes
name

Description

1 Price The price that a service requester has to pay for invoking a service.
2 Throughput The total number of web service invocations possible in a given

amount of time (measured in invokes/sec).
3 Availability The probability that a service is available during the request (measured

in percentage).
4 Reliability The probability that a request is correctly responded within the

maximum expected time (measured in percentage).
5 Response time The time interval between the moments when a user requests the

service and when the user receives the response (measured in
milliseconds).

Table 2
Scales for comparison matrix of QoS attributes.

Intensity of importance Definition

1 Equal importance
3 Moderate importance of one over another
5 Essential or strong importance
7 Very strong importance
9 Extreme importance
2, 4, 6, 8 Intermediate values between the two adjacent judgments

Table 3
Priority weights of QoS attributes.

Availability Response
time

Reliability Price Throughput Weights
vector

Availability 1.00 3.00 2.00 3.00 2.00 34.81%
Response time 0.33 1.00 2.00 3.00 5.00 32.50%
Reliability 0.50 0.50 1.00 0.50 0.33 9.64%
Price 0.33 0.33 2.00 1.00 2.00 14.17%
Throughput 0.50 0.20 3.00 0.50 1.00 13.73%

Table 4
Aggregation functions of QoS attributes.

QoS attribute name Sequence Parallel Loop Conditional

Price (Pr) APr =
∑n

i=1Pr
(
sij
)

APr =
∑n

i=1Pr
(
sij
)

APr = k ∗
∑n

i=1Pr
(
sij
)

APr =
∑n

i=1Pr
(
sij
)
∗ Pi

Throughput (Th) ATh = minn
i=1Th

(
sij
)

ATh = minn
i=1Th

(
sij
)

ATh = k ∗
∏n

i=1Th
(
sij
)

ATh = Pi ∗
∏n

i=1Th
(
sij
)

Availability (Av) AAv =
∏n

i=1Av
(
sij
)

AAv =
∏n

i=1Av
(
sij
)

AAv = k ∗
∏n

i=1Av
(
sij
)

AAv = Pi ∗
∏n

i=1Av
(
sij
)

Reliability (Re) ARe =
∏n

i=1Re
(
sij
)

ARe = maxni=1Re
(
sij
)

ARe = k ∗
∏n

i=1Re
(
sij
)

ARe = Pi ∗
∏n

i=1Re
(
sij
)

Response time (Rt) ARt =
∑n

i=1Rt
(
sij
)

ARt = minn
i=1Rt

(
sij
)

ARt = k ∗
∑n

i=1Rt
(
sij
)

ARt = Pi ∗
∑n

i=1Rt
(
sij
)

where sij is the service selected for subtask ti and abbreviations are
used for the QoS attributes. The aggregation functions of QoS at-
tributes are described in Table 4, where Pi represents the probabil-
ity of a branch i and k represents the number of loops. The objective
of the composition is to select an optimal candidate service among
them to resolve the task ti, since the selected candidate service
influences the quality of composition.

3. MapReduce-based EA/G for big service composition

This section describes the basic concepts of MapReduce, mod-
ified Evolutionary Algorithm with Guided Mutation (EA/G) ap-
proach, and MapReduce-based EA/G in detailed for Big service
composition.

3.1. MapReduce

The MapReduce (MR) model is intended for parallel and dis-
tributed processing of large datasets in data intensive applica-
tions [16,17]. The paradigm behindMapReduce is to split data into
pieces or into equal splits that can be processed in parallel and
then gather the results to produce the final output. Conceptually,
this model comprises two primitives:Map() function and Reduce()

function. The Map() function takes an input as key/value pairs and
applies an operator on each key/value pair to construct a set of
intermediate key/value pairs. The Reduce() function takes as input
intermediate key/value pairs having the same key and produces
final key/value pairs.

In our approach, Map() creates a list of candidate services with
QoS attributes. For a single service, a set of QoS attributes is sent to
the Reduce() function, which computes the best candidate service
among the available services. The simplified execution flow of
MapReduce-based Big service composition is shown in Fig. 1.

3.2. Modified EA/G approach

The Evolutionary Algorithm with Guided Mutation (EA/G) [18]
is a combination of both conventional Genetic Algorithm (GA)
and Estimation of Distribution Algorithms (EDA) that uses both
global information and local information on solutions found so
far to generate offsprings. Global information is used to build a
probability model of promising solutions. An offspring is produced
by sampling from this model, in combination with partial reuse of
parent solutions.

An initial solution is generated randomly. Guidedmutation pro-
duces an offspring from the parent solution based on a probability

C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018 1011

Fig. 1. MapReduce execution flow for big service composition.

guidance model, but the newly generated solution retains a user-
specified percentage of the elements of the parent. In such a way,
the similarity between an offspring and a parent can be controlled,
and the resultant solution can fall in or close to a promising area
which is characterized by the probability model.

The problem with this model is the random generation of the
initial solution that results in a low convergence rate. To overcome
this issue, we propose a modified evolutionary algorithm with
guided mutation, where the search space is reduced to avoid re-
dundancy (filter-out redundant services among available services),
and the initial solution is generated on the reduced search space
using a novel skyline operator. The modified evolutionary algo-
rithmwith guidedmutation algorithmworkflow is shown in Fig. 2.

3.2.1. Solution encoding
The goal is to find a service composition with top k candidate

services from the abstract services. The chromosome encoding
model is shown in Fig. 3. In Fig. 3, t1, . . . , tm are the abstract
services of the composition. The chromosome represented in Fig. 3
contains, for each service ti, an integer value which represents a
concrete service chosen in the setCi of the candidate services. In the
chromosome of Fig. 3, the abstract service t1 selects the candidate
service s4, the abstract service t2 selects the candidate service s1,
the abstract service t3 selects the candidate service s6, and etc. to
include in the composition.

3.2.2. Initial solution using skyline operator
Generally, in genetic algorithms, the initial population is gen-

erated randomly. The random selection of a solution spans the

Fig. 2. Flow chart of the modified EA/G algorithm.

entire search space of
∏m

k=1nk possible combinations of one out
of nk alternative services for each of the m abstract services. This
results in an initial solution having possibly a low quality. In order
to overcome this issue, we propose a novel skyline operator to
reduce the search space by selecting only dominant services in a
given set, thus improving the convergence speed and quality of the
solution.

Let V be a set of candidate services Ci where Ci = {si1, . . . , s
i
ki
}

in all abstract services ti, where i = 1, 2. . . . ,m. Initially, all the
candidate services are assigned to ℜ. From ℜ, the first candidate
service of initial population is chosen based on the fitness value
(described in Section 2). The candidate service Ci with the maxi-
mum fitness is added to the initial population, which is denoted by
τ . From the set ℜ, the candidate services that have fitness values
nearer to the candidate service Ci in τ are selected for further
processing and are added to ζ and are removed fromℜ. ζ is added
to χ which represents the shortlisted services. For services in χ ,
we check whether there are candidate services from τ , with the
nearest fitness values. In such selected candidate services,we find a
candidate servicewith the nearest fitness value among the selected
services to add it to τ and delete it from χ . This process is repeated
until all the services in the set ℜ are covered. The final τ list
becomes the initial solution for the given input.

3.2.3. Initial probabilities
In our modified evolutionary algorithm with guided mutation,

univariate marginal distribution is applied for the estimation of
the distribution of solutions in the search space. A probability
vector P = (p1, . . . , pK) is used for characterizing the solution
distribution, where K = |V | is the number of candidate services
considered. The vector P is initialized starting from the Nc initial
solutions. After generating the initial solutions, pi is set to the

1012 C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018

Fig. 3. Chromosome encoding model.

Algorithm 1 initial population generation using skyline operator
Input: V :set of candidate services
Output: dominating set of candidate services.
ℜ: set of candidate services in each abstract service.
τ : set of services selected for initial solution.
ζ : neighbor services of τ .
χ : neighborhood set of τ .
dt : Possible dominant set.
for each population do
ℜ ← V ;
χ ← φ, ζ ← φ, dt ← φ;
V ← random(ℜ);
Insert V into τ //dominating set;
Delete V from ℜ;
while ℜ ̸= φ do

Compute neighbor services (ζ) for V ;
for each service j in ℜ do

if Vfitness - jfitness < c1 then
ζ ← j;

end
end
χ ← ζ ;
Select neighbor services which has at least one service with near-
est fitness as neighbor ;
for each service k in χ do

for each service j in ℜ do
if kfitness − jfitness < c1 then

ζ ← j;
end

end
if neighbor is present then

dt ← k;
end

end
χ .remove(service);
χ ← ζ ;
Select a service from χ with fitness value nearest to τ ;
τ ← service;

end
end

frequency of occurrence of the candidate service si, i.e., counting
the number of solutions containing si anddividing byNc . The vector
P is used in the guidedmutation operator, and it is further updated
after every new generation.

3.2.4. Probability update
At each generation, a parent population is formed by selecting

the best Nc/4 solutions from the current population set. Where Nc
is an active solution. The parent population is used for updating
P . The pseudocode for probability updation is described in Al-
gorithm 2, where λ ∈ [0, 1] is the learning rate that governs the
parent population contribution.With high values of λ, the updated
P reflects more the characteristics of the parent population and
vice versa. The change in the probability of a candidate service
depends on the frequency of occurrence of that service in the
parent population.

Algorithm 2 Update Probability
Input: initial P , parent population, population.
Output: updated P .
for each candidate service si in population do

n← number of parent population solutions containing si;
p′i = (1− λ) ∗ pi + (λ ∗ (4n/Nc));

end
P ← P ′

3.2.5. Guided mutation
The Guided Mutation operator combines the global statistical

information in P and the generated solutions to generate new
solutions.

Algorithm 3 explains the process of generating a new solution,
where β ∈ [0, 1] and dt is the new solution generated whose
services are either sampled from the model given by P or retain
those of the best solution in the parent. This process is controlled by
a parameter β is used to control the contributions of P and parent
population. As the value of β decreases, the parent population con-
tribution to the new solution increaseswhereas that of P decreases
and vice-versa. The generated solution dt maynot be valid. Hence it
needs to be checked for feasibility and, if required, a repair operator
is applied to it.

3.2.6. Repair operator
The repair operator is applied only on infeasible solutions. In

this repair operator, all the services fromℜ that are not present in
the χ list are selected andℜ list is reinitialized with those selected
services. A service from ℜ is selected randomly, and its nearest
neighborhood is calculated. The repair operator selects a service
from this set and adds to the infeasible solution set. Then, the

C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018 1013

Algorithm 3 Guided Mutation
Input: population, P , and best solution
Output: Generated solution dt
initialize β ;
for each service si in population do

generate a random value r ∈ [0, 1];
if r < β then

if pi < threshold_probability then
dt ← dt ∪ si;

end
else

if si ∈_bestsolution then
dt ← dt ∪ si;

end
end

end
end

selected service is deleted from ℜ. This process is repeated until
the set becomes feasible, i.e., until ℜ becomes null. The selection
of a service is based on the probability threshold value or random
selection. This helps to maintain the diversity of the population.
The pseudocode of repair operator is shown in Algorithm 4.

Our proposed Modified Evolutionary Algorithm with Guided
mutation (EA/G) (seeAlgorithm5) uses the conventional EA/Gwith
anovel skyline operator to generate solutions at faster convergence
rate. In this algorithm, the initial population is generated by using
the skyline operator. The skyline operator has the ability to remove
redundant services. Further,Nc number of initial solutions are gen-
erated. The probability of each candidate service is computed using
these solutions generated. Later, the probability of each candidate
service is updated using the best Nc/4 number of parent popula-
tions. The composition is generated using themodified EA/G based
on both parent solutions and P . Further, the composition generated
is tested for feasibility. If the composition generated is not feasible,
then the repair operator is applied to make it feasible. This process
is repeated for ‘N ’ number of times until the optimal composition
with the best fitness is obtained. The pseudocode of modified EA/G
algorithm is presented in Algorithm 5. The evolutionary strategy
flow diagram of our proposed approach is illustrated in Fig. 2.

Algorithm 4 Repair Operator
Input: dt , population, Prob
Output: dt
whileWn ̸= φ do

v← random service from population;
if v not in dt then

if V_ probability < threshold_ probability then
dt ← V ;
delete V from population;

end
end

end
return dt ;

3.3. MapReduce based EA/G

This sub-section describes the MapReduce-based implementa-
tion of our Modified EA/G algorithm to solve the challenge of big
service compositionwith scalability and robustness. The algorithm
works in 3 phases: Initialization phase, MapReduce phase, and
Repair phase (as illustrated in Fig. 4).

3.3.1. Initialization phase
In order to reduce the search space of candidate services and

filter-out the optimal candidate services for each abstract service,

Fig. 4. Flowchart of MR-EA/G.

Algorithm 5Modified EA/G
Input: population, P
Output: best service composition
iterations← 0;
do

iterations← iterations+ 1;
Generate Nc initial solutions for g by using Algorithm 1;
Calculate initial probabilities for all the services in generation;
Generate the parent population;
Update P based on parent population by using Algorithm 2;
do

Apply Guided Mutation by using Algorithm 3;
while services ̸= end;
Verify feasibility of the generated composition;
if composition is not feasible then

Apply repair operator on obtained solution using Algorithm 4;
end
Reinitialize generation g;

while iterations ≤ N;

we use the following skyline operator in the map reduce frame-
work.

Let si1 and si2 be two candidate services for the abstract service
ti, considered with their normalized QoS parameters. The Pareto
dominance is described as follows. The service si1 is said to domi-
nate si2 if and only if the following two conditions are true:{
∀q ∈ Q , vq(1) ≥ vq(2)
∃q ∈ Q : vq(1) > vq(2)

that is, si1 is better than or equal to si2 for all QoS attributes and si1
is strictly better than si2 on at least two QoS attributes.

We adopted the block elimination method [19] to process our
skylinemethod to reduce the redundant services in service compo-
sition. The service files are stored as a ⟨key, value⟩ pair structure in
a distributed file system,where the key is the service ID andvalue is
the service information. This file is used as input to theMapReduce
job in MapReduce phase. The structure of ⟨key, value⟩ pair is used

1014 C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018

Fig. 5. Representation of subpopulation.

in MR-EA/G is shown in Fig. 5. The components of the services are
separated by a semicolon. These candidate services are given as
initial population. From the given population, the initial solution
is generated by evaluating the fitness of the services. Initially, the
service with the maximum fitness value is selected and added to
the solution. Then, we proceed further by selecting the nearest
fitness values with respect to the prior service.

3.3.2. MapReduce phase
This section describes the iterative process of MapReduce jobs,

where each MapReduce job represents one iteration in MR-EA/G
algorithm. The result of each MapReduce job is an updated pop-
ulation. This updated population is used as input to the next
MapReduce phase.

The master splits the data into n = 12 splits based on replica-
tion factor of 3 and stored into the distributed file system, where
the number of map and reduce tasks is 1. Hence, the swarm is
divided into q number of populations. Then, each map task is
updated with its subpopulation. These subpopulations are stored
as ⟨key, value⟩ pairs, where the key is the abstract service and the
value is the candidate service with its QoS attributes. The output of
the different tasks with their key is sent to the Reduce() function
as its input.

The reducer takes all information about each abstract services
at a time by using parallel batch processing. Then, the reducer
combines all information of iterable subpopulation. All these sub-
populations are stored in a list. The entire list is passed to MR-
EA/G algorithm. The MR-EA/G algorithm generates the output as
(out key, dominant population) or dominant population for each
service and the best optimal service composition with scalability
and robustness.

3.3.3. Repair phase
The solution generated from MapReduce phase is further

checked for feasibility. A solution is called infeasible if it has lowdi-
versity and evolution. Such solutions are passed to repair operator
to enhance their diversity and evolutionwhere infeasible solutions
are repaired by rechecking and inserting left out candidate services
inℜ list. The repair operator is carried on a particular solution until
it becomes feasible.

If a solution is feasible, then it is directly passed to next MapRe-
duce job else it is given to repair phase. The resulting solution is
given to the next MapReduce job, replacing the previous popula-
tion in the distributed file system.

4. Performance evaluation

Our proposed MapReduce-based Evolutionary Algorithm with
Guided Mutation (MR-EA/G) is implemented using Java on a
Hadoop cluster consisting of 12 nodes providedwith Ubuntu 14.10
(OS), 16 GB RAM, Intel I7 processor, and 1TB Memory space. One
node is set up as a master node and the remaining 11 nodes
set up as slave nodes. For experimental analysis, we considered
100 abstract services and each consisting 10000 candidate ser-
vices. For the purpose of performance evaluation of MR-EA/G,
we require the input dataset consists of QoS attributes such as
availability, cost, throughput, response time, and reliability. The

Fig. 6. Average fitness values for 500 candidate services.

dataset used in our experiments is synthetically generated (sim-
ilar to [20,21,10]). We tested our QWS dataset through Shapiro–
Wilk test [22] to determine whether our QWS dataset is normally
distributed or not. The test results revealed that the given dataset
is normally distributed. The weights of QoS attributes were set to
(34.81, 14.17, 13.73, 32.50, 9.64) based on user preferences and
AHP with the MNV (mean of normalized values) method. To pro-
duce high-quality solutions for a tight convergence settings, we
adopt Nc = 16, β = 0.035, λ = 0.34, probability threshold = 0.55,
C1 = 1.58, and fitness threshold = 0.29 (used in checking feasibility
of solution) for our proposed approach. All of these values are
selected empirically after several experiments.

We compare our proposed MapReduce-based EA/G with
MapReduce-based Genetic Algorithm (MR-GA) [23], MapReduce-
based Artificial Bee Colony (MR-ABC) [24], MapReduce-based Par-
ticle SwarmOptimization (MR-PSO) [25],MapReduce-clonal selec-
tion basedGenetic Algorithm (MR-GA2) [5], andMapReduce-based
Improved Discrete Particle Swarm Optimization (MR-IDPSO) [26].
To evaluate the optimality (average fitness value) and the compu-
tation time of our proposed approach, we consider the following
three scenarios: (i) Evaluating average fitness values by varying
abstract services and candidate services, (ii) Evaluating average
fitness values by varying number of iterations, and (iii) Evaluating
execution time by varying candidate services.

Figs. 6–9 illustrate the average fitness valueswith thenumber of
abstract services as 25, 50, 75, and 100, while for each abstract ser-
vice, the number of candidate services ranges as 500, 1000, 5000,
and 10000. As observed in Figs. 6–9, the average fitness values of
abstract services rise with the increase in the number of abstract
services. In our proposed approach, this increase is exponential,
while the increase is linear in other approaches. The proposed
approach uses a probability method to generate offsprings, which
in turn, ensures the distribution of promising solutions in each gen-
eration. Instead of directly using the position values, our approach
updates the probability values for each generation based on the
global statistical information and uses the guided mutation. Thus,
our proposed approach performs better than the other approaches.
Due to the randomness of algorithms, these algorithms are run for
30 times independently.

We evaluated the average fitness values for 100 abstract ser-
vices with respect to candidate 100, 500, 1000, 5000, and 10000
using various approaches as shown in Fig. 10. In Fig. 10, we ob-
serve that the best average fitness value obtained by our pro-
posed approach for 100 abstract services is 65.58824, whereas the
best average fitness values found by MR-GA, MR-GA2, MR-PSO,
MR-IDPSO, and MR-ABC are 19.3241, 20.8705, 21.7689, 24.4896,
29.3672 respectively. Because our proposed approach uses a prob-
abilitymethod that ensures the distributing of promising solutions

C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018 1015

Fig. 7. Average fitness values for 1000 candidate services.

Fig. 8. Average fitness values for 5000 candidate services.

Fig. 9. Average fitness values for 10000 candidate services.

in each generation and updates the probability values for each
generation based on the global statistical information of the popu-
lation.

Fig. 11 depicts the evaluation of fitness values by increasing the
number of iterations for 100 abstract services, where each abstract
service has 10000 candidate services. In Fig. 11, we observe that
the average fitness value is slightly increasing with number of
iterations for all approaches. However, our proposed approach
converges very quickly and gives the satisfactory results in lesser
time than the other approaches.

Table 5 represents the execution time of different approaches
for 100 abstract services. The execution time to obtain the best
solutions by MR-GA, MR-ABC, MR-PSO, MR-GA2, and MR-IDPSO

Fig. 10. Average fitness values for 100 abstract services.

Fig. 11. Average fitness values for 100 abstract services (10000 candidate services)
by increasing the number of iterations.

are 62.58, 115.59, 61.08, 57.86, and 61.95 s respectively, while the
execution time forMR-EA/G is 30.23 s. The time complexity ofMR-
EA/G, MR-GA, MR-PSO, MR-IDPSO, MR-GA2, and MR-ABC are O(n),
O(n2), O(n2), O(n.logn), O(n.logn) and O(n2) respectively.

In MR-GA, for each iteration, the new population is gener-
ated, and the individual fitnesses are evaluated (based on fixed
and predetermined crossover and mutation). The whole process
consumes more than twice the time compared to our proposed
approach. Similarly, in MR-PSO and MR-IDPSO, for each iteration,
the new population is generated, and the particle fitness is evalu-
ated (based on velocity and position of each particle) which gets
changed in each iteration. The change decreases the convergence
rate and premature rate, which in turn, consumes twice the time
compared to our proposed approach. Likewise, in MR-GA2, the
antibody repertoire is randomly generated first, and then low-
affinity antibodies have replaced by new randomantibodies during
themutation process in each iterationwhich consumesmore time.
In MR-ABC, the initial population is generated randomly. Further,
for each iteration the population is subjected to repeat the cycles of
the search processes of the employed, onlooker, and scout bees, re-
spectively. The whole process consumes more than twice the time
compared to our proposed approach. In our proposed approach,
the MR-skyline operator is developed for abandoning some candi-
date services with a non-optimal solution and thereby, gradually
reducing the valid search space. We used the guided mutation
method, in which, an offspring is produced by combining both
statistical information about search space and local information
about parent solution. Hence, our proposed approach reduces the
search space and consumes less time for execution.

We compared our proposed approach with each of other
approaches by performing the statistical tests (parametric and

1016 C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018

Table 5
Execution time (s) for 100 abstract services.

Approaches/candidate services 100 500 1000 5000 10000

MR-GA 58.01 63.22 57.32 61.27 62.58
MR-ABC 180.01 120.2 120.54 80.86 115.59
MR-PSO 52.33 48.76 52.19 40.89 61.08
MR-GA2 56.21 56.52 55.12 58.36 57.86
MR-IDPSO 54.65 51.08 55.38 59.36 61.95
MR-EA/G 29.69 30.18 33.09 30.19 30.23

Table 6
T -test statistical analysis results for abstract services.

Abstract services Approaches MR-GA MR-IDPSO MR-PSO MR-ABC MR-GA2 MR-EA/G

25

MR-GA

T -value/P-value

* * * * * *
MR-IDPSO 249.219 (0) * * * * *
MR-PSO 21.3605 (0) 83.8613 (0) * * * *
MR-ABC 30.4911 (0) 114.6498(0) 0.5161(0.6076) * * *
MR-GA2 68.7899 (0) 129.1001 (0) 9.6099 (0) 13.7649 (0) * *
MR-EA/G 422.5523(0) 188.5225 (0) 197.536 (0) 257.54 (0) 297.6201 (0) *

50

MR-GA

T -value/P-value

* * * * * *
MR-IDPSO 171.9023 (0) * * * * *
MR-PSO 28.7490 (0) 107.4319 (0) * * * *
MR-ABC 32.1787 (0) 123.105 (0) 2.2617 (0.2747) * * *
MR-GA2 249.3636(0) 55.5187 (0) 94.9382 (0) 126.0214 (0) * *
MR-EA/G 560.1384 (0) 184.9778 (0) 310.2354 (0) 376.5437 (0) 467.4155 (0) *

75

MR-GA

T -value/P-value

* * * * * *
MR-IDPSO 247.276 (0) * * * * *
MR-PSO 41.6562 (0) 119.4937 (0) * * * *
MR-ABC 38.88 (0) 146.9068 (0) 7.8567 (0) * * *
MR-GA2 132.9658(0) 56.0843 (0) 61.4957 (0) 77.1474 (0) * *
MR-EA/G 373.925 (0) 232.5213 (0) 293.0033 (0) 316.9459 (0) 256.1271 (0) *

100

MR-GA

T -value /P-value

* * * * * *
MR-IDPSO 348.7109 (0) * * * * *
MR-PSO 57.5519 (0) 187.2576 (0) * * * *
MR-ABC 28.2106 (0) 180.2931 (0) 16.6644 (0) * * *
MR-GA2 226.3003(0) 177.5601 (0) 74.6589 (0) 82.7483 (0) * *
MR-EA/G 319.683 (0) 246.8641 (0) 297.448 (0) 299.4491 (0) 284.5778 (0) *

non-parametric). The results of paired two-tailed T -test [27] and
Wilcoxon signed rank test [28,29] justify whether the obtained
best mean values of all algorithms have a distinguished difference
with 58 degrees of freedom at 1% level of significance. T -test and
Wilcoxon signed rank test results are presented in Tables 6 and
7. Based on Table 6, the obtained values are statistically signifi-
cant (all T-values are positive and P-values are 0.0000). Based on
Table 7, the obtained values are statistically significant (all Z-values
are obtained by positive ranks, and P values are 0.000). Therefore,
our proposed method is statistically more significant than other
methods.

5. Related work

QoS-aware big service composition is an emerging research
topic in service-oriented computing [2]. Due to the seamless pro-
liferation of services, it is difficult to select an optimal service from
available services. To reduce search space and select an optimal
service, a skyline operator is used that prunes the number of
candidate services from the set of services based on their QoS
attributes [30]. There are several researches proposed using sky-
line operators [31–34] to reduce search space and accelerate the
service composition to attain high QoS. Limin et al. [35] proposed
a MapReduce-based service selection method to improve the ef-
ficiency and reduce search space. Akrivi et al. [36] developed a
novel method to improve the skyline operator efficiency using
MapReduce angle-based space partitioning method. Jian et al. [37]
proposed a MapReduce Skyline operator to prune the candidate
services and find the optimal solution for QoS-aware service com-
position. Kasper et al. [38] proposed an efficient skyline approach
to prune the search space using MapReduce grid partitioning

approach. However, all of these mentioned approaches consider
either a single QoS attribute or multiple QoS attributes with one
QoS attribute is a prime attribute. Thus, it is not possible to model
the scalability of service composition. Another disadvantage is that
the services involved in composition proliferate with the num-
ber of tasks (or abstract services) and the associated services (or
candidate services). Hence, these approaches cannot be solved in
a polynomial time. In order to solve this problem, we presented
a novel MR-skyline operator with multiple QoS attributes having
two prime attributes (eg. response time and price) to reduce search
space as well as increase convergence rate and premature rate.

A Genetic algorithm (GA) is effective to address the obstacle in
the optimization process of service composition. Canfora et al. [3]
investigated a genetic algorithm based method to solve QoS-ware
web service composition. Yilmaz et al. [6] introduced an improved
GA to solve service composition with minimum global QoS and
improve scalability. Quanwang et al. [7] proposed a novel method
to optimize the overall QoS values using a backtracking-based
algorithm and an extended genetic algorithm for QoS-aware web
service composition. Ludwig [5] proposed a clonal selection based
algorithm to solve workflow service selection with high solution
quality.

All of these methods are based on single point crossover and
mutation. These methods proposed modifications to crossover op-
erator and selection of parent chromosome to escape from local
optima. However, if the number of abstract services and candidate
services grows for each abstract service, chromosomes become
very long. Hence, the GA method results in poor readability of the
chromosome, crossover, mutation and fails to predict the informa-
tion related to the semantics of services. Further, it results in low
convergence rate and low premature rate in local optima [39].

C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018 1017

Table 7
Wilcoxon signed rank test results for abstract services.

Abstract services Approaches MR-GA MR-IDPSO MR-PSO MR-ABC MR-GA2 MR-EA/G

25

MR-GA

Z-value /P-value

* * * * * *
MR-IDPSO −4.7821 (0) * * * * *
MR-PSO −4.7821 (0) −4.7821 (0) * * * *
MR-ABC −4.7821 (0) −4.7821 (0) −0.7919 (0.4295) * * *
MR-GA2 −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) * *
MR-EA/G −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) *

50

MR-GA

Z-value /P-value

* * * * * *
MR-IDPSO −4.7821 (0) * * * * *
MR-PSO −4.7821 (0) −4.7821 (0) * * * *
MR-ABC −4.7821 (0) −4.7821 (0) −0.977 (0.327) * * *
MR-GA2 −4.7821 (0) −4.7821 (0) −0.4628 (0.64552) −4.7821 (0) * *
MR-EA/G −4.7821(0) −4.7821 (0) −4.7821 0) −4.7821 (0) −4.7821 (0) *

75

MR-GA

Z-value/P-value

* * * * * *
MR-IDPSO −4.7821 (0) * * * * *
MR-PSO −4.7821 (0) −4.7821 (0) * * * *
MR-ABC −2.9104 (0.0036) −4.7821 (0) −1.43 (0.1527) * * *
MR-GA2 −4.7821 (0) −4.7821 (0) −4.7821 (0) −1.6352 (0.101) * −4.7821 (0)
MR-EA/G −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) *

100

MR-GA

Z-value/P-value

* * * * * *
MR-IDPSO −4.7821 (0) * * * * *
MR-PSO −4.7821 (0) −4.7821 (0) * * * *
MR-ABC −4.7821 (0) −4.7821 (0) −4.7821 (0) * * *
MR-GA2 −4.7821 (0) −4.7821 (0) −4.7821 (0) −4.7821 (0) * −4.7821 (0)
MR-EA/G −4.7821(0) −4.7821 (0) −4.7821 0) −4.7821 (0) −4.7821 (0) *

Generally, genetic algorithms use crossover and mutation op-
erators to produce offsprings (solutions) from the selected parents
without considering search space global information using the
location information of the solutions found so far. Unlike genetic
algorithms, EA/G uses a probability method to generate offsprings,
that ensures the distributing of promising solutions in each gen-
eration fromwhich off-springs are generated by sampling. Instead
of directly using the position values, EA/G updates the probability
values for each generation based on the global statistical informa-
tion extracted from the members of the population. To handle the
complementary aspect of GAs and EDAs (estimation of distribu-
tion algorithms), Zhang et al. [18] proposed a novel evolutionary
algorithm with guided mutation (EA/G) that employs the local
information of the solutions (like GAs) and global information
about the search space (EDAs) while generates an offsprings (solu-
tions). EA/G uses a mutation operator, named as guided mutation,
where an offspring is produced by combining both global statistical
information about search space and local information about parent
solution.

We proposed a novel MapReduce-based EA/G algorithm for
QoS-aware Big service composition. To the best of our knowledge,
this is the first paper based on MR-EA/G for QoS-aware Big service
composition using MR-Skyline operator. The empirical analysis of
our proposed method shows the best performance in terms of
feasibility, scalability, and optimality with different QoS attributes
for solving Big service composition.

6. Conclusion and future work

With the proliferation of services, it is difficult to select and
compose the optimal services to fulfill the user requirements. In
this paper, we proposed a novel MR based evolutionary algorithm
with guided mutation (MR-EA/G) for addressing QoS-aware Big
service composition. The QoS based service pre-selection process
is accomplished by using aMR-based skyline operator. To improve
the searching efficiency of service selection and composition, we
presented a novel EA/G with MapReduce framework. Based on the
experiments, we infer that our proposed approach outperforms
against all other approaches.

In future, we plan to improve our proposed approach, making
it more effective and efficient by using other machine learning

and meta-heuristic algorithms. In addition, other aspects such as
reputation-based service selection [40] could be integrated. The
efficient scheduling tasks on cloud systems is a complex prob-
lem which has attracted many research efforts [41]. Models for
scheduling becomemore sophisticated, incorporating suchnotions
as energy-efficiency [42,43], network-awareness [44], and hetero-
geneity of systems [45]. Pricing models can be expected to evolve
in the same direction, including explicitly these concepts [46].
Such a scenario of multifaceted pricing models offers plenty of
opportunities to extend our approach.

References

[1] X. Xu, Q.Z. Sheng, L.-J. Zhang, Y. Fan, S. Dustdar, From big data to big service,
Computer 48 (7) (2015) 80–83.

[2] J. Chandrashekar, G.R. Gangadharan, R. Buyya, Computational intelligence
basedqos-awareweb service composition: a systematic literature review, IEEE
Trans. Serv. Comput. (2016). http://dx.doi.org/10.1109/TSC.2015.2473840.

[3] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, An approach for QoS-aware
service composition based on genetic algorithms, in: Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, GECCO, 2005,
pp. 1069–1075.

[4] M. Tang, L. Ai, A hybrid genetic algorithm for the optimal constrained web
service selection problem in web service composition, in: Proceedings of the
IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.

[5] S.A. Ludwig, Clonal selection based genetic algorithm for workflow service
selection, in: Proceedings of the IEEE Congress on Evolutionary Computation,
IEEE, 2012, pp. 1–7.

[6] A.E. Yilmaz, P. Karagoz, Improved genetic algorithm based approach for qos
aware web service composition, in: Proceedings of the IEEE International
Conference on Web Services, 2014, pp. 463–470.

[7] Q. Wu, F. Ishikawa, Q. Zhu, D.H. Shin, QoS-aware multigranularity service
composition:Modeling and optimization, IEEE Trans. Syst.Man Cybern. (2016)
1–13. http://dx.doi.org/10.1109/TSMC.2015.2503384.

[8] X.-Q. Fan, X.-W. Fang, C.-J. Jiang, Research on web service selection based on
cooperative evolution, Expert Syst. Appl. 38 (8) (2011) 9736–9743.

[9] T.G. Crainic, M. Toulouse, Parallel meta-heuristics, in: Handbook of Meta-
heuristics, Springer, 2010, pp. 497–541.

[10] J.A. Parejo, S. Segura, P. Fernandez, A. Ruiz-Cortes, QoS-aware web services
composition using GRASPwith Path Relinking, Expert Syst. Appl. 41 (9) (2014)
4211–4223.

[11] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-
aware middleware for Web services composition, IEEE Trans. Serv. Comput.
30 (5) (2004) 311–327.

[12] W. Dou, X. Zhang, J. Liu, J. Chen, HireSome-II: Towards privacy-aware cross-
cloud service composition for big data applications, IEEE Trans. Parallel Distrib.
Syst. 26 (2) (2015) 455–466.

http://refhub.elsevier.com/S0167-739X(17)31563-7/sb1
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb1
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb1
http://dx.doi.org/10.1109/TSC.2015.2473840
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb5
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb5
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb5
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb5
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb5
http://dx.doi.org/10.1109/TSMC.2015.2503384
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb8
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb8
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb8
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb9
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb9
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb9
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb10
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb10
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb10
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb10
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb10
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb11
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb11
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb11
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb11
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb11
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb12
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb12
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb12
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb12
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb12

1018 C. Jatoth et al. / Future Generation Computer Systems 86 (2018) 1008–1018

[13] J. Chandrashekar, G.R. Gangadharan, QoS-aware web service composition us-
ing quantum inspired particle swarm optimization, in: Proceedings of the 7th
International KES Conference on Intelligent Decision Technologies, Springer,
2015, pp. 255–265.

[14] T. Saaty, Fundamentals of DecisionMaking and Priority Theorywith Analytical
Hierarchical Process, vol. 6, RWS Publications, University of Pittsburgh, Pittus-
burgh, USA, 1980.

[15] X. Zhao, B. Song, P. Huang, Z. Wen, J. Weng, Y. Fan, An improved discrete
immune optimization algorithm based on PSO for QoS-driven web service
composition, Appl. Soft Comput. 12 (8) (2012) 2208–2216.

[16] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[17] S.J. Kang, S.Y. Lee, K.M. Lee, Performance comparison of OpenMP, MPI, and
mapreduce in practical problems, Adv. Multimedia (2015). http://dx.doi.org/
10.1155/2015/575687.

[18] Q. Zhang, J. Sun, E. Tsang, An evolutionary algorithmwith guided mutation for
themaximum clique problem, IEEE Trans. Evol. Comput. 9 (2) (2005) 192–200.

[19] F. Zhang, K. Hwang, S.U. Khan, Q.M. Malluhi, Skyline discovery and composi-
tion of multi-cloud mashup services, IEEE Trans. Serv. Comput. 9 (1) (2016)
72–83.

[20] A. Mostafa, M. Zhang, Multi-Objective service composition in uncertain en-
vironments, IEEE Trans. Serv. Comput. (2015). http://dx.doi.org/10.1109/TSC.
2015.2443785.

[21] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, IEEE
Trans. Serv. Comput. 33 (6) (2007) 369–384.

[22] J.A. Villasenor Alva, E.G. Estrada, A generalization of Shapiro–Wilk’s test for
multivariate normality, Comm. Statist. Theory Methods 38 (11) (2009) 1870–
1883.

[23] N.E.A. Khalid, A.F.A. Fadzil, M. Manaf, Adapting mapreduce framework for ge-
netic algorithm with large population, in: Proceedings of the IEEE Conference
on Systems, Process & Control, IEEE, 2013, pp. 36–41.

[24] X. Wang, Z. Wang, X. Xu, An improved artificial bee colony approach to qos-
aware service selection, in: Proceedings of the 20th International Conference
on Web Services, IEEE, 2013, pp. 395–402.

[25] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelli-
gence 1 (1) (2007) 33–57.

[26] Y. Zhang, Z. Jing, Y. Zhang,Mr-idpso: a novel algorithm for large-scale dynamic
service composition, Tsinghua Sci. Technol. 20 (6) (2015) 602–612.

[27] D.W. Zimmerman, Teacher’s corner: A note on interpretation of the paired-
samples t test, J. Educ. Behav Stat. 22 (3) (1997) 349–360.

[28] S. Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill,
1956.

[29] F.Wilcoxon, Individual comparisons by rankingmethods, Biometrics Bull. 1 (6)
(1945) 80–83.

[30] S. Borzsony, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings of
the 17th International Conference on Data Engineering, IEEE, 2001, pp. 421–
430.

[31] M. Alrifai, D. Skoutas, T. Risse, Selecting skyline services for QoS-based web
service composition, in: Proceedings of the 19th International Conference on
World Wide Web, ACM, 2010, pp. 11–20.

[32] H. Han, H. Jung, S. Kim, H.Y. Yeom, A skyline approach to the matchmaking
web service, in: Proceedings of the 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, IEEE, 2009, pp. 436–443.

[33] Q. Yu, A. Bouguettaya, Computing service skyline from uncertain QoWS, IEEE
Trans. Serv. Comput. 3 (1) (2010) 16–29.

[34] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: An online algorithm
for skyline queries, in: Proceedings of the 28th International Conference on
Very Large Data Bases, 2002, pp. 275–286.

[35] L. Pan, L. Chen, J. Wu, Skyline web service selection with mapreduce,
in: Proceedings of the International Conference on Computer Science and
Service System, IEEE, 2011, pp. 739–743.

[36] A. Vlachou, C. Doulkeridis, Y. Kotidis, Angle-based space partitioning for ef-
ficient parallel skyline computation, in: Proceedings of the SIGMOD Interna-
tional Conference on Management of Data, ACM, 2008, pp. 227–238.

[37] J. Wu, L. Chen, Q. Yu, L. Kuang, Y. Wang, Z. Wu, Selecting skyline services for
QoS-aware composition by upgrading MapReduce paradigm, Clust. Comput.
16 (4) (2013) 693–706.

[38] K. Mullesgaard, J.L. Pederseny, H. Lu, Y. Zhou, Efficient skyline computation in
mapreduce, in: Proceedings of the 17th International Conference on Extending
Database Technology, 2014, pp. 37–48.

[39] Y. Ma, C. Zhang, Quick convergence of genetic algorithm for QoS-driven web
service selection, Comput. Netw. 52 (5) (2008) 1093–1104.

[40] V.N. Serbanescu, F. Pop, V. Cristea, O.-M. Achim,Web services allocation guided
by reputation in distributed SOA-based environments, in: Proceedings of the
11th International Symposium on Parallel and Distributed Computing, IEEE,
2012, pp. 127–134.

[41] G.V. Iordache, M.S. Boboila, F. Pop, C. Stratan, V. Cristea, A decentralized strat-
egy for genetic scheduling in heterogeneous environments, in: OTMConfeder-
ated International Conferences on the Move To Meaningful Internet Systems,
Springer, 2006, pp. 1234–1251.

[42] A. James, N. Yaacob, Special issue: Quality of service in grid and cloud 2015,
Future Gener. Comput. Syst. 50 (c) (2015) 1–2.

[43] A. Sfrent, F. Pop, Asymptotic scheduling for many task computing in big data
platforms, Inform. Sci. 319 (2015) 71–91.

[44] U. Fiore, F. Palmieri, A. Castiglione, A. De Santis, A cluster-based data-centric
model for network-aware task scheduling in distributed systems, Int. J. Parallel
Program. 42 (5) (2014) 755–775.

[45] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Kołodziej, Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing, Future
Gener. Comput. Syst. 51 (2015) 61–71.

[46] C. Chilipirea, A.-C. Petre, C. Dobre, F. Pop, Enabling mobile cloud wide spread
through an evolutionary market-based approach, IEEE Syst. J. 10 (2) (2016)
839–846.

Chandrashekar Jatoth received his B.E in Information
Technology from Osmania University and M.Tech. in Ar-
tificial Intelligence from University of Hyderabad, Hyder-
abad, India in 2008 and 2010 respectively. Currently, he
is working towards the Ph.D. degree in University of Hy-
derabad and Institute for Development and Research in
Banking Technology (IDRBT), Hyderabad, India. His re-
search interests focus on QoS, web service composition,
and computational intelligence techniques.

G.R. Gangadharan is an Associate professor at the In-
stitute for Development and Research in Banking Tech-
nology, Hyderabad, India. His research interests focus on
the interface between technological and business perspec-
tives. Gangadharan received his Ph.D. in information and
communication technology from the University of Trento,
Italy, and the European University Association. He is a
senior member of IEEE and ACM. Contact him at geeyaar@
gmail.com.

Ugo Fiore, Ph.D. is with the Department of Molecular
Medicine and Medical Biotechnologies at Federico II Uni-
versity, Italy. He is also an adjunct professor at Parthenope
University of Naples. Earlier, he worked for a decade in
the telco industry. His research interests include nonlinear
analysis, deep learning, classification of Internet traffic,
optimization, energy-saving and energy-aware systems,
covert communications, and security. He has authored or
co-authored about 60 papers on international journals and
conferences. He is serving as Associate Editor with two
journals and is a member of the editorial board in two

other journals. He has participated to the organizing committees of numerous
conferences.

Rajkumar Buyya is a Fellow of IEEE, Professor of Com-
puter Science and Software Engineering, Future Fellow
of the Australian Research Council, and Director of the
Cloud Computing and Distributed Systems (CLOUDS) Lab-
oratory at the University of Melbourne, Australia. He is
also serving as the founding CEO of Manjrasoft Pty Ltd.,
a spin-off company of the University, commercializing its
innovations in Grid and Cloud Computing. Dr. Buyya has
authored/co-authored over 450 publications. He is one of
the highly cited authors in computer science and software
engineering worldwide. Microsoft Academic Search Index

ranked Dr. Buyya as one of the Top 5 Authors during the last 10 years (2001–
2012) and #1 in the world during the last 5 years (2007–2012) in the area of
Distributed and Parallel Computing. For further information on Dr. Buyya, please
visit: http://www.buyya.com.

http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb13
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb14
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb14
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb14
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb14
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb14
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb15
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb15
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb15
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb15
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb15
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb16
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb16
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb16
http://dx.doi.org/10.1155/2015/575687
http://dx.doi.org/10.1155/2015/575687
http://dx.doi.org/10.1155/2015/575687
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb18
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb18
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb18
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb19
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb19
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb19
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb19
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb19
http://dx.doi.org/10.1109/TSC.2015.2443785
http://dx.doi.org/10.1109/TSC.2015.2443785
http://dx.doi.org/10.1109/TSC.2015.2443785
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb21
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb21
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb21
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb22
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb22
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb22
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb22
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb22
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb23
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb23
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb23
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb23
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb23
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb24
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb24
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb24
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb24
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb24
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb25
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb25
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb25
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb26
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb26
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb26
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb27
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb27
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb27
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb28
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb28
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb28
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb29
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb29
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb29
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb30
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb30
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb30
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb30
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb30
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb31
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb31
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb31
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb31
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb31
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb32
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb32
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb32
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb32
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb32
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb33
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb33
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb33
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb35
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb35
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb35
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb35
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb35
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb36
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb36
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb36
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb36
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb36
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb37
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb37
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb37
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb37
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb37
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb39
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb39
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb39
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb40
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb41
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb42
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb42
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb42
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb43
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb43
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb43
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb44
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb44
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb44
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb44
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb44
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb45
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb45
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb45
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb45
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb45
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb46
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb46
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb46
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb46
http://refhub.elsevier.com/S0167-739X(17)31563-7/sb46
mailto:geeyaar@gmail.com
mailto:geeyaar@gmail.com
mailto:geeyaar@gmail.com
http://www.buyya.com

	QoS-aware Big service composition using MapReduce based evolutionary algorithm with guided mutation
	Introduction
	Modeling of QoS-aware big service composition
	MapReduce-based EA/G for big service composition
	MapReduce
	Modified EA/G approach
	Solution encoding
	Initial solution using skyline operator
	Initial probabilities
	Probability update
	Guided mutation
	Repair operator

	MapReduce based EA/G
	Initialization phase
	MapReduce phase
	Repair phase

	Performance evaluation
	Related work
	Conclusion and future work
	References

