Cluster Comput (2018) 21:1203-1241
https://doi.org/10.1007/s10586-017-1040-z

@ CrossMark

CHOPPER: an intelligent QoS-aware autonomic resource
management approach for cloud computing

Sukhpal Singh Gill' . Inderveer Chana? - Maninder Singh? - Rajkumar Buyya!

Received: 2 July 2016 / Revised: 31 May 2017 / Accepted: 10 July 2017 / Published online: 1 August 2017

© Springer Science+Business Media, LLC 2017

Abstract Cloud computing is the future generation of com-
putational services delivered over the Internet. As cloud
infrastructure expands, resource management in such a large
heterogeneous and distributed environment is a challenging
task. In a cloud environment, uncertainty and dispersion of
resources encounters problems of allocation of resources.
Unfortunately, existing resource management techniques,
frameworks and mechanisms are insufficient to handle these
environments, applications and resource behaviors. To pro-
vide an efficient performance and to execute workloads,
there is a need of quality of service (QoS) based autonomic
resource management approach which manages resources
automatically and provides reliable, secure and cost effi-
cient cloud services. In this paper, we present an intelli-
gent QoS-aware autonomic resource management approach
named as CHOPPER (Configuring, Healing, Optimizing
and Protecting Policy for Efficient Resource management).
CHOPPER offers self-configuration of applications and
resources, self-healing by handling sudden failures, self-
protection against security attacks and self-optimization for
maximum resource utilization. We have evaluated the perfor-
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mance of the proposed approach in a real cloud environment
and the experimental results show that the proposed approach
performs better in terms of cost, execution time, SLA viola-
tion, resource contention and also provides security against
attacks.

Keywords Autonomic cloud computing - Resource provi-
sioning and scheduling - Self-healing - Self-configuring -
Self-optimizing - Self-protecting

1 Introduction

Cloud computing offers pay per use based services such
as infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS) through different
cloud providers [1]. As cloud offers these three types of
services, it requires quality of service (QoS) to efficiently
monitor and measure the delivered services and further needs
to follow service level agreements (SLAs). However, provid-
ing dedicated cloud services that ensure user’s dynamic QoS
requirements and avoid SLA violations is a big challenge
in cloud computing. Currently, cloud services are provi-
sioned and scheduled according to resources’ availability
without ensuring the expected performances [2]. The cloud
provider should evolve its ecosystem in order to meet QoS-
aware requirements of each cloud component. To realize
this, there is a need to consider two important aspects which
reflect the complexity introduced by the cloud management:
QoS-aware and autonomic management of cloud services
[3]. QoS-aware aspect expects a service to be aware of its
behavior to ensure the high availability, reliability of service,
minimum execution cost, minimum execution time, maxi-
mum energy efficiency etc. Autonomic management implies
the fact that the service is able to self-manage itself as per
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its environment needs. Thus maximizing cost-effectiveness
and utilization for applications while ensuring performance
and other QoS guarantees, requires leveraging important and
extremely challenging tradeoffs [4]. Based on human guid-
ance, an intelligent autonomic system keeps the system stable
in unpredictable conditions and adapts quickly in new envi-
ronmental conditions like software, hardware failures etc.
Intelligent autonomic systems work on the basis of QoS
parameters and are inspired by biological systems that can
easily handle the problems like uncertainty, heterogeneity
and dynamism [5]. Autonomic cloud computing system is
based on MAPE-K loop [6] that considers four steps of auto-
nomic system (Monitor, Analyze, Plan and Execute) in a
control loop and the goal of intelligent autonomic system
is to execute application within deadline by fulfilling QoS
requirements as described by user with minimum complex-
ity. Based on QoS requirements, an intelligent autonomic
system provides self-management of resources which con-
siders following properties of self-management [1,41]:

e Self-healing is a capability of an intelligent autonomic
system to identify, analyze and recover from unfortunate
faults automatically.

e Self-configuring is a capability of an intelligent auto-
nomic system to adapt to the changes in the environment.

e Self-optimizing is a capability of an intelligent autonomic
system to improve the performance.

e Self-protecting is a capability of an intelligent autonomic
system to protect against intrusions and threats.

In our earlier work, QoS based resource provisioning and
scheduling (QRPS) framework [33] is proposed. In QRPS,
there was manual provisioning based resource scheduling
which further needs lot of human work every time to sched-
ule resources to execute workloads by fulfilling their QoS
requirements. To realize this, there is a need to consider an
important aspect that reflects the complexity introduced by
the cloud management: QoS-aware autonomic management
of cloud services. To design a QoS based autonomic resource
management approach, QRPS has been further extended
by proposing energy-aware autonomic resource scheduling
technique (EARTH), in which MAPE-K loop has been used
to schedule the resources automatically by optimizing energy
consumption and resource utilization where user can eas-
ily interact with the system using available user interface
[6]. But EARTH can execute only homogenous cloud work-
loads and the complexity of resource scheduling in EARTH
increases with the increase of number of workloads. To
address this issue, SOCCER [36] is proposed which clusters
the heterogeneous cloud workloads and executes them with
minimum energy consumption, but SOCCER only focuses
on one aspect of self-optimization i.e. energy consumption.
In this research work, QoS-aware autonomic resource man-
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agement approach (CHOPPER) has been proposed which
offers self-configuration of applications and resources, self-
healing by handling sudden failures, self-protection against
security attacks and self-optimization for maximum resource
utilization.

The motivation of this paper is to design an intelligent
cloud based and QoS-aware autonomic resource manage-
ment approach called CHOPPER (Configuring, Healing,
Optimizing and Protecting Policy for Efficient Resource
management). CHOPPER offers self-configuration of appli-
cations and resources, self-healing by handling sudden
failures, self-protection against security attacks and self-
optimization for maximum resource utilization. CHOPPER
manages resources automatically and offers self-healing
(find and react to sudden faults), self-optimizing (maxi-
mize resource utilization and energy efficiency and minimize
execution cost, execution time, resource contention and
SLA violation rate), self-configuring (capability to readjust
resources) and self-protecting (detection and protection of
cyber-attacks). The performance of CHOPPER is tested in a
real cloud environment. CHOPPER improves user satisfac-
tion and increases reliability and availability of services. The
rest of the paper is organized as follows. Section 2 presents
related work and contributions. Proposed approach is pre-
sented in Sect. 3. Section 4 describes the experimental setup
and present experimental results. Section 5 presents conclu-
sions and future scope.

2 Related work

Self-management of resources is the soul of autonomic cloud
computing. Management of resources in cloud has been done
through different techniques in the existing literature but
autonomic management of resources is challenging. The cur-
rent research work done in the area of self-management is
described in this section.

2.1 Existing QoS-aware autonomic resource
management techniques

Self-management in cloud computing has four properties: (a)
self-healing, (b) self-configuring, (c) self-optimizing and (d)
self-protecting. It is a challenge to implement all the proper-
ties of self-management together and based on requirements
and goals of an autonomic system, mostly some of the prop-
erties are considered.

2.1.1 Self-healing
In cloud computing, self-healing is a capability of a sys-

tem to identify, analyze and recover from unfortunate faults
automatically. Application service provider (ASP) [8] uses
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web service description language (WSDL) and web interface
(HTTP) to design proactive and reactive heuristic policies to
get an optimal solution. All the important QoS parameters
are mentioned in SLA document. In this autonomic system,
performance history is used to resolve the alerts generated at
runtime due to some QoS parameters. In this system, lease
cost and SLA violations are reduced but consumes very large
execution time. Self-healing SLA (SH-SLA) [9] is an auto-
nomic system designed to enable hierarchical self-healing
which monitors SLA, SLA violation and takes necessary
steps to prevent SLA violations. SLAs with similar agree-
ment interact with each other to notify the status of execution
but SH-SLA is not able to optimize the required execu-
tion time and cost. Self-organizing and healing (SNOOZE)
[10] uses hierarchical architecture to allocate the resources
to the workloads in a virtual environment. SNOOZE is
working in three layers: physical layer, hierarchical layer
and client layer. Local controller is used to control the
nodes and machines are structured in clusters in physical
layer. Design of SNOOZE is very simple but scalability is
achieved without considering execution time and cost. Adap-
tive fault tolerance in real time cloud (AFRTC) [11] system
is used to detect the faults, provide fault-tolerance and to
calculate the reliability of nodes to take decisions. Reliabil-
ity of nodes in virtual environment is changing adaptively.
Node is reliable if a virtual node produces results within
specified deadline otherwise node is not reliable. Due to
addition of resource(s) in case of resource failure, cost of
AFRTC is increased which leads to customer dissatisfac-
tion.

2.1.2 Self-configuring

In cloud computing, self-configuring is a capability of a
system to adapt to the changes in the environment. Case
base reasoning (CBR) [12] uses human based interaction
to make an agreement between user and provider called
SLA for successful execution of workloads by considering
resource utilization and scalability as a QoS requirement. In
this system, various elastic levels are defined and a control
loop is used to enable the autonomic computing in vir-
tual environment. Knowledge base stores the rules used in
decision making after monitoring data (real and synthetic
workloads) for resource configuration. SLA violations and
resource utilization are improved in this autonomic sys-
tem without considering basic QoS parameters like cost,
time, energy etc. Self-configured, cost-based cloud qUery
services (COCCUS) [13] uses centralized architecture to pro-
vide the query based facility in which user can ask query
regarding scheduling policies, priorities and budget infor-
mation. CloudDBMS is used to store the information about
the scheduling policies and user queries for further use.
Autonomic resource allocation strategy based on market

mechanism (ARAS-M) [14] uses market based mechanism
to allocate the resources to workloads based on QoS require-
ments specified by user. In this autonomic system, genetic
algorithm (GA) is used to attain the equilibrium state by
adjusting price automatically. This system fulfills the demand
of every workload along with their QoS requirements but not
effective to reduce SLA violations at runtime. Detecting SLA
Violation infrastructure (DeSVi) [15] uses resource moni-
toring mechanism to prevent the violation of SLA. DeSVi
allocates the resources to the workloads in virtual environ-
ment and resources are monitored by mapping user defined
SLA with low-level resource metrics. DeSVi is not defined
the limit of SLA deviation. Coordinated self-configuration
of virtual machines (CoTuner) [16] uses model-free hybrid
reinforcement learning technique to enable coordination
among applications and virtual resources. CoTuner is work-
ing based on knowledge guided exploration policies to design
a methodology for autonomic configuration of resources in
case of fluctuation of workloads. Automated Resource allo-
cation and cOnfiguration of MApreduce (AROMA) [17]
allocates resources to workloads based on QoS requirements
specified by cloud user. AROMA enables auto configuration
of Hadoop jobs to compare the value of resource utilization
with already executed workloads. High throughput cluster
(HTC) computing system [ 18] is an extension of rock clusters
to extend the local cluster to remote resources of cloud trans-
parently and securely. HTC is working based on dynamic
provisioning mechanism i.e. job scheduling policy in which
database is updated regularly when new node is added or
removed.

2.1.3 Self-optimizing

In cloud computing, self-optimizing is a capability of a
system to improve the performance. Cloud auto scaling
(CAS) [19] schedules activities of VM instance startup
and shut-down automatically to improve the performance.
CAS enables user to finish the execution of workloads or
tasks within their deadline with minimum cost. CAS did
not consider heterogeneous cloud workloads with differ-
ent QoS parameters. Autonomic workload manager (AWM)
[20] uses distributed provisioning and scaling decision
making system (DPSMS) to distribute the workloads on
resources based on their common QoS characteristics. AWM
divides resources into two categories: coarse-grained and
fine-grained resources. AWM allocates the resources based
on minimum response time and high throughput. AWM
is not able to determine the cost of execution of work-
loads. Autonomic management framework (AMF) [21] uses
an autonomic mechanism of performance and power man-
agement theoretically. AMF executes all the workloads on
adequate resources with minimum execution time and energy
but not consider cost. Bayesian network based decision sup-
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port system (BN-DSS) [22] provides autonomic scaling of
utility computing resources. BN-DSS system studies the
historical behavior of autonomic system and predicts the per-
formance, applicability and feasibility based on this historical
data and negotiates the SLA. Mehdi et al. [23] proposed
autonomic resource contention scheduling (ARCS) tech-
nique for distributed system to reduce resource contention
in which more than one job shares same resource simul-
taneously. ARCS did not check the variation of resource
contention along with number of workloads. EARTH [6]
using fuzzy logic, which schedules the resources automat-
ically to execute homogenous workloads. SOCCER [36]
clusters the heterogeneous cloud workloads and executes
them with minimum energy consumption, but SCOEER
only focuses on one aspect of self-optimization i.e. energy
consumption. SLA-aware autonomic resource management
(STAR) technique [37] mainly focuses on SLA violation
rate and also analyzed the impact of QoS parameters on
SLA violation rate. Jose and Lus [35] proposed a par-
tial utility-driven resource scheduling (PURS) technique for
elastic SLA and pricing negotiation which permits providers
exchanging resources between VMs in expressive and eco-
nomically effective ways. Further, a comprehensive cost
method is defined by including partial utility given by
customers to a definite level of degradation, when VMs
are assigned in overcommitted situations. In this tech-
nique, revenue per resource allocation and execution time
is improved.

2.1.4 Self-protecting

In cloud computing, self-protecting is a capability of a sys-
tem to protect against the intrusions and threats. Secure
autonomic technique (SAT) [24] is proposed to manage
computing services and applications in secure environment.
This technique protects the cloud environment with high
accuracy of attack detection. Rainbow architecture based
architecture based self-protection (ABSP) [25] is an auto-
nomic technique in which security threats are detected at
runtime through the use of patterns. ABSP reduces the secu-
rity breaching and improves the depth of defense. Detection
rate of attacks in ABSP is not as required. Self-healing
and self-protection environment (SHAPE) [26] is an auto-
nomic system to recover from various faults (hardware,
software, and network faults) and protect from security
attacks (distributed denial of service (DDoS), remote to
local (R2L), user to root (U2R), and probing attacks).
SHAPE is based on component based architecture, in which
new components can be added or removed easily. Open
source technologies are used to implement this autonomic
system but SHAPE is unable to execute heterogeneous work-
loads.

@ Springer

2.2 Comparisons of existing autonomic techniques with
proposed approach [CHOPPER] based on
properties of self-management

Based on existing literature [1,7-26,28,38—42] in QoS-
aware autonomic cloud computing, we have classified the
four properties of self-management (self-healing, self-
configuring, self-protecting and self-optimization). Imple-
mentation of all the properties of self-management together
is a challenging task and based on requirements and goals
of an autonomic system, only some of the properties can be
considered.

2.2.1 Self-healing

In cloud computing, self-healing improves the performance
through fault-tolerance by reducing or avoiding the impact
of failures on execution [1]. Failures occur in cloud due to
following reasons: (1) unexpected changes of configuration
of execution environment, (2) unavailability of resources,
(3) overloading of resources, (4) shortage of memory, and
(5) network failures. Existing autonomic systems are using
techniques (check-pointing, failure forecasting and replica-
tion) to handle the above failures. Check-pointing technique
is used to transfer the failed workload or tasks to the other
available resources to start the execution from point of fail-
ure. Failure forecasting technique can be used to predict the
requirement of resources in future in order to avoid failure of
execution. In replication technique, workload is executed on
more than one resource to increase the chances of successful
execution.

2.2.2 Self-configuring

Self-configuring in cloud based autonomic systems is instal-
lation of missed or outdated components based on the alert
generated by system without human intervention [1]. Some
components may be reinstalled in changing conditions.

2.2.3 Self-optimizing

In cloud computing, self-optimizing is a capability of a
system to improve the performance [1]. Dynamic schedul-
ing techniques are being used in cloud to map the tasks
or workloads on appropriate resources. Dynamic schedul-
ing continually checks the status of execution and improves
the system performance based on the feedback given by
autonomic element. For data intensive applications, adaptive
scheduling is used, which can be easily adapted in changed
environment.

2.2.4 Self-protecting

To maintain the security and integrity of a system, it is
required to detect and protect autonomic system from mali-
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cious attack [1]. To achieve this property of self-management,
secure scheduling policies should be provided on both sides
(provider side and user side). Security policies should be
required in which system should be shut down before strong
attack is about to happen. In trust management systems,
malicious attackers can be detected through behavioral audit-
ing. In intrusion detection technique, attacks are continually
monitored and analyzed by the system to avoid future
attacks. Comparisons of existing autonomic techniques with
proposed approach [CHOPPER] based on properties of self-
management is described in Tables 1, 2 and 3. In existing
research work, Toulouse University Network (TUNe) and
Java agent development environment (JADE) have been con-
sidered as autonomic manager [7,28,38-42].

2.3 Comparisons of existing autonomic techniques with
proposed approach [CHOPPER] based on QoS
parameters

Cloud based systems consider different QoS parameters to
design a successful system. From literature [1,8-26], we have
identified ten types of QoS parameters (fault detection rate,
availability, reliability, security, cost, execution time, energy,
SLA violation, resource contention and resource utilization)
for use in autonomic cloud computing systems. Fault Detec-
tion Rate is the ratio of number of faults detected to the total
number of faults existing. Faults may be software or hard-
ware. Availability is an ability of a system to ensure the data is
available with desired level of performance in normal as well
asin fatal situations excluding scheduled downtime. Reliabil-
ity is a capability of a system to perform consistently accord-
ing to its predefined objectives. Security is ability to protect
the data stored on cloud by using data encryption and access
controls. Energy is amount of energy consumed by a resource
to finish the execution of workload. Execution time is time
required to execute the workload completely. Cost is an
amount of the cost spent in one hour on the execution of work-
load. Resource utilization is a ratio of actual time spent by
resource to execute workload to total uptime of resource for
single resource. SLA violation rate is possibility of defilement
of Service Level Agreement. When more than one workload
shares same resource then Resource Contention may occur.
It occurs due to following reasons: (i) when more than one
workload executing on same resource, (ii) more number of
workloads can create more resource contention and (iii) if
number of provided resources are lesser than the number of
required resources. By considering perspective of both cloud
consumer and cloud provider, the comparison of existing
autonomic techniques with proposed approach [CHOPPER]
based on QoS parameters is described in Table 4.

All of the above research works have presented auto-
nomic resource management techniques in cloud computing
by focusing on different properties of self-management (self-

healing, self-configuring, self-optimizing and self-protecting)
with different QoS parameters. None of the existing works
considered all the four properties of self-management simul-
taneously in a single cloud framework to test the different
QoS parameters required in practical situations. Due to
this the current autonomic resource management services
become inefficient to respond in these situations.

2.4 Our contributions

In this paper, we have extended our previous research
work self optimization of cloud computing energy-efficient
resources (SOCCER) [36] by proposing QoS-aware auto-
nomic resource management approach (CHOPPER). SOC-
CER clusters the heterogeneous cloud workloads and exe-
cutes them with minimum energy consumption and focuses
only on one aspect of self-optimization i.e. energy con-
sumption. To consider other important aspects such as
self-configuration, self-healing, self-protection and self-
optimization, CHOPPER has been proposed. The major
contributions of this paper are summarized as follows:

(i) CHOPPER offers self-configuration of cloud applica-
tions and resources by installation of missed or outdated
components. Self-healing is provided by handling sudden
failures, self-protection is offered against security attacks
and self-optimization is as the resources are being used
optimally. To reduce the human intervention and improve
user satisfaction, CHOPPER automatically (through self-
properties) manages QoS requirements of cloud users
and schedules the provisioned cloud resources efficiently.
Thus the cloud providers can achieve the SLAs and avoid
SLA violations which offers better cloud service delivery.
SOCCER focuses only on one aspect of self-optimization
i.e. energy consumption but CHOPPER optimizes execu-
tion cost, time, energy efficiency and resource contention.

(ii)) CHOPPER offers algorithms for three different phases
(monitoring, analyses and plan as well as execution)
based on autonomic properties. During execution of
workloads, CHOPPER monitors the performance (QoS
value) continuously, analyses the alert in case of perfor-
mance degradation, plans an action to handle that alert
and executes the plan to maintain the efficiency of CHOP-
PER.

(iii) CHOPPER offers workload classification into three cat-
egories based on deadline urgency: (a) normal (relaxed
deadline), (b) good (average deadline) and (c) critical
(urgent deadline) and investigates the impact of different
workloads on different QoS parameters instead of first
cum first serve execution of workloads.

(iv) CHOPPER increases security, energy efficiency, reliabil-
ity and availability of cloud based services and reduces

@ Springer
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Table 3 Comparison of existing

. . . Technique
autonomic techniques with

Self-healing

Self-configuration Self-optimization Self-protecting

proposed approach (CHOPPER)
based on main focus of study of
different autonomic techniques

CBR [12]

ASP [8] Vv
COCCUS [13]

CAS [19]

AWM [20]

AMF [21]

SH-SLA [9] J
ARAS-M [14]

BN-DSS [22]

SNOOZE [10] J
DeSVi [15]

AFRTC [11] J
CoTuner [16]

AROMA [17]

HTC [18]

SHAPE [26] J
ARCS [23]

SAT [24]

ABSP [25]

PURS [35]

EARTH [6]

SOCCER [36]

STAR [37]

CHOPPER J

v v
v
v
v v v
v v
J
v
v
v v
v
v
v v v
v v v
v
v
J
J
J
J
J
J
v v v

resource contention and SLA violation rate when imple-
mented on a real cloud environment.

3 CHOPPER: QoS-aware autonomic resource
management approach

This section discusses the architecture of configuring, heal-
ing, optimizing and protecting policy for efficient resource
management (CHOPPER) which requires that QoS param-
eters must be described in the form of SLA. CHOPPER
is the key mechanism that ensures that cloud providers
can serve large amount of requests without violating SLA
terms and dynamically manages the resources based on QoS
requirements described by user and workload characteristics.
Architecture of CHOPPER is shown in Fig. 1. QoS-aware
autonomic resource management approach comprises of fol-
lowing units:

3.1 Cloud workload management portal

First of all cloud consumer tries to execute the workloads
through the cloud workload management portal (CWMP)!.

! http://hdl.handle.net/10266/2247

@ Springer

Web browser acts as an interface for consumer to interact
with CHOPPER. After that, the task of cloud consumer’s
authorization and authentication is performed. After authen-
tication, CHOPPER asks to submit the cloud consumer
requirements (SLA) and authenticated cloud consumer fills
it and submits the request for the availability of particu-
lar resource with proper specification for the execution of
their workload. CHOPPER takes the information from the
appropriate workload after analyzing the various workload
details which cloud consumer demanded. For multi-tenancy,
we have considered different cloud providers which are inter-
acting with each other by using CWMP and update their
new rules and policies of resources on cloud in the proposed
approach as shown in Fig. 1.

3.2 Workload manager

The aim of Workload Manager is to look at different char-
acteristics of a cloud workload to determine the feasibility
of porting the application in the cloud. The different cloud
workloads have different set of requirements and character-
istics. This analysis also provides input to execution method.
It comprises of three sub units: bulk of workloads, workload
description and workload queue. All the workloads submit-
ted by cloud consumer for execution is considered as bulk of
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Fig. 1 Chopper architecture [AE]

workloads. In workload description, all the workloads should
have their key QoS requirements, based on that, the workload
is executed with some user defined constraints. Being able
to calculate the execution time of workloads in advance is
one of the fundamental assumptions because workload gets
accommodated in the queue and during this period, its time
can be statistically calculated on the basis of its size [like kilo
lines of code (KLoC) or function point (FP)], where KLoC
would be more appropriate or size can be taken as an input
from cloud consumer. The types of workload that have been
considered for this research work are: websites, technological

@ Springer

computing, endeavor software, performance testing, online
transaction processing, e-commerce, central financial ser-
vices, storage and backup services, production applications,
software/project development and testing, graphics oriented,
critical internet applications and mobile computing services
[4,5]. After analysis of workloads, they are classified on the
basis of specific features in terms of security needs, net-
work needs, variability of load, back-up services, network
bandwidth needs, computing capacity and other QoS met-
rics. In workload queue, all the feasible cloud workloads
are put into a workload queue for provisioning of resources
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Table 5 Cloud workloads, workload type and their QoS requirements
Workload name QoS requirements Workload type

Websites Reliable storage, High network bandwidth, High Communication
availability

Technological computing Computing capacity Compute

Endeavour software Security, high availability, customer confidence Administration
level, correctness

Performance testing Time, cost, energy, resource utilization and SLA Compute
violation rate

Online transaction processing Security, high availability, internet accessibility, Administration
usability

E-commerce Variable computing load, customizability Storage

Central financial services
Storage and backup services
Productivity applications

Software/project development and testing

Graphics oriented

Critical internet applications

Security, high availability, changeability, integrity

Administration

Reliability, persistence Storage

Network bandwidth, latency, data backup, security Administration

User self-service rate, flexibility, creative group of Administration
infrastructure services, testing time

Network bandwidth, latency, data backup, visibility Administration

High availability, serviceability, usability Communication

High availability, reliability, portability Communication

Mobile computing services

before actual execution. Finally, workload generates output
in the form of workload information. We have identified the
QoS requirements for every workload and their correspond-
ing QoS metrics has been designed [4,5] is described in Table
5. Based on different QoS parameters of different workloads,
only required metrics have been applied to test the perfor-
mance of CHOPPER.

The assumptions of proposed approach are: (a) Multiple
users can access the cloud based system simultaneously, (b)
Workloads have different execution time and (c) Workloads
have different deadlines.

3.3 Resource manager

The resource details include the number of CPUs used, size of
memory, cost of resources, type of resources and number of
resources. All the common resources are stored in resource
pool and reserve pool contains some reserve resources. It
contains the information about the available resources and
reserved resources along with resource description (resource
name, resource type, configuration, availability information,
usage information and price of resource) as provided by cloud
provider.

3.4 Service level agreement

SLA describes what you require from your consumers/service
customers in order to provide the service specified. It needs
assurance and support from both parties to provision and fol-
low the contract in order to ensure SLA fulfillment. Based on

the QoS requirements described by consumer, different set
of requirements and characteristics of different workloads
and resource detail provided by the provider, final SLA is
signed after SLA negotiation. Finally, signed document is
submitted to SLA manager. The interaction of cloud user and
cloud provider to negotiate SLA as described in our previous
research work [37].

3.5 QoS manager

It comprises of two sub units: QoS requirements and QoS
assessment. Based on the key QoS requirements of a particu-
lar workload (workload information generated by workload
manager), the QoS manager puts the workload into criti-
cal (urgent workloads) and non-critical queues (non-urgent
workloads) through QoS assessment [2] as shown in Fig. 2.
For QoS assessment, QoS Manager calculates the execution
time of workload using (Eq. 1) and finds the approximate
workload completion time (addition of waiting time and
execution time) using (Eq. 3). If the completion time is
less than the desired deadline then the workload will be
executed immediately with the available resources and the
resource(s) would be released back to resource manager
for another execution otherwise calculate extra number of
resources required and provide them from the reserved pool
for current execution as shown in Fig. 2. The first state for
every workload is submission, based on key QoS require-
ments of workload, the next state is decided either as critical
(critical workload) or non-critical (good workload or normal
workload).

@ Springer
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After non-critical state, if there is no other workload before
that then it is executed directly otherwise put current work-
load into non-critical queue for waiting. After successful
execution of workload, the workload is completed. On the
other hand, all the QoS oriented workloads are put into crit-
ical queue and sorted based on their priority decided by
QoS manager based on SLA information and then sched-
uled for execution. If there is no obstacle (urgency, more
resource requirement etc.) then execute directly with avail-
able resources otherwise put into under scheduling state to
fulfill the user requirements. If all the conditions will meet
in the given budget, resource and time constraints then it will
execute otherwise it will not be executed. For instance, when
a workload requires low amount of resources, it will assign
resources with lower capability, so that new requests can be
served in an efficient manner.

3.6 QoS based metrics

The following metrics are selected from our previous work
[4-6,32,36,37] to calculate the execution time, execution
cost, energy consumption and waiting time.

3.6.1 Execution time

Itis aratio of difference between workload finish time (W F;)
and workload execution start time (W E;) to number of work-

Completion Time = ET; + Waiting Time; 3)
3.6.3 Energy consumption

The energy model is devised on the basis that resource uti-
lization has a linear relationship with energy consumption
(Ec1oua) as described in SOCCER [36]. Energy model used to
calculate energy consumption of resources is described in our
previous research work [36]. Only those resources are pro-
visioned which have E jpud < Ethreshold, Where Eipreshold
is a threshold value of energy consumption.

3.6.4 Average cost

Itis an addition of resource cost and penalty cost. CHOPPER
defined the different levels of penalty rate based on QoS
requirements. Delay time is difference of deadline and time
when workload is actually completed [37]. We have used
following formula to calculate average cost (C) (Eq. 4).

C = Resource Cost + Penalty Cost 4)

Resource Cost = ET; x Price 5)
c

Penalty Cost = Z (PC)) (6)
i=1

Delay Time = Expected Completion

loads. We have used following formula to calculate execution Time — Actual Completion Time @)
time (ET) (Eq. 1).
PC = Penaltyminimum if Expected Completion Time > Actual Completion Time 8
| Penaltyminimum~+I[Penalty Ratex|DelayTime| if Expected Completion Time > Actual Completion Time ®)

" (WF; — WE;
BT = Z (#) M

i=1
Where n is the number of workloads to be executed.

3.6.2 Waiting time

It is a ratio of difference between workload execution start
time (W E;) and workload submission time (W S;) to number
of workloads. We have used following formula to calculate
waiting time (Eq. 2).

n
WE; — WS;
Waiting Time; = Z <;> )

n
i=1

where 7 is the number of workloads. Completion time (Eq. 3)
of workload is addition of waiting time and execution time.

Wherec e PC, PC issetof penalty cost with different levels
specified in CHOPPER. The Complexity (Eq. 9) of resource
scheduling policy is influenced by number of Change Points
(CP) i.e. rescheduling and requested resources (r) of Work-
load being scheduled. Here,

CP=(S+T.+ T + Ry) ©))

where, S; = start time of all workloads, 7y = suspend time
of all workloads, 7, = end time of all workloads and R; =
resume time of all workloads. The mapping is done with the
objective of minimum cost, time and energy simultaneously.
Consider lesser pre-emption as its objective. The complexity
of the algorithms mainly in this research work depends on
two important objectives:

e Minimize the rejection rate of the incoming requests.

e Minimize reshuffle cost (avoid rescheduling of already
accommodated leases as much as possible).

@ Springer
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3.7 SLA manager

Based on SLA information (signed service level agreement),
SLA document will be prepared which contains informa-
tion about SLA violation (maximum deviation, minimum
deviation and penalty rate in case of SLA violation) and
accordingly urgent cloud workloads would be placed in prior-
ity queue for earlier execution as shown in Fig. 2. Deviation
status is used to measure the deviation of QoS from pre-
dictable values with their possible resolution. In case of
urgent workloads, if the deviation is more than the allowed
then penalty will be imposed (it will allocate the reserve
resources to the particular workload for compensation) as
shown in Table 7. For example: In SLA, both the parties
(cloud provider and cloud consumer) should have speci-
fied the possible deviations to achieve appropriate quality
attributes. For example: if we consider availability as a qual-
ity attribute and it should be 95%, this implies the system
should be available for 22.8 h per day with maximum devi-
ation of 1.2 h per day (5%). In case of system performance,
if the desired deadline is 9 ms with deviation (10%) of 1ms
then maximum response time should be 10 ms for a partic-
ular task without violation of agreement. Cloud provider’s
SLA will give an indication of how much actual availabil-
ity of service the provider views as adequate, and to what
amount it is agreeable to require its own financial resources
to compensate for unexpected outages [2]. If there is viola-
tion of SLA (misses the deadline), then penalty delay cost is
imposed or compensation is given to consumer as described
in Sect. 4.2.1. Penalty cost is equivalent to how much the
service provider has to give concession to users for SLA vio-
lation (Eq. 8). It is dependent on the penalty rate and penalty
delay time period. In CHOPPER, the effect of inaccuracy can
be reduced by two ways: (i) consider the penalty compensa-
tion clause in SLAs with provider and impose SLA violation
and (ii) add some slack time during scheduling for avoiding
risk. This research work considers 5% as minimum devia-
tion and 15% as maximum deviation. In this research work,
workloads are classified into three categories based on dead-
line urgency: (i) normal (relaxed deadline), (ii) good (average
deadline) and (iii) critical (urgent deadline) as discussed in
Sect. 4.2.1.

We have selected the “web services agreement specifi-
cation (WS-Agreement)” standard [34] for management of
SLA in this research work. WS-agreement protocol is used
for establishing agreement between two parties, such as
between a cloud provider and consumer, using an extensible
XML language for specifying the nature of the agreement,
and agreement templates to facilitate discovery of compatible
agreement parties. The specification consists of a schema for
specifying an agreement, a schema for specifying an agree-
ment template, and a set of classes for managing agreement
life-cycle, including creation, expiration, and monitoring of

@ Springer

agreement states through activity diagram [33]. SLA man-
ager manages the whole service of CHOPPER in a controlled
manner and uses minimum number of resources to execute
the workloads within specified budget and deadline along
with minimum energy consumption.

3.8 Autonomic service manager

Based on information of SLA, QoS, workload and resource,
the resource workload mapper maps the workloads to the
appropriate resources by taking care of both SLA and QoS.
Dynamic scheduler schedules the workloads after mapping
of the workloads with available resources based on the pol-
icy (cost, time, cost-time and bargaining based [5]) defined
by user and generates the workload schedule based on the
workload details specified by the user and billing for that
execution. Energy is also calculated as discussed in Sect.
3.6.3 and compared with threshold energy value at differ-
ent value of resources. The workload is dispatched only, if
the workload is executed within described budget and dead-
line and actual energy consumption is less than the threshold
energy value. After verification of every critical parameter
the workloads are dispatched for execution. After payment,
the workload executer will execute the workloads. CHOP-
PER mainly focuses on the properties of self-management
i.e. self-healing, self-configuring, self-protecting and self-
optimizing.

Self-healing Self-healing in CHOPPER aims to make all
the necessary changes to recover from the faults to main-
tain the working of system without any disruption. System
must ensure that the successful execution of workloads or
application without affecting its performance even in case of
software, network and hardware faults. Software fault may
occur due to any unhandled exception in high resource inten-
sive workloads; other reasons may be deadlock, lesser storage
space, unavailability of resources etc. Hardware fault may
occur due to problem in hardware components like proces-
sor, RAM, HDD etc. Network faults may occur due to lack
of scalability, physical damage and network breakage in case
of distributed networks.

Self-protecting The main aim of self-protecting in CHOP-
PER is to protect the system from malicious intentional
actions by tracking the doubtful activities and respond
accordingly to maintain the working of system without
any disruption. System should have knowledge about legal
and illegal behavior to make distinction and apply opera-
tion accordingly to block the attack. Attack may be DoS,
R2L, U2R and probing. In denial of service (DoS) attack,
huge traffic is generated by attackers to cause damage by
flooding the victim’s network. It includes SMUREF (to cre-
ate denial of service, attackers use internet control message
protocol (ICMP) echo request by pointing packets towards
broadcast IP address), local area network denial (LAND)
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(when source and destination address is same, then attack-
ers send spoofed SYN packet in TCP/IP network) and
SYN Flood (attackers sending IP-spoofed packets which
can crash memory). In remote to local (R2L), attackers
access the system locally without authorization to destroy
the network by executing their commands. It includes attacks
like internet message access protocol (IMAP), Guess pass-
word and SPY. In user to root (U2R), attackers get root
access of the system to destroy the network. It includes
attacks like buffer overflow and rootkits. In Probing, attackers
use programming language to steal the private information.
It includes attacks like port sweep and Network MAPper
(NMAP).

Self-configuring The main aim of self-configuring in
CHOPPER is installation of missed or outdated compo-
nents based on the alert generated by system without human
intervention. Some components may be reinstalled in chang-
ing conditions and other components need updates. Self-
configuring takes care of cost which includes cost of resource
and penalty cost in case of SLA violation.

Self-optimizing Self-optimizing aspect of CHOPPER maps
the tasks or workloads to the appropriate resources using
dynamic scheduling techniques. Dynamic scheduling contin-
ually checks the status of execution and improves the system
performance based on the feedback given by autonomic ele-
ment. For data intensive applications, adaptive scheduling is
used, which can be easily adapted in changed environment.
Self-optimizing is effected by various QoS parameters such
as execution time, execution cost, resource utilization, avail-
ability of service, reliability of service, energy efficiency and
resource contention. CHOPPER combines self-healing, self-
configuring self-protecting and self-optimizing approach for
complex cloud based distributed systems. Autonomic ele-
ments (AEs) are mainly responsible for autonomic manage-
ment of resources. AE consists of sensors, monitor, analyzer,
planner, executor and effector as shown in Fig. 1. All the AEs
interact with each other periodically for updated information
regarding system performance. Based on interaction, AEs
finish a mandatory subtask to maintain the performance of
CHOPPER. Autonomic unit (AU) is a set of AEs working
together for the achievement of a particular task. AU has one
manager node (CHOPPER-Manager) and more than one pro-
cessing nodes (CHOPPER-Client), all the processing nodes
report to the manger node and only manager node of one AU
can interact with manager node of another AU. Mathemati-
cally, we can describe a relation as:

CHOPPER = {AU|, AUy, cooovee i

e AU WRile AU = {AE{, AE>, . oio i

workloads submitted are placed into workload queue based
on feasibility and their QoS requirements. Based on SLA
information, resource information, workload information
and QoS information resources are provisioned by using
Q-aware resource provisioning technique [4]. After provi-
sioning of resources, actual resource scheduling is done
based on QRSF resource scheduling technique [5]. After
scheduling of resources, actual execution of workloads is
started. During execution of workloads, performance is mon-
itored continuously using a sub unit performance monitor
to maintain the efficiency of CHOPPER that generates alert
in case of performance degradation. Alerts can be gener-
ated in two conditions generally: (i) if there are insufficient
resources available to execute workload (Action: Reallocates
resources) and (ii) if the SLA deviation is more than allowed
(Action: Negotiate SLA) as shown in Fig. 2. Working of sub
units is described in Fig. 2 as: Monitor [M], analyze and
plan [AP] and executor [E]. Other possible alerts and corre-
sponding actions are discussed below in next sections. Same
action is performed twice, if AE fails to correct it then sys-
tem is treated as down. Java agent development environment
(JADE) is used to establish the communication among AEs
and exchanging information for updates and all the updated
information is stored in centralized database (Knowledge
Base) for future usage and backup of corresponding updates
is also maintained in case of failure of database. Java devel-
opment kit public key infrastructure (JDK-PKI) [26] plugin
is used to provide security that ensures the privacy of commu-
nication among AEs. Working of AE of CHOPPER is based
on IBM’s autonomic model [6,27] that considers four steps
of autonomic system: (i) monitor, (ii) analyze, (iii) plan and
(iv) execute. Autonomic system based CHOPPER comprises
of following components:

3.8.1 Sensors

Sensors get the information about performance of current
state nodes in terms of QoS parameters. Firstly, the updated
information coming from processing nodes transfers to man-
ager node then manager node transfers this information
to Monitors. Updated information includes value of QoS
parameters (execution time, execution cost, resource uti-
lization, availability of service, reliability of service, energy
efficiency, SLA violation rate and resource contention), faults
(network, software and hardware), new updates regarding
component status (outdated or missing) and security attacks

e AER)

QoS-aware autonomic resource management approach exe-
cutes the workloads as shown in Fig. 2. Firstly, bulk of

(intrusion detection rate). For example: energy consumption
of workload execution. Sensors continually monitor the value

@ Springer
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of energy consumption and compares with threshold value
of energy consumption. If the value of energy consumption
is less than threshold value then continue its execution other-
wise add new resources in these consecutive steps: [(i) current
node is declared as dead node, (ii) remove dead node, (iii) add
new resource(s) and (iv) reallocate resources and start exe-
cution] and transfers updated information to manager node.

3.8.2 Monitor [M]

Initially, Monitors are used to collect the information from
manager node for monitoring continuously performance
variations by comparing expected and actual performance.
Expected performance is the threshold value of QoS param-
eters, which also includes maximum value of SLA deviation
and stored already in knowledge base. Actual information
about performance is observed based on the failures (net-
work, software and hardware), new updates of resources
(outdated or missing), security attacks, change in QoS param-
eters and SLA violation, and transfer this information to next
module for further analysis [ALGORITHM 1: Monitoring
Uni (MU)] is used to monitor the performance of man-
agement of resources by considering four self-management
properties as shown in Fig. 3. For self-optimizing, QoS agent
is installed on all processing nodes to monitor the perfor-
mance. We have considered the set of workloads (Wgo= { W,
Wo, oo, W), placed in workload queue and con-
sider some or all the workloads for execution based on the
availability of resources and QoS requirements of workloads.
After this, resources are allocated to the workloads then exe-
cution time (ET), average cost (C) and energy consumption
(Ecioua) for every workload will be calculated.

If any of the condition ([ET < D; && C < Bg] or
[Ecious =<  EThreshoia]l) Will be false then alert will
be generated otherwise schedule resources for execution.
Where D;(deadline time) is calculated based on desired
deadline using (Egs. 10, 11), and Bg is maximum budget
allocated for execution [4,5]. Equation 10 is used to calcu-
late deadlinetime(Dt;).

Dt; = Z(Wd,- —Ct) (10

i=1

Where Wd; is workload deadline and Ct; is current time.
Deadline urgency (Du;) is used to calculate the final priority
of workload (Eq. 11).

n

Dy
Du; = Z (E_;, — 1) (11)

i=1

Where Dt; is deadline time and ET; is execution time cal-
culated using (Eq. 1). For self-protecting, security agents
are installed on all the processing nodes, which are used to
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trace the unknown and known attacks. Based on the existing
database in the system, new anomalies are captured in CHOP-
PER. CHOPPER captures an anomaly by detecting system
intrusions and misuse of system by using its monitor and
classifying it as either normal or anomalous by comparing its
properties with data in existing database. New anomalies are
captured by security agent and information about anomalies
is stored in database (knowledge base). CHOPPER protects
the system from various attacks as discussed earlier such as
DoS [Smurf, LAND, SYN Flood and Teardrop], R2L [SPY,
Guess password, IMAP], U2R [rootkits, buffer overflow] and
probing [ports sweep and NMAP]. SNORT anomaly detec-
tor [26] is used to protect the system from attacks. In our
experimental work, we have integrated SNORT with CHOP-
PER (Fig. 6). We have used detection engine to detect the
attacks and maintain the log about attack. Detection engine
detects the pattern of every packet transferring through the
network and compares with the pattern of packets existing in
database to find the current value. Alert will be generated if
current value is out of range [range (min, max)]. State vector
machine [26] is used in CHOPPER to make a network profile
for attack detection. State Vector Machine is designed based
on training data to detect and recognize input data (testing
data) and based on the closed match to the data defined in
classes, output is decided.

For self-healing, software, hardware, network, and hard-
ware hardening agents are used to detect the corresponding
faults. Hardware hardening agent scans drivers and checks
the replica of original drivers when new node in cloud is
added. After verification of new node by device driver, node is
added. If the node is already existing in the system then it will
generate alert. CHOPPER performs the hardening [26] of
new driver into cloud to avoid the degradation of performance
in case of faults and generates reports about the failure. After
successful hardening of new driver, hardened driver replace
the existing drivers. If any alertis generated after hardening of
driver then original driver replace the hardening driver and
log is updated. After hardening of driver, hardware agents
are using to monitor the performance of hardware compo-
nents. Machine check log is used in CHOPPER to resolve
hardware failures and generate alert in case of any internal
error and store the information regarding alert into database.
CHOPPER uses fields for Log information [event type (type
of event occurred i.e. CRITICAL’ OR ‘ERROR”), event Id
(Event has unique identity number) and time stamp (time of
occurrence of error in that event)]. Database is updated by
using log information [Node_Name and MAC_Address] and
alert will be generated. Software agents monitor the usage of
memory and CPU. CHOPPER fixes some threshold value
usage for both CPU and memory. If the value of usage of
memory and CPU is more than threshold value, then sys-
tem generates alert. Network agents are used to measure the
rate of data transfer from source to destination in a particular
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ALGORITHM 1: Monitoring Unit (MU)

1. #SELF-OPTIMIZING MONITORING

2. Start

3. Workload Queue: W= { Wy, Wy, ceooveiiiiiiiiiis W}

4. Add Workloads: W= { Wy, Wy, cccooounierrerenirine e W,} where o <m
5. Allocate resources to workloads based on QoS requirements

6. for all workloads (WW},), Calculate Execution Time (ET) , Average Cost (C) and Energy Consumption (E¢;4,4) for execution
7. if (ET<D, && C<By]==" TRUE’) then

8. if ([Ecioua < Ernresnotal == ‘TRUE’) then

9. Schedule resources for execution

10. else

11. Generate Alert

12. end if

13. else

14. Generate alert

15. end if

16. end for

17. #SELF-PROTECTING MONITORING

18. START

19. Capture Packets
20. Perform parsing on captured packets
21. for all Packets

22. do

23. if Packet != Range (MIN, MAX) range then

24. Store packet information into log file

25. end if

26. end for

27. #SELF-HEALING MONITORING

28. Start

29. Setof Nodes: Nodes,;={Node;, Node, ..................Node,}, where Node yren; is current node
30. if (Nodecyrrent N Nodeg,r = = NULL) then

31. Scan drivers and check replica of original drivers
32. Add node [Nodegso; € Nodecyrrent]

33. else

34. Node is already existed [Generate Alert]

35. endif

36. for all Hardware Node (Node status)
37. Get detail of status [Event_type, Time_Stamp, Event_Id]
38. if (Event_Type = = ‘CRITICAL’OR ERROR’) then

39. Database is updated by using log information [Node_Name and MAC_Address]
40. Generate Alert

41. end if

42. end for

43. for Software Monitoring [CPU and MEMORY]
44, if (Status ['CPU’|| ‘MEMORY' > THRESHOLD VALUE) then

45. Generate Alert

46. Update Memory and CPU information

47. end if

48. end for

49. #SELF-CONFIGURING MONITORING

50. Start

51.  List of Components: List omponents= {C1r Carrerrerseereennes Cp}

52.  List of Active Components: LiStactive components= {C1) Carreerrverrvenenns Cq}, whereq <p

53.  while true do
54. For all software components

55. for all [Listactive components] g6t component status

56. if (component status = = ‘MISSING’) then

57. Uninstall the component and reinstall the component for RECONFIGURATION
58. end if

59. if (component status = = ‘OUTDATED’) then

60. Generate Alert [For new version of component]

61. end if

62. end for

63. For all hardware components
64. Track Log
65. for all [Listctive components] Get detail of status [Event_type, Time_Stamp, Event_Id]

66. if (Event_Type = = ‘CRITICAL’OR ‘ERROR’) then

67. Database is updated by using log information [Component_Name and Compoenent_Id]
68. Generate Alert

69. else

70. ‘IGNORE’

71. end if

72. end for

73. _end while

Fig. 3 Algorithm for monitoring in CHOPPER
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network. CHOPPER checks the data transfer continuously,
manager node asks status from processing nodes. Manager
node considers network failure if node does not respond.
For self-configuring, software component agent and hard-
ware component agent are used to monitor the performance.
For all the software components used at different processing
nodes, status of active component is retrieved by software
component agent. In CHOPPER, two types of status are
defined in database: ‘MISSING’ or ‘OUTDATED’. If soft-
ware component agent generates status is ‘MISSING’ (due
to missing files) then uninstall the existing software compo-
nent and reinstall the component. New version of component
is to be installed if the component status is ‘OUTDATED’.
For hardware components, CHOPPER uses fields for log
information [Event Type (type of event occurred i.e. ‘CRIT-
ICAL’ OR ‘ERROR’), event Id (Event has unique identity
number) and time stamp (time of occurrence of error in that
event)]. For all the hardware components using at different
processing nodes, status of active component is retrieved by
hardware component agent. If any of the event (‘CRITICAL’
OR ‘ERROR’) occurs then database is updated by using log
information [Component_Name and Compoenent_Id] and
alert will be generated.

3.8.3 Analyze and plan [AP]

Analyze and plan module start analyzing the information
received from monitoring module and make a plan for ade-
quate actions for corresponding alert. [ALGORITHM 2:
Analyzing and Planning Unit (APU)] is used to analyze
the performance of management of resources by consider-
ing four self-management properties as shown in Fig. 4.
Alerts are categorized in seven categories: QoS alert, security
alert, software alert, hardware alert, network alert, software
component alert and hardware component alert. For self-
optimizing, the analyzing unit starts analyzing the behavior of
QoS parameters of a particular node after alert is generated by
QoS agent. That particular node is declared as ‘DOWN’ and
restarts the failed node and starts it again and measures the
status of that node. If the node status changes to ‘ACTIVE’,
then continue its execution otherwise add new resources in
these consecutive steps: [(i) current node is declared as dead
node, (ii) remove dead node, (iii) add new resource(s) and (iv)
reallocate resources and start execution] as described in Fig.
2. For self-protecting, the analyzing unit starts analyzing the
log information of attacks after alert is generated by security
agent to generate signature. CHOPPER performs following
function to generate signature:

e Collectall the new alerts generated by autonomic element
(AE)

e Use Java utility to perform parsing to get URL, port and
payload detail
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e Categorize data based on URL, port and payload

e To find largest common substring apply longest common
subsequence (LCS)

e Construct new signature by using payload string identi-
fied by LCS

For self-healing, the analyzing unit starts analyzing the
behavior of hardware and software of a particular node after
alert is generated by hardware and software agent respec-
tively. If alert is generated at runtime when workload is
executing on some node N, then set the status of node N
as ‘DOWN’ and restart the failed node and start it again and
measure the status of that node. If the node status changes to
‘ACTIVE’, then continue its execution otherwise use another
stable node after resubmission of workload. Stability of node
is more if lesser number of alerts generated in past are
reported from log, chance of selection of that node is more in
case of failure. If workloads taking more time to execute or
usage of CPU or memory are more than threshold value at a
particular node then (i) set the status of that node as ‘DOWN’,
(ii) restart the node, (iii) identify the problem and (iv) perform
verification to check whether the problem is resolved or not.
Network agent identifies the current status of network and to
reduce failure rate, network agent takes right decision based
on network log. For self-configuring, the analyzing unit starts
analyzing the behavior of hardware and software component
of a particular node after alert is generated by hardware and
software component respectively. If the status of hardware
component is ‘CRITICAL’ OR ‘ERROR’, then declare that
component as ‘DOWN’ and restart the failed component and
start it again and measure the status of that component. If
the component status changes to ‘ACTIVE’, then continue its
execution otherwise add new component in these consecutive
steps: [(i) current component is declared as INACTIVE, (ii)
remove INACTIVE component, (iii) add new component (s)
and (iv) start execution]. If the status of hardware component
is [event type is ‘MISSING’ or ‘OUTDATED”)], then use fol-
lowing steps: (i) replace the component with updated version
ifeventtypeis ‘OUTDATED’ and (ii) reinstall the component
if Event Type is ‘MISSING’. Once data has been analyzed
then this framework executes the actions corresponding to
the alerts automatically.

3.8.4 Executor [E]

Executor implements the plan after analyzing completely.
[ALGORITHM 3: Executing Unit (EU)] is used to execute
the resource and analyze the execution performance by con-
sidering four self-management properties as shown in Fig. 5.

For self-optimizing, main goal of executor is to optimize
the performance of QoS parameters and execute the work-
loads without degradation in resource utilization. Based on
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Fig. 4 Algorithm for analyzing
and planning in CHOPPER

ALGORITHM 2: Analyzing and Planning Unit (APU)

1. #SELF-OPTIMIZING ANALYZING

2. # Process logs

3. # Check for Status of QoS parameters

4. for all node [Nodey rent]

5. if (ET<D; && C<By && Ecioua < Erhreshoia) == ‘FALSE’
6. do

7. Set status Nodeyrrene = Down

8. Restart the Node [Node yrrent |

9. if Nodecyrrene == ‘RESTARTED then

10. Check Node status

11. if Node status [Nodey rent] = ! ‘ACTIVE’
12. Generate Alert [Node is declared as Dead]
13. end if

14. end if

15. end if

16.  end for

17.  #SELF-PROTECTING ANALYZING

18.  # Process logs

19.  # check for the Security Attacks

20.  Collect all the new alerts generated by AE [Autonomic Element]
21. forallalerts

22. do

23. Perform parsing to get URL, Port and Payload detail

24. Categorize data based on URL, Port and Payload

25. To find largest common substring apply LCS (Longest Common Subsequence)
26. Construct new signature by using payload string identified by LCS

27.  end for

28  #SELF-HEALING ANALYZING

29. # Processlogs

30. #Check for Hardware Errors

31. forall Nodey rens Where [Event_Type = = ‘CRITICAL’OR ‘ERROR
32. Set status Nodeyyrene = ‘DOWN’

33. Restart the Node [Node y rent |

34. if Nodeoyrrene == ‘RESTARTED then

35. Check Node status

36. if Node status [Nodeyyrent] = ! "ACTIVE’
37. Generate Alert

38. end if

39. end if

40. end for

41.  # Check for Software Errors

42. forall Node,y,ren: ([CPU || MEMORY] > THRESHOLD VALUE)
43. do

44, Set status Node yyrene = ‘DOWN’

45. Restart the Node [Node y rent |

46. if Node yrrene = = ‘RESTARTED then

47. Check Node status

48. if Node status [Node y,rent] = ! “ACTIVE then
49, Generate Alert

50. end if

51. end if

52.  end for

53, #SELF-CONFIGURING ANALYZING

54.  # Process logs

55.  # Check for component status [Hardware Component]
56. for all [LiStActive components]

57. if (Event_Type = = ‘CRITICAL’OR ‘ERROR’) then

58. Set status [Listctive components] = DOWN’

59. Check Component [Listactive components) Status

60. if Component status [Listactive components] = ! “ACTIVE’
61. Generate Alert

62. end if

63. end for

64.  # Check for component status [Software Component]
65.  for all [LiStsctive components] if (Event_Type = = 'OUTDATED’OR ‘MISSING’)
66. if (Component status [LiStactive components] = ‘OUTDATED’) then

67. Replace the component with updated version

68. else if (Component status [Listactive components] = ‘MISSING’) then
69. Reinstall the component for Reconfiguration

70. Check Component [Listactive components] Status

71. if Component status [Listsctive components] = ! ‘ACTIVE then

72. Generate Alert

73. end if

74. end if

75. _end for
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ALGORITHM 3: Executing Unit (EU)

11. #SELF-PROTECTING EXECUTION
12. for all Signature Analyzed [SIGN_ANA]

13. do

14. if SIGN_ANA c Existing Data then

15. Signature merged to existing

16. else if SIGN_ANA = Already Existing then
17. ‘IGNORE’

18. else

19. Add signature as new data

20. end if

21.  end for

22.  #SELF-HEALING EXECUTION
23. if New_Workload_Submission then

25. Select Different Node
26. end if
27. endif

28. if (New_Workload_Submission == ‘ERROR’) then
29. Backup Data

31. endif
32.  #SELF-CONFIGURING EXECUTION
33. if (Component = ‘New’) then

43. if (Component = ‘EXISTING’) then
44. if Existing Component == ‘ERROR’then

1 # SELF-OPTIMIZING EXECUTION

2. for all node [Node yrrent]

3. if (ET<D; && C<Bg && E¢ioua < Ernreshoia) == ‘FALSE’ then

4. Declared node as dead node and removed

5. else if (Node is required to execute the workloads without degradation in resource utilization) then

6. Add new node from resource pool with minimum ET, C and EC (ET < D; && C <Bg && E¢ioua < Ernresnoid)

7. else if (Node is required to execute the workloads without degradation in resource utilization but not available in
resource pool) then

8. Add new node from reserve resource pool with minimum ET, Cand EC (ET <D, && C<By && E¢ioua <

EThreshald)
9. end if
10. end for

24. if (Selected_Node [Node yrren: | © FAULT_NODE_LIST) then

30. Send Restart Message to Restart Agent based on type of failure

34. Add component [bind component by exchange messages with other existing components]
35. Start component

36. Check Performance Status

37. if (ET<D, && C<Bg && Ecioua < Erhreshoia) == ‘TRUE’ then

38. Continue Execution

39. else

40. Replace with new component

41. end if

42. endif

45. Backup Data

46. Send Restart Message to Restart Agent based on type of failure
47. end if

48 endif

Fig. 5 Algorithm for execution in CHOPPER

the information provided by analyzer, executor will add new
node from resource pool with minimum execution time, cost
and energy consumption. If the resources are not available in
resource pool then add new node from reserve resource pool
with minimum execution time, cost and energy consumption
after negotiating SLA by intimating user as shown in Fig. 2.
If still issue is not resolved then generate alert. Figure 2 also
describes how CHOPPER reacts when a workload fails dur-
ing its execution and self-healing capability of CHOPPER
to re-negotiate the SLAs based on availability of resources
(reserve resources can be used in case of unavailability of
resources in resource pool with new SLA). Resources are
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adding in resource pools through resource provisioning (Q-
aware). For self-healing, if the selected node is not a stable
node then select another different node which has maximum
stability among the available nodes. If the error occurred dur-
ing workload execution, then save the state of that workload
and restart the node. If still issue is not resolved then generate
alert. For self-protecting, SNORT is used to refine the sig-
nature received from analyzer and compares new signatures
with existing signature in SNORT database. If signatures are
new then they are added to SNORT database (knowledge
base) and if signatures are existing then they are merged.
For self-configuring, if the new component is added then
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bind component by exchange messages with other exist-
ing components and start execution on that component. If
the component executes the workload with minimum exe-
cution time, cost and energy consumption as required then
continue execution otherwise replace with another qualified
component. If error is generated in existing component, then
save the state of execution and restart the component. If still
component is not performing as required then reinstall the
component or install an updated version to resolve issue. If
still issue is not resolved then generate alert.

3.8.5 Effector

Effector is acting as an interface between AUs and AEs to
exchange updated information and it is used to transfer the
new policies, rules and alerts to other nodes with updated
information.

4 Implementation and experimental results

We modeled and simulated a cloud environment using
CloudSim [31]. We simulated computing nodes that resem-
bles configuration of resources shown in Table 6. The
workload is modeled as processing of images to convert from
one format to another (e.g., converting from JPEG to PNG
format). Microsoft Visual Studio 2010 is an integrated devel-
opment environment from microsoft [32]. JADE is used to
establish the communication among devices and exchanging
information for updates and all the updated information is
stored in centralized database for future usage and backup
of corresponding updates is also maintained in case of fail-
ure of database. SNORT [26] is the most commonly used
signature-based detector that runs over IP networks for ana-

lyzing real time traffic for detection of misuse. SNORT also
provides the option to make it work as anomaly detection IDS
by using the preprocessor component. CHOPPER is using
the SNORT anomaly detector version to self-protect the sys-
tem from security attacks. SNORT has been optimized to
be integrated with CHOPPER. For Self-protection, “analy-
sis signatures” generated by analyzer are further refined and
finalized to be used as a signature by SNORT. For this, ana-
lyzed signatures are compared with existing signatures in the
SNORT database. CloudSim [31] has been installed along
with its requirements on all the nodes which are participating
to provide cloud service. Nodes in this system can be added or
removed based on the requirement. We have verified CHOP-
PER in real cloud environment. The integration of multiple
environments used to conduct experiments is shown in Fig. 6.

Energy consumption is measured in Kilo Watt Hour
(kWh) using Joule Meter. CHOPPER is installed on main
server and tested on virtual cloud environment that has been
established at CLOUDS Lab, School of Computing and Infor-
mation Systems, The University of Melbourne, Australia.
We installed different number of virtual machines on three
different servers, and deployed CHOPPER to measure the
variations. In this experimental setup, three different cloud
platforms are used: Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS).
At software level, Microsoft Visual Studio 2010 is used to
develop Cloud Workload Management Portal (CWMP) to
provide user interface in which user can access service from
any geographical location.

In this research work, CloudSim toolkit is used [31].
Both the behavior and system modeling of Cloud system
components (VMs, datacenters and RP policies) is sup-
ported by this toolkit. It is used to implement the common
resource scheduling techniques through little effort and can

Fig. 6 Cloud testbed

Database
(SQL Server)

CWMP (SaaS) J

‘Workload Manager
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Table 6 Configuration details of testbed

Resource_Id Configuration Specifications Operating Number of Number of Price (C$/EC
system virtual node ECs time unit)

R1 Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Windows 6 18 2

R2 Intel Core i5-2310- 2.9GHz 1 GB RAM and 160 GB HDD  Linux 4 12

R3 Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2 6 4

be extended. Presently, toolkit is used for simulation of Cloud
environment containing distinct and inter-networked Clouds.
Furthermore, it provides custom interfaces to implement
resource scheduling techniques for VM allocation under
inter-networked circumstances in Cloud computing. The core
benefits of this toolkit are used to test the performance
along with time effectiveness (it needs very small time and
effort to implement resource scheduling test environment
for Cloud based application) and applicability and flexibility
(with little development and programming effort, developer
can test the performance of Cloud-based application in het-
erogeneous Cloud environments (Microsoft Azure, Amazon
EC2)). For experimental results heterogeneous cloud work-
loads are considered. Each resource comprise different kind
of machines, machine might have one or more than one
PE (Processing Element) with different Million Instructions
Per Second (MIPS). In this outcome, we suppose that each
cloud workload which is admitted to the CHOPPER may
need fluctuating input size and execution time of workload
and such type of cloud workloads in the form of Cloudlets
are described [29-31]. At Infrastructure level, three different
servers (consist of virtual nodes) have been created through
Citrix Xen Server and SQL Server has been used for data
storage. Scheduler runs at IaaS level on Citrix Xen Server.
Computing nodes used in this experiment work are further
categorized into three categories as shown in Table 6.

The execution cost is calculated based on user workload
and deadline (if deadline is too early (urgent) it will be
more costly because we need a greater processing speed and
free resources to process particular workload with urgency).
There individual price is fixed (artificially) for different
resources because all the resources are working in coordina-
tion to fulfill the demand of user (demand of user is changing
dynamically). Experiment setup using three servers in which
further virtual nodes [12 = 6 (Server 1) +4 (Server 2) +2
(Server 3)] are created. Every virtual node has different num-
ber for execution components (ECs) to process user request
and every EC has their own cost [(C$/EC time unit (sec)].
Table 6 shows the characteristics of the resources used and
their execution component (EC) access cost per time unit
in Cloud dollars (C$) and access cost in C$ is manually
assigned for experimental purposes. The access cost of an
EC in C$/time unit does not necessarily reflect the cost of
execution when ECs have different capabilities. The execu-
tion agent needs to translate the access cost into the C$ for
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each resource. Such translation helps in identifying the rela-
tive cost of resources for executing user workloads on them.

4.1 CHOPPER execution

The aim of performance evaluation is to demonstrate that it
is feasible to implement and deploy the autonomic resource
management approach on real cloud resources. Nodes in this
system can be added or removed at runtime by autonomic
resource manager based on the requirement. The key compo-
nents of the cloud environment are: user interface (CWMP),
CloudSim, SNORT, resource scheduler and resources. A
detailed discussion of the implementation using CloudSim
can be found in [31]. However, following details enable
the understanding of the cloud based environment in which
CHOPPER is implemented:

(1) Cloud consumer submit their request to user inter-
face (CWMP) that contains the workload description
[workload name, workload type, budget, deadline and
resource scheduling policy (cost based or time based)].

(2) CWMP is deployed on CloudSim Toolkit (used as a
scalable cloud middleware to make interaction between
SaaS and IaaS).

(3) Resource configuration is identified to schedule the
number of workloads based on QoS requirements as
described by cloud consumer in the form of SLA.

(4) CHOPPER executes the different number of workloads
using resources automatically as discussed in Sect. 3.8.

(5) Autonomic resource manager uses Sensors to measure
the performance of system in terms of QoS to avoid
violation of SLA and updated information is exchanged
between all the autonomic units through Effector.

(6) CHOPPER reacts when a workload fails during its exe-
cution and self-healing capability of CHOPPER is used
to re-negotiate the SLAs using WS-Agreement standard
(Sect. 3.7) based on availability of resources (reserve
resources can be used in case unavailability of resources
in resource pool with different SLA) is shown in Fig. 2.

(7) After successful execution of workloads, this further
returns the resources to resource pool as shown in Fig. 2.

(8) At the end, the autonomic unit returns updated work-
load’s execution information along with processed
workload back to the cloud consumer.
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Table 7 Types of workload and their urgency details

Type of workload Deadline urgency Slack time Delay time Deviation Minimum Penalty rate
(D) (seconds) (seconds) status penalty

Critical (urgent deadline) D, < 0.25 10 0-50 5% 200 Seconds 5%
51-100 10% 400 s 6%
101-150 15% 600 s 7%

Good (average deadline) 025 <D, <0.75 30 0-50 5% 100 s 4%
51-100 10% 200 s 5%
101-150 15% 300 s 6%

Normal (relaxed deadline) D, > 0.75 60 0-50 5% 50s 2%
51-100 10% 100 s 3%
101-150 15% 150's 4%

To validate CHOPPER, we have implemented a real applica-
tion and presented performance evaluation through a web
service i.e. cloud workload management portal by con-
sidering QoS parameters at service level as mentioned
in [32].

4.2 Experimental results

All experiments were started with workload name: perfor-
mance testing [processing larger image file of size 713 MB]
as described in Table 5. Performance of CHOPPER has been
evaluated in two steps: (i) case study of different type of
workloads and (ii) validation of CHOPPER with existing
autonomic resource management techniques.

4.2.1 Case study: type of workloads

In this research work, workloads are classified into three
categories based on deadline urgency: (i) critical, (ii) good
and (iii) normal. Equation 11 is used to calculate deadline
urgency. Table 7 describes the details of type of workloads
along with deadline details to provide compensation in case
of missing deadline. In this research work, the value of thresh-
old energy (Enreshota) is 176 kWh for critical workload, 144
kWh for good workload and 122 kWh for normal workload.
Experiment has been conducted with different number of
resources (6-36).

For example, calculating the compensation in which delay
time = 50 (deviation status = 5%) seconds for “CRITICAL”
workload is as following:

Compensation = Penaltynyinimum

+ [Penalty Rate x Delay Time]

Compensation = 200s + [5 x 50 s] =450 s

It will provide 450 s free cloud service as a compensation.
Table 8 describes the details of type of workloads along with
their QoS value.

In this experiment, four different cloud infrastructures
with different processor configurations (2 core processor,
4 core processor, 8 core processor and 16 core processor)
have been considered to measure the variation of QoS value.
CHOPPER processes and converts a larger image file (Size
=713 MB) from JPEG format to PNG format. The conver-
sion of a single JPEG file into PNG is considered as a single
workload. 500 workloads of this type have been processed
and executed to find the experiment statistics. Table 8 clearly
shows that execution time of different type of workloads in
16 core processor is 28.53% lesser than 2 core processor,
22.11% lesser than 4 core processor and 18.36% lesser than
8 core processor. Execution time decreases with increase in
number of cores of processor. Execution cost and energy
consumption of different type of workloads increases with
increase in processor configuration from 2 to 16 core pro-
cessor because 16 cores needs larger cooling capacity as
compared to 2 core processor. On the other side, throughput
and resource utilization also increases from lower proces-
sor configuration to higher but energy efficiency reduces
slightly. In 2 core processor, number of missed deadlines
is more in critical workloads than normal and good while
number of missed deadlines is lesser in critical workloads as
compared to normal and good in 16 core processor because
critical workloads getting priority for execution. Initially,
SLA violation rate is 2.33% more in 2 core processor for
critical workloads while it is 6.67% lesser in 16 core pro-
cessor. With the increase in processor configuration, the
resource contention is also increasing but average resource
contention for critical workload is 16.11% lesser than normal
and good workload. Intrusion detection rate is almost same
for every configuration but fault detection rate is increas-
ing from 2 core processor to 16 core processor. With the
increase in processor configuration, availability and reliabil-
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ity is also increasing but waiting time and turnaround time is
decreasing. Table 8 reported that CHOPPER mainly focuses
on critical workloads due to urgent deadline constraint to
improve user satisfaction. Further, the variation of five impor-
tant QoS parameters (energy consumption, average execution
cost, execution time, resource utilization and SLA violation
rate) is measured with different type of workloads (critical,
good and normal).

Test Case 1: energy consumption: We have calculated
value of energy consumption in kWh for different type of
workloads (critical, good and normal) with different num-
ber of resource. With the increasing number of resources,
the value of energy consumption also increases. The mini-
mum value of energy consumption is 46.1 kWh at 6 resources
as shown in Fig. 7. Critical workloads consume 7.73 and
12.75% more energy than good and normal workloads
respectively. The maximum value of energy consumption is
206.53 kWh in critical workloads.

Test Case 2: average cost: We have used (Eq. 4-8) to cal-
culate average cost. With the increase in number of resources,
execution cost rises as shown in Fig. 8. The minimum value
of cost is 72.6 C$ at 6 resources and maximum is 248.92 C$
at 36 resources. Critical workloads use 4.43 and 10.46% cost
more than good and normal workloads respectively.

Test Case 3: execution time: We have used (Eq. 1) to
calculate execution time. As shown in Fig. 9, the execution
time decreases with increase in number of resources. At 6
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Fig. 7 Effect of change in number of resources submitted on energy
consumption
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Fig. 10 Effect of change in number of resources submitted on resource
utilization

resources, critical workload executes same number of work-
loads with 1.91 and 2.11% more execution time than good
and normal workloads respectively. With 15-60 resources,
execution time varies in same ratio but variation decreases
abruptly after 24 resources.

Test Case 4: resource utilization: It is a ratio of actual
time spent by resource to execute workload to total uptime of
resource for that resource. We have used following formula
to calculate resource utilization (Eq. 12).

Resource Utilization;

Xn: actual time spent by resource to execute workload
a f total uptime of resource
i

12)

Where n is number of workloads. With increasing the num-
ber of resources, the percentage of resource utilization is
increasing as shown in Fig. 10. Initially, resource utilization
is more while executing critical workloads at 6 resources.
The percentage of resource utilization in critical workload
is 4.84 and 8.91% more than good and normal workloads
respectively. The maximum value of resource utilization is
90.11% for execution of critical workloads. Figure 10 depicts
the resource utilization as per workload requirement. Hence
as the number of workloads increase so does the number
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Fig. 11 Effect of change in number of resources on SLA violation rate

of resources. To a certain extent as the number of resources
grow the resource utilization shall increase but in case if it
reaches above the critical value the resource utilization will
stale.

Test Case 5: SLA violation rate: It is defined as the prod-
uct of Failure rate and weight of SLA [37]. We have used
following formula to calculate SLA violation rate (Eq. 13).
Listof SLA=<m{,mp..c.c..cccoue..... m, >, where n is total
number of SLAs.

mis not violtated, Failure (m) =1
misviolated, Failure (m) =0

n :
Fail .
Failure Rate = Z (M)

N n
i=1

Failure (m) = {

n
SLA Violation Rate = Failure Rate x Z (w;) (13)
i=1

Where w;is weight for every SLA. We have analyzed the
effect of change in number of resources on SLA violation
rate. SLA violation rate is changed with different number
of resources as shown in Fig. 11. Value of SLA violation
rate is varied between 0 and 100%. At 6 resources, SLA
violation rate is 2.27 and 11.44% more than good and nor-
mal workloads. SLA violation rate is suddenly decreased at
24 resources. SLA violation rate at 36 resources for normal
workload is 7.73 and 8.23% than good and critical workloads
respectively.

4.2.2 Validation of CHOPPER with Existing Techniques

We have verified CHOPPER for all four aspects: self-
optimizing, self-healing, self-protecting and self-configuring.
We have used different metrics for verification of perfor-
mance of CHOPPER [4-6,32,36,37]. We have performed
the different number of experiments in different type of ver-
ification by comparing CHOPPER with existing autonomic
resource management techniques. Experiment has been con-
ducted with different number of workloads (500-3000) for
verification of different QoS parameters and performance of
all the QoS parameters has been evaluated. The following
existing resource management approaches have been con-
sidered to validate CHOPPER:

@ Springer

(i) PURS: Jose and Luis [35] proposed a partial utility-
driven resource scheduling (PURS) technique for elastic
SLA and pricing negotiation which permits providers
exchanging resources between VMs in expressive and
economically effective ways. Further, a comprehensive
cost method is defined by including partial utility given
by customers to a definite level of degradation, when
VMs are assigned in overcommitted situations. In this
technique, revenue per resource allocation and execu-
tion time is improved.

(ii)) ARCS: Mehdi et al. [23] proposed autonomic resource
contention scheduling (ARCS) technique for distributed
system to reduce resource contention in which more
than one job shares same resource simultaneously.
ARCS has four main components: (i) front end policies
(it performs admission control and queuing of jobs), (ii)
scheduler (it contains backfilling scheduling algorithm),
(iii) information service (information about scheduler)
and (iv) back end policies (mapping of resources with
jobs). ARCS established a relationship among layers of
distributed resource management. ARCS did not check
the variation of resource contention along with number
of workloads.

(iii) SHAPE: Self-healing and self-protection environment
(SHAPE) [26] is an autonomic system to recover from
various faults (hardware, software, and network faults)
and protect from security attacks (DDoS, R2L, U2R,
and probing attacks). SHAPE is based on component
based architecture, in which new components can be
added or removed easily. Open source technologies are
used to implement this autonomic system but SHAPE
is unable to execute heterogeneous workloads.

(iv) EARTH : Energy-aware autonomic resource scheduling
(EARTH) [6] is an autonomic resource management
technique which schedules the resources automatically
by optimizing energy consumption and resource uti-
lization. Scheduling rules have been designed using the
concept of fuzzy logic to calculate the priority of work-
load execution. Large number of rules is generated for
every request, so it is very difficult to take an effec-
tive decision in timely manner. EARTH always executes
the workloads with highest priority (which has earliest
deadline), in which workloads with lowest priority is
facing the problem of starvation.

(v) ORPS: QoS based resource provisioning and schedul-
ing (QRPS) framework [33] is used for resource pro-
visioning in which: (i) clustering of workloads is done
through workload patterns, (ii) k-means based cluster-
ing algorithm is used for re-clustering of workloads after
assigning weights to quality attributes of each work-
load and (iii) QoS requirements of clustered workloads
are identified and resources are provisioned by resource
provisioner based on their QoS requirements. Further,
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four different resource scheduling policies (cost, time, 400
cast-time and bargaining based) are used to schedule & 350
- . o
the provisioned resources based on QoS requirements = 300
described by cloud consumer through SLA. S 250 4
= 200
= 150 CHOPPER
= il
We used SHAPE [26] to evaluate the performance of CHOP- § 100 1 mQRPS
PER in terms of fault detection rate, intrusion detection rate, M s0 L
reliability, availability and waiting time, used EARTH [6] to 0

evaluate the performance of CHOPPER in terms of energy
efficiency, energy consumption and resource utilization, used
PURS [35] to evaluate the performance of CHOPPER in
terms of SLA violation rate, used ARCS [23] to evaluate
the performance of CHOPPER in terms of resource con-
tention, and used QRPS [33] to evaluate the performance
of CHOPPER in terms of execution cost, execution time and
throughput. The various metrics used to calculate the values
of different QoS parameters (execution cost, energy con-
sumption, execution time, SLA violation rate, fault detection
rate, intrusion detection rate, resource utilization, resource
contention, throughput and waiting time) in this research
work are described in our previous work [4-6,33,36,37].

Self-optimizing verification: experiment has been con-
ducted with different number of workloads (500-3000)
for verification of self-optimizing aspect. We have calcu-
lated execution cost, energy efficiency, execution time and
resource contention. For verification of their characteristics
of CHOPPER self-optimization includes:

Test Case 1—execution cost It is defined as the total
amount of cost spent per one hour for the execution of work-
load and measured in cloud dollars (C$). We have used
following formula to calculate execution cost (Eq. 14).

. Total Amount of Cost Spent
Execution Cost = (14)
Hour

With the increase in number of workloads, execution cost
rises as shown in Fig. 12. As the number of workload
increases, CHOPPER performs better QRPS. The cause is
that CHOPPER adjusts the resources at runtime according to
the QoS requirements of workload. With the increase in num-
ber of workloads, resource utilization increases as shown in
Fig. 13. Utilization of resources increases due to increase in
number of workloads, to execute more number of resources
as required. At 66% level of resource utilization, execution
cost is 34-39% lesser in CHOPPER than QRPS but at 96%
level of resource utilization, execution cost is 6.2—-8% lesser
in CHOPPER than QRPS. Execution cost suddenly increases
at the 84% resource utilization level but CHOPPER performs
better than QRPS.

Test Case 2—energy efficiency It is a ratio of number
of workloads successfully executed in a data center to total
energy consumed (Ecjouq) to execute those workloads [36].

500 1000 1500 2000 2500 3000
Number of Workloads

Fig. 12 Effect of execution cost with change in number of workloads
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Fig. 13 Effect of execution cost on resource utilization

We have used following formula to calculate energy effi-
ciency (Eq. 15).

n

Energy Ef fieviency = Z

i=l1

(number of workloads successfully excecutecinadata center )

total energy consumed to executed those workloads

15)

Where n is the number of workloads to be executed. With
increasing number of cloud workloads, the value of energy
efficiency is decreases. The value of energy efficiency in
CHOPPER is more as compared to EARTH at different num-
ber of cloud workloads as shown in Fig. 14. The maximum
value of energy efficiency is 89.8% at 1000 cloud workloads
in CHOPPER.

Test Case 3—execution time We have used (Eq. 1) to
calculate execution time. As shown in Fig. 15, the execution
time increases with increase in number of workloads. At 2000
workloads, execution time in CHOPPER is 12.94% lesser
than QRPS. After 2000 workloads, execution time increases
abruptly but CHOPPER performs better than QRPS. We have
calculated value of execution time for both CHOPPER and
QRPS at different level of resource utilization as shown in
Fig. 16. At 66% level of resource utilization, execution time

@ Springer
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Fig. 16 Effect of execution time on resource utilization

in CHOPPER is 5.33% lesser than QRPS but at 96% level of
resource utilization execution time is 16.7% lesser.

Test Case 4—resource contention When more than one
workload shares same resource then resource contention may
occur [23]. It occurs due to following reasons: (i) when
more than one workload executing on same resource, (ii)
more number of workloads can create more resource con-
tention and (iii) if the number of provided resources are lesser
than the number of required resources. Resource contention
(ResCon) is defined during scheduling of resources at time 7.
We have used following formula to find resource contention
(Eq. 16).

@ Springer

= 35000
D
2 30000
g
€ 25000
=
D
£ 20000
=3
< 15000 +———— CHOPPER
2]
5 10000 ————— BARCS
w
0 B

600 1200 1800 2400 3000
Execution Time (Sec)

Fig. 17 Effect of resource contention on time

ResCon (1) = Z

reResourceList

ResCon (t,r) = Z

rteResourceT ype

ResCon (t,r)

ResCon (t,r,rt)

RCStatus(t, r,rt)
1, > (rt € w.OVERLOAD == TRUE?1 :0) > 1
= wewS(t,r)

0 otherwise

RCStatus(t,r,rt)

w.ResourceRequirment(rt],RC Status(t,r,rt)=1

_ wewS(t,r)Artew.OVERLOAD
- otherwise=0

(16)

where r is list of resources, rt is used to specify the type of
resource, w.OV ERLOAD is used to specify the workload
w overloads the resource, w.Resource Requirment is used
to specify the resource requirement of w in terms of capacity
(memory, processor etc.) and RC Status (t, r, rt) specify the
current status of resource contention in terms of Boolean
statements [true or false]. Throughout all experiments this
value, measured in seconds, is as a value for comparison, and
not an exact time for resource contention. We have calculated
the value of resource contention for both CHOPPER and
ARCS at different level of execution time as shown in Fig.
17. Value of resource contention increases with increase in
execution time. Resource contention at 600 s is minimum
(in CHOPPER is 5.95% lesser than ARCS and maximum at
3000 seconds (in CHOPPER is 14.28% lesser than ARCS).
We have also analyzed the effect of resource contention on
number of workloads as shown in Fig. 18. With increase in
number of workloads, value of resource contention increases
from 500 workloads to 3000 workloads. Resource contention
at 500 workloads in CHOPPER is 11.91% lesser than ARCS
and at 3000 workloads in CHOPPER is 13.51% lesser than
ARCS. From 1000 workloads to 2500 workloads, value of
resource contention is almost stable in both CHOPPER and
ARCS, but CHOPPER performs better.
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Test Case 5—SLA violation rate: We have used (Eq.
13) to calculate SLA violation rate. We have analyzed the
effect of change in number of workloads on SLA violation
rate. SLA violation rate is changed with different number of
workloads as shown in Fig. 19.

Variation in SLA violation rate in PURS is larger as com-
pared to CHOPPER. Value of SLA violation rate is varied
between 0 and 100%. At 500 workloads, SLA violation rate
in CHOPPER is 2.27% lesser than PURS but SLA violation
rate suddenly decreases at 2000 workloads. SLA violation
rate in CHOPPER at 2000 workloads is 11.71% lesser than
PURS but at 3000 workloads, SLLA violation rate is 16.38%
lesser. There are different numbers of deadlines missed in
different techniques as shown in Fig. 20. With increasing the
number of cloud workloads, the number of missed deadlines
also increases. The number of missed deadlines in PURS is
more than CHOPPER as shown in Fig. 20. The variation in
number of deadlines missed at 500 and 1500 workloads is
lesser as compared to the 2000 and 2500 workloads but there
is maximum variation at 3000 workloads i.e. as workloads
no increases.

Self-healing verification Experiment has been conducted
with different number of workloads (500-3000) for verifi-
cation of self-healing. We have calculated fault detection
rate, throughput, reliability, availability, waiting time and
turnaround time. For verification of their characteristics of
CHOPPER self-healing includes:

500 1000 1500 2000 2500 3000
Number of Workloads

Fig. 20 Effect of change in number of workloads on number of missed
deadlines
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Fig. 21 Fault detection rate vs. number of workloads

Test Case 1—fault detection rate: It is the ratio of num-
ber of faults detected to the total number of faults existing.
Faults may be software or hardware. We have used following
formula to calculate fault detection rate (Eq. 17).

Number of Faults Detected

Total number of Faults
(17)

Fault Detection Rate =

Figure 21 shows the capability of CHOPPER to detect the
failures by injecting different number of faults in the sys-
tem with different number of workloads. Fault detection rate
decreases with increase in number of workloads. From 500
workloads to 1500 workloads, value of fault detection rate
reduces in both CHOPPER and SHAPE, but CHOPPER per-
forms better than SHAPE. At 2000 workloads, fault detection
rate is almost same for both the techniques but at 3000 work-
loads fault detection rate in CHOPPER is 13.72% more than
SHAPE.

Test Case 2—throughput: It is the ratio of total number
of workloads to the total amount of time required to execute
the workloads. We have used following formula to calculate
throughput (Eq. 18).

Throughput
_ Total Number of Workloads (W,,)
" Total amount of time required to executethe workloads (W,,)

(13)
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Fig. 23 Throughput [3000 workloads] vs. fault percentage (%)

We have injected number of software, network and hard-
ware faults (fault percentage) to verify the throughput of
the CHOPPER with different number of workloads (1500
and 3000). Figure 22 shows the comparison of throughput
of both CHOPPER and QRPS at 1500 workloads and it is
clearly shown that CHOPPER performs better than QRPS.
In our experiment, we found the maximum value of through-
put at fault percentage 45% i.e. CHOPPER has 26% more
throughput than QRPS. Figure 23 shows the comparison of
throughput of both CHOPPER and QRPS at 3000 workloads
and it is clearly shown that CHOPPER performs better than
QRPS. In our experiment, we found the maximum value of
throughput at fault percentage 15 and 60% but minimum at
45% i.e. CHOPPER has only 3.26% more throughput than
QRPS.

Test Case 3—availability: It is a ratio of Mean Time
Between Failure (MTBF) to Reliability. We have used fol-
lowing formula to calculate availability (Eq. 19).

R MTBF
Availability = MTBF + MITR (19)

Test Case 4—reliability: It is an addition of Mean Time
Between Failure (MTBF) and mean time to repair (MTTR).
We have used following formula to calculate reliability (Eq.
20).
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Fig. 24 Availability vs. number of workloads
Reliability = MTBF + MTTR (20)

Where mean time between failure (MTBF) is ratio of total
uptime to number of breakdowns (Eq. 21).

Total Uptime
MTBF = 2D
Number of Breakdowns

Where mean time to repair (MTTR) is ratio of total downtime
to number of breakdowns [Eq. 22].

Total Downtime
MTTR = (22)
Number of Breakdowns

We have calculated percentage of availability for both
CHOPPER and SHAPE. With increasing the number of cloud
workloads, the percentage of availability decreases. The per-
centage of availability in CHOPPER is more as compared to
SHAPE at different number of cloud workloads as shown in
Fig. 24. The maximum percentage of availability is 92.6%
at minimum number of cloud workloads. By increasing the
number of resources, the percentage of availability increases.
CHOPPER performs better than SHAPE in terms of avail-
ability at different number of resources as shown in Fig. 25.
The maximum percentage of availability is 91.7% at maxi-
mum number of resources. We have calculated percentage of
reliability for both CHOPPER and SHAPE.

By increasing the number of cloud workloads, the per-
centage of reliability decreases but difference of reliability
of two techniques is larger at 3000 workloads. The percentage
of reliability in CHOPPER is more as compared to SHAPE at
different number of cloud workloads as shown in Fig. 26. The
maximum percentage of reliability is 9% at 500 workloads.
By increasing the number of resources, the percentage of reli-
ability increases. CHOPPER performs better than SHAPE in
terms of reliability at different number of resources as shown
in Fig. 27. The maximum percentage of reliability is 12.3%
at 250 resources in CHOPPER.

Test Case 5—waiting time: We have used (Eq. 2) to
calculate waiting time. We have injected failures to verify
the performance in terms of waiting time of workloads in
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Number of Resources percentage (45%) i.e. 3.82% and with other fault percentage,
Fig. 27 Reliability vs. number of resources the waiting time is almost same but CHOPPER performs
better.
350 Test Case 6—turnaround time: It is the ratio of dif-
| ference of workload completion time (W C;) and workload
S - 300 p
§ % 250 - | submission time (W .S;) to number of workloads. We have
g - 200 A | used following formula to calculate turnaround time (Eq.
—
=2 150 - — mcHoppER 2
£3
£ § 100 - — SHAPE n wC WS
=7 50 - B Turnaround Time; = Z <l—l> (23)
0 - A n
1=
15 30 45 60
Fault Percentage (%)

Fig. 28 Waiting time [1500 workloads] vs. fault percentage

CHOPPER with different fault percentage (15-60%). Figure
28 shows the comparison of waiting time of both CHOP-
PER and SHAPE at 1500 workloads and it is clearly shown
that CHOPPER performs better than SHAPE. In our experi-

where n is the number of workloads. To verify the perfor-
mance in terms of turnaround time of workloads in CHOP-
PER with different fault percentage (15-60%), CHOPPER
is deployed on different nodes. Figure 30 shows the compar-
ison of turnaround time of CHOPPER and SHAPE at 1500
workloads and it is clearly shown that CHOPPER performs
better than SHAPE. In our experiment, we found the max-
imum difference in turnaround time with fault percentage
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Fig. 30 Turnaround time [1500 workloads] vs. fault percentage

950

900

850 "

e CHOPPER
SHAPE

o0
(=3
(=]

~
wn
(=]

Turnaround Time [3000
Workloads] (Sec)

~
(=3
(=]

15 30 45 60
Fault Percentage (%)

Fig. 31 Turnaround time [3000 workloads] vs. fault percentage

(45%)1.e. 6.27 and at 60% fault percentage, difference is just
2.32%. The comparison of turnaround time of both CHOP-
PER and SHAPE at 3000 workloads is shown in Fig. 31
and it is clearly shown that CHOPPER performs better than
SHAPE. Turnaround time increases with increase in percent-
age of fault rate. In our experiment, we found the maximum
difference in turnaround time with fault percentage (30%) i.e.
1.67 % and with other fault percentage, the turnaround time
is almost same but CHOPPER performs better than SHAPE.

Self-protecting verification Experiment has been con-
ducted with different type of attacks (DoS, R2L, U2R and
Probing) for verification of self-protecting. We have used dif-
ferent tools (metasploit framework for DoS, Hydra for R2L,
NetCat for L2R and NMAP for probing) to launch differ-
ent attacks [26]. We have calculated false positive rate and
detection rate. For verification of characteristics of CHOP-
PER self-protecting includes:

Test Case 1—false positive rate: It is the ratio of false
positives to the addition of false positives and true negatives.
We have used following formula to calculate false positive
rate (Eq. 24).

False Positive Rate
False Positives

= — . (24
False Positives + True Negatives
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False positive rate decreases in CHOPPER with time and it is
minimum at 50 hours as shown in Fig. 32. We have considered
four types of attacks (DoS, R2L, U2R and Probing) and mea-
sured False Positive Rate for every attack. For R2L attack,
False Positive Rate is higher as compared to other attacks.
Test Case 2—intrusion detection rate: It is the ratio of
total number of true positives to the total number of intru-
sions. Detection rate increases with respect to time and it
considers the number of blocked and detected attacks. For
new attack or intrusion detection, database is updated with
new signatures and new polices and rules are generated
to avoid same attack. We have conducted experiment for
known attacks; it is clearly shown in Fig. 33 that CHOPPER
performs better than SHAPE (SNORT anomaly detector).
We have removed signatures of some known attacks from
database to verify the working of CHOPPER. We have used
following formula to calculate detection rate (Eq. 25).

Intrusion Detection Rate
Total Number of True Positives

- (25)
Total Number of Intrusions

Detection rate increases with respect to time as shown in
Fig. 34. We have conducted an experiment for 144 h and
we found that detection rate of CHOPPER is better than the
SHAPE and performed better than earlier after 120 h. The
variation of intrusion detection rate with different number of
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Fig. 34 Intrusion detection rate vs. time

workloads and different type of attacks is shown in Fig. 35.
With increasing the number of workloads, intrusion detec-
tion rate increases. It is clearly shown that the CHOPPER
performs better in probing.

Self-configuring verification: experiment has been con-
ducted with different number of workloads (500-3000) for
verification of self-configuring. We have calculated resource
utilization, average cost, SLA violation rate and energy con-
sumption. For verification of characteristics of CHOPPER
self-configuring includes:

Test Case 1—resource utilization: We have used (Eq. 11)
to calculate resource utilization. With increasing the number
of cloud workloads, the percentage of resource utilization
increases. The percentage of resource utilization in CHOP-
PER is more as compared to EARTH at different number of
cloud workloads as shown in Fig. 36. The maximum percent-
age of resource utilization is 93.61% at 3000 cloud workloads
in CHOPPER but CHOPPER performs better than EARTH.

Test Case 2—average cost: We have calculated value
of average cost using (Egs. 4-8) for both CHOPPER and

Fig. 35 Statistical analysis of
intrusion detection rate
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Fig. 36 Effect of change in number of workloads submitted on
resource utilization
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Fig. 37 Effect of change in number of workloads submitted on average
cost

SHAPE with different number of cloud workloads as shown
in Fig. 37.

Average cost is an addition of resource cost and penalty
cost. CHOPPER defined the different levels of penalty rate
based on QoS requirements.

Delay time is difference of deadline and time when work-
load is actually completed. Average cost increases with
increase in number of workloads. At 500 workloads, aver-
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Fig. 39 Energy consumption vs. number of workloads

age cost in CHOPPER is slightly lesser than SHAPE but
CHOPPER performs excellent at 1500 workloads. At 1500
workloads, average cost in CHOPPER is 19.74% lesser than
SHAPE.

Test Case 3—SLA violation rate: We have used (Eq. 13)
to calculate SLA violation rate (SVR). We have analyzed the
effect of change in number of resources on SLA violation
rate. SLA violation rate decreases with increase in number of
resources as shown in Fig. 38. Variation in SLA violation rate
in PURS is larger as compared to CHOPPER. Value of SLA
violation rate is varied between 0 and 100%. At 50 resources,
SLA violation rate in CHOPPER is 4.39% lesser than PURS
but SLA violation rate is decreasing. At 200 resources, SLA
violation rate in CHOPPER is 9.84% lesser than PURS but at
3000 workloads, SLA violation rate is 7.66% lesser. Experi-
mental results show that the CHOPPER performs better than
PURS.

Test Case 4—energy consumption: We have calculated
value of energy consumption in kilo Watt hour (kWh) for
CHOPPER and EARTH with different number of cloud
workloads. With the increasing number of cloud workloads,
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the value of energy consumption also increases. The min-
imum value of energy consumption is 46.1 kWh at 500
workloads. CHOPPER performs better than EARTH in terms
of energy consumption at different number of cloud work-
loads as shown in Fig. 39. It is clearly shown that the energy
consumption in CHOPPER is always lesser than threshold
value of energy consumption. The average value of energy
consumption in CHOPPER is 16.66% lesser than EARTH.

Figure 40 shows the energy consumption for CHOPPER
and EARTH with different number of resources. With the
increasing number of resources, the value of energy con-
sumption also increases. It is clearly shown that the energy
consumption in CHOPPER is always lesser than threshold
value of energy consumption. The average value of energy
consumption in CHOPPER is 12.98 % lesser than EARTH but
at 30 resources, CHOPPER consumes 18.54% lesser energy
as compared to EARTH.

4.3 Statistical analysis

Statistical significance of the results has been analyzed by
Coefficient of Variation (Coff. of Var.), a statistical method.
Coff. of Var. is statistical measure of the distribution of data
about the mean value. Coff. of Var. is used to compare to
different means and furthermore offer an overall analysis of
performance of the CHOPPER used for creating the statistics.
It states the deviation of the data as a proportion of its average
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value, and is calculated as follows (Eq. 26):

SD
Coff.of Var. = M x 100 (26)

Where SD is a Standard Deviation andM is Mean.

We used an average of thirty to fifty runs in order to guar-
antee statistical correctness. Coff. of Var. of average execution
cost, execution time, resource utilization, energy consump-
tion and SLA violation rate has been studied with respect
to number of workloads for both CHOPPER and existing
resource management technique (QRPS, EARTH and PURS)
with different number of cloud workloads as shown in Figs.
41,42, 43, 44 and 45 respectively.

Range of Coff. of Var. is (0.31-1.72%) for average exe-
cution cost and (0.71-2.66%) for execution time approves
the stability of CHOPPER as shown in Figs. 41 and 42
respectively. Range of Coff. of Var is (1.6-2.92%) for
resource utilization and (1.12-3.69%) for energy consump-
tion approves the stability of CHOPPER as shown in Figs.
43 and 44 respectively

Range of Coff. of Var. is (0.48-1.10%) for SLA viola-
tion rate with respect to number of workloads approves the
stability of CHOPPER as shown in Fig. 45. Small value of
Coff. of Var. signifies CHOPPER is more efficient in resource
management in the situations where the number of cloud
workloads has changed. Value of Coff. of Var. increases as
the number of workloads is increasing. CHOPPER attained
the best results in the cloud for average execution cost, exe-
cution time, resource utilization, energy consumption and
SLA violation rate has been studied with respect to number
of workloads.

Number of Workloads

Fig. 44 Coefficient of variation for energy consumption with each
resource management technique
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Fig. 45 Coefficient of variation for SLA violation rate with each
resource management technique

4.4 Discussions

In this experiment, four different cloud infrastructures with
different processor configurations (2 core processor, 4 core
processor, 8 core processor and 16 core processor) have
been considered to measure the variation of different QoS
parameters such as fault detection rate, throughput, relia-
bility, availability, waiting time, turnaround time, intrusion
detection rate, resource utilization, SLA violation rate, exe-
cution cost, execution time, energy efficiency and resource
contention. Table 9 describes summary of experiment statis-
tics and percentage of Overall Improvement (OI) of different
QoS parameters. 3000 workloads of same type (performance
testing) have been considered on real cloud environment.
Existing autonomic resource management techniques
such as SHAPE [26], EARTH [6], ARCS [23], PURS [35]
and QRPS [33] are used to validate CHOPPER in five
different cases. Small value of coefficient of variation sig-
nifies CHOPPER is more efficient and stable in resource
management of the situations where the number of cloud
workloads has changed. In all the different cloud infras-
tructures, experimental results demonstrate that CHOPPER
improves the average intrusion detection rate by 11.52%,
average fault detection rate by 3.62%, average energy effi-
ciency by 10.92%, average resource utilization by 13.28%,
average throughput by 5.82%, average availability by 2.84%
and average reliability by 5.87% and it reduces the aver-
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age waiting time by 3.32%, average SLA violation rate
by 20.12%, average execution time by 19.29%, average
resource contention by 15.41%, average energy consumption
by 24.06%, average number of missed deadlines by 12.35%,
average turnout time by 5.45% and average execution cost
by 16.79% as compared to existing resource management
techniques. CHOPPER provides an effective outcome with
16 core processor as compared to other processor config-
urations; 6.65% better than 8 core processor, 9.34% better
than 4 core processor and 15.36% better than 2 core pro-
cessor. From all the experimental results, it is clearly shown
that CHOPPER performs better than existing techniques in
terms of QoS parameters because CHOPPER manages every
situation automatically.

5 Conclusions and future scope

In this paper, we have presented the self-management prop-
erties in the context of autonomic cloud computing. We
have presented QoS-aware autonomic resource management
approach named CHOPPER. CHOPPER efficiently sched-
ules the provisioned cloud resources automatically and main-
tains the SLA based on user’s QoS requirements to reduce
the human intervention and improves user satisfaction. The
algorithms for three different phases (monitoring, analyses
and plan and execution) of self-management have been devel-
oped by focusing on important aspects of self-configuration,
self-healing, self-protection and self-optimization. We have
examined the effects of various QoS parameters including
fault detection rate, throughput, reliability, availability, wait-
ing time, turnaround time, intrusion detection rate, resource
utilization, SLA violation rate, execution cost, execution
time, energy efficiency and resource contention. Workloads
are classified into three categories based on deadline urgency:
(i) normal (relaxed deadline), (ii) good (average deadline)
and (iii) critical (urgent deadline). Further, we have inves-
tigated the impact of different workloads on different QoS
parameters. Performance of CHOPPER has been evaluated
with existing resource management techniques and improves
security, energy efficiency, reliability and availability of
cloud based services in real cloud platforms.

Our experimental results provide evidence that the pro-
posed approach can be used to improve scalability of cloud
based services. Future research directions for extending the
work to support other characteristics of autonomic systems
are:

e CHOPPER can be extended further to add sensitivity of
assumptions in weight calculations of both homogenous
and heterogeneous cloud workloads. Cloud providers can
use these results to quickly assess possible reductions in

execution time and cost, hence having the potential to
save energy.

e CHOPPER can also be extended by identifying rela-
tionship between workload (patterns) and the resource
demands (demands for compute, storage, and network
resources) in the cloud which will further improve the
performance.
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