
Future Generation Computer Systems 96 (2019) 490–501

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Quality of Service (QoS)-driven resource provisioning for large-scale
graph processing in cloud computing environments: Graph
Processing-as-a-Service (GPaaS)
Safiollah Heidari ∗, Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia

h i g h l i g h t s

• A novel service-based architecture for processing large-scale graphs on clouds.
• A new multi-handling mechanism for multi-graph processing requests.
• A new auto-scaling algorithm driven by workloads and SLA agreements.
• A new dynamic repartitioning approach to improve usability and performance.

a r t i c l e i n f o

Article history:
Received 9 June 2018
Received in revised form 31 December 2018
Accepted 22 February 2019
Available online 26 February 2019

Keywords:
Graph processing
Cloud computing
Quality of service
Resource provisioning

a b s t r a c t

Large-scale graph data is being generated every day through applications and services such as social
networks, Internet of Things (IoT) and mobile applications. Traditional processing approaches such as
MapReduce are inefficient for processing graph datasets. To overcome this limitation, several exclusive
graph processing frameworks have been developed since 2010. However, despite broad accessibility
of cloud computing paradigm and its useful features namely as elasticity and pay-as-you-go pricing
model, most frameworks are designed for high performance computing infrastructure (HPC). There
are few graph processing systems that are developed for cloud environments but similar to their
other counterparts, they also try to improve the performance by implementing new computation
or communication techniques. In this paper, for the first time, we introduce the large-scale graph
processing-as-a-service (GPaaS). GPaaS considers service level agreement (SLA) requirements and
quality of service (QoS) for provisioning appropriate combination of resources in order to minimize
the monetary cost of the operation. It also reduces the execution time compared to other graph
processing frameworks such as Giraph up to 10%–15%. We show that our service significantly reduces
the monetary cost by more than 40% compared to Giraph or other frameworks such as PowerGraph.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Today data is an asset and being able to collect, store, analyse,
protect and use this big data provides companies with critical
advantages. Every second huge amount of data is being created
by various applications such as social networks, Internet of things
(IoT), mobile Apps, bloggers, and even smart web robots that
are using artificial intelligent (AI) to produce news. According to
[1], during each minute at 2017, 3.3 million posts were put on
Facebook, 3.8 million queries were searched on Google search

∗ Corresponding author.
E-mail address: sheidari@student.unimelb.edu.au (S. Heidari).

engine, 500 h of new videos were uploaded on YouTube and
448.800 tweets were shared on Twitter. These numbers are al-
most doubled compared to the amount of content was made per
minute in 2014. Moreover, a big fraction of generated data is
in the form of graphs. Graph-shape data encompasses a set of
vertices that are connected to each other via a set of edges. In a
typical social network website, users are vertices and friendship
relationships between users form the edges of the graph while in
an IoT environment, sensors are considered as vertices and the
connections between sensors shape the edges.

Increasing amount of graph data on one side and proven
inefficiency of traditional processing approaches such as MapRe-
duce for graphs on the other side [2] resulted in the appearance

https://doi.org/10.1016/j.future.2019.02.048
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.02.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.02.048&domain=pdf
mailto:sheidari@student.unimelb.edu.au
https://doi.org/10.1016/j.future.2019.02.048


S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 491

of exclusive large-scale graph processing frameworks. Pregel [3]
was the first graph processing framework that was introduced
by Google in 2010. After that, extensive efforts have been con-
ducted in the research community to develop new processing
frameworks or optimize previous ones [4]. However, most ex-
isting works have implemented on high performance computing
(HPC) environments where the number of resources are con-
sidered to be unlimited. So, users do not have to deal with
other complicated scenarios such as lack of sufficient computing
resources, limited storage space, competitions in order to obtain
resources, time limitations, cost limitations, etc. that are possi-
ble on distributed environments such as clouds. Based on these
assumptions, most current works are concentrating on improv-
ing different components of the system namely as partitioning,
computing, communication, and I/O.

Unlike HPC, a cloud environment is much more complex in
terms of resource provisioning and scheduling [5]. Nevertheless,
HPC is not available for everyone and many small/medium com-
panies do not have the resources (budget, professionals, etc.) to
own and preserve such infrastructure. Hence, researchers have
started investigating cloud-based deployments recently. Cloud
computing is a paradigm of computing that has changed software,
hardware and datacentres design and implementation. It over-
comes restrictions of traditional problems in computing by en-
abling some novel technological and economical solutions namely
as scalability, elasticity and pay-as-you-go models which make
service providers free from previous challenges to deliver services
to their customers. Cloud computing presents computing as a
utility that users access various services based on their require-
ments without paying attention to how the service is delivered
or where it is hosted. It brings many advantages for both service
providers and service consumers. For example, providers can
virtually locate their services at the shortest distance to their
users and decrease latency of delivering their services, which was
a problem in traditional computing methods [6]. Because of these
benefits, cloud computing has got attracted many attentions in
recent years. Among the limitations that make many current
graph processing frameworks not to be suitable for deployment in
a cloud environment are: (1) they are not able to utilize scalability
and elasticity capability of cloud environments, (2) they do not
consider monetary cost (processing cost) as a crucial element in
cloud computing, (3) they are not designed to take advantage
of the heterogeneity of cloud resources which can affect the
performance of the system, (4) they cannot work efficiently in
a dynamic environment as clouds where for example network
metrics are changing constantly.

To choose an appropriate service in a cloud environment, the
client investigates some factors that can affect his/her process-
ing requirements. Factors such as processing deadlines, available
budget and costs, resource accessibility, etc. are usually taken into
consideration for service selection. From there, both the service
provider and the customer negotiate on a service level agreement
(SLA) [7] by which the quality of service (QoS) will be guaranteed.
SLA also determines the conditions of service violation, whose
responsibility is to respond and how they can be avoided. An
important step is to constantly monitor and evaluate the quality
of service against pre-defined factors to ensure that the expected
level of quality is provided.

On one hand, according to DB-Engines [8], a database industry
observer, graph databases’ utilization has been increased dramat-
ically since 2013 and it has surpassed other database models in
all popularity rankings ever since. On the other hand, increasing
growth in graph data which in turn results in raising processing
demands, and the popularity of cloud computing, led to cloud-
based design of graph processing frameworks in recent years.
However, although few graph processing frameworks such as

iGiraph [9] are developed specifically to take advantage of cloud
computing features, they do not support quality of service that is
provided by these systems on cloud. Another issue is that current
frameworks typically receive ‘‘one’’ large-scale graph dataset as
input and return the output after completing the processing.
Nevertheless, different users have different priorities while using
a system, and when it comes to cloud environments, a framework
should be able to handle multiple requests. Several research
gaps and open challenges including lack of a comprehensive
cloud-based graph processing systems are discussed in [4,10,11].
Therefore, in this paper we consider large-scale graph processing, ‘‘as
a service’’ on cloud. We used iGiraph to deploy the architecture of
our graph processing service on it. The new approach provides
a service that like any other services on the cloud, monitors and
maintains the quality of service based on the users’ requirements
and the submitted service level agreement (SLA) while the user
does not need to know the details of service implementation to be
able to work with it. Our service also makes sure that at any given
time during execution, an optimized amount of resources are
provisioned to minimize the monetary cost of processing [12]. To
the best of our knowledge, this work is the first implementation
of a large-scale graph processing framework in which we go
beyond simply processing a graph to considering it as a service
that can be used by multiple customers on the cloud.

The key contributions of this work are:

• A novel service-based architecture for processing large-scale
graphs on cloud to monitor and maintain the quality of
service

• A new multi-handling mechanism for multi-graph process-
ing requests

• A new dynamic auto-scaling algorithm that enables scale
up and down according to the characteristics of different
arriving workloads and agreements

• A new dynamic repartitioning approach combined with a
new mapping strategy to improve the resource usability and
performance

The system that we have developed in this work can be used in
providing many services such as: (1) finding shortest paths be-
tween two or more positions in a geographical positioning system
(GPS) where places are the vertices of a large-scale graph and
roads are the edges of the graph, (2) finding relevant products by
a recommendation algorithm to suggest to customers (products
and customers are the vertices of the graph and relationships are
the edges), and (3) discovering various patterns in graphs and
extracting knowledge using pattern matching algorithms, and so
on.

The rest of the paper is organized as follows: Section 2 is pro-
viding the related work study by investigating existing research
works about large-scale graph processing frameworks and the
opportunities for them on cloud environments. Section 3 explains
in detail the architecture and workflow of our proposed solution
for enabling a service-based graph processing. Section 4 describes
the novel dynamic scalable resource provisioning algorithm by
which appropriate amount of resources will be provided for ev-
ery operation based on their requirements. Section 5 provides
performance evaluation and Section 6 concludes the paper and
identifies directions for future work.

2. Related work

This section discusses various graph processing frameworks
and attempts to provide compatibility with cloud environments
and challenges.



492 S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501

Table 1
Comparison of the most related works in the literature.
System Architecture Implemented environment Partitioning method Resource-aware Scalability QoS-aware

Pregel [3] Distributed HPC Static No No No
Giraph Distributed HPC Static No No No
PowerGraph [13] Distributed HPC Static No No No
GPS [14] Distributed HPC Dynamic No No No
Pregel.Net [15] Distributed Cloud Dynamic No No No
Surfer [16] Distributed Cloud Dynamic No No No
iGiraph [9] Distributed Cloud Dynamic Yes Only scale-in No
Our work — GPaaS Distributed Cloud Dynamic Yes Scale-in/out Yes

2.1. Different graph processing frameworks

Since 2010, when Google introduced its graph processing
framework called Pregel [3], many research works have been
conducted to exclusively improve processing of graph data struc-
tures. Some graph processing systems such as GraphChi [17],
TurboGraph [18], X-Stream [19] and Grace [20] were developed to
enable processing based on single-server architecture to operate
in-memory. Although, these systems are fast and they do not
need to be worried about the communication difficulties between
different nodes as their distributed counterparts, they have other
restrictions such as limited amount of memory and computing
capacity that make them inefficient for more complicated sce-
narios when the graph is larger than their capacity. On the other
side, distributed graph processing frameworks such as Mizan [21],
PowerGraph [13], GiraphX [22], Trinity [23], etc. are designed to
overcome these issues. However, there are other challenges in
distributed environments such as distributed memory, commu-
nication, distributed processing and so on that make developing
such systems more complex [4]. Many of these challenges have
been investigated in various research works and different solu-
tions have been proposed to address them. A summary of most
related works along with their notable features are provided in
Table 1 and explained in detail in this section.

2.2. Challenges with cloud-based frameworks

One of the less studied areas for graph processing frameworks
is cloud environments. Although cloud computing is providing
interesting features namely as scalability, elasticity and pay-as-
you-go billing model by which large-scale processing can be
accessible for everyone, the majority of research works are con-
ducted on high-performance computing (HPC) clusters where
they assume that the number of resources are unlimited, re-
sources are always available and there is no need to pay to use the
them. The problem is that owning HPC infrastructure to deploy
such computations is very costly and many small and medium
companies or individuals cannot afford it [12]. Another issue is
that because HPC-based frameworks do not need to consider the
aforementioned cloud features, they cannot take advantages of
their benefits. Even few graph processing frameworks such as
Surfer [16] and Pregel.Net [15] that are developed to be used on
clouds are not investigating scalability or pricing models. Instead,
these systems are trying to reduce the cost of processing by
providing faster execution so that they can release the resources
quicker. For example, Surfer is offering a bandwidth-aware graph
partitioning algorithm that places partitions on VMs according to
the VMs’ bandwidth and Pregel.Net is evaluating the impact of
Bulk Synchronous Parallel (BSP) model [24] on graph processing
using Microsoft Azure public clod.

In addition to attempts to improve the performance of pro-
cessing by ameliorating the computing operation, a system such
as iGiraph [9] is also proposing strategies to take advantage
of scalability feature of clouds in order to decrease the dollar
cost. iGiraph is a Pregel-like graph processing framework that is

developed based on popular Giraph.1 iGiraph is also employing
BSP model while it is implemented on top of Hadoop2 and is
using its distributed file system (HDFS). Since cost is a main
element for utilizing cloud infrastructure, iGiraph came up with
the idea of reducing the number of resources dynamically during
the processing rather than using the same amount of resources
for the entire operation. It introduced a dynamic repartitioning
algorithm that is being applied to the computation at the end
of each iteration according to the type of application that is
being used. iGiraph categorizes graph applications into two major
categories including (1) non-convergent, (2) convergent. When
graph data is being processed by a convergent application, the
vertices that their status has changed to inactive will be elimi-
nated from the memory at the end of every superstep. Therefore,
the rest of the graph with active vertices might be fitted into
less number of VMs and spare VMs can be terminated. For non-
convergent applications in which the status of vertices is always
active during the operation, utilizing high-degree vertices concept
assists the computation to be completed quicker while reducing
the communication cost.

2.3. Specific cloud features

Scalability and monetary costs have been investigated sepa-
rately in few other research works. For example, Pundir et al.
[25] have developed a dynamic repartitioning technique based on
LFGraph framework [26] in which, similar to iGiraph, they aimed
to enable scale out/in by minimizing the network overhead and
migrating vertices between machines. In another work, Li et al.
[27] have investigated monetary cost of large-scale distributed
graph processing on Amazon cloud. Graphic processing units
(GPUs) have been also utilized in some works such as [28], where
authors are improving the performance of the system by dis-
tributing the computation among GPUs to boost the computation
speed while others such as [29] are evaluating the performance
of single-node frameworks on cloud environments.

Despite the specific development of cloud-based graph pro-
cessing frameworks, they have never been considered to provide
processing as a service on cloud infrastructure. This even make
the implementation of graph processing systems harder because
there will be new parameters that need to be taken into con-
sideration for delivering an acceptable service [30]. Parameters
namely as response time, throughput, cost, etc. are usually ne-
gotiated in SLA between the customer and cloud provider to
ensure the quality of the provided service. According to Ardagna
et al. [31], ‘‘Quality of service (QoS) is the problem of allocating
resources to the application to guarantee a service level along
dimensions such as performance, availability and reliability’’. QoS
in cloud computing has been investigated well in many research
works and various techniques have been proposed to monitor and
maintain the quality of the service in different platforms [32–34].
However, in order to addressing QoS challenges in the context

1 https://giraph.apache.org/.
2 https://hadoop.apache.org/.

https://giraph.apache.org/
https://hadoop.apache.org/


S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 493

Fig. 1. The workflow of the proposed solution.

of large-scale graph processing, every solution needs to meet
specific requirements due to the inherent characteristics of highly
connected graph data. In this paper, we are providing a graph
processing as a service framework based on our latest version
of iGiraph that appeared in [35]. This service enables multiple
users to submit their graph processing requests to the system,
while the system considers their preferred QoS parameters and
provides the best combination of resources to meet the pre-
defined requirements. Table 1 shows the comparison of the most
related works.

3. Overview of the proposed solution

Figs. 1 and 2 show the workflow and architecture of our
proposed solution respectively. The system contains seven differ-
ent modules that are depicted by seven different colours. These
modules include: (1) Users, (2) Repositories, (3) Priority queue,
(4) Monitoring, (5) Management, (6) Partitioning, and (7) Com-
putation. Each module comprises a couple of components and
is responsible for accomplishing different function while it has
input from/output to other parts of the system. Our proposed
solution: (1) enables multiple users to apply their jobs at the
same time for processing (unlike all other existing frameworks
that only accept one job at a time), (2) enables users to submit
their QoS requirement for each job (none of existing systems can
do so), (3) introduces a new complex workflow to handle inter-
twined requests, (4) utilizes the heterogeneity of cloud resources
with graph algorithm characteristics to reduce the monetary cost
of processing, (5) considers various important metrics to adjust
dynamic repartitioning in order to meet QoS requirements, (6)
can handle multiple scenarios of different job requirements. Here,
we explain each module and its components in detail.

3.1. Users

Users provide the input to the system. Each user has to enter
two objects into the framework: (1) a large-scale workload or
dataset that contains the graph data, and (2) a list of QoS re-
quirements that are derived from the negotiated SLA between
customer and service provider. In this paper, we discuss two

Fig. 2. The components that we added to [36] are shown in dotted rectangles.

factors for QoS and develop algorithms to manage these factors:
(a) budget and price, (b) processing time and deadline. Cloud
computing features enable us to supply sufficient amount of
resources to manage various situations. Cloud providers usually
provide a broad range of resources with various characteristics
that can be mixed to deal with more complicated requirements
and scenarios. For example, if a user has low budget to spend, but
he has no deadline for his processing request to be completed,
cheaper virtual machines (VMs) can be assigned to his request.
Instead, if a user has strict deadline but no budget restriction,
more powerful VMs can be dedicated to his request for meet-
ing the deadline properly. In order to provide the user with a
prioritization mechanism which helps him to demonstrate his
preferences over each QoS requirement, two priority statuses have
been defined: (a) Urgent, (b) Normal. Urgent refers to the immedi-
acy of a request execution which in turn mentions the execution
time. Meanwhile, requests with Normal priority compete over
low price. Therefore, the user defines the priority of his job
by providing his preferred priority status while submitting his
request to the system.



494 S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501

3.2. Repositories

There are two main repositories in the system. QoS require-
ments repository includes a set of pre-defined quality conditions
and constrains namely as execution time, execution cost, avail-
ability, throughput, energy, reliability, etc. In this paper, we con-
sider two important QoS factors including execution time and
execution cost. Resource information repository contains the infor-
mation about all the available resources in the resource pool. For
instance, for a typical VM, information such as number of cores,
memory capacity, usage cost, networks speed, etc. are stored in
the repository. Having this information helps the system to make
decision about which resources and how they can be mixed to
meet the quality of service (time and cost) properly for a specific
request.

3.3. Priority queue

This module comprises two components. As mentioned above,
each workload will be submitted with a set of QoS requirements
and a priority status. The whole submission is called a Job in
this system. All jobs will be stored in the workload queue where
priority analyser analyses the priority of each job and reorders
them to be processed according to their priority compared to
other jobs. Jobs with urgent priority are time constrained with
deadline and usually need to be processed before other jobs. So,
the first step is to prioritize urgent jobs over normal ones. Next
step is to find the execution priority among urgent jobs since
there might be more than one urgent job in the queue. In order
to do so, a simple version of Knapsack algorithm is employed
by which urgent jobs will be prioritized based on their required
execution time and deadline. Moreover, jobs with normal priority
will be processed based on a first in first out (FIFO) strategy. The
prioritization procedure occurs every time a new job is submitted
to the system. However, this might keep some jobs with normal
priority in the queue forever because urgent jobs are being sub-
mitted constantly. To avoid this, we assign each normal job with a
timestamp based on its required execution time (deadline). When
the timestamp run out, the job will be considered and treated
as an urgent job. This makes sure that no job will be trapped
in the queue forever. Algorithm 1 demonstrates the described
prioritization mechanism.

3.4. Monitoring module

This module is responsible to constantly monitor the system
and measure various metrics that can be used in each processing
based on its requirements. The input to this module is coming
from the computation module where the actual graph process-
ing operation happens. This is because it is very important to
track every changes that might affect the processing and use
the metrics to enhance the operation. Therefore, the output from
monitoring module goes to management module where metrics
will be used in the decision making and dynamic scheduling
processes for the next step. Inputs and outputs of this module will
be exchanged after each superstep i and before superstep i + 1.
Moreover, this is the only module in our proposed solution that
is partially implemented on worker machines. The reason is that
its components need to gather information from workers during
the execution. All other modules are implemented on the master
machine. Monitoring module contains the following components:

– Resource monitoring: It is very critical to know about the
amount of resources that are available in the resource pool
at any moment along with their characteristics. So, this com-
ponent is placed in the intersection of resource information

repository and the computation module to be able to provide
a holistic view of the resource usage situations. It is aware of
the amounts and properties of all resources in the repository
while it is monitoring the changes that occur to resources
that are being used in the operation. The information that
this component gathers from the computation part includes:
the CPU capacity, memory capacity, monetary cost, VM type,
etc.

– Network Key Performance Indicator (KPI) aggregator: This
component monitors network factors such as network traf-
fic, bandwidth, latency, topology, etc. In this paper, we are
using two major factors including traffic and bandwidth
in our dynamic repartitioning algorithm. We are using the
method that is introduced in [36]. Network KPI aggrega-
tor component gathers information from the computation
module and passes them to the decision making component.

– QoS monitor: As mentioned before, every job in the system
is submitted with a list of SLA requirements which in this
paper comprises the customer’s preferred time and dollar
cost. Using this information, the system tries to provision
the best combination of resources for each job to maintain
the quality of service. Like other components in this mod-
ule, QoS monitor components also receives the input from
computation module by watching the mixture of VMs and
the execution time of each superstep. It then passes the
information to decision making component where various
provisioning possibilities will be assessed.

3.5. Management module

Management module is the heart of the system in our pro-
posed architecture. This module is responsible for scheduling the
tasks and provisioning the best combination of resources in a
way that each job can meet its SLA requirements while ensur-
ing the QoS. It is also responsible to minimize the occurrence
of service violation as much as possible. This module collects
information from all other modules in the architecture directly
or indirectly which enables it to have a comprehensive view on
what is happening in the system and the status of other parts.
Having such a comprehensive view is a critical pre-requisite for
making optimized decisions. All the outputs from this module
also directly affect the partitioning module. Management module
includes three main components as follow:

– Dynamic scheduler: Since a cloud provider has to provide
services for many users in a cloud computing environment,
resources need to be scheduled efficiently to achieve max-
imum profit. Dynamic scheduler component first becomes
active as soon as a job is coming out of the queue to
schedule the primary amount of resources for the process-
ing. The number of initial resources will be determined by
the user. However, to better utilize the resources, dynamic
scheduler takes the size of the submitted dataset and QoS
requirements into consideration to select best VM type to
start with (Algorithm 2 — Line 1–4). At the beginning of the
processing, all VMs will be from the same type. Later during
the processing, dynamic scheduler receives the information
about the changes in the system from another component
in the management module called decision maker. This
information will be obtained during the intervals between
supersteps and will be used to dynamically re-schedule the
resources.



S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 495

– Policy selector: Original iGiraph [9] and its extended
network-aware version [36] provided a general categoriza-
tion for various processing environments on clouds and
different graph algorithms. This is shown in Fig. 3. Depends
on what algorithm is being used for the processing, the
user will choose the proper policy for his application while
submitting his job. Policy selector component selects the
appropriate approach for re-partitioning the graph and
informs the system. For example, if the algorithm is conver-
gent and the environment is communicational-intensive,
policy selector will pick up a traffic-and-bandwidth-aware
[36] strategy for repartitioning.

– Decision maker: To help dynamic scheduler with the pro-
visioning of appropriate resources, decision maker com-
ponent provides a holistic view of the system’s state at
any given moment. It collects data from monitoring module
which in turn includes three components. According to
the collected data, the system will learn about the avail-
able resources and their characteristics, network situation,
possible service violations, etc. by which it can intelli-
gently make decision about the amount of resources that
is needed for the rest of the operation. Information will
be sent to decision maker during the intervals between
supersteps. The output of this component will be sent to
partitioning module and dynamic scheduler.

3.6. Partitioning module

This module is responsible for partitioning the graph into
smaller jobs and distributes them across the allocated machines.
Proper partitioning is the key to improve the performance and
speed up the execution of a graph system. Similarly, when graph
processing is being provided as a service, suitable partitioning can
help to meet the quality of service. However, in the literature,
several mechanisms have been proposed for graph partitioning
and each tries to increase the efficiency [4]. The inputs for this
module are all coming from themanagement modulewhich shows
that the resources have been provisioned for computation and
partitioning should consider the limitations. Partitioning module
comprises three components:

– Initial partitioner: When a user submits a job, it will be
waiting in the priority queue until its priority is higher than
other jobs. Then, it will be passed to dynamic scheduler and

policy selector, respectively. At this stage, initial resources
have been allocated to the processing and the large graph
needs to be partitioned and distributed across the machines.
Initial partitioning will be applied to the graph only before
the first superstep. The approach for initial partitioning in
this paper is a simple random partitioning which is a hash
function on vertex IDs. However, the user can replace the
simple initial partitioning with more complicated one such
as METIS [37] to improve the performance even more.

– Dynamic re-partitioner: Unlike initial partitioning that is
statistic and happens only at the start of the processing, dy-
namic re-partitioning changes the partitioning of the graph
multiple times during the operation. The aim of dynamic re-
partitioning is to match the size and number of partitions
with the allocated resources based on graph modification.
The core of our dynamic repartitioning algorithm in this
work is coming from our other work in which we employed
a characteristic-based repartitioning to take advantage of
heterogeneous resources on cloud environments [35]. This
allows us to achieve better performance with less monetary
cost compared to other frameworks such as Giraph.

– Partition distributor: When partitions are ready, they need
to be distributed across the machines. Entry data to this
component might come from the initial partitioner if it is
before the first superstep or they can come from dynamic
re-partitioning component after the first iteration. The out-
put from this component goes to computation module which
means that the computation function will be executed on all
allocated worker nodes.

3.7. Computation module

Computation module is the computation function that will be
executed on graph vertices. This module does not have additional
components like other modules. It receives the partitions from
the partitioning module and applies the compute() function on
them. So, this function is being implemented on each worker
machine. The output of this module is metric measurements that
will be passed to the monitoring module. Depending on the graph
algorithm, status of vertices might change to inactive or may
remain intact.

4. Dynamic scalable resource provisioning

To ensure that a service is responding properly to SLA require-
ments for each request, it should be able to employ flexibility for
resource provisioning and processing. In this section, we discuss
the new multi-handling resource provisioning algorithm for a
graph service. In our framework, ‘‘dynamic resource provisioning’’
belongs to the management module and receives inputs from
various modules. Our experiments show that using this approach,
adequate amount of resources will be assigned to processing jobs
and enables them to meet their pre-defined QoS.



496 S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501

Fig. 3. Graph applications and processing environment categorization [36].

Fig. 4. Scenario1: all jobs with ‘‘NORMAL’’ priority.

Fig. 5. Scenario 2 – Number of VMs Comparison.

Different jobs with different priorities and requirements will
be sent to the graph processing service and they will be processed
based on their priorities one after the other. However, there are
situations in which while a job is being processed in the system,
another job with a strict deadline or higher priority arrives and
need to be processed as soon as possible. In a typical scenario,
imagine job A with Normal priority is being assigned a number of
resources and it is being processed in the system. Suddenly, job B
with Urgent priority arrives and makes a request for the service.
One solution for dealing with this situation is to make the later
request to wait until the ongoing processing is finished. In this
approach, the urgent request will miss the deadline whereas a
possible SLA violation might happen and the service will not be
efficient at all.

Another solution, which we implemented in this paper for our
service, is to stop the processing, take the less urgent job out of
the system and start processing the more urgent job. After com-
pletion of the urgent job, the previous job will be brought back to

the system to continue its processing from where it was stopped.
However, there are some questions that need to be answered
here: (1) what will happen to the resources that were being
used by the former processing?, (2) how the new processing will
receive enough resources to ensure that the requirements will be
met?, (3) can we utilize the already existing resources from the
previous operation for the new processing?, and (4) do we need
to restore the same resources for the less urgent job as the ones
it was assigned before being stopped?

Algorithm 3 demonstrates our proposed dynamic scalable re-
source provisioning mechanism. According to this algorithm, if
the priority of the ongoing job in the system is more than the pri-
ority of the arriving job, it continues processing. But, if the priority
of the arriving job is more than the priority of the ongoing job,
then system exchanges the jobs. In this situation, if the applied
graph algorithm to the current ongoing job is convergent type,
in which the status of processed vertices will change to inactive
and vertices will be removed from the memory, remaining active



S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 497

Fig. 6. Scenario 2 – If Giraph follows the job order.

Fig. 7. Scenario 3: jobs with different QoS/deadline requirements.

vertices in the processing will be moved back to the queue. If the
applied graph algorithm is non-convergent type which does not
change the status of vertices, the whole dataset will be moved
back to the queue. Then, the new urgent job will be taken from
the queue to be loaded for processing. At this phase, instead
of terminating the resources from the previous processing, the
dynamic scheduler calculates the capacity of existing resources
in terms of VM types, available memory, available computation
power, etc. Meanwhile, it knows the size of arriving job, its QoS
criteria, and the number of resources that is ordered by the user
at the job submission stage. Following situations are considered
in order to provision resources for the new processing job.

(1) If the new dataset is small and current resources can handle
the SLA requirements, then there is no need for employing
new resources.

(2) If the size of the dataset is big, and the type of current
resources is appropriate, then more machines will be em-
ployed to reach the resource needs. So, we have a combina-
tion of old and new resources that are assigned to the new
operation. For example, if there are 3medium VMs left from
the previous processing and system learns that 7 medium
VMs are needed for the new operation, it only needs to
employ 4 more medium VMs (3mediumold + 4mediumnew
= 7mediumrequired).

(3) If only parts of the existing resources are useable for the
new operation, system will keep those VMs and removes
the inappropriate ones. Afterwards, it repeats the previ-
ous step (step 2). For example, if 4 medium and 2 small

Fig. 8. Total execution time per scenario.

VMs are left from the previous operation and the system
learns that the new operation needs 10 medium VMs to
meet the SLA requirements, it terminates 2 small VMs and
employs 6 new medium VMs ((4mediumold−2smallold) +

6mediumnew = 10mediumrequired).
(4) If any of the remaining VMs from the previous operation

are not suitable for the needs of the new operation, then all
of them will be terminated and new appropriate resources
will be employed for the new operation.

As noted in Algorithm 3 and the described scenarios, our
algorithm can both scale up and scale down for provisioning
resources. It should be considered that all the operations in this



498 S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501

paper will be started with the same VM type. So, if the system
learns that for example large VM type is suitable for processing,
then all VMs at the beginning of the processing will be large type
whereas if system learns that medium VM type is better, then
all VMs at the start of the processing will be medium type. We
will investigate more complicated scenarios such as starting the
operation using a combination of different VM types (for example
combination of large and medium VMs) in our future works.

The impact of our proposed mechanism on resource usability
is demonstrated in the evaluation section (Figs. 4–8). We show
how resources are being provisioned or released based on the
SLA requirements (priority, deadline, number of machines, etc.)
at each moment in the system. We also show that this approach
improves the performance of the system by utilizing resources
more intelligently while reducing the execution time (Fig. 8) and
monetary costs of the processing operation (Table 6).

5. Performance evaluation

In this section we explain the environment that we conducted
our experiments on, and discuss the evaluation results.

5.1. Experimental setup

To evaluate our framework and effectiveness of the proposed
algorithms, we utilized resources from Australian national cloud
infrastructure (NECTAR) [38]. We utilize three different VM types
for our experiments based on NECTAR VM standard categoriza-
tion: m2.large, m1.medium, and m1.small. Detailed character-
istics of NECTAR standard VMs are shown in Table 2. Table 3
describes the utilized VMs in our work with their prices which
are determined proportionally based on their closest AWS coun-
terparts. The reason for using m-type VM is because the algo-
rithms that we are using are memory-intensive and using m-type
machines provides better performance. Since NECTAR does not
correlate any price to its infrastructure for research use cases,
the prices for VMs are put proportionally based on Amazon
Web Service (AWS) on-demand instance costs in Sydney region
according to closest VM configurations as an assumption for this
work. According to this, NECTAR m2.large price is put based on
AWS m5.xlarge Linux instance, NECTAR m1.medium price is put
based on AWS m5.large Linux instance and NECTAR m1.small
price is put based on AWS t2.small Linux instance. All VMs have
NECTAR Ubuntu 14.04 (Trusty) amd64 installed on them, being
placed in the same zone and using the same security policies.
We use iGiraph [9] (the extended version of Giraph [39]) with
its checkpointing characteristics turned off along with Apache
Hadoop version 0.20.203.0 and modify that to contain hetero-
geneous auto-scaling policies and architecture. All experiments
are run using 17 machines where one large machine is always
the master and workers are a combination of medium and small
instances.

We use single source shortest path (SSSP) [40] and PageRank
(PR) [41] algorithms as representatives of convergent and non-
convergent graph algorithms respectively for our experiments.
They are good representatives of many other algorithms regard-
ing their behaviour. SSSP is solving a particular case of a bigger
problem called shortest path (SP) which aims to discover a path
with minimum weights of edges between two vertices in a graph.
SSSP will find the shortest path between a typical source node
and all other vertices in the graph. First, the source node sends
its value (which is set to 0 at the beginning) to its adjacent
vertices. Those vertices update their value and send their new
value to their neighbours. This operation continues until there are
no more vertex left to be updated. Whenever a vertex updates
its value, its status changes to inactive. So process completes

Table 2
NECTAR standard VM characteristics [38].
VM type VCPUS RAM Total disk

m2.tiny 1 768 MB 5 GB
m2.xsmall 1 2 GB 10 GB
m1.small 1 4 GB 40 GB
m2.small 1 4 GB 30 GB
m2.medium 2 6 GB 30 GB
m1.medium 2 8 GB 70 GB
m2.large 4 12 GB 110 GB
m1.large 4 16 GB 130 GB
m1.xlarge 8 32 GB 250 GB
m2.xlarge 12 48 GB 390 GB
m1.xxlarge 16 64 GB 490 GB

Table 3
Utilized VM characteristics and their proportional cost based on their closest
AWS counterparts.
VM type #Cores RAM Disk (root/ephemeral) Price/h

m2.large 4 12 GB 110 GB (30/80) $0.24
m1.medium 2 8 GB 70 GB (10/60) $0.12
m1.small 1 4 GB 40 GB (10/30) $0.0292

Table 4
Databases’ properties.
Graph Vertices Edges

YouTube links 1,138,499 4,942,297
Amazon (TWEB) 403,394 3,387,388
Pokec 1,632,803 30,622,564

when all vertices’ status change to inactive. This is why SSSP is a
convergent algorithm. On the other hand, a vertex status remains
intact in PageRank algorithm which makes it to be categorized as
a non-convergent algorithm. PageRank weighs the significance of
websites and web pages by calculating the number of links that
are connected to them (hyperlinks). The more connected links a
page has, the more important the page is. This algorithm values
each page solely and does not value the entire website as a unit.

We also use three real-world datasets of different sizes:
YouTube, Amazon, and Pokec [42] as shown in Table 4.

5.2. Experiments and results

We have compared our systems and algorithms with Giraph
because it is a popular open-source Pregel-like graph processing
framework and is broadly adopted by many companies such as
Facebook [43]. To evaluate different scenarios by our service,
we have provided various workloads and jobs by combining
the datasets from Table 3 with different characteristics. Table 5
demonstrates input jobs and the order of inputs along with their
properties.

Scenario 1: This is the simplest situation in which all jobs in
the queue have the same priority as ‘‘normal’’. In this situation,
deadline is not very important for the processing, so all jobs will
be executed by a first-in-first-out (FIFO) approach and it is fine if
any deadline was missed. However, as can be seen in Fig. 4, the
cost of processing in our service is much less than conducting it
on a popular framework as Giraph. The reason is that our service
scales up and down to provision the best combination of re-
sources for the processing while Giraph uses the same amount of
resources for the entire operation. Note that in processing graphs
by PageRank algorithm, the number of VMs for both Giraph and
our service is the same because PageRank is a non-convergent
algorithm. We also consider up to 20 supersteps for PageRank
algorithm in all our experiments. In our future research work,



S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 499

Table 5
Input scenarios for evaluation.
Scenarios Dataset Input order Priority Submission time (s) Deadline (s) Number of initial VMs Algorithm

Scenario 1
YouTube 1 Normal 0 30 16 SSSP
Amazon 2 Normal 5 80 8 PR
Pokec 3 Normal 7 110 16 SSSP

Scenario 2

Amazon 1 Normal 0 50 16 SSSP
YouTube 2 Urgent 6 30 16 SSSP
Pokec 3 Urgent 8 80 8 PR
Amazon 4 Normal 15 110 8 PR

Scenario 3

Pokec 1 Urgent 0 60 8 SSSP
YouTube 2 Urgent 1 30 16 SSSP
Amazon 3 Normal 12 130 16 PR
YouTube 4 Urgent 15 90 16 SSSP

we will find the best combination to reorder the queue in case
if deadlines are different so jobs will be processed to meet their
deadline as well.

Scenario 2: In this situation a combination of ‘‘normal’’ and
‘‘urgent’’ jobs are arriving to the service for processing. According
to Algorithm 1 and Algorithm 3, when a normal job is getting
processed, it should be replaced by the urgent job as soon as such
job is arrived to the system. Nevertheless, the normal job cannot
wait in the queue forever only because urgent jobs are being
submitted constantly. To resolve this situation, when the normal
job goes back to the queue to be replaced by an urgent job, a
deadline will be set for it so that its priority will change to urgent
when the deadline arrives. Fig. 5 shows how this scenario works
and Fig. 6 demonstrates the scenario in which Giraph follows the
job order and depicts what is happening in reality.

Scenario 3: In this scenario, jobs are different in terms of their
deadline. So, when two jobs with the same urgent priority arrive,
the one with closer deadline will be processed first. Fig. 7 shows
the processing order in this scenario and compares that with
Giraph.

We conducted the same experiments on PowerGraph [13],
an edge-centric distributed graph processing framework. Powe-
Graph outperforms Giraph due to its vertex-cut strategy and
implemented optimizations to speed up the execution on natu-
ral graphs with ‘‘highly skewed power-law degree distributions’’
[27]. However, PowerGraph’s processing pattern is the same as
Giraph as shown in Figs. 4–7 while performing under various
scenarios. The reason is that, like Giraph, PowerGraph does not
have any priority recognition or other mechanisms to distinguish

between the priorities of different jobs. So, it executes jobs based
on first-in-first-out (FIFO) approach. Similarly, it does not distin-
guish between different graph algorithms’ behaviour (conver-
gent, non-convergent, etc.), hence it cannot utilize the resources
efficiently.

Fig. 8 demonstrates the execution time in our service against
Giraph and PowerGraph for each scenario. It shows that our pro-
posed service completes faster than both Giraph and PowerGraph
due to its dynamic resource provisioning and scheduling. GPaaS
also eliminates overheads for manual job submissions after each
process completion. It reduces the cost even more because re-
sources will be released quicker. In Table 6, monetary cost of each
scenario in three different systems are being compared. It shows
that using GPaaS, the user has to pay much less (more than 40%
less in some cases) for performing the same job when compared
to Giraph and PowerGraph. Whereas, using PowerGraph can save
more money than Giraph due to its faster execution. The cost
here is calculated based on the amount of time that various
resources have been utilized in each system. In both Giraph and
PowerGraph, the number of provisioned machines remains the
same during the entire processing which is a very expensive
approach while there is no need to keep all machines in use if
the behaviour of the algorithm and operation characteristics are
considered. The number and configurations of utilized resources
(machines) in GPaaS are being updated regularly to obtain the
efficient combination of VMs in order to minimize the cost.

6. Conclusions and future work

Many applications such as social networks, mobile appli-
cations, IoT devices and applications, etc. are generating huge



500 S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501

Table 6
Processing cost for each scenario in different systems.

Giraph PowerGraph GPaaS

Scenario 1 $0.0399 $0.0302 $0.0185
Scenario 2 $0.0532 $0.0483 $0.0342
Scenario 3 $0.0516 $0.0428 $0.0294

amount of data which a considerable fraction of it is graph data.
Due to the inefficiency of traditional processing solutions such as
MapReduce, several unprecedented frameworks are developed to
address the challenges of large-scale graph processing. Many of
these frameworks are designed to operate on HPC environments
rather than clouds. Since HPC infrastructure is not available
to everyone, cloud computing with its unprecedented features
such as elasticity and pay-as-you-go billing model is a suitable
candidate for implementing the frameworks on as it can be
accessible easier too. However, the few existing frameworks
that are developed exclusively to be used on cloud environ-
ments have many limitations and cannot guarantee the quality
of services as it is expected in negotiated SLA between cloud
provider and clients. In this paper, we have proposed the first
large-scale graph processing service on cloud (graph processing-
as-a-service). Unlike graph processing frameworks, our service
can handle multiple processing requests while it considers each
request’s priorities and requirements to avoid SLA violations. Our
proposed architecture and algorithms such as dynamic schedul-
ing and dynamic resource provisioning make it possible to utilize
the heterogeneous cloud resources efficiently in order to re-
spond the requests. This service can be used for many real-world
applications such as finding shortest path in GPS systems, recom-
mendation systems, pattern recognition, knowledge extraction
and data analytics systems that require processing large-scale
graph data. Our evaluation results presented that our service can
handle graph processing requests successfully to a high extent.
To achieve this, three real-world datasets (YouTube, Amazon and
Pokec) were used in three different scenarios. We observed that
GPaaS can minimize the monetary cost more than 40% by uti-
lizing resources intelligently and executes faster when compared
with Giraph and PowerGraph — two popular distributed graph
processing frameworks. It also reduces the execution time up to
20%. This means that customers can save a lot of money and time
while the quality of service is being maintained.

As part of the future work, we plan to improve our proposed
system by enabling it to utilize various combinations of resources
to start a processing with, instead of starting with the same
VM types for all resources. We will also consider other network
factors such as network latency and topology to investigate their
impact on the computation and if they can improve it.

References

[1] R. Allen, What happens online in 60 seconds?, Smart Insights, 06
02 2017. [Online]. Available: https://www.smartinsights.com/internet-
marketing-statistics/happens-online-60-seconds/ [Accessed 22 03 2018].

[2] F.N. Afrati, A. Das Sarma, S. Salihoglu, J.D. Ullman, Vision paper: towards an
understanding of the limits of map-reduce computation, in: Proceedings
of the Cloud Futures 2012 Workshop, Berkeley, California, USA, 2012.

[3] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: a system for large-scale graph processing, in: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management
of Data, Indianapolis, IN, USA, 2010.

[4] S. Heidari, Y. Simmhan, R.N. Calheiros, R. Buyya, Scalable graph processing
frameworks: a taxonomy and open challenges, ACM Comput. Surv. 51 (3)
(2018) 1–53.

[5] B. Varghese, R. Buyya, Next generation cloud computing: new trends and
research directions, Future Gener. Comput. Syst. 79 (2) (2018) 849–861.

[6] G. Pallis, Cloud computing: the new frontier of internet computing, IEEE
Internet Comput. 14 (5) (2010) 70–73.

[7] P. Patel, A. Ranabahu, A. Sheth, Service Level Agreement in Cloud
Computing, CORE Scholar, Dayton, OH, USA, 2009.

[8] DBMS Popularity Broken Down by Database Model, DB-Engines, [Online].
Available: https://db-engines.com/en/ranking_categories [Accessed 30 08
2018].

[9] S. Heidari, R.N. Calheiros, R. Buyya, Igiraph: a cost-efficient framework for
processing large-scale graphs on public clouds, in: Proceedings of 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid ’16), Cartagena, Colombia, 2016.

[10] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, T. Özsu, The ubiquity of large
graphs and surprising challenges of graph processing, VLDB Endow. 11 (4)
(2017) 420–431.

[11] J. Wang, Q. Wu, H. Dai, Y. Tan, Challenges in large-graph processing: a
vision, in: Proceedings of the 5th International Conference on Computer
Science and Network Technology (ICCSNT), Changchun, China, 2016.

[12] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing
as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.

[13] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, PowerGraph:
distributed graph-parallel computation on natural graphs, in: Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12), Hollywood, CA, 2012.

[14] S. Salihoglu, J. Widom, GPS: a graph processing system, in: Proceedings
of the 25th International Conference on Scientific and Statistical Database
Management (SSDBM), Baltimore, Maryland, 2013.

[15] M. Redekopp, Y. Simmhan, V.K. Prasan, Optimizations and analysis of BSP
graph processing models on public clouds, in: Proceedings of the IEEE 27th
International Symposium on Parallel and Distributed Processing (IPDPS’13),
Boston, MA, 2013.

[16] R. Chen, X. Weng, B. He, M. Yang, Large graph processing in the cloud, in:
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD ’10), Indianapolis, IN, USA, 2010.

[17] A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: large-scale graph computation
on just a PC, in: Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (OSDI’12), Hallywood, USA, 2012.

[18] W.S. Han, S. Lee, K. Park, J.H. Lee, M.S. Kim, J. Kim, H. Yu, Turbograph:
a fast parallel graph engine handling billion-scale graphs in a single PC,
in: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’13), Chicago, IL, 2013.

[19] A. Roy, I. Mihailovic, W. Zwaenepoel, X-stream: edge-centric graph pro-
cessing using streaming partitions, in: Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13), Farmington, USA,
2013.

[20] G. Wang, W. Xie, A. Demers, J. Gehrke, Asynchronous largescale graph
processing made easy, in: Proceedings of the 6th Biennial Conference on
Innovative Data Systems Research (CIDR;13), Asilomar, USA, 2013.

[21] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoo, D. Williams, P. Kalnis, Mizan:
a system for dynamic load balancing in large-scale graph processing, in:
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13), Prague, Czech Republic, 2013.

[22] S. Tasci, M. Demirbas, Giraphx: parallel yet serializable large-scale graph
processing, in: Proceedings of the 19th international Conference on Parallel
Processing (Euro-Par’13), Aachen, Germany, 2013.

[23] B. Shao, H. Wang, Y. Li, Trinity: a distributed graph engine on a memory
cloud, in: Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD ’13), New York, USA, 2013.

[24] L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33
(8) (1990) 103–111.

[25] M. Pundir, M. Kumar, L.M. Leslie, I. Gupta, R.H. Campbell, Supporting
on-demand elasticity in distributed graph processing, in: Proceedings of
the IEEE International Conference on Cloud Engineering (IC2E’16), Berlin,
Germany, 2016.

[26] I. Hoque, I. Gupta, Lfgraph: simple and fast distributed graph analytics,
in: Proceedings of the First ACM SIGOPS Conference on Timely Results in
Operating Systems (TRIOS ’13), Farmington, Pennsylvania, USA, 2013.

[27] Z. Li, T.N. Hung, S. Lu, R.S.M. Goh, Performance and monetary cost of large-
scale distributed graph processing on amazon cloud, in: Proceedings of the
International Conference on Cloud Computing Research and Innovations
(ICCCRI’16), Singapore, Singapore, 2016.

[28] T. Zhang, W. Tong, W. Shen, J. Peng, Z. Niu, Efficient graph mining on
heterogeneous platforms in the cloud, in: Proceedings of the Lecture Notes
of the Institute for Computer Sciences, Cham, Switzerland, 2017.

https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb3
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb4
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb4
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb4
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb4
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb4
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb5
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb5
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb5
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb6
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb6
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb6
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb7
https://db-engines.com/en/ranking_categories
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb11
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb11
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb11
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb11
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb11
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb12
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb12
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb12
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb12
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb12
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb15
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb16
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb16
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb16
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb16
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb16
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb18
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb20
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb20
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb20
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb20
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb20
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb22
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb22
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb22
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb22
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb22
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb23
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb23
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb23
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb23
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb23
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb24
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb24
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb24
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb25
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb27
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb28
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb28
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb28
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb28
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb28


S. Heidari and R. Buyya / Future Generation Computer Systems 96 (2019) 490–501 501

[29] C. Xu, J. Zhou, Y. Lu, F. Sun, L. Gong, C. Wang, X. Li, X. Zhou, Evaluation
and trade-offs of graph processing for cloud services, in: Proceedings of
the 24th International Conference on Web Services (ICWS’17), Honolulu,
HI, USA, 2017.

[30] K. Xiong, H. Perros, Service performance and analysis in cloud computing,
in: Proceedings of the World Conference on Services, Los Angeles, CA, USA,
2009.

[31] D. Ardagna, G. Casale, M. Ciavotta, J.F. Pérez, W. Wang, Quality-of-service
in cloud computing: modeling techniques and their applications, J. Internet
Serv. Appl. 5 (11) (2014) 1–17.

[32] P. Manuel, A trust model of cloud computing based on quality of service,
Ann. Oper. Res. 233 (1) (2013) 281–292.

[33] J. Mei, A. Ouyang, K. Li, A profit maximization scheme with guaranteed
quality of service in cloud computing, IEEE Trans. Comput. 64 (11) (2015)
3064–3078.

[34] J.Y. Lee, J.W. Lee, D.W. Cheun, S.D. Kim, A quality model for evaluating
software-as-a-service in cloud computing, in: Proceedings of the 7th ACIS
International Conference on Software Engineering Research, Management
and Applications, Haikou, China, 2009.

[35] S. Heidari, R. Buyya, A cost-efficient auto-scaling algorithm for large-scale
graph processing in cloud environments with heterogeneous resources,
IEEE Trans. Softw. Eng. (2018) (Second Revision).

[36] S. Heidari, R. Buyya, Cost-efficient and network-aware dynamic
repartitioning-based algorithms for scheduling large-scale graphs in
cloud computing environments, Softw.: Pract. Exper. 48 (12) (2018)
2174–2192.

[37] G. Karypis, V. Kumar, Multilevel graph partitioning schemes, in: Pro-
ceedings of the International Conference on Parallel Processing(ICPP’95),
Raleigh, NC, US, 1995.

[38] NECTAR Cloud, [Online]. Available: http://nectar.org.au/research-cloud/
[Accessed 10 09 2018].

[39] Apache Giraph!, Apache, [Online]. Available: https://giraph.apache.org/
[Accessed 31 10 2017].

[40] P. Roy, A new memetic algorithm with GA crossover technique to solve
single source shortest path (SSSP) problem, in: Proceedings of the Annual
IEEE India Conference (INDICON), Pune, India, 2014.

[41] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking:
Bringing Order to the Web, Stanford InfoLab, 1998.

[42] J. Kunegis, KONECT - The Koblenz network collection, in: Proceedings of
International. Web Observatory Workshop, 2013.

[43] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One
trillion edges: Graph processing at facebook-scale, VLDB Endow. 8 (12)
(2015) 1804–1815.

Safiollah Heidari is a PhD student at the Cloud Com-
puting and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems (CIS),
The University of Melbourne, Australia. He is doing
his PhD, supported by International Research Scholar-
ship (MIRS) and Melbourne International Fee Remission
Scholarship (MIFRS), at the CIS department of the
University of Melbourne. He has a BSc of software
engineering and a MSc in information management
systems. He has been given a number of awards includ-
ing Google PhD Travel prize and runner-up prize for

one of his papers at the IEEE Victorian students best paper award. His research
interests include scheduling and resource provisioning for distributed systems.
Currently he is working on large-scale graph processing scheduling and resource
provisioning approaches in cloud environment.

Rajkumar Buyya is a Fellow of IEEE, Professor of
Computer Science and Software Engineering and Direc-
tor of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Melbourne,
Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Computing.
He served as a Future Fellow of the Australian Research
Council during 2012–2016. He has authored over 525
publications and seven text books including ‘‘Mastering
Cloud Computing’’ published by McGraw Hill, China

Machine Press, and Morgan Kaufmann for Indian, Chinese and international
markets respectively. He also edited several books including ‘‘Cloud Computing:
Principles and Paradigms’’ (Wiley Press, USA, Feb 2011). He is one of the highly
cited authors in computer science and software engineering worldwide (h-
index=118, g-index=225, 72,200+ citations). Recently, Dr. Buyya is recognized as
‘‘2016 Web of Science Highly Cited Researcher’’ by Thomson Reuters. Software
technologies for Grid and Cloud computing developed under Dr. Buyya’s leader-
ship have gained rapid acceptance and are in use at several academic institutions
and commercial enterprises in 40 countries around the world. Manjrasoft’s
Aneka Cloud technology developed under his leadership has received ‘‘2010
Frost & Sullivan New Product Innovation Award’’. Recently, Dr. Buyya received
‘‘Bharath Nirman Award’’ and ‘‘Mahatma Gandhi Award’’ along with Gold Medals
for his outstanding and extraordinary achievements in Information Technology
field and services rendered to promote greater friendship and India–International
cooperation. He served as the founding Editor-in-Chief of the IEEE Transactions
on Cloud Computing. He is currently serving as Co-Editor-in-Chief of Journal of
Software: Practice and Experience, which was established over 45 years ago. For
further information on Dr.Buyya, please visit his cyberhome: www.buyya.com

http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb29
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb30
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb30
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb30
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb30
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb30
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb31
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb31
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb31
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb31
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb31
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb32
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb32
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb32
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb33
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb33
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb33
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb33
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb33
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb34
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb35
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb35
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb35
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb35
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb35
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb36
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb37
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb37
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb37
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb37
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb37
http://nectar.org.au/research-cloud/
https://giraph.apache.org/
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb40
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb40
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb40
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb40
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb40
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb41
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb41
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb41
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb42
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb42
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb42
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb43
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb43
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb43
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb43
http://refhub.elsevier.com/S0167-739X(18)31410-9/sb43
http://www.buyya.com

	Quality of Service (QoS)-driven resource provisioning for large-scale graph processing in cloud computing environments: Graph Processing-as-a-Service (GPaaS)
	Introduction
	Related work
	Different graph processing frameworks
	Challenges with cloud-based frameworks
	Specific cloud features

	Overview of the proposed solution
	Users
	Repositories
	Priority queue
	Monitoring module
	Management module
	Partitioning module
	Computation module

	Dynamic scalable resource provisioning
	Performance evaluation
	Experimental setup
	Experiments and results

	Conclusions and future work
	References


