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Abstract 

Large-scale graph data is being generated every day through applications and services such as social 

networks, Internet of Things (IoT) and mobile applications. Traditional processing approaches such 

as MapReduce are inefficient for processing graph datasets. To overcome this limitation, several 

exclusive graph processing frameworks have been developed since 2010. However, despite broad 

accessibility of cloud computing paradigm and its useful features namely as elasticity and pay-as-

you-go pricing model, most frameworks are designed for high performance computing infrastructure 

(HPC). There are few graph processing systems that are developed for cloud environments but 

similar to their other counterparts, they also try to improve the performance by implementing new 

computation or communication techniques. In this paper, for the first time, we introduce the large-

scale graph processing-as-a-service (GPaaS). GPaaS considers service level agreement (SLA) 

requirements and quality of service (QoS) for provisioning appropriate combination of resources in 

order to minimize the monetary cost of the operation. It also reduces the execution time compared to 

other graph processing frameworks such as Giraph up to 10-15%. We show that our service 

significantly reduces the monetary cost by more than 40% compared to Giraph or other frameworks 

such as PowerGraph. 
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1. Introduction 

Today data is an asset and being able to collect, store, analyze, protect and use this big data provides 

companies with critical advantages. Every second huge amount of data is being created by various 

applications such as social networks, Internet of things (IoT), mobile Apps, bloggers, and even smart 

web robots that are using artificial intelligent (AI) to produce news. According to [1], during each 

minute at 2017, 3.3 million posts were put on Facebook, 3.8 million queries were searched on 

Google search engine, 500 hours of new videos were uploaded on YouTube and 448.800 tweets were 

shared on Twitter. These numbers are almost doubled compared to the amount of content was made 

per minute in 2014. Moreover, a big fraction of generated data is in the form of graphs. Graph-shape 

data encompasses a set of vertices that are connected to each other via a set of edges. In a typical 

social network website, users are vertices and friendship relationships between users form the edges 

of the graph while in an IoT environment, sensors are considered as vertices and the connections 

between sensors shape the edges. 



Increasing amount of graph data on one side and proven inefficiency of traditional processing 

approaches such as MapReduce for graphs on the other side [2] resulted in the appearance of 

exclusive large-scale graph processing frameworks. Pregel [3] was the first graph processing 

framework that was introduced by Google in 2010. After that, extensive efforts have been conducted 

in the research community to develop new processing frameworks or optimize previous ones [4]. 

However, most existing works have implemented on high performance computing (HPC) 

environments where the number of resources are considered to be unlimited. So, users do not have to 

deal with other complicated scenarios such as lack of sufficient computing resources, limited storage 

space, competitions in order to obtain resources, time limitations, cost limitations, etc. that are 

possible on distributed environments such as clouds. Based on these assumptions, most current 

works are concentrating on improving different components of the system namely as partitioning, 

computing, communication, and I/O. 

Unlike HPC, a cloud environment is much more complex in terms of resource provisioning and 

scheduling [5]. Nevertheless, HPC is not available for everyone and many small/medium companies 

do not have the resources (budget, professionals, etc.) to own and preserve such infrastructure. 

Hence, researchers have started investigating cloud-based deployments recently. Cloud computing is 

a paradigm of computing that has changed software, hardware and datacentres design and 

implementation. It overcomes restrictions of traditional problems in computing by enabling some 

novel technological and economical solutions namely as scalability, elasticity and pay-as-you-go 

models which make service providers free from previous challenges to deliver services to their 

customers. Cloud computing presents computing as a utility that users access various services based 

on their requirements without paying attention to how the service is delivered or where it is hosted. It 

brings many advantages for both service providers and service consumers. For example, providers 

can virtually locate their services at the shortest distance to their users and decrease latency of 

delivering their services, which was a problem in traditional computing methods [6]. Because of 

these benefits, cloud computing has got attracted many attentions in recent years. Among the 

limitations that make many current graph processing frameworks not to be suitable for deployment 

in a cloud environment are: 1) they are not able to utilize scalability and elasticity capability of cloud 

environments, 2) they do not consider monetary cost (processing cost) as a crucial element in cloud 

computing, 3) they are not designed to take advantage of the heterogeneity of cloud resources which 

can affect the performance of the system, 4) they cannot work efficiently in a dynamic environment 

as clouds where for example network metrics are changing constantly. 

To choose an appropriate service in a cloud environment, the client investigates some factors that 

can affect his/her processing requirements. Factors such as processing deadlines, available budget 

and costs, resource accessibility, etc. are usually taken into consideration for service selection. From 

there, both the service provider and the customer negotiate on a service level agreement (SLA) [7] by 

which the quality of service (QoS) will be guaranteed. SLA also determines the conditions of service 

violation, whose responsibility is to respond and how they can be avoided. An important step is to 

constantly monitor and evaluate the quality of service against pre-defined factors to ensure that the 

expected level of quality is provided. 

On one hand, according to DB-Engines [8], a database industry observer, graph databases’ utilization 

has been increased dramatically since 2013 and it has surpassed other database models in all 

popularity rankings ever since. On the other hand, increasing growth in graph data which in turn 

results in raising processing demands, and the popularity of cloud computing, led to cloud-based 

design of graph processing frameworks in recent years. However, although few graph processing 

frameworks such as iGiraph [9] are developed specifically to take advantage of cloud computing 



features, they do not support quality of service that is provided by these systems on cloud. Another 

issue is that current frameworks typically receive “one” large-scale graph dataset as input and return 

the output after completing the processing. Nevertheless, different users have different priorities 

while using a system, and when it comes to cloud environments, a framework should be able to 

handle multiple requests. Several research gaps and open challenges including lack of a 

comprehensive cloud-based graph processing systems are discussed in [4] [10] [11]. Therefore, in 

this paper we consider large-scale graph processing, “as a service” on cloud. We used iGiraph to 

deploy the architecture of our graph processing service on it. The new approach provides a service 

that like any other services on the cloud, monitors and maintains the quality of service based on the 

users’ requirements and the submitted service level agreement (SLA) while the user does not need to 

know the details of service implementation to be able to work with it. Our service also makes sure 

that at any given time during execution, an optimized amount of resources are provisioned to 

minimize the monetary cost of processing [12]. To the best of our knowledge, this work is the first 

implementation of a large-scale graph processing framework in which we go beyond simply 

processing a graph to considering it as a service that can be used by multiple customers on the cloud. 

The key contributions of this work are: 

 A novel service-based architecture for processing large-scale graphs on cloud to monitor 

and maintain the quality of service 

 A new multi-handling mechanism for multi-graph processing requests  

 A new dynamic auto-scaling algorithm that enables scale up and down according to the 

characteristics of different arriving workloads and agreements 

 A new dynamic repartitioning approach combined with a new mapping strategy to improve 

the resource usability and performance  

The system that we have developed in this work can be used in providing many services such as: 1) 

finding shortest paths between two or more positions in a geographical positioning system (GPS) 

where places are the vertices of a large-scale graph and roads are the edges of the graph, 2) finding 

relevant products by a recommendation algorithm to suggest to customers (products and customers 

are the vertices of the graph and relationships are the edges), and 3) discovering various patterns in 

graphs and extracting knowledge using pattern matching algorithms, and so on. 

The rest of the paper is organized as follows: Section 2 is providing the related work study by 

investigating existing research works about large-scale graph processing frameworks and the 

opportunities for them on cloud environments. Section 3 explains in detail the architecture and 

workflow of our proposed solution for enabling a service-based graph processing. Section 4 

describes the novel dynamic scalable resource provisioning algorithm by which appropriate amount 

of resources will be provided for every operation based on their requirements. Section 5 provides 

performance evaluation and Section 6 concludes the paper and identifies directions for future work. 

2. Related Work 

This section discusses various graph processing frameworks and attempts to provide compatibility 

with cloud environments and challenges. 

2.1 Different Graph Processing Frameworks 

Since 2010, when Google introduced its graph processing framework called Pregel [3], many 

research works have been conducted to exclusively improve processing of graph data structures. 



Some graph processing systems such as GraphChi [13], TurboGraph [14], X-Stream [15] and Grace 

[16] were developed to enable processing based on single-server architecture to operate in-memory. 

Although, these systems are fast and they do not need to be worried about the communication 

difficulties between different nodes as their distributed counterparts, they have other restrictions such 

as limited amount of memory and computing capacity that make them inefficient for more 

complicated scenarios when the graph is larger than their capacity. On the other side, distributed 

graph processing frameworks such as Mizan [17], PowerGraph [18], GiraphX [19], Trinity [20], etc. 

are designed to overcome these issues. However, there are other challenges in distributed 

environments such as distributed memory, communication, distributed processing and so on that 

make developing such systems more complex [4]. Many of these challenges have been investigated 

in various research works and different solutions have been proposed to address them. A summary of 

most related works along with their notable features are provided in Table 1 and explained in detail 

in this section. 

Table1. Comparison of the most related works in the literature 

System Architecture Implemented 

Environment 

Partitioning 

Method 

Resource-

aware 

Scalability QoS-aware 

Pregel [3] Distributed HPC Static No No No 

Giraph  Distributed HPC Static No No No 

PowerGraph 

[18] 

Distributed HPC Static No No No 

GPS [21] Distributed HPC Dynamic No No No 

Pregel.Net 

[22] 

Distributed Cloud Dynamic No No No 

Surfer [23] Distributed Cloud Dynamic No No No 

iGiraph [9] Distributed Cloud Dynamic Yes Only Scale-in No 

Our work - 

GPaaS 

Distributed Cloud Dynamic Yes Scale-in/out Yes 

 

2.2 Challenges with Cloud-based Frameworks 

One of the less studied areas for graph processing frameworks is cloud environments. Although 

cloud computing is providing interesting features namely as scalability, elasticity and pay-as-you-go 

billing model by which large-scale processing can be accessible for everyone, the majority of 

research works are conducted on high-performance computing (HPC) clusters where they assume 

that the number of resources are unlimited, resources are always available and there is no need to pay 

to use the them. The problem is that owning HPC infrastructure to deploy such computations is very 

costly and many small and medium companies or individuals cannot afford it [12]. Another issue is 

that because HPC-based frameworks do not need to consider the aforementioned cloud features, they 

cannot take advantages of their benefits. Even few graph processing frameworks such as Surfer [23] 

and Pregel.Net [22] that are developed to be used on clouds are not investigating scalability or 

pricing models. Instead, these systems are trying to reduce the cost of processing by providing faster 

execution so that they can release the resources quicker. For example, Surfer is offering a bandwidth-

aware graph partitioning algorithm that places partitions on VMs according to the VMs’ bandwidth 

and Pregel.Net is evaluating the impact of Bulk Synchronous Parallel (BSP) model [24] on graph 

processing using Microsoft Azure public clod. 

In addition to attempts to improve the performance of processing by ameliorating the computing 

operation, a system such as iGiraph [9] is also proposing strategies to take advantage of scalability 

feature of clouds in order to decrease the dollar cost. iGiraph is a Pregel-like graph processing 



framework that is developed based on popular Giraph1. iGiraph is also employing BSP model while 

it is implemented on top of Hadoop2 and is using its distributed file system (HDFS). Since cost is a 

main element for utilizing cloud infrastructure, iGiraph came up with the idea of reducing the 

number of resources dynamically during the processing rather than using the same amount of 

resources for the entire operation. It introduced a dynamic repartitioning algorithm that is being 

applied to the computation at the end of each iteration according to the type of application that is 

being used. iGiraph categorizes graph applications into two major categories including 1) non-

convergent, 2) convergent. When graph data is being processed by a convergent application, the 

vertices that their status has changed to inactive will be eliminated from the memory at the end of 

every superstep. Therefore, the rest of the graph with active vertices might be fitted into less number 

of VMs and spare VMs can be terminated. For non-convergent applications in which the status of 

vertices is always active during the operation, utilizing high-degree vertices concept assists the 

computation to be completed quicker while reducing the communication cost. 

2.3 Specific Cloud Features 

Scalability and monetary costs have been investigated separately in few other research works. For 

example, Pundir et al. [25] have developed a dynamic repartitioning technique based on LFGraph 

framework [26] in which, similar to iGiraph, they aimed to enable scale out/in by minimizing the 

network overhead and migrating vertices between machines. In another work, Li et al. [27] have 

investigated monetary cost of large-scale distributed graph processing on Amazon cloud. Graphic 

processing units (GPUs) have been also utilized in some works such as [28], where authors are 

improving the performance of the system by distributing the computation among GPUs to boost the 

computation speed while others such as [29] are evaluating the performance of single-node 

frameworks on cloud environments. 

Despite the specific development of cloud-based graph processing frameworks, they have never been 

considered to provide processing as a service on cloud infrastructure. This even make the 

implementation of graph processing systems harder because there will be new parameters that need 

to be taken into consideration for delivering an acceptable service [30]. Parameters namely as 

response time, throughput, cost, etc. are usually negotiated in SLA between the customer and cloud 

provider to ensure the quality of the provided service. According to Ardagna et al. [31], “Quality of 

service (QoS) is the problem of allocating resources to the application to guarantee a service level 

along dimensions such as performance, availability and reliability”. QoS in cloud computing has 

been investigated well in many research works and various techniques have been proposed to 

monitor and maintain the quality of the service in different platforms [32] [33] [34]. However, in 

order to addressing QoS challenges in the context of large-scale graph processing, every solution 

needs to meet specific requirements due to the inherent characteristics of highly connected graph 

data. In this paper, we are providing a graph processing as a service framework based on our latest 

version of iGiraph that appeared in [35]. This service enables multiple users to submit their graph 

processing requests to the system, while the system considers their preferred QoS parameters and 

provides the best combination of resources to meet the pre-defined requirements. Table 1 shows the 

comparison of the most related works. 

 

                                                           
1 https://giraph.apache.org/ 
2 https://hadoop.apache.org/ 



3. Overview of the Proposed Solution 

Figure 1 and 2 show the workflow and architecture of our proposed solution respectively. The 

system contains seven different modules that are depicted by seven different colours. These modules 

include: 1) Users, 2) Repositories, 3) Priority queue, 4) Monitoring, 5) Management, 6) Partitioning, 

and 7) Computation. Each module comprises a couple of components and is responsible for 

accomplishing different function while it has input from/output to other parts of the system. Our 

proposed solution: 1) enables multiple users to apply their jobs at the same time for processing 

(unlike all other existing frameworks that only accept one job at a time), 2) enables users to submit 

their QoS requirement for each job (none of existing systems can do so), 3) introduces a new 

complex workflow to handle intertwined requests, 4) utilizes the heterogeneity of cloud resources 

with graph algorithm characteristics to reduce the monetary cost of processing, 5) considers various 

important metrics to adjust dynamic repartitioning in order to meet QoS requirements, 6) can handle 

multiple scenarios of different job requirements. Here, we explain each module and its components 

in detail. 

 
Figure 1. The workflow of the proposed solution 

 

Figure 2. The components that we added to [36] are shown in dotted rectangles 
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3.1 Users 

Users provide the input to the system. Each user has to enter two objects into the framework: 1) a 

large-scale workload or dataset that contains the graph data, and 2) a list of QoS requirements that 

are derived from the negotiated SLA between customer and service provider. In this paper, we 

discuss two factors for QoS and develop algorithms to manage these factors: a) budget and price, b) 

processing time and deadline. Cloud computing features enable us to supply sufficient amount of 

resources to manage various situations. Cloud providers usually provide a broad range of resources 

with various characteristics that can be mixed to deal with more complicated requirements and 

scenarios. For example, if a user has low budget to spend, but he has no deadline for his processing 

request to be completed, cheaper virtual machines (VMs) can be assigned to his request. Instead, if a 

user has strict deadline but no budget restriction, more powerful VMs can be dedicated to his request 

for meeting the deadline properly. In order to provide the user with a prioritization mechanism which 

helps him to demonstrate his preferences over each QoS requirement, two priority statuses have been 

defined: a) Urgent, b) Normal. Urgent refers to the immediacy of a request execution which in turn 

mentions the execution time. Meanwhile, requests with Normal priority compete over low price. 

Therefore, the user defines the priority of his job by providing his preferred priority status while 

submitting his request to the system. 

3.2 Repositories 

There are two main repositories in the system. QoS requirements repository includes a set of pre-

defined quality conditions and constrains namely as execution time, execution cost, availability, 

throughput, energy, reliability, etc. In this paper, we consider two important QoS factors including 

execution time and execution cost. Resource information repository contains the information about 

all the available resources in the resource pool. For instance, for a typical VM, information such as 

number of cores, memory capacity, usage cost, networks speed, etc. are stored in the repository. 

Having this information helps the system to make decision about which resources and how they can 

be mixed to meet the quality of service (time and cost) properly for a specific request. 

3.3 Priority Queue 

This module comprises two components. As mentioned above, each workload will be submitted with 

a set of QoS requirements and a priority status. The whole submission is called a Job in this system. 

All jobs will be stored in the workload queue where priority analyser analyses the priority of each 

job and reorders them to be processed according to their priority compared to other jobs. Jobs with 

urgent priority are time constrained with deadline and usually need to be processed before other jobs. 

So, the first step is to prioritize urgent jobs over normal ones. Next step is to find the execution 

priority among urgent jobs since there might be more than one urgent job in the queue. In order to do 

so, a simple version of Knapsack algorithm is employed by which urgent jobs will be prioritized 

based on their required execution time and deadline. Moreover, jobs with normal priority will be 

processed based on a first in first out (FIFO) strategy. The prioritization procedure occurs every time 

a new job is submitted to the system. However, this might keep some jobs with normal priority in the 

queue forever because urgent jobs are being submitted constantly. To avoid this, we assign each 

normal job with a timestamp based on its required execution time (deadline). When the timestamp 

run out, the job will be considered and treated as an urgent job. This makes sure that no job will be 

trapped in the queue forever. Algorithm 1 demonstrates the described prioritization mechanism. 

 



Algorithm 1: Prioritization algorithm 
1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

Queue = receiveInput (Job) 

For the entire Queue do 

      If (getPriority(Job i) == NORMAL) and (getPriority(Job i+1) == URGENT) then 

            swap(Job i, Job i+1) 

       If (getPriority(Job i) == URGENT) and (getPriority(Job i+1) == URGENT) then 

            knapsackJob(Job i, Job i+1) 

For any suspendedJob(Job i) in the Queue do 

       If (priorityTime(Job i) == (Job i).Deadline) then 

           setPriority(Job i) = URGENT 

 

3.4 Monitoring Module 

This module is responsible to constantly monitor the system and measure various metrics that can be 

used in each processing based on its requirements. The input to this module is coming from the 

computation module where the actual graph processing operation happens. This is because it is very 

important to track every changes that might affect the processing and use the metrics to enhance the 

operation. Therefore, the output from monitoring module goes to management module where metrics 

will be used in the decision making and dynamic scheduling processes for the next step. Inputs and 

outputs of this module will be exchanged after each superstep i and before superstep i+1. Moreover, 

this is the only module in our proposed solution that is partially implemented on worker machines. 

The reason is that its components need to gather information from workers during the execution. All 

other modules are implemented on the master machine. Monitoring module contains the following 

components: 

- Resource monitoring: It is very critical to know about the amount of resources that are 

available in the resource pool at any moment along with their characteristics. So, this 

component is placed in the intersection of resource information repository and the 

computation module to be able to provide a holistic view of the resource usage situations. It 

is aware of the amounts and properties of all resources in the repository while it is 

monitoring the changes that occur to resources that are being used in the operation. The 

information that this component gathers from the computation part includes: the CPU 

capacity, memory capacity, monetary cost, VM type, etc.  

- Network Key Performance Indicator (KPI) Aggregator: This component monitors network 

factors such as network traffic, bandwidth, latency, topology, etc. In this paper, we are using 

two major factors including traffic and bandwidth in our dynamic repartitioning algorithm. 

We are using the method that is introduced in [36]. Network KPI aggregator component 

gathers information from the computation module and passes them to the decision making 

component. 

- QoS Monitor: As mentioned before, every job in the system is submitted with a list of SLA 

requirements which in this paper comprises the customer’s preferred time and dollar cost. 

Using this information, the system tries to provision the best combination of resources for 

each job to maintain the quality of service. Like other components in this module, QoS 

monitor components also receives the input from computation module by watching the 

mixture of VMs and the execution time of each superstep. It then passes the information to 

decision making component where various provisioning possibilities will be assessed. 

 

 



3.5 Management Module 

Management module is the heart of the system in our proposed architecture. This module is 

responsible for scheduling the tasks and provisioning the best combination of resources in a way that 

each job can meet its SLA requirements while ensuring the QoS. It is also responsible to minimize 

the occurrence of service violation as much as possible. This module collects information from all 

other modules in the architecture directly or indirectly which enables it to have a comprehensive 

view on what is happening in the system and the status of other parts. Having such a comprehensive 

view is a critical pre-requisite for making optimized decisions. All the outputs from this module also 

directly affect the partitioning module. Management module includes three main components as 

follow: 

- Dynamic Scheduler: Since a cloud provider has to provide services for many users in a cloud 

computing environment, resources need to be scheduled efficiently to achieve maximum 

profit. Dynamic scheduler component first becomes active as soon as a job is coming out of 

the queue to schedule the primary amount of resources for the processing. The number of 

initial resources will be determined by the user. However, to better utilize the resources, 

dynamic scheduler takes the size of the submitted dataset and QoS requirements into 

consideration to select best VM type to start with (Algorithm 2 – Line 1-4). At the beginning 

of the processing, all VMs will be from the same type. Later during the processing, dynamic 

scheduler receives the information about the changes in the system from another component 

in the management module called decision maker. This information will be obtained during 

the intervals between supersteps and will be used to dynamically re-schedule the resources. 

Algorithm 2: Dynamic Scheduler 
1: 

2: 

3: 

4: 

5: 

6: 

7: 

InitialVMs = userInitialVMs(UserVMs) 

VMMemory = DatasetSize/InitialVMs 

VMType = bringVMWithMemory(VMMemory) 

startVM(VMType, InitialVM) 

For Superstep1 to the end of computation do 

      NewInfo = receiveInfo(DesisionMakerVMList) 

      matchVMWith(NewInfo) 

 

- Policy Selector: Original iGiraph [9] and its extended network-aware version [36] provided a 

general categorization for various processing environments on clouds and different graph 

algorithms. This is shown in Figure 3. Depends on what algorithm is being used for the 

processing, the user will choose the proper policy for his application while submitting his 

job. Policy selector component selects the appropriate approach for re-partitioning the graph 

and informs the system. For example, if the algorithm is convergent and the environment is 

communicational-intensive, policy selector will pick up a traffic-and-bandwidth-aware [36] 

strategy for repartitioning. 

 
Fig. 3. Graph applications and processing environment categorization [36] 
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-  Decision Maker: To help dynamic scheduler with the provisioning of appropriate resources, 

decision maker component provides a holistic view of the system’s state at any given 

moment. It collects data from monitoring module which in turn includes three components. 

According to the collected data, the system will learn about the available resources and their 

characteristics, network situation, possible service violations, etc. by which it can 

intelligently make decision about the amount of resources that is needed for the rest of the 

operation. Information will be sent to decision maker during the intervals between 

supersteps. The output of this component will be sent to partitioning module and dynamic 

scheduler. 

3.6 Partitioning Module 

This module is responsible for partitioning the graph into smaller jobs and distributes them across the 

allocated machines. Proper partitioning is the key to improve the performance and speed up the 

execution of a graph system. Similarly, when graph processing is being provided as a service, 

suitable partitioning can help to meet the quality of service. However, in the literature, several 

mechanisms have been proposed for graph partitioning and each tries to increase the efficiency [4]. 

The inputs for this module are all coming from the management module which shows that the 

resources have been provisioned for computation and partitioning should consider the limitations. 

Partitioning module comprises three components: 

- Initial Partitioner: When a user submits a job, it will be waiting in the priority queue until its 

priority is higher than other jobs. Then, it will be passed to dynamic scheduler and policy 

selector, respectively. At this stage, initial resources have been allocated to the processing 

and the large graph needs to be partitioned and distributed across the machines. Initial 

partitioning will be applied to the graph only before the first superstep. The approach for 

initial partitioning in this paper is a simple random partitioning which is a hash function on 

vertex IDs. However, the user can replace the simple initial partitioning with more 

complicated one such as METIS [37] to improve the performance even more. 

- Dynamic Re-partitioner: Unlike initial partitioning that is statistic and happens only at the 

start of the processing, dynamic re-partitioning changes the partitioning of the graph multiple 

times during the operation. The aim of dynamic re-partitioning is to match the size and 

number of partitions with the allocated resources based on graph modification. The core of 

our dynamic repartitioning algorithm in this work is coming from our other work in which 

we employed a characteristic-based repartitioning to take advantage of heterogeneous 

resources on cloud environments [35]. This allows us to achieve better performance with 

less monetary cost compared to other frameworks such as Giraph.  

- Partition Distributor: When partitions are ready, they need to be distributed across the 

machines. Entry data to this component might come from the initial partitioner if it is before 

the first superstep or they can come from dynamic re-partitioning component after the first 

iteration. The output from this component goes to computation module which means that the 

computation function will be executed on all allocated worker nodes. 

3.7 Computation Module 

Computation module is the computation function that will be executed on graph vertices. This 

module does not have additional components like other modules. It receives the partitions from the 

partitioning module and applies the compute() function on them. So, this function is being 

implemented on each worker machine. The output of this module is metric measurements that will 



be passed to the monitoring module. Depending on the graph algorithm, status of vertices might 

change to inactive or may remain intact. 

4. Dynamic Scalable Resource Provisioning 

To ensure that a service is responding properly to SLA requirements for each request, it should be 

able to employ flexibility for resource provisioning and processing. In this section, we discuss the 

new multi-handling resource provisioning algorithm for a graph service. In our framework, 

“dynamic resource provisioning” belongs to the management module and receives inputs from 

various modules. Our experiments show that using this approach, adequate amount of resources will 

be assigned to processing jobs and enables them to meet their pre-defined QoS. 

Different jobs with different priorities and requirements will be sent to the graph processing service 

and they will be processed based on their priorities one after the other. However, there are situations 

in which while a job is being processed in the system, another job with a strict deadline or higher 

priority arrives and need to be processed as soon as possible. In a typical scenario, imagine job A 

with Normal priority is being assigned a number of resources and it is being processed in the system. 

Suddenly, job B with Urgent priority arrives and makes a request for the service. One solution for 

dealing with this situation is to make the later request to wait until the ongoing processing is 

finished. In this approach, the urgent request will miss the deadline whereas a possible SLA violation 

might happen and the service will not be efficient at all. 

Another solution, which we implemented in this paper for our service, is to stop the processing, take 

the less urgent job out of the system and start processing the more urgent job. After completion of 

the urgent job, the previous job will be brought back to the system to continue its processing from 

where it was stopped. However, there are some questions that need to be answered here: 1) what will 

happen to the resources that were being used by the former processing?, 2) how the new processing 

will receive enough resources to ensure that the requirements will be met?, 3) can we utilize the 

already existing resources from the previous operation for the new processing?, and 4) do we need to 

restore the same resources for the less urgent job as the ones it was assigned before being stopped? 

Algorithm 3 demonstrates our proposed dynamic scalable resource provisioning mechanism. 

According to this algorithm, if the priority of the ongoing job in the system is more than the priority 

of the arriving job, it continues processing. But, if the priority of the arriving job is more than the 

priority of the ongoing job, then system exchanges the jobs. In this situation, if the applied graph 

algorithm to the current ongoing job is convergent type, in which the status of processed vertices will 

change to inactive and vertices will be removed from the memory, remaining active vertices in the 

processing will be moved back to the queue. If the applied graph algorithm is non-convergent type 

which does not change the status of vertices, the whole dataset will be moved back to the queue. 

Then, the new urgent job will be taken from the queue to be loaded for processing. At this phase, 

instead of terminating the resources from the previous processing, the dynamic scheduler calculates 

the capacity of existing resources in terms of VM types, available memory, available computation 

power, etc. Meanwhile, it knows the size of arriving job, its QoS criteria, and the number of 

resources that is ordered by the user at the job submission stage. Following situations are considered 

in order to provision resources for the new processing job. 

1) If the new dataset is small and current resources can handle the SLA requirements, then 

there is no need for employing new resources.  



2) If the size of the dataset is big, and the type of current resources is appropriate, then more 

machines will be employed to reach the resource needs. So, we have a combination of old 

and new resources that are assigned to the new operation. For example, if there are 3 medium 

VMs left from the previous processing and system learns that 7 medium VMs are needed for 

the new operation, it only needs to employ 4 more medium VMs 

(3mediumold+4mediumnew=7mediumrequired).  

3) If only parts of the existing resources are usable for the new operation, system will keep 

those VMs and removes the inappropriate ones. Afterwards, it repeats the previous step (step 

2). For example, if 4 medium and 2 small VMs are left from the previous operation and the 

system learns that the new operation needs 10 medium VMs to meet the SLA requirements, 

it terminates 2 small VMs and employs 6 new medium VMs ((4mediumold-

2smallold)+6mediumnew=10mediumrequired). 

4) If any of the remaining VMs from the previous operation are not suitable for the needs of the 

new operation, then all of them will be terminated and new appropriate resources will be 

employed for the new operation. 

As noted in Algorithm 3 and the described scenarios, our algorithm can both scale up and scale down 

for provisioning resources. It should be considered that all the operations in this paper will be started 

with the same VM type. So, if the system learns that for example large VM type is suitable for 

processing, then all VMs at the beginning of the processing will be large type whereas if system 

learns that medium VM type is better, then all VMs at the start of the processing will be medium 

type. We will investigate more complicated scenarios such as starting the operation using a 

combination of different VM types (for example combination of large and medium VMs) in our 

future works. 

The impact of our proposed mechanism on resource usability is demonstrated in the evaluation 

section (Figures 4-8). We show how resources are being provisioned or released based on the SLA 

requirements (priority, deadline, number of machines, etc.) at each moment in the system. We also 

show that this approach improves the performance of the system by utilizing resources more 

intelligently while reducing the execution time (Figure 8) and monetary costs of the processing 

operation (Table 6). 

Algorithm 3: Dynamic scalable resource provisioning 
1: 

2: 

3: 

4: 

5: 

 

6: 

7: 

 

8: 

9: 

10: 

11: 

12: 

13: 

 

14: 

15: 

If ((getPriority(CurrentJob)==URGENT) and (getPriority(ArrivingJob)==NORMAL)) then 

      continueWithNoChange() 

If ((getPriority(CurrentJob)==NORMAL) and (getPriority(ArrivingJob)==URGENT)) then 

      backToQueue(CurentJob.ActiveVertex) 

      If (currentVMMemory(AvailableVMs) ==DatasetSize) and (AvailableVMs<InitialVM) 

then 
            continueWithCurrentConfig() 

      If (currentVMMemory(AvailableVMs)<DatasetSize) and (AvailableVMs<InitialVM) 

then 
            onlyKeepVM(VMType) 

            update(AvailableVMs) 

            NeededVMs = InitialVM – AvailableVMs 

            Start(VMType , NeededVMs) 

            executeWithNewConfig() 

       If (currentVMMemory(AvailableVMs)>DatasetSize) and (AvailableVMs>InitialVM) 

then 
            onlyKeepVM(VMType) 

            update(AvailableVMs) 



5. Performance Evaluation 

In this section we explain the environment that we conducted our experiments on, and discuss the 

evaluation results. 

5.1 Experimental Setup 

To evaluate our framework and effectiveness of the proposed algorithms, we utilized resources from 

Australian national cloud infrastructure (NECTAR) [38]. We utilize three different VM types for our 

experiments based on NECTAR VM standard categorization: m2.large, m1.medium, and m1.small. 

Detailed characteristics of NECTAR standard VMs are shown in Table 2. Table 3 describes the 

utilized VMs in our work with their prices which are determined proportionally based on their 

closest AWS counterparts. The reason for using m-type VM is because the algorithms that we are 

using are memory-intensive and using m-type machines provides better performance. Since 

NECTAR does not correlate any price to its infrastructure for research use cases, the prices for VMs 

are put proportionally based on Amazon Web Service (AWS) on-demand instance costs in Sydney 

region according to closest VM configurations as an assumption for this work. According to this, 

NECTAR m2.large price is put based on AWS m5.xlarge Linux instance, NECTAR m1.medium 

price is put based on AWS m5.large Linux instance and NECTAR m1.small price is put based on 

AWS t2.small Linux instance. All VMs have NECTAR Ubuntu 14.04 (Trusty) amd64 installed on 

them, being placed in the same zone and using the same security policies. We use iGiraph [9] (the 

extended version of Giraph [39]) with its checkpointing characteristics turned off along with Apache 

Hadoop version 0.20.203.0 and modify that to contain heterogeneous auto-scaling policies and 

architecture. All experiments are run using 17 machines where one large machine is always the 

master and workers are a combination of medium and small instances.  

We use single source shortest path (SSSP) [40] and PageRank (PR) [41] algorithms as 

representatives of convergent and non-convergent graph algorithms respectively for our experiments. 

They are good representatives of many other algorithms regarding their behaviour. SSSP is solving a 

particular case of a bigger problem called shortest path (SP) which aims to discover a path with 

minimum weights of edges between two vertices in a graph. SSSP will find the shortest path between 

a typical source node and all other vertices in the graph. First, the source node sends its value (which 

is set to 0 at the beginning) to its adjacent vertices. Those vertices update their value and send their 

new value to their neighbours. This operation continues until there are no more vertex left to be 

updated. Whenever a vertex updates its value, its status changes to inactive. So process completes 

when all vertices’ status change to inactive. This is why SSSP is a convergent algorithm. On the 

other hand, a vertex status remains intact in PageRank algorithm which makes it to be categorized as 

a non-convergent algorithm. PageRank weighs the significance of websites and web pages by 

calculating the number of links that are connected to them (hyperlinks). The more connected links a 

page has, the more important the page is. This algorithm values each page solely and does not value 

the entire website as a unit. 

We also use three real-world datasets of different sizes: YouTube, Amazon, and Pokec [42] as shown 

in Table 4. 

 

 

 



Table 2. NECTAR standard VM characteristics [38]  

VM Type VCPUS RAM Total Disk 

m2.tiny 1 768MB 5 GB 

m2.xsmall 1 2 GB 10 GB 

m1.small 1 4 GB 40 GB 

m2.small 1 4 GB 30 GB 

m2.medium 2 6 GB 30 GB 

m1.medium 2 8 GB 70 GB 

m2.large 4 12 GB 110 GB 

m1.large 4 16 GB 130 GB 

m1.xlarge 8 32 GB 250 GB 

m2.xlarge 12 48 GB 390 GB 

m1.xxlarge 16 64 GB 490 GB 

 

Table 3. Utilized VM characteristics and their proportional cost based on their closest AWS 

counterparts 
VM Type #Cores RAM Disk 

(root/ephemeral) 

Price/hour 

m2.large  4 12GB 110GB (30/80) $0.24 

m1.medium 2 8GB 70GB (10/60) $0.12 

m1.small 1 4GB 40GB (10/30) $0.0292 
 

 

Table 4. Databases’ properties 

Graph Vertices Edges 

YouTube Links 1,138,499 4,942,297 

Amazon (TWEB) 403,394 3,387,388 

Pokec 1,632,803 30,622,564 
 

5.2 Experiments and Results 

We have compared our systems and algorithms with Giraph because it is a popular open-source 

Pregel-like graph processing framework and is broadly adopted by many companies such as 

Facebook [43]. To evaluate different scenarios by our service, we have provided various workloads 

and jobs by combining the datasets from Table 3 with different characteristics. Table 5 demonstrates 

input jobs and the order of inputs along with their properties. 

Table 5. Input scenarios for evaluation 

Scenarios Dataset Input 

Order 

Priority Submission 

Time (s) 

Deadline 

(s) 

Number of 

Initial 

VMs 

Algorithm 

Scenario 1 YouTube 1 Normal 0 30 16 SSSP 

Amazon 2 Normal 5 80 8 PR 

Pokec 3 Normal 7 110 16 SSSP 

Scenario 2 Amazon 1 Normal 0 50 16 SSSP 

YouTube 2 Urgent 6 30 16 SSSP 

Pokec 3 Urgent 8 80 8 PR 

Amazon 4 Normal 15 110 8 PR 

Scenario 3 Pokec 1 Urgent 0 60 8 SSSP 

YouTube 2 Urgent 1 30 16 SSSP 

Amazon 3 Normal 12 130 16 PR 

YouTube 4 Urgent 15 90 16 SSSP 
 

Scenario 1: This is the simplest situation in which all jobs in the queue have the same priority as 

“normal”. In this situation, deadline is not very important for the processing, so all jobs will be 

executed by a first-in-first-out (FIFO) approach and it is fine if any deadline was missed. However, 



as can be seen in Figure 4, the cost of processing in our service is much less than conducting it on a 

popular framework as Giraph. The reason is that our service scales up and down to provision the best 

combination of resources for the processing while Giraph uses the same amount of resources for the 

entire operation. Note that in processing graphs by PageRank algorithm, the number of VMs for both 

Giraph and our service is the same because PageRank is a non-convergent algorithm. We also 

consider up to 20 supersteps for PageRank algorithm in all our experiments. In our future research 

work, we will find the best combination to reorder the queue in case if deadlines are different so jobs 

will be processed to meet their deadline as well.  

 
Fig. 4. Scenario1: all jobs with “NORMAL” priority 

Scenario 2: In this situation a combination of “normal” and “urgent” jobs are arriving to the service 

for processing. According to Algorithm 1 and Algorithm 3, when a normal job is getting processed, 

it should be replaced by the urgent job as soon as such job is arrived to the system. Nevertheless, the 

normal job cannot wait in the queue forever only because urgent jobs are being submitted constantly. 

To resolve this situation, when the normal job goes back to the queue to be replaced by an urgent 

job, a deadline will be set for it so that its priority will change to urgent when the deadline arrives. 

Figure 5 shows how this scenario works and Figure 6 demonstrates the scenario in which Giraph 

follows the job order and depicts what is happening in reality. 

 
      Fig. 5. Scenario 2 – Number of VMs Comparison 
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      Fig. 6. Scenario 2 – If Giraph follows the job order 

 

Scenario 3: In this scenario, jobs are different in terms of their deadline. So, when two jobs with the 

same urgent priority arrive, the one with closer deadline will be processed first. Figure 7 shows the 

processing order in this scenario and compares that with Giraph. 

 
Fig. 7. Scenario 3: jobs with different QoS/deadline requirements 

We conducted the same experiments on PowerGraph [18], an edge-centric distributed graph 

processing framework. PoweGraph outperforms Giraph due to its vertex-cut strategy and 

implemented optimizations to speed up the execution on natural graphs with “highly skewed power-

law degree distributions” [27]. However, PowerGraph’s processing pattern is the same as Giraph 

as shown in Figures 4-7 while performing under various scenarios. The reason is that, like 

Giraph, PowerGraph does not have any priority recognition or other mechanisms to distinguish 

between the priorities of different jobs. So, it executes jobs based on first-in-first-out (FIFO) 

approach. Similarly, it does not distinguish between different graph algorithms’ behaviour 

(convergent, non-convergent, etc.), hence it cannot utilize the resources efficiently. 

Figure 8 demonstrates the execution time in our service against Giraph and PowerGraph for each 

scenario. It shows that our proposed service completes faster than both Giraph and PowerGraph due 

to its dynamic resource provisioning and scheduling. GPaaS also eliminates overheads for manual 

job submissions after each process completion. It reduces the cost even more because resources will 

be released quicker. In Table 6, monetary cost of each scenario in three different systems are being 

compared. It shows that using GPaaS, the user has to pay much less (more than 40% less in some 

cases) for performing the same job when compared to Giraph and PowerGraph. Whereas, using 

Number of supersteps

N
u

m
b

er
 o

f 
M

ac
h

in
es

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Giraph GPaaS

Number of supersteps

N
u

m
b

er
 o

f 
M

ac
h

in
es

YouTube - SSSP

Pokec- SSSP

Amazon – PageRank /YouTube - SSSP Amazon continue PageRank

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Giraph GPaaS



PowerGraph can save more money than Giraph due to its faster execution. The cost here is 

calculated based on the amount of time that various resources have been utilized in each system. In 

both Giraph and PowerGraph, the number of provisioned machines remains the same during the 

entire processing which is a very expensive approach while there is no need to keep all machines in 

use if the behaviour of the algorithm and operation characteristics are considered. The number and 

configurations of utilized resources (machines) in GPaaS are being updated regularly to obtain the 

efficient combination of VMs in order to minimize the cost. 

 
Fig. 8. Total execution time per scenario 

 

Table 6. Processing cost for each scenario in different systems 
 Giraph PowerGraph GPaaS 

Scenario 1 $0.0399 $0.0302 $0.0185 

Scenario 2 $0.0532 $0.0483 $0.0342 

Scenario 3 $0.0516 $0.0428 $0.0294 
 

 

6. Conclusions and Future Work 

Many applications such as social networks, mobile applications, IoT devices and applications, etc. 

are generating huge amount of data which a considerable fraction of it is graph data. Due to the 

inefficiency of traditional processing solutions such as MapReduce, several unprecedented 

frameworks are developed to address the challenges of large-scale graph processing. Many of these 

frameworks are designed to operate on HPC environments rather than clouds. Since HPC 

infrastructure is not available to everyone, cloud computing with its unprecedented features such as 

elasticity and pay-as-you-go billing model is a suitable candidate for implementing the frameworks 

on as it can be accessible easier too. However, the few existing frameworks that are developed 

exclusively to be used on cloud environments have many limitations and cannot guarantee the 

quality of services as it is expected in negotiated SLA between cloud provider and clients. In this 

paper, we have proposed the first large-scale graph processing service on cloud (graph processing-

as-a-service). Unlike graph processing frameworks, our service can handle multiple processing 

requests while it considers each request’s priorities and requirements to avoid SLA violations. Our 

proposed architecture and algorithms such as dynamic scheduling and dynamic resource 

provisioning make it possible to utilize the heterogeneous cloud resources efficiently in order to 

respond the requests. This service can be used for many real-world applications such as finding 

shortest path in GPS systems, recommendation systems, pattern recognition, knowledge extraction 

and data analytics systems that require processing large-scale graph data. Our evaluation results 
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presented that our service can handle graph processing requests successfully to a high extent. To 

achieve this, three real-world datasets (YouTube, Amazon and Pokec) were used in three different 

scenarios. We observed that GPaaS can minimize the monetary cost more than 40% by utilizing 

resources intelligently and executes faster when compared with Giraph and PowerGraph- two 

popular distributed graph processing frameworks. It also reduces the execution time up to 20%. This 

means that customers can save a lot of money and time while the quality of service is being 

maintained.  

As part of the future work, we plan to improve our proposed system by enabling it to utilize various 

combinations of resources to start a processing with, instead of starting with the same VM types for 

all resources. We will also consider other network factors such as network latency and topology to 

investigate their impact on the computation and if they can improve it. 
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