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Abstract—Container orchestration platforms such as Kubernetes and Kubernetes-derived KubeEdge (called Kubernetes-based

systems collectively) have been gradually used to conduct unified management of Cloud, Fog, and Edge resources. Container

provisioning algorithms are crucial to guaranteeing quality of services (QoS) of such Kubernetes-based systems. However, most

existing algorithms focus on placement and migration of fixed number of containers without considering elastic provisioning of

containers. Meanwhile, widely used linear-performance-model-based feedback control or fixed-processing-rate-based queuing model

on diverse platforms cannot describe the performance of containerized Web systems accurately. Furthermore, a fixed reference point

used by existing methods is likely to generate inaccurate output errors incurring great fluctuations encountered with large arrival-rate

changes. In this article, a feedback control method is designed based on a combination of varying-processing-rate queuing model and

linear-model to provision containers elastically which improves the accuracy of output errors by learning reference models for different

arrival rates automatically and mapping output errors from reference models to the queuing model. Our approach is compared with

several state-of-art algorithms on a real Kubernetes cluster. Experimental results illustrate that our approach obtains the lowest

percentage of service level agreement (SLA) violation (decreasing no less than 8.44 percent) and the second lowest cost.

Index Terms—Cloud, fog and edge computing, kubernetes, container auto-scaling, Qos control, queuing theory, feedback control

Ç

1 INTRODUCTION

ONE of the most effective approaches to share resources
of diverse systems such as private data centers, Cloud

Computing, Fog and Edge Computing [1] among multiple
applications is using containers which are more lightweight
and portable than virtual machines (VMs) [2]. Kubernetes
[3] is one of the popular container orchestrating systems
and is gradually used to manage Cloud, Fog and Edge
resources by containers seamlessly leading to many deriva-
tive platforms such as KubeEdge [4]. Kubernetes’s Pods
(consisting of one or more containers) of different applica-
tions are deployed on VMs rented from public Clouds
or physical machines (PMs) of Fog and Edge nodes.
Meanwhile, Web applications and services (called Web
systems collectively) are very common in Cloud, Fog and
Edge Computing providing various functions to end users
via different micro-services deployed in the form of contain-
ers. One of the most crucial problems is to design container

auto-scaling algorithms to control response time of each
micro-service in Kubernetes-based platforms.

Most existing container provisioning algorithms focus on
placement and migration of fixed number of containers on
PMs or VMs rather than auto-scaling of containers [5], [6],
[7]. However, the number of containers allocated to each
micro-service has a great impact on request response times.
Kubernetes’s build-in auto-scaling scheduler [8] and most
threshold-based methods [9] only add or remove container
replicas based on resource usage rates which are indirect
metrics for controlling response times. Therefore, the main
goal of this paper is to design container auto-scaling meth-
ods for Kubernetes which adjust the number of containers
allocated to each micro-service automatically to decrease
resource consumption while guaranteeing quality of serv-
ices (QoS). The main challenges of designing such auto-
scaling algorithms include non-linear performance model
of multi-container systems and finding appropriate output
error computing methods.

Non-linear performance characteristics of Web systems
make resource auto-scaling complex. QoS control has been
studied extensively for traditional Web systems involving
elastic provisioning of application resources, PMs or VMs.
However, most existing methods belong to pure queuing-
theory-based feed-forward control [10], [11], [12], [13] or lin-
ear-model-based feedback control [14], [15], [16] which lack
feedback ability or cannot describe complex non-linear
multi-container systems accurately. Although linear-model-
based feedback control has been used to amend the inaccu-
racy of queuing models taking advantage of queuing and
control theory together, the reference-point-derived linear
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performance model only works well when the system is
near the reference point [17], [18].

The deviation between the reference point and the real-
time response time is called output error which has a great
influence on control performance. Selecting appropriate ref-
erence points to compute output errors is helpful to obtain-
ing a stable control performance. In existing methods [19],
reference points are usually selected manually and kept
unchanged for different arrival rates. However, a fixed ref-
erence point is likely to incur great control fluctuations
because there are different stable working points for differ-
ent arrival rates. Meanwhile, the inconsistency between the
profiled performance model and the real system is unavoid-
able which makes output errors mismatch with the profiled
performance model.

In this paper, an inverse-queuing-model-based feedback
control method (FeedBack_InverseQM) is proposed to
guarantee the QoS of container-based Web systems in
Kubernetes which decreases the percentage of SLA viola-
tion by 8.44 percent. The main contributions of our work are
as follows.

1) A hybrid of varying-processing-rate-based queuing
model and linear model is applied to describe the
performance of the multi-container system more
accurately. Inverse-queuing model is used to linear-
ize the control system to simplify the controller
design.

2) An online reference model learning method is
designed to find appropriate reference points for dif-
ferent arrival rates increasing the accuracy of output
errors.

3) An adaptive output-error-mapping method is pro-
posed to amend the inconsistency between sampled
reference models and the profiled performance
model avoiding fierce control fluctuations.

The rest of this paper is organized as follows. Section 2 is
the related work and Section 3 describes Web systems
in Kubernetes. The proposed method is introduced in
Section 4. Sections 5 and 6 include performance evaluation
on a real Kubernetes cluster, conclusions and future work.

2 RELATED WORK

Most of existing works for container scheduling assume that
containers consumed by each application is fixed. Deploy-
ing and migrating a fixed number of containers on private
or elastically rented underlying resources can be modeled
as a bin-packing problem [7] and solved by CPLEX [6]. For
Kubernetes, heuristic methods such as best fit decreasing
bin packing (BFD) and time-bin BFD [5], [20] have been pro-
posed for the container deploying and migrating. Reinforce-
ment learning [7] and game theory [21] are also used to
deploy and migrate a fixed number of containers consider-
ing geography locations of Fog nodes, user mobility, energy
consumption or SLA violations.

Compared with assigning fixed number of containers,
providing scalable computing and storage capacities
to applications is beneficial to saving resource cost and
improving efficiency. For example, the authors of [22] pro-
pose a scheme to support data auditing processing in Cloud

with fine-grained data updates (i.e., flexible size data
updates). It saves huge storage and computation overheads
of data auditing processing against fixed-size update where
every small update will cause re-computation and updating
for an entire file block. This scheme offers highly scalable
and efficient data auditing processing in Cloud. To provide
scalable computing capacity to applications in Kubernetes,
genetic algorithms [23] and linear programming [24] have
been used to find the optimal container distributing policy
among multiple applications assuming that each applica-
tion has a performance-degrading resource threshold or the
utility of provisioning different numbers of containers to
each application has been profiled in advance. In other
words, these works mainly focus on the distribution of
resources among competitive applications while container
auto-scaling of one application is considered in this paper.
Since auto-scaling methods of traditional application resour-
ces, PMs and VMs can be migrated to deal with container
auto-scaling, auto-scaling techniques are surveyed in total.

2.1 Auto-Scaling Techniques for QoS Control

Threshold is one of the most simplest auto-scaling tech-
nique. Kubernetes’s build-in auto-scaling scheduler adjusts
container numbers based on thresholds of CPU or Memory
usage rates [8]. One container is added when existing
resources have been used up [9] or a fixed number of con-
tainers are added when the real-time response time is larger
than a threshold [25]. The difficulty of threshold-based
methods is how to select appropriate threshold values
suitable for different arrival rates [26].

Queuing models describe the relations among the aver-
age response time, the request arrival rate and allocated
resources of Web systems. M/M/1 [12], M/M/N [10], [11],
heterogeneous M/M/N [27] queuing models and queuing
networks [13] have been used to determine the minimum
number of VMs or PMs for guaranteeing QoS of Web sys-
tems. Nonetheless, pure queuing-model-based methods
lack the ability of reacting to real-time output errors.

Feedback control is an essential method for application
resource (server processes, database connections, etc) auto-
scaling. Linear-performance-model-based fixed gain [14], [15],
adaptive [16] or multi-model switching [28] feedback control
methods have been widely used in application resource auto-
scaling [29]. An inverse-proportional performance model,
which is more accurate than linear models, is used to design a
feedback control method to auto-scale containers of Web
applications [19]. Queuing models are more accurate than lin-
ear or inverse-proportional models, and have been used to
improve the performance of feedback control. For example,
M/M/1 queuing model-derived linear model, which
describes the linear relation of output-error changes and the
adjustment of allocated resources near the reference point, is
used to design feedback controllers, and only works well near
reference points [17], [18]. For Kubernetes, M/M/1-model-
based feedback controller is designed to adjust the arrival-rate
adjustment coefficient of a loosely coupled M/M/N model
[30] which is tailored for avoiding over-control incurred by
interval-based chargingmodels of CloudVMs.

Q-table and deep-neural-network based reinforcement
learning methods have been used to allocate VMs or PMs to
Web systems elastically [12], [31], [32]. However, these
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methods need a long sampling and training period to obtain
good performance [33]. Therefore, exact model based meth-
ods are still necessary and can be used to guide the deep
learning based methods.

2.2 Comparison With Existing Algorithms

Table 1 shows a comparison of our approach with existing
resource provisioning algorithms. First, existing linear or
queuing-model-derived linear models cannot describe the
performance of container based systems accurately [34].
On the contrary, our approach applies a feedback controller
based on a more accurate performance model which is the
hybrid of varying-processing-rate M/M/N model and lin-
ear model. Second, most existing works use a fixed refer-
ence point obtained by experience to compute output errors
directly, while our approach applies an automatic reference
point identification method and an adaptive output error
mapping method to improve the control stability. Finally,
our approach is implemented as a user-level scheduler of
Kubernetes rather than simulation platforms.

3 WEB SYSTEMS IN KUBERNETES

It is flexible and inter-operable to organize diverse Web sys-
tems using micro-service-based architecture. Each tier of
such Web systems can be implemented as a micro-service
which runs in parallel containers to support large-scale
requests. Each micro-service provides a single function and
is usually encapsulated as a RESTful or SOAP-based Web
service. Kubernetes is widely used to manage containers

which includes one Master and multiple Worker nodes as
shown in Fig. 1. Pod is the basic unit of resource manage-
ment which consists of one or multiple containers [3].
Containers of micro-services are embedded in Pods which
are deployed on Worker nodes (PMs or VMs). Containers of
the same color belong to the same micro-services. User
requests of the same micro-service are distributed to paral-
lel containers by the nginx-ingress-controller [36]. Real-time
performance of each micro-service is monitored through
Kubernetes java-client-interface [37], based on which the

TABLE 1
Comparison of Our Approach With Existing Resource Provisioning Algorithms for Web Systems

Resources Problems Objectives Algorithms and Complexity Platforms Works

Application
resources

Auto-scaling Absolute or relative
average response
time

Linear-model-based feedback
control, O(1)

A single Web Server [14], [15], [16],
[28]

Queuing-model-derived
linear model based hybrid
control, O(n2)

A single Web Server [17], [18]

VMs or PMs Auto-scaling Average response
time

Threshold, O(1) Private VM clusters [33]
Reinforcement learning Private VM or PM clusters,

Public Clouds, MATLAB
[12], [31], [32],
[33]

Queuing models, O(n2) Simulation, OpenStack,
Private VM clusters

[10], [11], [12],
[13], [27]

Queuing-length-based
feedback control, O(1)

CometCloud [35]

Queuing-model-arrival-rate-
adjusting-coefficient based
hybrid control, O(n2)

CloudSim, Private VM
clusters

[30]

Containers Fixed
containers per
application

Power
consumption, etc

Deep Q-learning Private VM clusters [7]

Deployment Cost of
VMs

CPLEX, BFD, Time-bin BFD,
Greedy algorithms

Kubernetes, Simulation [5], [6], [20]

Auto-scaling Resource usage,
Average response
time

Threshold, O(1) IaaS, Docker Swarm [9] [25]

Total network
latency, etc

Threshold, Genetic algorithm Simulation [23]

Average response
time

Simple non-linear model
based feedback control, O(1)

ECOWARE [19]

Inverse-M/M/N-model based
feedback control, O(n2)

Kubernetes Our approach

Fig. 1. Architecture of container-based web systems in Kubernetes.
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container Auto-scaling Controller (ASC) is implemented as
a user-level plugin to allocate appropriate number of con-
tainers to each micro-service separately. Each micro-service
has its own ASC, i.e., a decentralized controlling method is
applied [19].

The average response time and resource cost are two
crucial metrics of containerized Web systems. In the SLA of
a micro-service, it is usually defined that x% of response
times should be smaller than a given threshold Wsla.
Because identical containers are usually required by the
same micro-service, one Container Unit (CU) is defined to
be the cost of allocating one container to a micro-service in
one control interval. The objective of this article is to design
container auto-scaling algorithms for ASCs to decrease
the number of consumed CUs while guaranteeing SLAs.
Common notations of this article are shown in Table 2.

4 PROPOSED FEEDBACK CONTROL METHOD

In this paper, an Inverse-Queuing-Model-based feedback
controlmethod (Feedback_InverseQM) is proposed. A hybrid
of varying-processing-rate-based M/M/N model and linear
model is first adopted to describe the system accurately. Then
an automatic reference model learning method is developed
to generate accurate output errors. Based on the performance
model and output errors, an inverse-queuing-model-based
Integral controller is designed. Next an adaptive output error
mapping method is investigated to amend the inconsistency
between sampled reference models and the profiled queuing
model. Finally, a queuing-length-based scheduling method
is used to provision containerswhen the system is unstable.

4.1 Varying-Processing-Rate-Based
Performance Model

Performance model is the basis of feedback control.
The average processing rate of one container decreases as
the request arrival rate increases in Kubernetes because of
scheduling overhead. Traditional queuing models with
fixed processing rates-based performance models cannot
describe the system accurately. Let � be the request arrival
rate and N be the number of containers. In this paper, the

processing rate of each container is defined to be inversely-
proportional to the arrival rate as

m ¼ mb þ c=�; (1)

where mb is the basic processing rate and c is the inverse-pro-
portional coefficient of�. According to existingM/M/Nmodel
[10], [11], the probability of no requests in thewhole system is

P0 ¼
XN�1
k¼0

1

k!

�

m

� �k

þ �N

N !ð1� �
N�mÞmN

" #�1
: (2)

The expectation of the number of requests in the waiting
queue and under processing is

LsðN; �;mÞ ¼ ð�
m
ÞN �

N�m
N!ð1� �

N�mÞ2
P0 þ �

m
: (3)

The expectation of the average response time of requests is

WsðN; �;mÞ ¼ LsðN; �;mÞ
�

: (4)

Meanwhile, the current average response time is also
affected by past values. Therefore, in this paper, the average
response time yk of control step k is defined to be a weighted
combination of the past value yk�1 andWsðN; �;mÞ as

yk ¼ a� yk�1 þ ð1� aÞ �WsðN; �;mÞ: (5)

Equation (5) is a hybrid of inverse-proportional-processing-
rate (varying processing rate) based M/M/N queuing
model and linear model which is applied to be the perfor-
mance model of this paper.

4.2 Automatic Reference-Model Learning

Reference points are crucial to compute output errors
which are the basis of feedback control. Because containers
are provisioned in a coarse-grained granularity, average
response times (called stable points) cannot change smoothly
when the number of provisioned containers is adjusted as
shown in Fig. 2. Therefore, the given Wsla might be far from
any stable point, and using Wsla as the reference point
directly is likely to generate great fluctuations. Appropriate
reference response times should be selected from stable
points smaller than Wsla. Fig. 2 illustrates that stable points
of different arrival rates are different, the reference pointWr

should be found for each arrival rate individually. For each
�, the maximum number of containers nr violating SLA is
called the lower bound which is able to avoid releasing
too many containers. For each �, stable points of different
numbers of containers can be studied from historical data.

Fig. 2. Average response times of different arrival rates given different
numbers of containers.

TABLE 2
Common Notations

Label Description

� Real-time request arrival rate
m Varying processing rate
Wsla Maximum response time described in SLA
k Index of control steps
yk Real-time average response time of step k
Nk Output container number of control step k
Nm Available containers for one microservice
Lr Real-time queuing length
uk Control input
mk Reference model of step kwith maximum arrival rate

deviation of 5=s
m0k Mature reference model of step kwith maximum arrival

rate deviation of 20=s
Wr

m
0
k

Reference response time ofm0k
nr
m0

k
Maximum number of containers not fulfilling SLA inm0k
(called lower bound)
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Wr and nr can be obtained base on stable points of each �.
The set of stable points,Wr and nr is called a referencemodel
of �which is used to guide the feedback control.

An automatic reference-model learning method (ARML)
is proposed to profile reference models based on samples in
the form of s ¼ ðns; �s; ysÞ in which ns is the container num-
ber, �s is the arrival rate and ys is the average response
time. M is the set of reference models. In order to decrease
the number of studied reference models, the difference
between any two models’ reference arrival rates should be
larger than a gap g (e.g., 5/s). Samples with similar arrival
rates are used to profile the same model.

Formal description of ARML is shown in Algorithm 1.
In auto-scaling step k, a new sample s will be collected and
a corresponding reference model mk ¼ argminm2Mf�d ¼
j�m � �j; �d < gg is tried to be found. If mk ¼ null, a new
model mk with reference arrival rate � is created and added
to M. If mk ¼ mk�1 which means that the system’s arrival
rate is stable in two consecutive steps, swill be processed as
follows. If ys > Wsla and ns > nr

mk
, ns is a larger number

which violates SLA and nr
mk

is replaced by ns. For example,
nr
mk
¼ 10 means that providing 10 containers will lead to

SLA violations, but allocating 11 containers is able to guar-
antee SLA. When a new sample is obtained with ns ¼ 13
and ys > Wsla, it means that allocating 13 containers is
already not able to fulfill SLA. Therefore, 13 is a new maxi-
mum number not fulfilling SLA. When ys �Wsla, s is stored
in a hashmap hmk

¼< n; btn > in which container number
n is the key and bucket btn contains average response times
of samples with container number n. For each n, only latest
ten average response times are stored in btn and values with
distances larger than 0:4� averageðbtnÞ from the average
value averageðbtnÞ are filtered. Then averageðbtnÞ is updated
based on filtered values for each n and added to a set Y .
Finally, the third largest value in Y is taken as the reference
response timeWr

mk
. For example, in Fig. 2, the hollow circles

are the third largest average response times whenWsla ¼ 0:1
s. The reason of not selecting the first two largest stable
points is that small workload fluctuations might lead to
SLA violations because the first two largest stable points are
near Wsla. If ns � nr

mk
which means a smaller or equal num-

ber of containers already can fulfill SLA compared with
nr
mk

, nr
mk

is updated to be ns � 1. Whenever a new sample s
is collected from the system, Wr

mk
and nr

mk
are updated as

mentioned above. Only when nr
mk

has been assigned a value

and the number of hashmap’s keys (hkeys
mk

) is larger than
four, the model mk is called mature and added to a mature
model set M

0
. Because immature models do not have suffi-

cient samples to provide appropriate reference points and
lower bounds, they cannot be used.

After s is added to mk, a mature reference model m
0
k ¼

argminm2M 0 f�d ¼ j�m � �j; �d < g
0 g is tried to be found. g

0

is usually set to be larger than g (e.g., 20/s) to allow mature
models to guide more scenarios with larger arrival-rate dif-
ferences. m

0
k ¼ mk only when mk is mature. If m

0
k can be

found, Wr
m
0
k

is selected as the reference response time which
will be used as the reference point of feedback control. Other-
wise, a sampling method is activated to collect more samples
for mk. Let n

s
mk

and nl
mk

be the smallest and largest keys of
hmk

. If ns
mk
� 1 > nr

mk
or nr

mk
¼ null, container numberNk of

current step k is set to be ns
mk
� 1. Otherwise,Nk ¼ nl

mk
þ 1.

Algorithm 1. Automatic Reference Model Learning
(ARML)

input: s, �,mk�1,Wsla

1 Initialize g 5=s, g
0  20=s, Y  ; ;

2 mk  argminm2Mf�d ¼ j�m � �j; �d < gg;
3 ifmk ¼ null then
4 Createmk, �mk

 � andM  M [ fmkg;
5 ifmk ¼ mk�1 then
6 if ys > Wsla and (ns > nr

mk
or nr

mk
¼ null) then

7 nr
mk
 ns;

8 if ys �Wsla then
9 Store s in hashmap hmk

;
10 for each n 2 hkeys

mk
do

11 Calculate averageðbtnÞ;
12 Y  Y [ faverageðbtnÞg;
13 Wr

m  the third largest value in Y ;
14 if ns � nr

mk
then

15 nr
mk
 ns � 1;

16 if nr
mk
6¼ null and jhkeys

mk
j > 4 then

17 M
0  M

0 [ fmkg;
18 m

0
k ¼ argminm2M 0 f�d ¼ j�m � �j; �d < g

0 g;
19 ifm

0
k ¼ null then

20 if ns
mk
� 1 > nr

mk
or nr

mk
¼ null then

21 Nk  ns
mk
� 1;

22 else
23 Nk  nl

mk
þ 1 ;

24 return null,Nk;
25 else
26 returnm

0
k, null;

4.3 Inverse QueuingModel-Based Controller Design

If a mature reference performance m
0
k can be found,

feedback control is applied to follow the reference time
Wr

m
0
k

. The control error is

ek ¼Wr
m
0
k

� yk: (6)

A controller should be designed based on performance
model in Equation (5) and ek. However, designing a feed-
back controller based on the hybrid non-linear performance
model directly is very complex. Therefore, an inverse func-
tion of queuing model is used to linearize the performance
model which simplifies the design of feedback controllers
[19], [30] as shown in Fig. 3. Because it is complex to deduce

Fig. 3. Architecture of hybrid control for container-based web systems.
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an inverse-queuing function from Equation (4) directly, an
exhausted search method is used to implement the inverse-
queuing function to find the corresponding container num-
ber Nk given average response time uk (control input) as
shown in Algorithm 2. According to queuing theory, the
total processing rate Nk � m should be larger than arrival
rate � to make system stable. Therefore, Nk is first initialized
to be d�

m
e. ThenNk is increased one by one based on d�

m
e until

WsðNk; �;mÞ > uk. The queuing function from Nk to u
0
k

(queuing model part) in the performance model is counter-
acted by the inverse-queuing function from uk to Nk. In
other words, u

0
k ¼ uk, if queuing model part is accurate in

describing multi-container systems. Then the linearized per-
formance model is

yk ¼ a� yk�1 þ ð1� aÞu0k�1 ¼ a� yk�1 þ ð1� aÞuk�1;

(7)

and the Z-transfer function [29] of the performance
model is

Y

U
¼ 1� a

z� a
: (8)

Algorithm 2. Inverse Queuing Model (InverseQM)

input: �, m, uk

1 Nk  d�me;
2 whileWsðNk; �;mÞ > uk do
3 Nk  Nk þ 1;
4 return Nk

An integral feedback controller is designed based on
the linear part merely ignoring the queuing model part as
follows:

uk ¼ uk�1 þKI � ek: (9)

Z-transfer function of the integeral controller is

U

E
¼ KIz

z� 1
: (10)

Z-transfer function of the whole feedback system is

FRðzÞ ¼ Y

R
¼

1�a
z�a

KIz
z�1

1þ 1�a
z�a

KIz
z�1

¼ ð1� aÞKIz

z2 þ ½ð1� aÞKI � 1� a�zþ a
:

(11)

Through linearization, queuing theory and feedback control
are combined to provide accurate performance modeling
and feedback abilities simultaneously.

4.4 Adaptive Output Error Mapping Method

In order to keep the system stable, control input uk should
be smaller than Wu

s ¼Wsðnr
m
0
k

; �;mÞ to make Nk larger
than nr

m
0
k

. Meanwhile, uk cannot be smaller than Wd
s ¼

WsðNm; �;mÞ to allocate no more than the maximum num-
ber of available containers Nm. Because nr

m
0
k

is determined
by one sample and may be not accurate. To allow sampling
on nr

m
0
k

again,Wu
s is set to be

Wu
s ¼

Wsðnr
m
0
k

; �;mÞ þWsðnr
m
0
k

� 1; �;mÞ
2

: (12)

The output error ek is used to adjust uk by Equation (9).
However, there are still unavoidable deviation between ref-
erence model m

0
k and profiled performance model as shown

in Fig. 4. When the deviation is too large, uk is likely to
change greatly and exceed the lower or upper bounds
½Wd

s ;W
u
s � of the queuing model part. Let ½Wd

m
0
k

;Wu

m
0
k

� be the
lower and upper bounds of reference model m

0
k which are

the smallest and largest response times smaller than Wsla,
respectively. To guarantee the bounds ½Wd

s ;W
u
s �, an adap-

tive output-error mapping method (AOM) is proposed to
map ek from the reference model space to output error e

0
k in

the queuing model space.

Theorem 1. If output errors of the reference model are mapped to
the performance model in proportional, there are

e0k ¼ ek �Ka (13)

Ka ¼

uk�1�Wd
s

yk�Wd

m
0
k

yk > Wr
m
0
k

Wu
s �uk�1

Wu

m
0
k

�yk Otherwise

8>>><
>>>:

: (14)

Proof 1. It is assumed that ur (unknown) is the target ref-
erence point in queuing model space which is able to
make the system get response time Wr

m
0
k

. Then e
0
k ¼

ur � uk�1. The main objective of the mapping is to find
an appropriate e

0
k to make uk more and more close to

ur. According to Equation (5), a� yk�1 þ ð1� aÞur, a�
yk�1 þ ð1� aÞWd

s and a� yk�1 þ ð1� aÞuk�1 are corre-
sponding values in the complete performance model
(the total of queuing model and linear part) of ur, Wd

s

and uk�1 in the queuing model space, respectively. The
output error in the performance model is epk ¼
ða� yk�1 þ ð1� aÞurÞ � ða� yk�1 þ ð1� aÞuk�1Þ. If values
of the reference model is mapped to the performance

Fig. 4. Mapping from the reference model to profiled queuing model.
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model in proportional, the ratio of ek to yk �Wd

m
0
k

is
equal to the ratio of epk to ða� yk�1 þ ð1� aÞuk�1Þ � ða�
yk�1 þ ð1� aÞWd

s Þ as follows:

ek

yk �Wd
m
0
k

¼ epk
ða� yk�1 þ ð1� aÞuk�1Þ � ða� yk�1 þ ð1� aÞWd

s Þ
¼ ð1� aÞður � uk�1Þ
ð1� aÞðuk�1 �Wd

s Þ

¼ e
0
k

uk�1 �Wd
s

:

(15)

When yk �Wr
m
0
k

, the prove is similar. tu
In order to avoid large fluctuations, Ka is trimmed to 1

when Ka > 1. By replacing ek of Equation (9) using e
0
k, the

integral controller becomes

uk ¼ uk�1 þK
0
I � ek; (16)

whereK
0
I ¼ KI �Ka is called adaptive control gain.

4.5 Queuing-Length-Based Unstable State
Scheduling

When the arrival rate � is larger than the total processing
ability m, the system is unstable and Equations (2), (3) and
(4) are not valid. Therefore, it is not suitable to findNk based
on ek directly. In unstable states, the real queuing length Lr

is larger than LsðNk; �;mÞ and increases continually until
the allowed maximum number of waiting connections is
reached which represents the blocking degree. Therefore, a
queuing-length-based unstable state provisioning method
is applied as shown in Algorithm 3. First, if ns > nr

mk
which

means ns is a larger container number not fulfilling SLA,
nr
mk

is replaced by ns. Given Nk containers, the theoretical
response time ykþ1 of next step is the weighted combination
of current response time yk and expected response time
WsðNk; �;mÞ of queuing models according to Equation (5).
An iterative search is used to find the minimum number of
containersNk making ykþ1 > Wsla based on d�

m
e. WhenNk �

Nk�1, at least one new container should be added every
step. Each second, newly added Nk �Nk�1 containers in
this step can process additional m� ðNk �Nk�1Þ requests.
Nk is increased one by one to make sure that real-time queu-
ing length Lr can decrease to theoretical queuing length Ls

in Tr (e.g., 10) seconds by processing m� ðNk �Nk�1Þ � Tr

additional requests on Nk �Nk�1 containers. Larger Tr

means decreasing queuing length more quickly. Finally, uk

is updated to guarantee that Nk containers are still rented in
the next control step if there is no output errors.

4.6 Formal Description of Feedback_InverseQM

Formal description of Feedback_InverseQM is shown in
Algorithm 4. At first, performance model is profiled using
historical data. For queuing systems, when the real queuing
length Lr is larger than theoretical queuing length
LsðNk; �;mÞ, the system is unstable. Given arrival rate �, at
least N ¼ d�

m
e containers are required to make system stable.

The theoretical response time given N containers is
WsðN;�;mÞ, which is called the largest stable response time.
When yk is larger than the largest stable response time, the
system is unstable too. Because there are still deviations
between the queuing model and real system, the queuing
length is likely to be a little bit larger than the theoretical
queuing length occasionally even if the system is stable. The
above criterion of unstable is too strict, which is likely to
lead to frequent switching between stable and unstable con-
trol making the system fluctuate greatly. Therefore, the sys-
tem is judged to be unstable only when Lr is larger than a

(e.g., 10) times of LsðNk; �;mÞ or yk is larger than b (e.g., 1.2)
times of WsðN; �;mÞ. Giving larger a and b means a more
looser criterion of judging the system to be unstable. If the
system is unstable, QLP is invoked. Otherwise, ARML is
called to get a reference model m

0
k or obtain a sampling Nk.

If m
0
k 6¼ null, Equation (16) is used to obtain uk, and Inver-

seQM is applied to get the real control action Nk. Finally,
the number of containers allocated to the Web system is
adjusted to beNk.

Algorithm 3. Queuing-Length-Based Provisioning (QLP)

input: �, m,Wsla, Nk�1, Lr, yk
1 if ns > nr

mk
or nr

mk
¼ null then

2 nr
mk
 ns;

3 Nk  d�me, Tr  10 ;
4 ykþ1  a� yk þWsðNk; �;mÞ � ð1� aÞ;
5 while ykþ1 > Wsla do
6 Nk  Nk þ 1;
7 ykþ1  a� yk�1 þWsðNk; �;mÞ � ð1� aÞ;
8 ifNk � Nk�1 then
9 Nk  Nk�1 þ 1
10 while m� ðNk �Nk�1Þ � Tr < Lr � LsðNk; �;mÞ do
11 Nk  Nk þ 1;
12 if ðNk � 1Þ � m > � then
13 uk  WsðNk;�;mÞþWsðNk�1;�;mÞ

2 ;
14 else
15 uk  WsðNk; �;mÞ þ �, � is infinitely small;
16 return Nk

Algorithm 4. Inverse Queuing Model Based Feedback
Control (FeedBack_InverseQM)

input: �, Lr, s, yk�1
1 Initialize a 10, b 1:2, yk  ys;
2 mb; c; a Profiling the performance model;
3 m ¼ mb þ c=�, N  d�

m
e;

4 if Lr > LsðNk; �;mÞ � a or yk > WsðN; �;mÞ � b then
5 Nk  QLP(�, m,Wsla,Nk�1, Lr, yk�1);
6 else
7 m

0
k;Nk  ARML(s, �,mk�1,Wsla, yk);

8 ifm
0
k 6¼ null then

9 uk  Equation (16);
10 Nk  InverseQM(�, m, uk);
11 Allocate Nk containers to the system;

5 PERFORMANCE EVALUATION

Our proposed FeedBack_InverseQM is implemented as a
user-level scheduler for Kubernetes. It is compared with
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existing algorithms on a real Kubernetes cluster which
locates on four physical machines with the configuration of
6�12 virtual CPU cores and 8�16 GB Memory. The Kuber-
netes cluster consists of one Master and four Worker nodes.
A service for calculating Fibonacci numbers is adopted as
the test-bed and the input of the service is the length of
the generated Fibonacci series which is selected from the
interval [26,33] for each request randomly. Wsla is 0.1 sec-
ond. Requests of the service are redirected to different con-
tainers by the nginx-ingress-controller using exponentially
weighted moving average (EWMA) as the load-balancing
algorithm [36]. The response time of every request is stored
in the log of nginx, and ASC obtains the average response
time of every minute by reading logs through the java cli-
ent-interface of Kubernetes (JCI). The queuing length and
request arrival rate are obtained by reading status informa-
tion of nginx using the http protocal. Pod auto-scaling
commends generated by ASC are sent to Kubernetes by
changing the value of deployment’s replicas through JCI.
The connection timeout time of nginx is 10 seconds and
the allowed maximum number of connections is 500 per
container. The user access traces of Wikipedia [38] as shown
in Fig. 5 with common peaks and valleys of Web systems
are used to generate requests through JMeter [39].

FeedBack_InverseQM is first compared with Feed-
back_QMDL which is a classical feedback control method
for QoS control based on queuing-model-derived linear
models [17], [18]. Although Feedback_QMCA [30] is tai-
lored for hourly-priced VM provisioning, FeedBack_Inver-
seQM is still compared with Feedback_QMCA by removing
the VM-releasing status checking. Finally, Feedback_Inver-
seQM is also compared with Feedback_InverseP [19] which
is one of the elastic container provisioning algorithms con-
sidering QoS control. Average response times and the total
consumed CUs are metrics of algorithm comparison. The
length of control interval of all algorithms is 250 seconds.
Since FeedBack_InverseQM has an initial sampling period,
the cost of each compared algorithm is only the accumula-
tion of consumed CUs after the initial 500 minutes for fair
comparison.

5.1 Parameter Tunning

The control gain KI determines the poles of the system
which has a great impact on the settle time and overshoot.
Poles can be derived by setting z2 þ ½ð1� aÞKI � 1� a�zþ
a ¼ 0 given KI . For example, poles p1 ¼ 0:44þ 0:32619013j
and p2 ¼ 0:44� 0:32619013j when KI ¼ 0:6. According to
root locus which draws the figure of poles as KI changes
[29], larger KI usually means larger overshoots, and too

small or too large KI are likely to incur long settle times. A
set of candidate values Ski ¼ f0:05; 0:1; 0:15; 0:3; 0:6g are
selected based on root locus. Then the real perfromance of
KI 2 Ski is evaluated by experiments. Figs. 6 and 7 show
consumed container numbers and average response times
of FeedBack_InverseQM with different KI which illustrate
that container numbers of FeedBack_InverseQM changes
more quickly as KI increases in total. For smaller KI , Feed-
Back_InverseQM reacts to excess containers and SLA viola-
tions very slowly. For example, excess containers cannot be
released in time consuming the most cost (2454 CUs) when
KI ¼ 0:05 and SLA is violated for many periods when KI ¼
0:1. On the contrary, for larger KI , the container number
fluctuate fiercely leading to more SLA violations whenKI �
0:3 and extremely large KI ¼ 0:6 even incurs the second
most cost (2290 CUs) because of frequent container allocat-
ing and deallocating. Therefore, KI ¼ 0:15 is finally selected
which obtains the most appropriate control strength leading
to fewer SLA violations and a lower cost simultaneously.

Fig. 5. Request arrival rates of applied Wikipedia access traces.

Fig. 6. Container numbers of FeedBack_InverseQM with differentKI .

Fig. 7. Response times of FeedBack_InverseQM with differentKI .
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According to the performance tuning results of [30], poles of
Feedback_QMDL and Feedback_QMCA are set to be 0.9
and 0, respectively. The pole of Feedback_InverseP is set to
be 0.95 consistent with [19].

To obtain vaules of performance model’s parameters, the
least square method is applied based on historical data
(including average response times, container numbers and
arrival rates) collected from Kubernetes platforms under
0 < a < 0:3, mb > 0 and c > 0 constraints. Without con-
straint 0 < a < 0:3, a > 0:9 is likely to be obtained because
of the similarity between two consecutive response times
which will suppress the impact of the queuing model part.
Constraint c > 0 is used to guarantee that the processing
ability decreases as the arrival rate increases. If mb of the
trained model is smaller than zero, processing ability m will
be smaller than zero when � > c

�mb
which makes the model

meaningless. Therefore, mb > 0 is necessary. For our kuber-
netes-based platform, mb ¼ 7:771, c ¼ 1574:510 and a ¼
0:215 are obtained based on the given historical data which
may change over time. Parameters of the fixed-processing-
rate-based performance model can be acquired similarly by
setting c ¼ 0. Fig. 8 shows real response times and estimated
values of profiled performance models which illustrates
that the proposed varying-processing-rate-based method
(blue dots) describes the system more accurately than the
fixed-request-processing-rate based method (green dots).

5.2 Experimental Results

Table 3 shows percentages of SLA violations and costs
of compared algorithms which illustrate that proposed
FeedBack_InverseQM obtains the lowest percentage of SLA
violation (8.44 percent smaller than that of the best existing
algorithm) with the second lowest cost (2250 CUs) in total.

Fig. 9 shows container numbers and response times of
FeedBack_InverseQMwhich denotes thatmost response times
are smaller than Wsla. Reasons of FeedBack_InverseQM’s
best performance are as follows. First, ARML of FeedBack_
InverseQM is helpful to improving the accuracy of output
errors. Because different arrival rates have different stable
points, samples are collected by ARML to study reference
response times for diverse arrival rates leading to
some fluctuations in the initial stage of Fig. 9. Fig. 2 shows
stable points of two mature reference models with different
arrival rates. In Fig. 10, the studied reference time changes
over time which increases the accuracy of output errors.
Second, AOM of FeedBack_InverseQM is able to improve
control stability. FeedBack_InverseQM is sensitive to out-
put errors when uk�1 is near relatively flatten parts of the
queuing model as shown in Fig. 4. Flatten parts of perfor-
mance models reflect the nature of queuing systems which
enable controllers react to SLA violations quickly. How-
ever, there are unavoidable deviations between the refer-
ence model and the profiled queuing model. Sometimes,
the original output errors based on the reference model are

Fig. 8. Real response times and estimated values of profiled perfor-
mance models using fixed and varying processing rates, respectively.

TABLE 3
Percentages of SLAViolations and Costs

Algorithms SLA Violations Costs

Feedback_InverseQM 2.36% 2250 CUs
Feedback_QMDL 10.80% 2289 CUs
Feedback_QMCA 21.26% 1989 CUs
Feedback_InverseP 52.99% 2487 CUs

Fig. 9. Container numbers and response times of FeedBack_InverseQM.

Fig. 10. Reference response times of control steps with mature models.
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so large which makes uk fluctuate drastically. Fig. 11 shows
adaptive control gains of different steps generated by
AOM which are used to map output errors from the refer-
ence model to the queuing model in proportion to avoid
such fierce fluctuations. Both ARML and AOM make Feed-
Back_InverseQM obtain the most stable performance as
shown in Fig. 9 except the initial sampling stage.

Fig. 12 illustrates that FeedBack-QMDL reacts slowly
to fast arrival-rate changes leading to SLA violations or
delaying the release of excess containers. The reason is that
the output of FeedBack-QMDL is the plus of M/M/N
model’s output and an additional value determined by
feedback control. Meanwhile, different arrival rates need
quite different additional values, and the changing speed of
the additional value cannot meet the requirement when the
arrival rate changes quickly. However, the changing speed
of the additional value cannot be increased by setting
smaller poles (e.g., 0.6) anymore, because it is likely to

allocate or release excess containers incurring more SLA
violations or higher costs for scenarios with slow arrival
rate changing speeds. The main reason is that the changing
speed of the additional value is fixed and linear to the out-
put errors without considering various arrival rates with
different changing speeds.

Fig. 13 demonstrates that FeedBack_QMCA is very likely
to allocate or deallocate excess containers leading to fre-
quent large fluctuations at periods with slow arrival-rate
changing speeds of which the reasons are as follows. In
FeedBack_QMCA, the inaccuracy of queuing model is fixed
by an arrival-rate adjustment coefficient. Experimental
results illustrate that different arrival rates need quite differ-
ent adjustment coefficients. When the arrival rate changes
quickly, it takes a long time to adjust the coefficient leading
to SLA violations or higher costs given small control gains.
Therefore, the current proportional control gain has been
increased as large as possible to speed up the changing
speed of the adjustment coefficient to meet the requirement
of fast arrival rate changes. However, the controller gain,
which fulfills the fast-changed arrival rates, makes the sys-
tem fluctuate when arrival rates change slowly. It is hard to
find an appropriate gain suitable for different arrival-rate
changing speeds. Meanwhile, a fixed reference point is not
able to generate suitable output errors for all arrival rates
which misleads the controller to release or rent excess con-
tainers incurring SLA violations or higher costs.

Fig. 14 shows that the container number of FeedBack_In-
verseP fluctuates fiercely and SLA is violated frequently
although a large pole of 0.95 (long settle times) has been given.
Both FeedBack-QMDL and FeedBack_QMCAuse a gradually

Fig. 11. Adaptive control gains (KI �Ka) of different control steps.

Fig. 12. Container numbers and response times of FeedBack_QMDL.

Fig. 13. Container numbers and response times of FeedBack_QMCA.
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changed additional value or arrival-rate coefficient to amend
the inaccuracy of queuingmodelswhich avoids fierce fluctua-
tion of container numbers. On the contrary, similarwith Feed-
Back_InverseQM, FeedBack_InverseP’s inverse-proportional
performance model is also very sensitive to output errors
when uk�1 is near the relatively flatten parts of the perfor-
mance model. However, a fixed reference point and inconsis-
tency between the inverse-proportional performance model
and the real system cannot always generate appropriate
output errors for different arrival rates incurring fierce fluctu-
ations of container numbers.

6 CONCLUSION AND FUTURE WORK

In this paper, an inverse-queuing-model-based feedback
control method has been proposed to provision containers
to Web systems in Kubernetes-based platforms elastically
for guaranteeing QoS. Experimental results show that the
hybrid of varying-processing-rate-based queuing model
and linear model is able to increase the accuracy of perfor-
mance model. Meanwhile, automatic reference-model
learning and adaptive output-error mapping increase the
accuracy of output errors which decreases the percentage of
SLA-violation by 8.44 percent and obtains the second lowest
cost. Designing container auto-scaling algorithms consider-
ing geography distribution of Cloud, Fog and Edge resour-
ces is promising future work.
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