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Abstract—The organizational valuable data needs to be shared
with multiple parties and stakeholders in a cloud environment
for storage, analysis, and data utilization. However, to ensure the
security, preserve privacy while sharing the data effectively among
various parties have become formidable challenges. In this arti-
cle, by utilizing encryption, machine learning, and probabilistic
approaches, we propose a novel model that supports multiple
participants to securely share their data for distinct purposes. The
model defines the access policy and communication protocol among
the involved multiple untrusted parties to process the owners’ data.
The proposed model minimizes the risk associated with the leakage
by providing a robust mechanism for prevention coupled with de-
tection. The experimental results demonstrate the efficiency of the
proposed model for different classifiers over various datasets. The
proposed model ensures high accuracy and precision up to 97% and
100% relatively and secures a significant improvement up to 0.01%,
103%, 151%, 87%, 96%, 43%, and 186% for average probability,
average success rate, detection rate, accuracy, precision, recall, and
specificity, respectively, compared to the prior works that prove its
effectiveness.

Index Terms—Cloud computing, data leakage, data privacy, data
security, distribution mechanism, machine learning.

I. INTRODUCTION

DATA storage, analysis, and sharing are the essential ser-
vices required by any organization to upgrade its perfor-

mance [1]. Most of the businesses have shifted to the cloud due to
its several benefits such as minimum upfront cost and maximum
scalability for the required services [2]. However, once the data
is transferred for storage and computation purposes in the cloud,
the owners lose control over their data [3]. Multiple entities may
access the data for commercial and/or other purposes after the
data is outsourced [4]. It is not possible to fully trust the cloud
platform because it is handled by the third party [5]. Therefore,
before uploading data onto the cloud, owners first encrypt their
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data for privacy reasons. Although some conventional encryp-
tion techniques are available for the encryption of owners’ data,
such as symmetric and fully homomorphic cryptography, these
techniques are insufficient [6], [7]. However, it becomes difficult
to perform the computation over the encrypted data [8]. There
arises a necessity to protect the owners’ as well as the cloud
data while performing the computation effectively. Furthermore,
the stored and analyzed data must be shared with the various
stakeholders to improve its utility. Although the data is shared
among authorized entities, it cannot be assured that data will
not be leaked by the receiving entities after obtaining it [9].
Thus, it is essential to protect the data from the entities involved
in the communication process. To solve the above-mentioned
challenges, we need an effective access control method that
supports both the privacy and security of the owners’ data. To
the best of the author’s knowledge, no model exists that solves
all the aforementioned challenges. In this regard, we propose a
novel Machine Learning and Probabilistic Analysis based Model
(MLPAM) for data protection through privacy-preserving data
storage and analysis, secure sharing, and identification of guilty
entity against data leakage in the cloud environment. The main
contributions of MLPAM are summarized as follows.

1) To protect the data with enhanced security, all the entities
are considered to be untrusted and MLPAM deals with
involved entities by effectively defining an access policy.

2) MLPAM enables multiple data owners to freely share the
outsourced data. In order to protect the data from stealing
or leakage, the data of each owner is encrypted with a
separate key and shared in encrypted form.

3) MLPAM uses two clouds where cloud1 deals with data
storage, handling, and sharing whereas cloud2 generates
the key for the encryption of owners’ data and performs
the computation over the data obtained from cloud1 for
privacy-preserving classification.

4) An effective distribution mechanism based on an access
control is proposed for data distribution among multiple
users, that enables to identify the guilty entity and reduces
the risk associated with further leakage.

5) A series of experiments are conducted using the widely
adopted datasets by researchers to validate the practicality
of the proposed model. In addition to this, the comparisons
are interpreted among the various a) datasets, b) classifiers,
and c) distinctly preprocessed data using ε-differential
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TABLE I
LIST OF TERMINOLOGIES WITH THEIR EXPLANATORY TERMS

privacy and with the state of the artworks to prove the
superiority of MLPAM.

Organization: The related work is discussed in Section II.
Section III introduces the system and adversary model along
with the problem statement and design goals of MLPAM. The
proposed model is entailed in Section IV. Sections V and VI
describe the applied encryption mechanism and the introduced
classification model, respectively. In Section VII, data is dis-
tributed based on a distribution factor that is computed using
the parameters demanding usersets and data objects sensitivity
discussed in Section VII-A. In Section VIII, multiple proba-
bilistic and performance parameters are evaluated. Performance
analysis of MLPAM is conducted in Section IX followed by the
summary of the proposed work in Section X. Table I depicts
the list of notations with their descriptions that have been used
throughout the article.

II. RECENT KEY CONTRIBUTIONS

A. Security Based on Ciphertext-Policy Attribute-Based
Encryption (CP-ABE)

Wang et al. [10] proposed a File Hierarchy CP-ABE scheme
to secure the data in the cloud environment. This scheme uti-
lized an access structure layered model, which can effectively
resist Chosen Plaintext Attacks under the assumption of Deci-
sional Bilinear Diffie–Hellman. The computation cost increased
dynamically in this scheme when an integrated ciphertext is
computed by the data owner. A data access control scheme
for cloud storage to achieve a fair key reconstruction in which
none of the users send their shares and no one can access the
shared data is proposed by Liu et al. [11]. The experimental
analysis demonstrated that computation delay and communi-
cation costs are limited, but the authentication is not effective
in this scheme. Liu et al. [12] proposed a CP-ABE scheme to

reduce the computation cost of the user, as the cost of heavy
decryption increases with the complexity of access policy. The
performance of the proposed scheme was analyzed by measuring
storage overhead and processing power but it lacks in terms of
privacy protection. To protect the personal privacy of the user
and ensure data confidentiality, Zhang et al. [13] proposed a
framework of the Hidden access Policy CP-ABE scheme. They
designed an identification method to verify the authorized user
and completed the decryption process. This scheme provided
a constant size private key independent of the number of user
attributes and reduced the transmission as well as storage costs.
However, it is considered as a weak security model, because,
only the “AND” policy is supported by it. In order to improve
the efficiency of the policy and file updation dynamically, Li
et al. [14] proposed a CP-ABE scheme based on the linear
secret-sharing schemes (LSSS) matrix access structure in cloud
computing. This scheme reduced the computing cost of data
owner, communication expense, and storage consumption of
the proxy cloud service provider as well as resisted the selected
plaintext attacks. But, the time cost in file updation is more which
is the major downfall of this scheme.

B. Privacy-Preserving Machine Learning

A Doubly Permuted Homomorphic Encryption (DPHE)
based privacy-preserving mechanism that enabled multiparty
protected scalar product is proposed by Yonetani et al. [15],
which reduced the high computational cost. The major disad-
vantage of DPHE is that only one operation either addition or
multiplication is supported at a time. Li et al. [16] proposed
a scheme for a classifier owner to delegate a remote server
and to provide the privacy-preserving classification service for
users. A drawback of this scheme is that the interactions of the
users were frequently involved while launching a classification
query. A data protection scheme is proposed by Li et al. [17],
which enabled a trainer to train a Naive Bayes classifier over the
dataset provided jointly by different data owners. ε-differential
privacy is utilized in this scheme to preserve the privacy of
every owner. In this approach, the collusion is allowed and
adversaries had the ability to forge and manipulate the data. To
solve the problem of training the model over the encrypted data
under multiple keys, a privacy-preserving deep learning model
(PDLM) is proposed by Ma et al. [18]. The model is trained
based on stochastic gradient descent and the feed-forward as
well as a back-propagation procedure is performed based on
a privacy-preserving calculation toolkit. PDLM reduced the
storage overhead but the classification accuracy is less and
the computation cost is high in this scheme. Li et al. [19]
proposed a Privacy-preserving Machine Learning with Multiple
data providers scheme to protect the privacy of the datasets.
Public key encryption with a double decryption algorithm and
ε-differential privacy are used to encrypt the datasets of dif-
ferent data providers and the cloud, respectively. However, the
proposed solution approached with a high computational cost
due to the dependence on integer factorization. Li et al. [20]
introduced a privacy-conserving outsourced classification in
cloud computing framework under various public keys using
fully homomorphic encryption proxy technique. But, the data
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owners and the storage servers are considered in the same
trustworthy domain that is no longer applicable in the cloud en-
vironment. To avoid information leakage under the substitution-
then-comparison attack, a scheme was proposed by Gao
et al. [21]. By adopting a double-blinding technique to protect
data privacy, a privacy-preserving classification mechanism is
designed for Naive Bayes and the communication as well as
computation overhead are reduced. However, the scheme is
not able to achieve the discovery of truth that protects privacy.
Hesamifard et al. [22] proposed a framework named as Cryp-
toDL for applying deep neural network algorithms to encrypted
data. They established neural networking techniques while con-
sidering the existing limitations of homomorphic encryption
schemes. Although the method works well to secure the private
data, the different owners’ data are protected using a key that is
not practical.

C. Security Based on Probabilistic Analysis

The pioneering work in the area of probabilistic analysis to
detect a guilty agent responsible for leaking the data in a cloud
environment named as Guilt Agent Model (GAM) is proposed
by Papadimitriou and Garcia-Molina [23]. This model is based
on statistical analysis where the probability of various agents
for being guilty has been assessed. GAM is widely used by
several researchers for malicious user detection in a shared
data environment. The parameters for guilty agent detection
are improved by Dynamic-Threshold-based Information Leaker
Identification Scheme (DT-ILIS) in [24] over GAM [23]. This
scheme utilized an access control mechanism to distribute the
data among authorized entities. Fan et al. [25] presented a
distribution model for data leakage prevention by considering
the guilt probability. This model selected a file allocation plan
with minimum overlap between obtained file sets of users to
find the leakage sources with high probability. In order to share
the cloud data in a secure manner, a data leakage detection
model (DLDM) that identified the malicious entity by utilizing
an integration of watermarking and probabilistic approach is
presented in [26]. To provide stronger security to the shared data,
DLDM utilized the cryptography and hashing techniques and
protected the confidential information from the unauthorized en-
tity. The advantage of the probabilistic method is that the leaker
identification is independent of the alteration or removal in the
embedded data, unlike the watermarking technique [23], [27].

The major downfall of the existing work is that the models
supported single owners and/or dealt with the single untrusted
entity (UE) only, which is not feasible in the real environ-
ment. Unlike the existing works, MLPAM establishes a robust
mechanism for absolute and efficient data protection in the
sharing environment by contemplating all the involved entities
as untrusted and ensuring the security and privacy jointly in
association with the prevention as well as detection.

III. PROBLEM FORMULATION

This section characterizes the entities involved in the model
with their assigned tasks, all the possible threats that may arise in
the protocol, defines the problem and outlines the design goals.

A. System Model

The system model comprises the four entities Data Owners
(DOid), Cloud Platform (CP ), Request Users (RUid), and Third
Party (TPid) that are described as follows.

1) DOid: An entity generating the information and request-
ing services from CP . DOid encrypts the data prior to
uploading it to CP . Since it is believed that DOid cannot
leak its own data, but may leak the other owner’s data,
therefore, DOid is treated as an untrusted entity.

2) CP : An entity that collects all the encrypted data from
DOid and offers storing, computing, and sharing facil-
ities to DOid or RUid. CP transforms the ciphertexts
sent by DOid, performs certain computations over it, and
encrypts the calculated outcome for secure sharing among
DOid or RUid. CP trains the obtained information using
machine learning algorithms. CP is a semitrusted but
untrusted entity in the model as it follows the protocol
strictly, but curious to learn the information. In our system
model,CP comprises two clouds where cloud1 consists of
Cloud Storage (CS) and Cloud Service Provider (CSP ),
whereas the Classifier (CF ) belongs to cloud2.CSP is the
only entity that acts as a bridge and applies ε-differential
privacy, distribution mechanism, and detection mecha-
nism to perform the tasks of data transformation, data
distribution, and guilty entity detection.

3) RUid: An entity receiving the data from CP in the en-
crypted form along with the key. It obtains the usable data
by performing the decryption over the received data from
CP . In the system model, RUid is treated as an untrusted
entity.

4) TPid: An unauthorized and untrusted entity that belongs
indirectly to the system. TPid can access the relevant
information from a malicious entity or by stealing the
dataset from the authorized entity.

B. Adversary Model

CP and RUid are the authorized but untrusted entities in
MLPAM having permission to access the data owned by DOid.
The following are the possible adversaries in MLPAM that can
misuse the data through an unauthorized way.

1) TPid can corrupt the data owner (DOid; id ∈ [1, n]) for
leaking the data of DOid′ ; id

′ ∈ [1, n] ∧ id′ �= id.
2) TPid can convince Cloud Service Provider (CSP ) to leak

the data shared by DOid; id ∈ [1, n]. Or TPid can corrupt
Classifier (CF ) to leak the data shared by CSP .

3) TPid can deal with Request User (RUid) in order to leak
the data of DOid; id ∈ [1, n] shared by CSP .

4) TPid can try to access the data by stealing it during
communication among DOid, CSP , CF , and RUid.

5) Third Party TPid can acquire the data by stealing it from
DOid; id ∈ [1, n].

6) Third Party TPid can compromise the data by stealing
through any malicious activity from cloud1 or cloud2.

7) Third Party TPid can misuse the data after stealing it from
RUid.
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C. Problem Statement and Design Goals

The multiple Data OwnersDO1, DO2, . . . , DOn possess the
dataD1, D2, . . . , Dn that need to be shared withCP and among
a set of Request Users RU1, RU2, . . . , RUm. The following are
the challenges faced by DO1, DO2, . . . , DOn during sharing.

1) Data sharing comprises the risks of security, privacy,
and leakage. The entities involved in communication
(DOid, CP , RUid) can misuse/leak the shared data
D1, D2, . . . , Dn or unauthorized third party TPid can
obtain D1, D2, . . . , Dn by stealing from DOid, CP , and
RUid or during communication among DOid, CP , RUid.

2) To protect the object Di from DOid; id ∈ [1, n] ∧ id �= i.
3) To protect the owners’ dataD1, D2, . . . , Dn, it is shared in

encrypted form DE
1 , D

E
2 , . . . , D

E
n , but the computations

over DE
1 , D

E
2 , . . . , D

E
n have limited accuracy.

4) IfDE
1 , D

E
2 , . . . , D

E
n is shared along with the key, thenCP

or TPid may obtain D1, D2, . . . , Dn.
The following are the design goals of MLPAM based on the

aforementioned problem statement and the adversary model.
1) To provide DO1, DO2, . . . , DOn with an efficient

method that allows them to share their data
D1, D2, . . . , Dn while preserving security and privacy.

2) To preserve the confidentiality of D1, D2, . . . , Dn via
sharing it among the authorized parties only and by pro-
tecting the data of DOi from other owners DOid; id ∈
[1, n] ∧ id �= i, CP , unprivileged RU1, RU2, . . . , RUm,
and TPid. RU1, RU2, . . . , RUm are entitled to access
D1, D2, . . . , Dn based on the distribution mechanism.

3) To perform the computation over D1, D2, . . . , Dn while
preserving privacy and with improved accuracy and effi-
ciency.

4) To share D1, D2, . . . , Dn by minimizing the likelihood of
leakage and to be capable of detecting the guilty user with
improved accuracy.

IV. PROPOSED MODEL

The architecture of the proposed model called MLPAM
is depicted in Fig. 1. It shows the entities involved along
with the communication among them as well as the critical
blocks with essential flow among these blocks. Let the
owners DO = {DO1, DO2, . . . , DOn} own the data
D = {D1, D2, . . . , Dn} where the data object Di ∈ D is
independent and can be of any type and size. DO need
to share D among authorized parties like Cloud Platform
(CP ) and various users RU = {RU1, RU2, . . . , RUm} for
storage, computation, and performance enhancement, etc.,
but do not aspire D to be leaked to an unauthorized third
party TP = {TP1, TP2, . . . , TPk}. The Classifier (CF )
generates private keys PV K = {PV K

1 , PV K
2 , . . . , PV K

n }
and public keys PBK = {PBK

1 , PBK
2 , . . . , PBK

n }. The
keys PBK

1 , PBK
2 , . . . , PBK

n are shared with Cloud
Service Provider (CSP ), which transfers these to
DO1, DO2, . . . , DOn, respectively. To make the data
private and secure, DO1, DO2, . . . , DOn procure the
encrypted data DE = {DE

1 , D
E
2 , . . . , D

E
n } by applying

an encryption technique along with their individual key

Fig. 1. Proposed MLPAM architecture.

PBK
1 , PBK

2 , . . . , PBK
n . MLPAM utilizes the CP-ABE

scheme to encrypt D1, D2, . . . , Dn because CP-ABE is
considered as the most appropriate technology for data
confidentiality and control of fine-grained data access. It
is a secure and efficient encryption technique that uses
attributes of RU1, RU2, . . . , RUm to encrypt and decrypt
D1, D2, . . . , Dn without any loss and promises access control
policy determined by DO1, DO2, . . . , DOn itself as per the
attributes of RU1, RU2, . . . , RUm [28]. DE

1 , D
E
2 , . . . , D

E
n

are shared with CSP that stores these in Cloud Storage
(CS). CSP transforms the stored DE

1 , D
E
2 , . . . , D

E
n into

encrypted noised data DN = {DN1
1 , DN2

2 , . . . , DNn
n } by

adding random noise over it and transmits it to CF for
computation. The entity CF decrypts DN

1 , DN
2 , . . . , DN

n using
PV K

1 , PV K
2 , . . . , PV K

n individually and obtains the plain

noised data DN ′
= {DN ′1

1 , D
N ′2
2 , . . . , D

N ′n
n } to perform the

classification over it. CF performs the computation using
DN ′

1 , DN ′
2 , . . . , DN ′

n and produces a Classification Model
(CM ). Any query can be made by DO1, DO2, . . . , DOn

or RU1, RU2, . . . , RUm through CSP . The entity CSP
communicates with CF , which receives the results from CM
and sends back to CSP . Afterward, CSP delivers the acquired
results to the corresponding entity DO1, DO2, . . . , DOn or
RU1, RU2, . . . , RUm. Furthermore, RU1, RU2, . . . , RUm

may request the data from CSP that distributes the data
DE

1 , D
E
2 , . . . , D

E
n among RU1, RU2, . . . , RUm after applying

the distribution mechanism. RU1, RU2, . . . , RUm achieve
the plain data D1, D2, . . . , Dn via applying decryption
over DE

1 , D
E
2 , . . . , D

E
n along with the corresponding

keys PV K
1 , PV K

2 , . . . , PV K
n , which are obtained via

communicating with CF . If any RUj ∈ RU leaks the received
data to any TP1, TP2, . . . , TPk then it is called as Guilty User
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(GU ). Allocated datasets are compared with the leaked dataset
followed by statistical evaluation and the GU is identified by
analyzing the evaluated parameters.

V. DATA ENCRYPTION AND DECRYPTION

Let a data owner DOi has data Di, public key PBK
i , and

defines an access policy Θi over the attributes. The data object
Di is encrypted with PBK

i using the following equation:

DE
i = {Θi, D̃i, D

′

i, D(x,y), D
′

(x,y), Ď(x,y),j}. (1)

D̃i and D
′
i are computed by DOi using the following equation:

D̃i = Die(g, g)
zsi D

′

i = gsi (2)

whereas D(x,y) and D
′

(x,y) are calculated using the following
equation:

D(x,y) = h
q
(x,y)(0) D

′

(x,y) = H(att(x, y))
q
(x,y)(0) (3)

where Θi is a policy to access the data Di, e is the bilinear
map denoted by e : GO × GO → GΘ, g be the generator of
GO, and GO be the bilinear group of prime order p. For each
node (x, y) (including the leaf nodes) in Θi, a polynomial q(x,y)
must be chosen from starting with the root node. s, r, z are the
random numbers, whereas a, b are the random exponents that
belong to Zp and h = gb. A hash function H is used to map
the attributes. att is a function that denotes the attributes within
the tree associated with the leaf nodes. Ď(x,y),j for each node
(x, y) and ∀j = 1, 2, . . . , k∗ is computed to obtain the threshold
gate set where k∗ is the level of the tree. DOi ∈ DO do not
rely on CSP for data access control and RU1, RU2, . . . , RUm

get different decryption privileges according to their different
attributes. The encrypted dataDE

i including the access structure
Θi implicitly is uploaded to CSP by DO1, DO2, . . . , DOn.
The attribute sets Υj ; j = 1, 2, . . . ,m are obtained by CSP
in the encrypted form along with SCK

1 , SCK
2 , . . . , SCK

m from
RU1, RU2, . . . , RUm whereSCK

j denotes the secret key ofRUj

related to the attribute set Υj . RUj can decrypt the ciphertext
DE

i and gets the original data Di only if Υj satisfies Θi. DE
i is

decrypted using the following equation:

Di = D̃i/
(
e(hsi , g(a+r)/b)/e(g, g)rsi

)
. (4)

Fig. 2 portrays the encryption and decryption mecha-
nism of MLPAM where RU1, RU2, . . . , RUm can access
D1, D2, . . . , Dn by decrypting the dataDE

1 , D
E
2 , . . . , D

E
n using

the corresponding keys PV K
1 , PV K

2 , . . . , PV K
n after match-

ing of users’ attributes with the access policy determined by
DO1, DO2, . . . , DOn.

VI. DATA CLASSIFICATION

To enhance the accuracy and efficiency of the
computations while preserving privacy, encrypted data
DE = {DE

1 , D
E
2 , . . . , D

E
n } from Cloud Storage (CS) is

transformed into noised data DN = {DN1
1 , DN2

2 , . . . , DNn
n }

using ε-differential privacy [29], [30]. CSP generates a
noise vector N = {N1, N2, . . . , Nn} using a distribution that is
encrypted using public keys PBK = {PBK

1 , PBK
2 , . . . , PBK

n }

Fig. 2. Data encryption and decryption in MLPAM.

correspondingly and encrypted noise vector NE =
{NE

1 , NE
2 , . . . , NE

n } is obtained. The generated data
NE = {NE

1 , NE
2 , . . . , NE

n } is added in the corresponding
data DE = {DE

1 , D
E
2 , . . . , D

E
n } as DNi

i = DE
i +NE

i where
i ∈ [1, n] and the resulted data DN = {DN1

1 , DN2
2 , . . . , DNn

n }
are passed to CF . Using the corresponding private keys
PV K = {PV K

1 , PV K
2 , . . . , PV K

n }, CF decrypts the data
DN = {DN1

1 , DN2
2 , . . . , DNn

n } and attains plain noised data

DN ′
= {DN ′1

1 , D
N ′2
2 , . . . , D

N ′n
n } that undergoes preprocessing to

achieve the preprocessed data D̂N ′
= {D̂N ′1

1 , D̂
N ′2
2 , . . . , D̂

N ′n
n }.

Let ith decrypted data D
N ′i
i consists of Δ attributes A = {A1,

A2, . . . , AΔ}, it is preprocessed by using the normalization
function given in (5), where At is the training sample, μ and σ
are the mean and the standard deviation of the training sample,
respectively

D̂
N ′i
i =

(At − μ)

σ
. (5)

It is known that the data D̂N ′
= {D̂N ′1

1 , D̂
N ′2
2 , . . . , D̂

N ′n
n }

belongs to n∗ ≤ n classes C = {C1,C2, . . . ,Cn∗} where
∪n∗i=1Ci = D and Ci ∩Cj = ∅∀i, j = 1, 2, . . . , n∗ ∧ i �= j. The

data D̂N ′
= {D̂N ′1

1 , D̂
N ′2
2 , . . . , D̂

N ′n
n } is divided into training

data D̂N ′
t′ = {D̂N ′1

t,′1, D̂
N ′2
t,′2, . . . , D̂

N ′
n∗∗

t,′n∗∗} and testing data D̂N ′
t′′ =

{D̂N ′1
t,′′1, D̂

N ′2
t,′′2, . . . , D̂

N ′
n∗∗∗

t,′′n∗∗∗} satisfying the following proper-

ties: 1) D̂N ′
t′ ∪ D̂N ′

t′′ = D̂N ′
; 2) D̂N ′

t′ ∩ D̂N ′
t′′ = ∅; 3) n∗∗, n∗∗∗ ≤

n; and 4) n∗∗ = n× x, n∗∗∗ = n× (1− x), where x ∈ Z ∧
0 ≤ x ≤ 1 for the Classification Model (CM ). The train-

ing data D̂
N ′1
t,′1, D̂

N ′2
t,′2, . . . , D̂

N ′
n∗∗

t,′n∗∗ is used to train CM uti-
lizing machine learning algorithms, whereas the testing

data D̂
N ′1
t,′′1, D̂

N ′2
t,′′2, . . . , D̂

N ′
n∗∗∗

t,′′n∗∗∗ is used to evaluate the ac-
curacy of CM . During the testing process, data objects

D̂
N ′1
t,′′1, D̂

N ′2
t,′′2, . . . , D̂

N ′
n∗∗∗

t,′′n∗∗∗ are given to CM to identify their

classes. CM analyzes D̂
N ′1
t,′′1, D̂

N ′2
t,′′2, . . . , D̂

N ′
n∗∗∗

t,′′n∗∗∗ and produces
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Fig. 3. Workflow of data classification.

a Label Vector L = {L1, L2, . . . , Ln∗∗∗} as an output, where

Li′ ∈ L specifies Ci ∈ C to which D̂
N ′

i′
t,′′i′ ∈ D̂N ′

t′′ pertains. The
Classification Accuracy (CA) is measured using (6), where
CN signifies the number of correctly classified items and TN
implies the total number of test items. The stepwise process for
classification of data D1, D2, . . . , Dn is depicted in Fig. 3

CA =
CN

TN
. (6)

VII. DATA DISTRIBUTION

Let D = {D1, D2, . . . , Dn} is the dataset consisting n inde-
pendent data objects in the relational form owned by n different
owners DO = {DO1, DO2, . . . , DOn}, which are stored on
cloud storage CS in encrypted form by CSP . The stepwise
process along with essential blocks for the data distribution is
presented in Fig. 4.

A. Demanding Usersets and Sensitivity Computation

The m distinct users RU1, RU2, . . . , RUm send the de-
manding datasets Y1,Y2, . . . ,Ym where Yj ⊆ D, ∪mj=1Yj ⊆
D, and Yj ∩ Yj′ ⊆ D∀j, j′ = 1, 2, . . . ,m ∧ j �= j ′ that are used
to compute demanding usersets Z1,Z2, . . . ,Zn for each data
object Di using Zi = {RUj |Di ∈ Yj}∀i = 1, 2, . . . , n.

Let the object Di has Ω tuples T = {T1, T2, . . . , TΩ} and
Δ attributes A = {A1, A2, . . . , AΔ}, out of which Δ∗ are
sensitive attributes S = {S1, S2, . . . , SΔ∗} and Δ∗∗ are quasi-
identifier attributes Q = {Q1, Q2, . . . , QΔ∗∗}. A Grading Func-
tion assigns a weight 0 ≤W ≤ 1 to object Di, sensitive at-
tributes Sα; (α = 1, 2, . . . ,Δ∗) of Di, quasi-identifier attributes
Qβ ; (β = 1, 2, . . . ,Δ∗∗) of Di, every possible value Vγ of
Sα, and each possible value Vδ of Qβ as per their sensitiv-
ity by satisfying the following properties: 1) 0 ≤WDi

≤ 1;
2) WS1

+WS2
+ · · ·+WSα

= 0.9; 3) WQ1
+WQ2

+ · · ·+
WQβ

= 0.1; 4) 0 ≤Wα
Vγ
≤ 1; 5) 0 ≤W β

Vδ
≤ 0.1, where Wα

Vγ

and W β
Vδ

signify the weight of possible value of Sα and Qβ

attribute, respectively. For a large number of possible values
Vγ ∈ Sα or Vδ ∈ Qβ , W is assigned to Vγ or Vδ by clas-
sifying the domain of Sα or Qβ relatively. The cumulative
weight W ∗ ∈ [0, 1] ∧W ∗ ∈ R≥0 for the possible values of Sα

and Qβ attribute is computed using Wα∗
Vγ

= Sα ×Wα
Vγ

and

W β∗
Vδ

= Qβ ×W β
Vδ

, respectively. The Formative Tuple Sensi-
tivity Measure TSMF

η ∈ R≥0 is computed for each tuple η ∈

Fig. 4. Distribution process.

Di(1 ≤ η ≤ Ω) using (7) where Wα∗
η and W β∗

η represent the
weight assigned to the ηth tuple of Sαth and Qβ th attribute,
respectively

TSMF
η =

Δ∗∑
α=1

Wα∗
η +

Δ∗∗∑
β=1

W β∗
η ∀η = 1, 2, . . . ,Ω. (7)

The Cumulative Tuple Sensitivity Measure TSM ∗
η ∈ R≥0

is obtained by computing the ratio of TSMF
η to the Identity

Coefficient ICη ∈ [1,Ω] ∧ ICη ∈ Z+ as shown in (8), where ICη is
the number of repetitions as a unit of quasi-identifier’s values
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V 1
δ , V

2
δ , V

Δ∗∗
δ of tuple η in Di

TSM ∗
η =

TSMF
η

ICη
. (8)

The evaluation of Formative Object Sensitivity Measure
OSMF

Di
∈ R≥0 followed by the assessment of Cumulative Ob-

ject Sensitivity Measure OSM ∗
Di
∈ R≥0 is performed in (9) and

(10), respectively

OSMF
Di

=

Ω∑
η=1

TSM ∗
η (9)

OSM ∗
Di

= WDi
×OSMF

Di
. (10)

The Standardized Object Sensitivity Measure OSM ∗∗
Di
∈

R≥0 ∧OSM ∗∗
Di
∈ [0, 1] is calculated using (11) where ρC ∈

R≥0 ∧ ρC ∈ [0, 1] is the Worth Coefficient. OSM ∗∗
Di

and ρC

imply the sensitivity of the object Di and worth of the object
having maximum sensitivity, respectively

OSM ∗∗
Di

=
OSM ∗

Di

maxi=1,2,...,n OSM ∗
Di

+ (1− ρC)
. (11)

B. Distribution Mechanism

The objects D1, D2, . . . , Dn are categorized into λ ≤ n
classes C∗ = {C∗1,C∗2, . . . ,C∗λ} having property ∪λ

i=1C∗i = D,
C∗i ∩C∗i′ = ∅∀i, i′ = 1, 2, . . . , λ ∧ i �= i′ ∧C∗i,i′ ⊆ D by classi-
fying the range of OSM ∗∗

Di
completely and disjointly. The range

of the ith category is (i− 1)ζ ≤ C∗i < iζ and (λ− 1)ζ ≤ C∗λ ≤
1 where ζ = 1

λ
. A Sensitivity Index SIi ∈ R≥0 ∧ SIi ∈ [0, 1]

using (12) and a Limit CoefficientLCi ∈ Z≥0 ∧ LCi ∈ [0, 100] are
assigned to the ith category C∗i ∈ C∗∀i = 1, 2, . . . , λ

SIi =

{
1, i = λ

Round
[(
(i− 1)×

(
1

λ−1
))

, 2
]
, otherwise.

(12)

LCi indicates the lower limit in the percentage of users for Di

allocation. SI and LC assigned to class C∗i are SI and LC of
all Di ∈ C∗i . The Distribution Factor DFi ∈ [0, |RU |] ∧ DFi ∈
Z≥0 for each Di is computed employing (13) that defines the
count of users for Di allocation

DFi = �∗min

(
1,

(
1− SIi +

LCi
100

))
× |Zi|. (13)

CSP selects the datasets Y ∗1 ,Y
∗
2 , . . . ,Y

∗
m for distribution

amongRU1, RU2, . . . , RUm that minimizes the risks associated
with data leakage from

∏n
i=1

(Zi

DFi

)
possible datasets allocations.

The operational summary for MLPAM data distribution is delin-
eated in Algorithm 1. Object FlagOFj is initiated to 1 for every
RUj that indicates the request of RUj to be processed. The
user selection is followed by object allocation and the process
is repeated until all the requests are processed. The steps for
user selection are depicted in Algorithm 2, where the ℵth user
is selected on a rotation basis having OFℵ less or equal to the
number of requests by RUℵ. For the selected user ℵ, initiating
from object-identity equals object flag to the total number of
requests, an object Di is allocated with a positive data allocation
factor, which is reduced by 1 after the object allocation.

Algorithm 1: MLPAM Distribution Mechanism.

Input: n, m, Y1,Y2, . . . ,Ym, Zi, DFi ∀i = 1, 2, . . . , n
Output: Y ∗1 ,Y

∗
2 , . . . ,Y

∗
m

1: Initialize: Y ∗1 ← ∅,Y ∗2 ← ∅, . . . ,Y ∗m ← ∅,
OFj ← 1∀j = 1, 2, . . . ,m

2: while
∑n

i=1 Zi > 0do
3: ℵ ← SELECT_USERm, |Y |, OF
4: for � = OFℵ ;� ≤ |Yℵ|;�++ do
5: if DF [Y [ℵ][�]] > 0 then
6: Y ∗ℵ = Y ∗ℵ ∪ {Y [ℵ][�]};DF [Y [ℵ][�]]−

−;OFℵ ++;
∑n

i=1 Zi −−
7: BREAK
8: else
9: OFℵ ++;

∑n
i=1 Zi −−

10: end if
11: end for
12: end while

Algorithm 2 MLPAM User Selection
1: Initialize: ℵ∗ = 1, ℵ∗∗ = 0
2: FunctionSELECT_USERm, |Y |, OF
3: (ℵ∗ == m+ 1)⇒ (ℵ∗ = 1)
4: If (OFℵ∗ ≤ |Yℵ∗ |) ? ℵ∗∗ = ℵ∗; ℵ∗ ++ : ℵ∗ ++;

ℵ∗∗ = SELECT_USERm, |Y |, OF
5: return ℵ∗∗
6: end function

VIII. GUILTY USER DETECTION

If any RUj leaks the dataset 	 ⊆ D to an unauthorized party
TPk ∈ TP , then the following parameters are calculated for the
identification of Guilty User (GU ): 1) Probability (Pb) of RUj

for being GU (Pb{GUj
|	})∀j = {1, 2, . . . ,m}; 2) difference

function (
∗(j,k)(GU ))∀j, k = {1, 2, . . . ,m}; 3) average suc-
cess rate (
∗); 4) detection rate (min
∗) using (14)–(17), re-
spectively [24], where θ is the probability of stealing any Di ∈ 	
by TPk ∈ TP either from DOi ∈ DO or RUj ∈ RU having
access to Di. It is believed that the obtained Di ∈ D by TPk ∈
TP in case of 1) leakage through DOi′ ∈ DO where i′ �= i,
CSP , and CF 2) stealing from cloud1, cloud2, and communi-
cation amongDOi ∈ DO,CSP ∈ CP ,CF ∈ CP , andRUj ∈
RU will not be usable since it is in encrypted DE

i (using distinct
public keys PBK

1 , PBK
2 , . . . , PBK

n ) or noised DN
i form

Pb

{
GUj
|	
}

= 1−
∏
∀Di∈(�∩Y ∗j)

(
1− (1− θ)

DFi

)
(14)


∗(j,k) (GU ) = Pb

{
GUj
|Y ∗j

}
− Pb

{
GUk
|Y ∗j

}
(15)


∗ =

∑
j,k={1,2,...,m}

j �=k

∗(j,k) (GU )

m(m− 1)
(16)

min
∗ = min
j,k={1,2,...,m}

j �=k


∗(j,k) (GU ) . (17)

ARUj ∈ RU fulfilling the criteriamaxj=1,2,...,mPb{GUj
|	} −

Pb{GUj
|	} ≤ TH is declared as GU where TH signifies the

threshold value. Furthermore, the parameters Detection
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Accuracy (DA), Detection Precision (DP ), Detection Recall
(DR), and Detection Specificity (DS) are computed using
(18)–(21), respectively, to prove the effectiveness of MLPAM
by classifying the users as Guilty User (GU ) and Nonguilty User
(NGU ) and via assessing the outcome of MLPAM, whether the
user is guilty or nonguilty. In these equations, |NGA

U = NGE
U |

specifies the number of test cases having Actual Nonguilty
Users (NGA

U ) equal to the Estimated Nonguilty Users (NGE
U ),

|GA
U = GE

U | is the term representing the count of test cases
where Actual Guilty Users (GA

U ) are identical to the Estimated
Guilty Users (GE

U ), |GA
U = NGE

U | demonstrates the number of
test cases in which actual guilty users are estimated as nonguilty
users, whereas |NGA

U = GE
U | deals with the number of test

cases when actual nonguilty users are estimated as guilty users

DA =

|NGA
U = NGE

U |+ |GA
U = GE

U |
|NGA

U = NGE
U |+|GA

U = NGE
U |+|GA

U = GE
U |+|NGA

U = GE
U |

(18)

DP =
|GA

U = GE
U |

|GA
U = GE

U |+ |NGA
U = GE

U |
(19)

DR =
|GA

U = GE
U |

|GA
U = GE

U |+ |GA
U = NGE

U |
(20)

DS =
|NGA

U = NGE
U |

|NGA
U = NGE

U |+ |NGA
U = GE

U |
. (21)

The computational and space complexities are
O(max1≤j≤m |Υj |), O(1); O((n∗∗)3), O((n∗∗)2);
O(

∑m
j=1 |Yj |), O(

∑m
j=1 |Yj |); O(m2 max1≤j≤m |Y ∗j |),

O(m2) for various phases data encryption and decryption,
data classification, data distribution, and guilty user detection
of MLPAM, respectively. The complexity analysis of MLPAM
implies that the data is protected by the aid of endurable time
and space, which establishes its potency.

IX. PERFORMANCE EVALUATION

A. Experimental Setup

A series of experiments have been conducted over four dif-
ferent datasets Glass, Iris, Wine, and Balance Scale with 10, 4,
13, 4 attributes and 214, 150, 178, 625 instances, respectively,
that are taken from the UCI Machine Learning Repository [31] to
trainCM using machine learning algorithms. The four different
classifiers Support Vector Machine (SVM), Random Forest,
K-Nearest Neighbor (K-NN), and Naive Bayes have been used
to train CM over the training data. These experiments are
performed on Intel Core i7-7700 CPU@3.60 GHz eight-core
processor with Ubuntu 14.04-amd64 operating system, 8 GB
RAM machine using Python 2.73 for encryption and machine
learning, and C++ 12.1 for guilty user detection.

B. Computation Time for Encryption/Decryption

The computation time for the encryption and decryption pro-
cesses over the various datasets is shown in Fig. 5(a) and (b),

Fig. 5. Computation time (ms) for various datasets: (a) TE and (b) TD .

respectively. It is observed that the time costs of the encryption
and decryption grow linearly with respect to the number of
attributes associated with the access policy. Furthermore, the
comparison among different datasets has been performed in
terms of encryption time (TE) and decryption time (TD). It
is found that both encryption and decryption time varies with
respect to the dataset for the fixed number of attributes. For
instance, BS has maximum encryption time for 2 and 5 attributes,
but it is not true for other numbers of attributes. However, Iris
has minimum encryption time for 2 and 3 attributes, which is not
true for 4 and 5 attributes. BS has minimum decryption time for
all number (2–5) of attributes, whereas wine has maximum de-
cryption time for all attributes excluding 3. CP-ABE is effective
to reduce the computation cost because the user can determine
the matching result without the interaction with the initiator.

C. Accuracy of Classification Model

From the complete dataset, 9/10 of the data is used as training
data, whereas the rest of the data is taken as testing data. The
machine learning is performed over both clean and noised data.
To generate the noised data, we have used the Gaussian and
the randomly generated mechanisms with the value of privacy
level 0.1. The outcome of the noised data is compared against
the clean data to find the variations. Furthermore, a comparison
is performed among Gaussian and Random noised data to find
the superior one. The outcome of CM is measured using the
testing data and the Classification Accuracy (CA) is computed.
Fig. 6(a)–(d) shows the CA achieved by CM of MLPAM
over Clean, Gaussian noised, and Random noised data and also
depicts the comparison among Glass, Iris, Wine, and BS datasets
for SVM, Random Forest, KNN, and Nave Bayes classifier,
respectively. It is observed that CA of the noised data is less
compared to the clean data in the case of all the four classifiers
because of the noise addition but still, CA is nearly equal for
noised data and also provides more security compared to the
clean data. Furthermore, out of the two noised added data, the
Gaussian noised data outperforms over the Random noised data
in the case of all the four classifiers. The performance of datasets
and classifiers in descending order are Iris, Wine, BS, Glass;
and SVM, Random Forest, Naive Bayes, K-NN, respectively.
Out of the four datasets, the Iris dataset outperforms the rest
of the three dataset for all the four classifiers. For the Clean
and Gaussian noised data, the SVM classifier outperforms the
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Fig. 6. Accuracy of CM in MLPAM for (a) SVM, (b) Random Forest, (c) K-NN, and (d) Naive Bayes classifier.

rest three, whereas for the Random noised data, Naive Bayes
outperforms over the other classifiers. As an aggregate, the SVM
classifier outperforms the rest three classifiers in MLPAM due to
the application of kernel trick and considerable optimal margin
gap between separating hyperplanes during classification, which
results in better performance.

D. Parameters for Guilty User Detection

Five hundred data objects are shared among ten users and
the requests of RU1, RU2, . . . , RUm are generated randomly
in MLPAM. λ = 11,LCi = 0.1∀C∗i ∈ C∗, θ ∈ {0, 0.1, 0.3, 0.5},
and TH = 0.0E + 00, 0.0E + 00, 1.0E − 06, 7.75E − 05 has
taken into consideration throughout the experiments. The per-
formance is assessed with respect to the Weight Factor, which

is calculated as WF =
∑m

j=1 Yj

|D| . The experimental results are
compared with GAM [23] and DT-ILIS [24] via implementing
these on the same platform.

The average probability
(∑m

j=1 Pb{GUj
|Y ∗j}

|RU |

)
when all RUj

have leaked their allocated datasets Y ∗1 ,Y
∗
2 , . . . ,Y

∗
m, Average

Success Rate (
∗), and Detection Rate (min
∗) for the pro-
posed and the comparable schemes are computed with respect to
WF at different θ = 0, 0.1, 0.3, 0.5 in Tables II–IV, respectively.∑m

j=1 Pb{GUj
|Y ∗j}

|RU | = 1 is noted for all three GAM [23], DT-
ILIS [24], and MLPAM∀WF and θ = 0, 0.1, whereas the values

of
∑m

j=1 Pb{GUj
|Y ∗j}

|RU | are depicted in Table II for θ = 0.3, 0.5. The
following are the observations from Table II.

1) Probability to detect GU is very high ∀WF , θ.

2)
∑m

j=1 Pb{GUj
|Y ∗j}

|RU | decreases with respect to θ as chances
of stealing rather than leaking the data become high with
increment in θ.

3) Probability of the proposed and compared schemes is
nearly the same, but, in the proposed scheme, the differ-
ence between the probabilities of GU and NGU is high
(see Tables III and IV) that makes the scheme capable to
identify GU with high accuracy.

In Tables III and IV, the values of 
∗ and min
∗ decrease
with respect to WF since the overlapping among the datasets
Y ∗1 ,Y

∗
2 , . . . ,Y

∗
m raise with increment inWF . Furthermore, 
∗

and min
∗ increase with respect to θ due to increment in
the probabilities difference of GU and NGU . The Detection

TABLE II
AVERAGE PROBABILITY COMPARISONS FOR DIFFERENT θ

Accuracy (DA), Detection Precision (DP ), Detection Recall
(DR), and Detection Specificity (DS) achieved by MLPAM
with respect to θ, and comparison against [23], [24] are shown
in Fig. 7(a)–(d), relatively. MLPAM secures DA 80%, 97%,
97%, 96%, DP 72%, 95%, 100%, 99%, DR 100%, 99%, 93%,
92%, and DS 60%, 95%, 100%, 99% for θ = 0, 0.1, 0.3, 0.5,
respectively, that are very high and acceptable over existing
methods [23], [24]. An average for all the three parameters∑m

j=1 Pb{GUj
|Y ∗j}

|RU | , 
∗, and min
∗ is calculated individually
for each θ. The improvement attained by MLPAM over [23]
and [24] for each parameter individually with respect to θ is
depicted in Table V. MLPAM achieves relative improvement up
to 0.0088064%, 102.83%, 151.31%, 86.54%, 96.08%, 43.08%,

185.71% for
∑m

j=1 Pb{GUj
|Y ∗j}

|RU | , 
∗, min
∗, DA, DP , DR, and
DS, respectively, which supports its effectiveness. Moreover,
Table VI depicts the comparison of complexities and it is indi-
cated that both the computational and space complexities are the
least in MLPAM as compared to GAM [23] and DT-ILIS [24]
due to the effectual data allocation strategy in the proposed
model. Additionally, we have performed a comprehensive fea-
ture analysis along with a comparison of MLPAM against the
state of the artworks [1], [13], [18], [23], [24]. It can be seen from
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TABLE III
AVERAGE SUCCESS RATE COMPARISONS FOR DIFFERENT θ

TABLE IV
DETECTION RATE COMPARISONS FOR DIFFERENT θ

TABLE V
IMPROVEMENT SECURED BY MLPAM (IN % TERM)

Table VII that MLPAM is the only model that synchronously
supports multiple untrusted entities, owners, users, and ensures
as well as significantly enhances several indispensable features
simultaneously; therefore, MLPAM performance is better than
the existing models [1], [13], [18], [23], [24].

TABLE VI
COMPUTATIONAL AND SPACE COMPLEXITY COMPARISON

E. Security Analysis

In our system model, all the authorized entities DOid, RUid,
CSP , CF , and an unauthorized entity TPid are deemed as
untrusted; and MLPAM protected the data from every involved
entity. To protect the data of an owner DOid; id ∈ [1, n] against
a) leakage by other owners DOid′ ; id

′ ∈ [1, n] ∧ id′ �= id or
CSP to TPid b) stealing by TPid from cloud1

/
DOid; id ∈

[1, n]
/
RUid or during communication amongDOid,CSP ,CF ,
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Fig. 7. (a) Detection Accuracy, (b) Detection Precision, (c) Detection Recall, (d) Detection Specificity secured by MLPAM.

TABLE VII
FEATURES ANALYSIS COMPARED TO EXISTING MODELS

and RUid, the data is encrypted with a distinct key and shared
in encrypted form. Furthermore, for protecting the data against
leakage byCF or stealing by TPid from cloud2, while perform-
ing the analysis with high accuracy, the data is shared in noised
form and MLPAM achieved a significant classification accuracy
up to 92%. However, if any RUid leaks the data intentionally to
TPid or somehow, TPid becomes successful in stealing the data
fromDOid; id ∈ [1, n]

/
RUid, then the data is protected through

leaker identification via performing probabilistic analysis. The
experimental results signified that MLPAM is capable of recog-
nizing a GU effectively by securing up to 1 Pb, 0.791441 
∗,
0.390156 min
∗, 97% DA, 100% DP , 100% DR, and 100%
DS that validates its robust security.

X. CONCLUSION AND FUTURE WORK

This article proposed a novel model named MLPAM for
effective data protection in a real Cloud environment. To provide
the stronger security, all the involved entities are considered to
be untrusted and a robust mechanism is provided in the model
by exploring every possible threat that may arise during data
flow among the involved parties. MLPAM presented an effective
sharing protocol to mitigate the loss due to data leakage. An
influential distribution mechanism is proposed for data allo-
cation and to detect a guilty entity with high confidence. The
evident experimental results depicted that the guilty entity can
be distinguished easily in the proposed scheme, which proves its
effectiveness. MLPAM attained a significant improvement up to
186% over the existing works and simultaneously secured sig-
nificant Detection Accuracy, Precision, Recall, and Specificity
compared to the prior works that support its high performance.
The comprehensive analysis and performance of the model
over the well-known datasets and comparison with the existing
works demonstrated that MLPAM is more secure, efficient,
and optimal. MLPAM lays a foundation for future secure and

efficient data sharing and management in multiple environments
like Internet of Things, Big Data, etc. Furthermore, the request
users might become capable of acquiring the data objects that
are not allocated among these users through the use of shared
keys. The emerged issue is referred to as future work and can
be resolved by employing the set of distinct keys for the data
objects.
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