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Performance-Aware Management of Cloud Resources:

A Taxonomy and Future Directions
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The dynamic nature of the cloud environment has made the distributed resource management process a
challenge for cloud service providers. The importance of maintaining quality of service in accordance with
customer expectations and the highly dynamic nature of cloud-hosted applications add new levels of com-
plexity to the process. Advances in big-data learning approaches have shifted conventional static capacity
planning solutions to complex performance-aware resource management methods. It is shown that the pro-
cess of decision-making for resource adjustment is closely related to the behavior of the system, including the
utilization of resources and application components. Therefore, a continuous monitoring of system attributes
and performance metrics provides the raw data for the analysis of problems affecting the performance of the
application. Data analytic methods, such as statistical and machine-learning approaches, offer the required
concepts, models, and tools to dig into the data and find general rules, patterns, and characteristics that define
the functionality of the system. Obtained knowledge from the data analysis process helps to determine the
changes in the workloads, faulty components, or problems that can cause system performance to degrade. A
timely reaction to performance degradation can avoid violations of service level agreements, including per-
forming proper corrective actions such as auto-scaling or other resource adjustment solutions. In this article,
we investigate the main requirements and limitations of cloud resource management, including a study of
the approaches to workload and anomaly analysis in the context of performance management in the cloud.
A taxonomy of the works on this problem is presented that identifies main approaches in existing research
from the data analysis side to resource adjustment techniques. Finally, considering the observed gaps in the
general direction of the reviewed works, a list of these gaps is proposed for future researchers to pursue.
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1 INTRODUCTION

Cloud computing as an on-demand, pay-as-you-go environment has been modelled based on two
main concepts of elasticity and virtualization. The inherent flexibility brought by these techniques
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in the area of high-performance computing is accompanied by the complexity of managing dis-
tributed resources while meeting the expectations of the users. The emergence of the public Cloud
Service Providers (CSPs) — such as Amazon and Google, which are extending the scientific limited
applications of the cloud environment to industrial, academic, and personal use cases — makse the
need for more advanced and complex resource management solutions highly important.

The main goal for CSPs is to find better ways of using resources while maintaining the stip-
ulations of the service level agreements (SLAs) as expected. SLAs are contracts among CSPs and
customers to maintain the minimum Quality of Service (QoS) delivered by the offered applications.
Breach of the SLAs costs the CSPs both money and their reputation. Considering dynamic charac-
teristics of the cloud, including unreliability and heterogeneity in resources and workloads, simple
static resource planning solutions do not work. Therefore, traditional resource management infras-
tructure is extended with monitoring modules that can provide timely information on the perfor-
mance of the application along with the resource utilization of system components. The collected
data from monitoring the system and application provide a source of highly valuable information
about the health of the system. On the other hand, advances in data-learning methods have pro-
vided missing parts of data-aware performance management, offering all the concepts and tools
for analyzing data to find patterns, trends, and interesting changes in the behavior of monitored
components. The integration of two parts of performance data analytics and automated resource
management brings new challenges and opportunities in both areas of theoretical concepts and
practical implementation. In this article, we aim to identify the major challenges and correspond-
ing solutions to the problem of dataaware performance analysis and resource management in the
cloud. We present a taxonomy to depict various perspectives of performance management in the
cloud, covering all aspects of data collection, analytics, and resource adjustment solutions.

1.1 Related Surveys and Our Contribution

Although there are a number of survey and review articles identifying various aspects of data anal-
ysis or cloud resource management, they are more focused on one side of the problem without con-
sidering the requirements of other parts of data-oriented performance management frameworks.
For example, Chandola et al. [19] present a survey discussing the general concept of abnormality
in data, including various types of anomalies and applications of anomaly detection in the context
of different problems. The article presents a high-level review of specific data requirements as well
as mathematical models and algorithms such as classification and clustering methods to extract
hidden information on existing patterns or features of data. Ibidunmoye et al. [51] investigate the
anomaly problems in specific areas of performance analysis and bottleneck identification in com-
puting systems and applications. They present various factors contributing to performance anom-
aly problems, including the types of bottlenecks, the granularity of knowledge expected from data
analysis, and possible algorithms to solve these problems. On the other hand, Qu et al. [91] present
a taxonomy on the resource scaling problem, focusing on the challenges of distributed resource
management in the context of large web applications hosted on cloud platforms. They identify the
challenges of dynamic resource management to meet specific requirements of web applications
and categorize various scaling solutions to manage resource requirements of the application.

In contrast to these works, our work has a more integrated view of the problem of performance-
aware resource management in the cloud. It covers both areas of application-dependent workload
analysis and anomaly detection techniques and their contribution to resource management, par-
ticularly auto-scaling methods as the main resource level solutions for cloud-hosted applications.
We have also tried to specifically cover the works that integrate both sides of performance data
analysis and corresponding resource adjustment techniques, implementing the complete circle of
performance monitoring and data collection, data analysis, planning, and decision-making, and
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Fig. 1. The taxonomy of data-aware performance management in clouds.

the execution of selected actions. Moreover, we have a more updated review of the recent works
in the area as well as new discussions on the research gaps and directions for future researchers.
We also present a taxonomy of the source of performance-related problems, data analysis methods,
and strategies to detect and handle anomalies, including scaling techniques.

1.2 Article Organization

The rest of the article is organized as follows: Section 2 describes the main blocks of data-aware re-
source management and existing challenges, followed by listing the most influential factors in this
area. Section 3 introduces two main approaches in using data as a source of extra knowledge for
resource management. Sections 4 to 8 review different characteristics of data analysis and resource
management modules based on the categories identified in the taxonomy. Section 9 discusses the
main gaps and directions for future researchers and Section 10 presents our conclusions.

2 BACKGROUND

The concept of resource management in the cloud environment encompasses all the techniques
and procedures that help to adjust the configuration of resources according to the demands of the
users and applications in the system. For example, auto-scaling solutions are based on a charac-
teristic that allows system resources to expand or shrink at different levels of granularity (virtual
machines [VMs], CPUs, RAM, etc.) automatically according to the perceived state of the system.
To be clear about these concepts, we pursue the following definitions in the rest of the article:

Performance Indicators: All of the measurable attributes from the resources and applications
that demonstrate the degree of functionality of the corresponding unit in the system. These indi-
cators continuously change over time and are initial sources of information for the health of the
system. For example, the time it takes to load a page, known as response time (RT) from a web-
based application, is the most perceptible sign of whether the system is performing at the expected
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level. Longer than usual RTs trigger the warning of having some sort of the problem, requiring
technical considerations from the system administrators.

System State: State or behavior of the system is an abstract representation of all of the oper-
ational attributes and performance indicators of the system that can be recognized in normal or
abnormal/anomalous conditions.

The main indicators of an abnormal state are the presence of unexpected patterns or values in
the performance indicators of the system.

Performance Degradations are caused by the abnormal behaviors when they affect the per-
formance indicators adversary. For example, in the case of the increase in the number of requests
(increased demand from customers) to a web server, if current resources cannot handle the newly
received requests, the RT observed by users will increase. The unacceptable increases in RT are
considered as performance degradation that should be avoided. One solution can be to add new
resources corresponding to the overloaded component of the application so that the amount of
resources is in accordance with the incoming load to the system.

Considering these definitions, any automated Resource Management Module (RMM) is dealing
with two main challenges:

When is performance degradation happening in the system? In an ideal, highly reliable environ-
ment where no abnormal behavior is expected and applications show consistent behavior with
a stable performance, traditional static scheduling solutions will work and dynamic scaling of
resources is not required. However, in a real environment with a wide range of internal and ex-
ternal factors that can affect the behavior of the system, performance degradation has become
an important challenge to be dealt with accurately. There is a wide range of causes identified for
these problems, from fluctuations in the incoming workload to malfunctioning hardware or buggy
software that can affect the performance of the application or VMs. Therefore, the onset time of
the degradation should be known so that a proper and timely corrective action can be initiated.
Monitoring sensors that follow the performance of each component generate vast amount of data,
which include hidden patterns and signs of the health of the system. Previously, we had to rely on
the expertise of human operators to skim data and find suspicious behavior. However, consider-
ing the scale of the data generated from thousands of machines located in different geographical
locations, the manual approach is no longer feasible. Therefore, researchers have started to take
advantage of advanced data analytics methods and more powerful and cost-effective computing
hardware to automate and accelerate the process. This results in better-quality knowledge of the
performance of the target systems.

What type of corrective action should be performed? In order to alleviate the performance prob-
lems of the system, the RMM should start a corrective action in the form of load redistribution,
resource provisioning, migrations, and the like. Current resource providers, such as Amazon or
Azure, offer migrations or simple threshold-based scaling services that change the number of VMs
in the system. There are also more customized resource management policies, such as on-the-fly
changes in the resource configuration of one VM, which is offered by some CSPs, such as [89].
The selection of proper action can be dependent on many factors, including technical or business
limitations and type of problem. We have identified some of the most important factors, as follows:

• Technical limitations: Virtualization is the key concept for cloud models. It enables host-
ing different applications or the components of one application independently on one phys-
ical machine (PM) with a migration option available to move them to other PMs without
significant downtimes in the system. Currently, many public resource providers such as
Amazon and Microsoft Azure offer the required environment for CSPs to host their ap-
plication on VMs and dynamically add/remove VMs in the system. There are also more
fine-grained controls available to configure resources at the VM level, defined as vertical

ACM Computing Surveys, Vol. 52, No. 4, Article 84. Publication date: August 2019.



Performance-Aware Management of Cloud Resources: A Taxonomy and Future Directions 84:5

scaling. In this process, the size of the VM can change on-the-fly without any rebooting of
the VMs. However, the functionality needs support from both hypervisor and the kernel of
the VM. Currently, providers such as Amazon [5, 12] and Microsoft Azure do not support
this functionality.

• Business considerations: There are a vast amount of the resources offered by cloud re-
source providers with various pricing strategies. For example, Amazon offers on-demand
instances with hour/seconds-based pricing or much cheaper reserved instances with long-
term contracts [5]. There are different pricing rules for vertical scaling of VMs, such as the
offered rules by [89]. CSPs should consider these options when deciding on the configura-
tion of their system and scaling policies. As a result, selecting the best action will be limited
by the available budget predefined by the application owners. For example, in the case of
a budget shortage, some levels of performance degradations may be acceptable from the
owner’s perspective.

• Root cause of the problem: In traditional threshold-based scaling, changes in the num-
ber of VMs is the most common response to performance problems in the system. However,
there are a wide variety of reasons — from hardware faults to local software bugs in the ap-
plication or security issues, such as Distributed Denial of Service (DDoS) attacks — that can
create the signs of performance degradation. In cases in which resource shortage is not the
main reason for the problem, adding new instances to the system may temporally alleviate
the problem, but it is not optimal as a long-run solution. Moreover, as vertical scaling is be-
coming more prominent as a scaling option, having the knowledge of the underlying reason
has become more important to formulating more cost- or resource-effective solutions. For
example, in the case of a local memory shortage in one VM, a VM-level increase of available
memory may be more effective than adding new VMs. A more detailed explanation of the
pros and cons of these types of decisions are presented in Section 8.

• SLA agreements: SLA agreements are contracts between users and CSPs that identify the
expected QoS received by customers. These expectations are usually based on the outputs
of the system perceivable by customers, such as the availability of the service or the delays
in response. Having specific requirements for the output of the system may limit available
choices of the RMM. For example, CSPs may consider overprovisioning as a better option
than dynamic scaling to manage high loads in the system when having a stable response
time is highly important for the customers.

2.1 Data-Aware Resource Management

Motivated by the aforementioned challenges and requirements, researchers are leveraging various
tools and concepts to offer more mature solutions for cloud resource management. An area that
has been vastly investigated is data analytic techniques, which are bringing new opportunities and
challenges in the area of distributed performance management. In order to apply these techniques,
researchers are focusing on the obtainable knowledge from the data collected from performance
indicators of the system and applications. It has been shown that these data are a valuable source
of information on the health of the system and a starting point for detecting initial symptoms
of abnormal behaviors. Based on the selected performance data to be monitored, the approach
to the abstraction and modeling of the system, and the actions that are performed to mitigate
the performance problems, different types of resource management strategies are proposed. In
order to better understand the building blocks of these solutions, we first briefly review four main
components of the data-aware performance management framework in the following paragraphs.

The main parts of automated resource management in the cloud can be explained based on a
classic control loop known as MAPE (Monitor, Analyze, Plan, Execute) [53], which is shown in
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Fig. 2. General phases of a data-aware performance manager in the cloud.

Figure 2. The performance of the system is continuously monitored and a range of attributes from
resources and applications is collected. The collected data are cleaned, modelled, and analyzed
to identify any symptom of changes in the normal behavior of the system. Finally, based on the
output of the analysis phase, a proper action is selected and the target components are informed
to start the execution of the action. We briefly explain each phase and list the related categories of
the taxonomy to each part below.

Monitoring: The performance of the system can be tracked by collecting the values of the at-
tributes from the components of the system. These attributes include all of the workload metrics,
system traces, network features, or performance indicators of the system, such as CPU and mem-
ory utilization, number of incoming requests, number of threads, or response time of the applica-
tion. The data level part of the taxonomy indicates different levels of the data collected during
the monitoring phase.

There are a variety of tools to help monitor and collect data from system components, including
the Top and Iostat packages or Ganglia framework [37]. One can select a proper tool based on
factors such as the granularity of data to be collected, level of access to the system components,
scalability, and characteristics of the system.

One point worth mentioning is how to select a proper monitoring interval time. The interval
can be as short as 1 second or as long as 1 hour. Smaller intervals make it possible to capture the
fast-changing patterns or fluctuations with higher accuracy. However, the amount of the storage
required for keeping all of the recorded data and overhead of processing and cleaning the data
significantly increases. Selecting larger intervals reduces the overhead and required storage, but
the possibility of missing or delayed detection of changes in the pattern of the performance data
increases, which can cause delayed triggering of the corrective actions and more SLA violations.
One should select a proper interval considering the trade-off between accuracy and computation
complexity, reliability of the environment, and type of the application [6, 104]. For example, one
approach is to define the sampling interval as a function of dynamicity of application by following
the pattern of changes in the workload or performance indicators and adjusting the sampling
interval accordingly. Another approach follows a fine-grained dynamicity analysis that considers
the behavior of the metrics separately. In this approach, the monitoring intervals can be tuned
at the metric level by having larger intervals for the metrics with no change points in past data.
Smaller intervals are selected for highly dynamic metrics whose changing behavior is directly
impacting the performance indicators of the application.

Analyzing: Two main blocks of the data analyzer module are data preparation and performance
modeling/analyzing. All steps required for cleaning and filtering, dimensionality reduction, build-
ing the models, analyzing new observations, and deciding on the model updates when the state of
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the system changes are parts of this phase. A wide range of techniques and algorithms can be used
to learn a model based on the historical behavior of the system. The Data Learning Approach

and Performance Analysis Approach parts of the taxonomy present different categorization of
existing methods for this phase.

Planning: The inputs for the planning module are the information about the current or future
state of the system from the analyzer, current configuration of the resources from the application
environment, and the objectives and constraints from customers or resource providers. Depend-
ing on the obtained knowledge, the module can select from a range of possible actions, such as
adding/removing VMs, changing the configuration/placement of multiple VMs, or inbound traffic
balancing. Decisions can be formulated based on past experiments and knowledge about possible
causes of changes in the system. Therefore, the process can be implemented as a simple sequence
of if-else rules or, at a larger scale, as a database that can map a combination of influential param-
eters to their corresponding mitigation action. The subcategories presented in Figure 5 focuses on
this phase. A detailed explanation of possible actions can be found in Section 8.

Execution: This is where the final execution of planned actions in the system is performed.
The module uses existing libraries and APIs to communicate with application components or de-
ployed VMs to add new resources, remove the idle ones, change the configurations of existing
VMs, or update load balancer configuration files. This phase concerns the development strategies
and techniques that are out of the scope of the current research.

In the following sections, we present different aspects of a data-aware resource management
solution based on the categories shown in Figure 1 and subcategories presented in Figures 4 and 5.
Based on the categories and identified approaches, we map each work to corresponding features
in Table 2 to give the readers a quick view of the main contributions of each work.

3 PERFORMANCE MANAGEMENT IN THE CLOUD

Monitoring tools collect a valuable source of the data to be analyzed and provide a timely update on
the performance state of the application and resources. Data-learning approaches offer researchers
all of the necessary concepts and tools to sift through the collected data and predict the future be-
havior or find interesting patterns of unexpected behaviors or anomalies with their possible causes.
In this section, two main approaches for analyzing the performance of the system are presented.

3.1 Workload-Driven Performance Management

Performance of the system can be modelled and predicted based on workload-related features such
as the number of requests received or amount of processing required at each time interval. Di et al.
[30] propose a method for long-term load prediction in Google data centers. They consider load
in the system as the main factor affecting the performance of the system and ignore other sources
of data. In order to have a better representation of the statistical properties of the load, including
trends and seasonality, different metrics based on load measurement values are derived. The pre-
diction is done by training a Bayes classifier and exploiting a time window approach, which is a
suitable way to smooth high fluctuations in the load. However, other types of anomalies that can
be directly related to specific performance metrics cannot be detected in this approach, meaning
that unexpected behavior can occur in the system, possibly causing negative impacts on the user
experience. Work presented by Cetinski and Juric [18] considers a single attribute, number of re-
quired processors at a certain time, to estimate the utilization of resources. They expand the train-
ing dataset by introducing new attributes based on similar patterns in historical data. The results
show that these new attributes improve the prediction accuracy of the Random Forest algorithm
compared with the K-Nearest Neighbor algorithm. However, their prediction does not include the
concept of unexpected behaviors resulting from various anomalous sources. VScaler, proposed by
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Yazdanov and Fetzer [122], leverages a combination of workload prediction and reinforcement
learning (RL) to automatically scale VM resources considering the user-provided SLAs. The RL
approach in this framework helps to automate the learning process, considering the uncertainty
of the environment in the form of changes in the workload model of the application. Another
work, by Yang et al. [121], presents a cost-aware resource auto-scaling mechanism that consid-
ers both costs of adding new VMs and business software licenses during a scaling up procedure. A
combination of linear ion-based workload prediction, integer programming–based prescaling, and
threshold-based real-time scaling is introduced for capacity planning and resource management.
Real-time scaling can be considered a reactive step to compensate for prediction errors, but the
simulation-based validation of this approach ignores many complexities and time requirements of
mentioned methods; thus, these assumptions must be carefully verified.

In the workload-explained performance management approach, the changes in the pattern of the
workload are the primary influential factor that can affect performance and, hence, the resource
decision-making of the system. The definition of the workload is dependent on the application
and can be demonstrated as the number of requests sent to an interactive application such as web-
based systems, number of tasks/jobs running in the system, and so on. One can also consider the
resource demands of the jobs to be processed at each time as a representation of the existing load
of the system. However, this assumption should be verified, whether resource consumption is a
sole function of the load of the target application or the dynamic factors, such as the effect of
background applications and sharing of resources, are considered in the process.

3.2 Anomaly-Aware Performance Management

A different approach to addressing the problem of performance management targets the abnor-
mality in system behavior as a starting point for possible problems to be addressed by the RMM. In
the context of big data–enhanced solutions, these performance problems are considered as outliers
and anomalies in the data that can be identified by using a variety of methods, such as statistical
or machine-learning algorithms. Therefore, we first define anomaly in a general context. Then, the
problem of identifying anomalies in the context of the cloud is explained and existing works that
follow this approach are discussed in more detail.

3.2.1 What are Anomalies? Anomalies are the patterns in the data that do not conform to the
usual behavior of the observed data. The concept of anomalies and anomaly detection are very
general and presented under different names, including outliers and novelty detection, finding sur-

prising patterns in data, and fault or abnormal behavior detection in systems [19]. These areas have
been investigated over a long period of time as part of medical and clinical data clustering, image
processing and surveillance cameras, financial fraud detection, and several other applications.

3.2.2 Performance Anomaly Identification in the Cloud Environment. In the general definition of
anomaly detection, the goal is to model the normal behavior of the system so that any unexpected
change in patterns can be seen as an anomaly. However, considering the user-centric approach in
resource management decisions in the cloud, application owners are more interested in the events
that can affect the performance of the system and degrade the QoS experienced by the user. We
refer to all of these events as performance anomalies. Considering that performance degradations
can cause resource wastage, loss of reputation, and cost penalties for cloud service and resource
providers, many researchers have investigated the relation between measurements from the sys-
tem and application-dependent performance indicators to have a better understanding of different
causes of performance problems. We identify three levels of knowledge obtained from the process
of performance anomaly analysis as shown in Figure 3, which are detailed below.
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Fig. 3. Different levels of knowledge from performance anomaly analysis.

Performance Anomaly Detection: The goal of a data analyzer module at the performance
anomaly detection level is to find any abnormal pattern in the behavior of the system that can
be a symptom of performance problems. Therefore, the input for these frameworks is usually the
system and application performance indicators while the output is a performance alert when an
anomaly is detected in the system. Having this goal and considering the fact that a correlation of
different metrics can be related to various types of anomalies, Guan and Fu [45] present an au-
tomatic anomaly identification technique for adaptive detection of performance anomalies such
as disk- and memory-related failures. Their proposed method investigates the idea that a subset
of principal components of metrics can be highly correlated to specific failures in the system. A
combination of the neural network method and adaptive Kalman filter is used in a procedure of
learning from historical data, updating the prediction models based on the current prediction er-
rors and adapting to the newly detected anomalies to improve detection performance. The work
presented in [25] focuses on two general categories of anomaly sources, workload-related and
performance-related data in streaming servers. They justify this separation as a requirement to
select the best repair action in response to degradations caused by targeted faults. A feature se-
lection procedure based on naïve Bayes is employed and the most relevant features are reported.
Ashfaq et al. [10] target the problem of anomaly detection from a new perspective, highlighting the
scalability problem of data analytic solutions for resource management issues in the cloud environ-
ment. They propose a general framework for anomaly detection based on splitting feature space
into multiple disjoint subspaces and applying anomaly detection methods on each subspace sepa-
rately. The idea behind using feature space slicing is to decrease the likelihood that a high number
of normal instances can average out the effect of a few dispersed numbers of malicious instances
during anomaly identification. Since this approach requires higher computation resources, as it
needs to run multiple simultaneous instances of the algorithm on different subspaces, it is more
suited for high-performance computing platforms.

Behavior Identification Architecture (BARCA) [23] is a framework for online identification of
anomalies in distributed applications. It divides the anomaly detection process into two steps. First,
a one-class classifier distinguishes normal behavior from unexpected behavior. Then, a multiclass
classifier is used to separate different types of abnormal behaviors. The framework generates time
series of different collected performance data and extracts new features, such as skewness and
mean of data, which better represent the characteristics of the time series and help to reduce the
dimensionality of feature space.

The abovementioned works target the reactive anomaly detection problem in the cloud
environment. In order to be able to move the system back from the abnormal to normal state with
minimum negative impact, we need to know about the probability of having abnormal values
in the future. In proactive approaches, systems are able to exhibit goal-directed behavior by
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anticipating possible future abnormalities and taking action [50]. Gu and Wang [43] investigate
proactive anomaly detection in data stream processing systems. Their proposed solution includes
a phase of predicting resource utilization and then applying an anomaly identification algorithm
on predicted data. Considering time sensitiveness of streamed data, the proposed procedure
is online and the classifier will be updated periodically based on the new data. To address the
prediction problem, they apply a Markov chain to capture changing patterns of different metrics
to predict future resource utilization. Markov chains are based on the idea that the future state
depends only on the current state and not past values. This assumption can be problematic,
especially for data with recurrent patterns and events. Tan et al. [105] address this problem by
integrating a 2-dependent Markov model as the predictor with tree-augmented naïve (TAN)
Bayesian networks for anomaly detection. Another study by [26] investigates unsupervised
behavior-learning problems for proactive anomaly detection. The proposed framework uses
self-organizing maps (SOMs) to map a high-dimensional input space (performance metrics) to a
lower-dimensional map without losing the structural information of original instances.

Performance Bottleneck Identification: Performance bottleneck identification goes one level
deeper in the process of finding anomaly events in the data, trying to find possible bottleneck
metrics that are closely related to the observed performance degradations as well. This approach
is closely related to the problem of resource management, as it targets finding possible system
resources that need to undergo a reconfiguration so that the provided resources meet the require-
ments of the application. Tan et al. [105] leverage TAN to distinguish the normal state from ab-
normal ones and to report the most related metrics to each type of anomaly. Canonical correlation
analysis and Support Vector Machine (SVM)–based feature selection are used by the FD4C frame-
work [116] to diagnose faults in web applications. They use a recursive approach based on feature
elimination to rank the most important metrics for each type of the anomaly. Xiong et al. [118]
have a different approach for detecting performance bottlenecks. They try to find the most relevant
metrics in the performance of the application and follow the changes in these metrics as a sign of
performance problems. However, they show that the predicted metrics are also good indicators of
the source of analyzed performance problems, pointing to the source host and type of bottleneck
resource. UBL presented in [26] uses the topological properties of SOMs to compare the anomaly
and normal states and identify the metrics that are different between these states as faulty metrics.

Performance Anomaly Cause Inference and Diagnosis: The aforementioned anomaly detec-
tion approaches mostly focus on detection of abnormal symptoms and a coarse-grained identifi-
cation of the possible resource level metrics that contribute to performance degradation. However,
none of them digs deep into the data obtained from the application to find the underlying reasons
for the observed problems. Indeed, identified bottleneck metrics can be indicators of having an ap-
plication or VM level fault or inconsistency in the system: for example, high incoming load to the
application or a faulty loop in the software code that saturates the CPU of the VM or the problem
of VM/application contentions, which may cause degradations in memory utilization.

We can identify different directions in the fine-grained analysis of the source of the faults. First,
we identify works that aim to localize the source of the fault to one component, such as nodes, VMs,
or application components. For example, the works done in [82, 83] address the fault localization
problem in distributed applications. The proposed frameworks combine the knowledge of inter-
component dependencies with change point selection methods, taking into account that abnormal
changes usually start from the source and propagate to other nonfaulty parts based on component
interactions.

Another direction is to distinguish among different types of faults. Dean et al. [28] propose
PerfCompass, which analyzes the generated system calls to distinguish between internal and
external faults. They focus on software-related bugs, such as endless loops, as the target internal
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Fig. 4. Source of performance problems.

faults. Cid-Fuentes et al. [23] apply a set of the SVM-based binary classifiers to distinguish among
livelock, deadlock, and starvation faults.

To achieve a more fine-grained identification of causes, Dean et al. [27] propose PerfScope to
analyze the anomalies occurring due to the software bugs of the application. The framework stud-
ies the patterns in system calls and tries to find anomalous interactions between user and kernel.
Triage [109] is another failure diagnosis online software package that identifies the conditions as
well as the code and variables involved in the failure state. TaskInsight, presented in [124], focuses
on thread and process-level performance information, which helps to localize the problem to the
target anomalous task.

3.2.3 Cloud Performance Anomaly Root Causes. Cloud application owners typically start to al-
locate resources based on the recommended application requirements and then change resource
configurations by continuously monitoring performance indicators to find performance violations.
The root cause of these performance problems can vary widely, as shown in Figure 4.

Hardware faults include the problems that originate from corrupted or performance-degraded
hardware that host target applications [31, 113]. Software-related problems can be caused by a
buggy code in the application or misconfiguration that causes inconsistency in the functionality of
software or interactions among components. This type of problem also can be caused by network-
related bugs and misconfiguration that happen at the application level, including reported bugs in
Skype, MySQL, or IPv6 compatibility issues [125].

Security problems, including attacks, are another source for unexpected behaviors caused by
unusual pattern of requests, such as successful port-scans and attacks on the application server. A
wide variety of literature targets this area, proposing various types of intrusion detection systems
based on the concepts of statistical feature analyzing, classification, and clustering [10, 47, 65]. In
order to identify these types of the problems, one needs to collect network layer datasets, including
packet header information or the frequency of sender IP addresses to detect unusual patterns in
the requests [10, 96]. Other sources of data to help recognize access patterns to the application are
server log files, which record the history of authentication and user access requests over time.

Resource shortage issues are another reason for performance problems when the lack of enough
resources to satisfy existing requests causes service interruptions and degradation in performance.
The limitation can be owing to budget constraints or business policies that do not allow adding
extra resources to the system or that reduce the amount of existing resources. Unexpected termi-
nation of services performed by resource providers is one example of problems that can expose
the system to degradation of performance and throughput [90].

Bottleneck issues are another reason for the performance problems that are caused by insuf-
ficient resources in one or more components of the application. The problem can be due to the
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specific requirements of offered services, such as working with CPU-intensive software, and the
lack of consistency among application demands with provided resources. Another example is the
effect of background processes, which can temporarily saturate the resources of the machine,
ignoring the requirements of other installed applications. It is worth noting that if the components
are dependent and have interactions, the bottleneck problem in one part of the system can quickly
affect other dependent components. As a result, performance issues will propagate in the system,
causing application performance degradation [43].

4 TARGET

The body of literature regarding performance-aware resource management addresses the effec-
tiveness of triggered actions from different perspectives in terms of the target area of the final
solution. We distinguish two main factors that can affect this decision and, accordingly, design of
the proposed frameworks. These factors are explained in this section.

4.1 Users

To establish a distributed, shared, pay-as-you-go environment, different players with hetero-
geneous and even conflicting objectives should be able to cooperate. Current literature mostly
recognizes 3 main players/layers—cloud resource provider (CRPs), CSPs, and final users—as
contributing roles in the design of resource management frameworks [87]. CRPs, also known as
infrastructure providers, provide access to the pool of resources in the form of physical machines,
storage, networks, and other types of resources that are necessary for creating a distributed
computing environment. This can be provided as direct access to the physical resources or through
virtualization technologies, usually via VMs. CSPs perform as the interface between CRPs and
the final users, offering a range of services hosted on computing resources leased from CRPs. The
final users are the customers that demand the cloud-hosted services by sending requests and data
through predesignated interfaces. The separation of the layers is not always clear; sometimes,
more than one role can be performed by one entity. For example, some CRPs also offer customized
software packages as a service without the intervention of third-party providers [40]. Another
approach distinguishes a broker layer that acts as a mediator between CRPs and CSPs. The broker
has the information from both parties, including the user SLA and resource prices, and usually
performs negotiations with multiple resource providers to find the offer that best meets the SLA re-
quirements [15]. Although these layers each have their own responsibilities, from our perspective
in the study of performance management, we identify two main groups as the target users:

• Cloud users/application owners who have access to the application-dependent information,
including the code-level data, components design, workload patterns, and QoS requirements
at the VM level

• Resource providers/owners who have information on the hardware characteristics of PMs
and make decisions on VM allocation/placements

Depending on the target users, resource management can be adapted to address the improvements
of measurable metrics to favor one or both groups [36, 123]. The selection of the target users can
affect the selection of the objective as well as the source of the data to be processed in the learning
procedure. The objective of the RMM determines the direction of decision-making in terms of the
measurable metrics to be improved. Moreover, each group of users has access to different sources
of data and can help the RMM decision-making through managing various parts of application,
network, and hardware configurations. We have explained these concepts in Sections 4.2 and 6. It
is worth noting that, in all cases, while one user group may be mentioned as the main executer of a
proposed solution, other groups can also be involved when the final decisions indirectly affect their
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respective goal attainment. For example, CSPs may need to be considered when the final decisions
(such as VM migrations/scalings) can violate budget constraints or predefined security concerns.

4.2 Objectives

Depending on the beneficiary of the proposed solutions, a variety of metrics are selected as the
objective of improvements during resource management decision-making. As shown in Figure 1,
we identify 4 main categories with regard to target objective metrics. It is worth noting that a
combination of these objectives is usually considered in an optimization problem based on trade-
off or through a list of the constraints provided by users.

• Energy: Energy-aware solutions try to minimize the power consumption of a system
through a variety of mechanisms including application optimizations, dynamic scaling, VM
configuration, and allocation and consolidation techniques [74]. Energy consumption of a
system is usually calculated with regard to the resource utilization of PMs. Consolidation
techniques concern the minimization of the active PMs by placing VMs so that the VMs
can be used effectively while reducing the number of underutilized PMs as much as pos-
sible [59, 95]. VM placement [69, 95] and VM reconfiguration, including hardware tuning
techniques [107], are other solutions that try to save energy by improving the performance
of machines and reducing the power usage of hardware components. Load distribution is
also among traditional approaches of SLA-aware resource management, which can also be
used for the purpose of energy saving by prioritizing low-energy or renewable powered data
centers during the resource allocation process [85]. These solutions are mainly focused on
resource provider objectives and require direct access to the resources and information that
may not be available for the service providers. In contrast, solutions that address the energy
problem from service providers’ perspective focus on component-level optimization of ap-
plications and green software designs [88, 119]. For example, [119] proposes an algorithm
to dynamically select application components to be deactivated as a response to perfor-
mance degradation in an overloaded machine. This helps the cloud service to be responsive
to the users during high loads on the system by keeping the nonessential components of
the applications in suspended mode.

• Cost: Considering the model of pay-as-go as the basis of cloud systems, market-based mod-
els focus on the monetary value of offered resources and services for cloud providers and
consumers [32, 63, 123]. These models provide solutions to optimize the total cost of exe-
cuting tasks considering a variety of pricing models. Resource utilization metrics — such as
memory and CPU consumption, storage, and bandwidth — are among measurable metrics
to be identified as cost indicators in proposed solutions. The cost-effectiveness of a final so-
lution usually inversely impacts the QoS values (higher delays or runtime). Therefore, it is a
common approach to consider a trade-off between the cost and target performance metrics
as the objective function to reduce or penalize the adverse impacts on QoS [63, 101].

• SLA: Alternatively, a large body of literature addresses the problem of resource manage-
ment with more customized approaches to target specific application requirements. These
requirements are usually noted in the SLA contracts and their violations incur penalties. A
variety of indicators—such as response time, service up-time, and scalability—are included
in this category [58, 100, 123]. For example, [123] addresses the availability-aware resource
provisioning by considering service agreements on the minimum accepted up-times.
The violation of these SLAs causes penalties that are taken into account in addressing
optimization problems.

• Security: Security-aware solutions offer mechanisms to protect the safety and integrity of
users, data, applications, and underlying infrastructure [20]. Alongside intrusion-aware
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frameworks, which make use of traffic- or VM-related data to detect possible attacks on
the application, this category also deals with policies to protect data, including user data
provided to the application or user behavior patterns. A variety of solutions are combined
to secure the integrity, availability, and confidentiality of data during phases of the data life
cycle in the system [20]. These solutions can be coarse-grained approaches, including VM
migration/placements and workload isolation or fine-grained solutions that directly target
data security by encryption, isolation, and cleansing techniques [29].

5 ARCHITECTURE

In an environment with geographically distributed resources, decisions regarding placing and in-
teraction among components can highly affect the performance of the system and corresponding
corrective actions. Various factors — such as the amount of available storage, resource demands,
or the speed of information dissemination — can contribute to these decisions. In the following,
we briefly discuss three main approaches for the placement of different components of a resource
management framework in the environment.

5.1 Centralized

Traditional frameworks to analyze the health state of the system typically follow a centralized
approach. In a centralized structure, all data from local components, including performance indi-
cators and resource configurations, are sent to a master node. The master node is responsible for
maintaining a continuously updated model of the whole system and triggers alarms when a per-
formance problem is detected. All of the tasks regarding workload prediction, resource utilization
estimation and performance problem analysis is done at this module [24, 56, 93].

An advantage of a master node approach is to have all system-related performance information
in one place; in this manner, one can analyze the interactions and relation among the metrics
at different layers and track the fault propagation among connected components. However, as
the scale of the system increases, there will be more components and resources to be monitored,
usually in geographically distributed regions. The process generates a huge volume of collected
data to be transferred and analyzed in one place. This makes system modeling and abstraction
as well as triggering a proper resource management action to be traversed across all involved
resources super complex, computationally intensive, and time-consuming.

5.2 Distributed

In a dynamic and scalable system, administrators are more inclined to deploy computing modules
as decentralized components [43, 92, 105]. Therefore, each VM/PM or small clusters of machines
in the system will have a local analyzer dedicated to processing locally collected monitored data to
model the behavior of the system and locally decide the resource configurations. This approach can
be easily deployed and has higher scalability and manageable computation time. Moreover, failures
in one node do not affect the functionality of the remaining processing modules. This approach
is also used in the fog-computing–based Internet of Things (IoT) infrastructure to model a fine-
grained connectivity that extensively uses the advantages of having multiple layers of distributed
computing for a highly scalable environment to connect people and devices [72]. Distributed com-
puting helps to significantly decrease decision-making time, as it deals with smaller environments
(monitoring one VM or host compared to the whole environment) with a reduced amount of data
or problem-causing factors.
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5.3 Hierarchical

While distributed architecture solves the scalability issue of centralized approaches, the lack of a
central manager makes it hard to include the interaction and dependency among components dur-
ing analysis. Each module has an abstract performance model of its local environment, completely
ignoring the effect of any external factors such as the dependency among different layers of multi-
tier applications. Moreover, distributed modules do not have a big picture of the system to decide
on resource adjustments at higher levels of granularity, such as adding new VMs. As a solution
for this problem, one can consider a combination of centralized and distributed architecture in a
hierarchal model, where each monitored component has a local analyzer module to get up-to-date
information on local behavior and trigger local corrective actions [68, 79]. A summary of the local
state of the component can also be shared to a central module [2, 82]. The central module uses a
combination of knowledge from local states, the dependency among components and high-level
information of the functionality of local components to create a general model of behavior for the
whole system. This approach combines the scalability and flexibility of distributed methods with
systemwide knowledge of the centralized master node, which helps the system to respond to local
problems quickly while having enough knowledge to plan for global problems.

6 DATA-LEARNING APPROACHES

The data-learning module of the RMM receives a set of the raw data as input and tries to extract
up-to-date information on the performance state of the system to be sent to the decision-making
module. Depending on the objective of the solution, as described in Section 4.2, the required metrics
are collected from the system and processed with a variety of data analysis techniques, including
statistical and machine-learning approaches. A discussion of the sources of data to be monitored
and techniques for analyzing data is presented in following sections.

6.1 Data Sources

Monitored metrics are the measurable features that provide a basis to describe and model the state
of the system. Depending on the target users and objective of the proposed solutions, a variety
of metrics from system resources and application components can be collected. In general, we
have identified four primary sources of data that give information on the system from different
perspectives to be processed by the analyzer.

System-Level: System-level metrics refer to the collection of attributes that can describe or
predict the behavior of the running environment, including VMs or PMs. One category of these
attributes is resource-level metrics, which act as the performance indicators of the running system
at different levels of granularity from VMs to specific processes and threads. For example, one can
present the number of assigned CPU cores or the percentage of used CPU, memory or disk I/O
at different time intervals as indicators of the functionality of the system during runtime of the
applications. Another source of data that can be categorized as part of the system metrics are
generated system calls that show the pattern of interactions with operating system services. It is
shown that these patterns can be affected by different types of internal and external faults that
help to detect and localize the source of the faults [27, 28].

Many cloud resource providers offer monitoring services to collect data from PMs and VMs.
Amazon CloudWatch is an example of these services. There is also a range of system monitoring
and application debugging tools such as htop, Iostat and strace, each offering a level of infor-
mation about utilization of resources or pattern of interactions among processes in the system.
While these tools give valuable information about the functionality of one machine, their use for
a cluster of machines needs more scripting and data management. For a more flexible monitoring
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of distributed systems, advanced frameworks such as Ganglia are introduced [37]. Ganglia is a
distributed framework based on the hierarchical design that uses technologies such as XML and
RRDtools for monitoring different components of the system. It is accompanied by a dashboard
to view live statistics of the monitored system while the recorded data is also available for deeper
analysis. Aceto et al. [1] provide a detailed analysis of various monitoring tools.

One point worth mentioning here is that some of the abovementioned tools require direct access
to the monitored VMs or some components of the monitoring modules should be installed on the
machines beforehand. Therefore, the outputs of these monitoring components are accessible by
cloud application owners (cloud users) who have access to the VMs. Moreover, cloud users have
direct access to the components of the application. Therefore, QoS-aware solutions that require
knowledge of system performance are designed with the assumption of having an access level that
is the same as the application owners. Alternatively, there are works that follow the blackbox rules,
trying to avoid or decrease the dependency on the application or guest VMs by using hypervisor
capabilities to collect data from outside of the VMs [18, 56, 105]. These solutions can be used by
cloud resource providers. A combination of having the knowledge at the VM level accompanied
by the capability to access the underlying hardware (including hardware tuning and VM/storage
server placement) gives the resource providers a great deal of power to manage and adjust the
utilization as well as SLA, such as privacy and security requirements of application owners [104].

Application-Level: Application-level metrics are collected from application components de-
ployed in the system. Since these metrics are directly related to the runtime state of the application,
they can be very informative and good indicators of the health of the application or environment.
For example, in a web-based application, response time, which is the delay from initiating the
request until the user receives the results, is considered as an indicator of the quality of the of-
fered web service. Longer response times can be warning signs for a high number of requests or
some problem inside the systems [105, 121]. There are also more fine-grained works that study
the software code and debug the flow of data and compare the effect of various input variables
or environment configurations [109]. These works are more related to the field of software de-
bugging or runtime diagnosis. However, we have included them in our survey as they can help to
distinguish internal application faults from external ones, which consequently affects the type of
the corrective actions from the service provider side.

Network-Level: There is a body of work that studies knowledge obtained from analyzing
network-level data, such as packet headers or the frequency of received packets from specific users,
which makes them suitable for identifying network-related issues, particularly security threats
such as DoS attacks [10, 96]. The source of the problem in these cases is usually associated with
external factors; therefore, these frameworks are complementary to the ones that directly target
the internal state of the system and resources.

Structural-Level: While a per-component monitoring gives valuable information on the func-
tionality of individual parts of the system, these components are in continuous interaction in a
distributed system. In other words, the functionality of one part may be dependent on the correct
execution of another part. Therefore, the fault in one component can be quickly spread based on
the application architecture and path of flow of the data/commands among components. Having
the information on the execution order of application components along with the timestamped
data of the performance metrics can give new insights into localizing actual sources of the faults
that are propagated from different layers of the application [82, 83].

6.2 Methods

The core part of data-aware resource management is the data analysis module, which obtains
knowledge on the current or future state of the system to select the best action and keep the system
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compliant with the SLA requirements. There are different approaches to learning and analyzing
the health of the system from collected measurements. It is also a common approach to combine
two or more of these techniques for different parts of data analysis and decision-making modules.
We categorize and summarize the characteristics of the identified approaches.

6.2.1 Signature-Based Analysis. The state of a system can be characterized by the values of the
attributes of its components at different levels of granularity. Considering that various types of
faults or performance problems leave distinctive signs on the attributes, one can capture a snapshot
of all values during abnormal/normal behavior and represent it as the fingerprint of this state. The
works presented in [78] and [22] distinguish performance problems caused by anomalies from
those that are the result of an application update or changes in resource consumption models. They
create a profile of the application performance based on the concept of transaction processing times
and corresponding resource utilizations. The profiles are used for the comparison between old and
new application performance to detect the changes. While these works leverage the application-
related measurements to create profiles, Brunnert and Krcmar [14] use resource profiles to detect
performance changes in enterprise applications (EAs). The resource profiles are defined as the
amount of required resources, including CPU and memory for each transaction of an EA version.
Resource profiles are not dependent on hardware characteristics or workloads; therefore, they are
more robust solutions for areas such as capacity planning or energy estimation. Another approach
is to use the profiles of events for diagnosing types of anomalies. For example, Sharma et al. [97]
propose a fault management framework that first detects an anomalous behavior by statistical
analyzers. Then, detected deviations are matched with the predefined signatures of the faults to
identify the cause of the problem.

While signature-based approaches usually show low false-positive rates, a key challenge is the
creation of baseline profiles capturing the states of the system. For anomaly detection, creating
signatures requires domain knowledge of the problem and there is always a high chance of missing
unknown anomalies, which increases the false-negative rates in the results.

6.2.2 Threshold-Based Approach. The threshold-based approach is a simple yet popular way
among cloud providers to define a set of rules to manage the resources in the system [5]. The
idea behind this approach is that anomalies can cause an unusual increase or decrease in the
utilization of the resources, affecting the values of attributes of the system or application. One
can define the scaling up/down rules by identifying a threshold for the acceptable utilization in
the system. If the target utilizations exceed the threshold, scaling actions are triggered. Therefore,
two main parts of each threshold-based rule are the condition and the action. Regarding the
condition part of the rule, an attribute of the system that can be a resource-level metric or
application-level performance indicator is selected. Then, proper lower/upper thresholds are
identified. Whenever a threshold value is exceeded, the conditions are met and the action is
started. The second part of the rule is defining appropriate actions, such as deciding on the
number of VMs to be added or the VMs that can be shut down in the system. These actions, also
known as horizontal scaling policies, are offered by most cloud resource providers. Gmach et al.
[38] investigate the reactive threshold-based approach to detect overutilized or underutilized
servers. Yang et al. [121] extend this approach with a linear regression-based prediction phase
and apply one of the vertical or horizontal policies when a violation of the threshold is met. There
are also works that implement the threshold-based policies for baseline comparison with their
proposed frameworks [46, 49]. For example, Hong et al. [49] compare a Markov-based anomaly
detection scheme with a simple threshold-based monitoring that triggers anomaly alerts when
the resource utilization thresholds are violated. While this approach is very common and easy
in terms of implementation, it requires a deep understanding of workload patterns and trends.

ACM Computing Surveys, Vol. 52, No. 4, Article 84. Publication date: August 2019.



84:18 S. K. Moghaddam et al.

Considering the dynamic nature of today’s applications, threshold-based solutions cannot fulfill
the complex—sometimes conflicting—expectations of application and resource owners.

6.2.3 Control Theory. To improve the degree of adaptation, the mathematical concepts of con-
trol loops are investigated to create responsive strategies for dynamicity of the environment. Con-
trol loops help to automate the resource scaling decisions by creating a systematic way of adapting
to changes in the system. The controller should trigger proper corrective actions by adjusting the
values of input variables to maintain the output or controlled variables close to a baseline. The
process usually is designed as a loop, with a variety of metrics from the system as input. The out-
puts are translated to some type of the action in terms of the system configuration adjustments.
Regarding open-loop controllers, the corrective action is selected solely based on the inputs. In the
closed-loop, also known as feedback controllers, the changes in the controlled variable are received
as feedback to be considered by the controller for the next action. While the latter is the most
common architecture for implementing the adaptability in the dynamic environments, two other
extensions of this architecture, known as Observe-Decide-Act (ODA) and Monitor-Analysis-Plan-

Execute (MAPE), are also exploited in the area of autonomic cloud resource management [21]. The
ODA frameworks typically cover 3 main roles of observer, decider, and executer with the main
goal of decoupling the responsibility at different steps among respective players involved during
the system development process [48]. The separation of responsibilities allows application and
system developers to deeply focus on knowledge from their part of the problem and also makes
the final system more adaptable to different applications and systems. The MAPE framework is
another extension that breaks the action part of the general loop into two subproblems of anal-
ysis and execution. Following this architecture, Aslanpour et al. [11] propose a cost-aware auto-
scaling framework with the focus on possible improvements at the execution level. Nevertheless,
in general, the feedback controllers are the most common architecture to be investigated in this
article. Integration of the Kalman filter and feedback controllers are studied in [57] to manage
the allocation of resources based on the CPU utilization of VMs. Al-Shishtawy and Vlassov [4]
combine feedback and feedforward controllers, harnessing the power of both approaches for mul-
titier applications. The Feedforward part is acting as a predictive controller to proactively avoid
SLA violations caused by unexpected increases in workload. In the case of violations, a feedback
controller reacts to compensate the deviations in the performance.

Lyapunov control is another approach for solving optimization problems, especially for online
decision-making where detailed information on system behavior is not available. Lyapunov-based
systems are also applied in optimization problems when the stability of the system (e.g., the queu-
ing delays) is a point of interest [71, 111]. For example, Lu et al. [71] use this approach to provide a
cost minimization model with controllable provisioning delays in an auction-based resource man-
agement. This approach has been shown to perform better compared with traditional methods in
terms of dealing with the dimensionality problems in large systems without the preknowledge of
statistical features of controlled components [35].

Proportional-Integral-Derivative (PID)–based controllers are another technique, exploited in
[41], for managing the number of VMs in the system, aiming at keeping service quality in accor-
dance with agreement levels. Alternatively, considering the need for more flexible systems with the
capability of regulating more than one metric, Persico et al. [87] combine a fuzzy-based scheduling
algorithm with a PID controller for horizontal scaling of resources. In contrast to the model-based
controllers, which need some knowledge of the dynamics of the environment [39, 57], a PID-based
controller makes the system more flexible in a model-free adaptation, usually through the iterative
tunings of the parameters. However, despite the inherent simplicity of PID controllers to cover a
broad range of applications, they may suffer from oscillation or delayed convergence, especially
in highly unstable systems.

ACM Computing Surveys, Vol. 52, No. 4, Article 84. Publication date: August 2019.



Performance-Aware Management of Cloud Resources: A Taxonomy and Future Directions 84:19

Predictive models are another approach commonly applied for complex, highly dynamic en-
vironments. Model Predictive Controllers (MPCs) consider dynamic models of the system over
consecutive time slots (time-horizons). The current state as well as future predictions are taken
into account to repetitively optimize the controller model. APPLEware is a distributed MPC-based
middleware that optimizes both energy use and performance for co-located VMs [62]. The control
actions are in the form of CPU and memory changes and are computed based on the predictions of
energy and performance over prediction horizons to optimize the cost function at corresponding
time intervals. Another instance of the predictive models is Receding Horizon Controllers (RHCs)
[61], which constantly solve optimization problems over a moving time horizon [77]. The itera-
tive optimization of RHC is used in [8, 9] to minimize the cost for reserved and on-demand VMs
while meeting constraints on the response times of applications. Similarly, Roy et al. [94] apply
this model for minimizing resource allocation costs considering both costs of leasing resources and
the penalty costs of SLA violations. Incerto et al. [54] exploit the iterative optimization of RHCs for
fine-grained adaptivity at the application level. The control model is used to automate parameter
tuning of software components that are modeled based on queuing networks. While the iterative
optimization of these models helps to achieve better adaptability to changing environments, it also
increases the runtime complexity for solving optimization models at each step.

6.2.4 Statistical Approaches. This approach usually assumes that the key attributes of the sys-
tem follow a known or inferable behavior. Therefore, observing and collecting the data on the
system attributes provides a baseline from which any deviation is identified as an anomaly. The
definition of baseline behavior is usually based on some statistical characteristics of the data, such
as mean and standard deviations. For example, many works on anomaly detection are based on
the assumption that values of target attributes follow a normal distribution. Multivariate adaptive
statistical siltering (MASF) is a common method in this group that tries to find multiple sets of con-
trol limits based on statistical analysis of the previous measurements of the features during normal
system operations [16]. The observations outside of the control limits are considered as possible
anomalies in the system. Wang et al. [115] generalize this concept to more flexible thresholds,
being more adaptable to dynamics of the workloads in data centers.

While these solutions are simple and lightweight, the highly dynamic nature of the cloud re-
quires more flexible solutions that can capture the relation among features. A body of work [52, 75,
86] attempts to show some type of correlation among resource metrics and QoS indicators, using
this information for better understanding of the nature of the anomalies and further performance
analysis, such as cause identification. Another approach that addresses the problem of proactive
resource scaling leverages regression-based methods to find the relation among metrics and per-
formance indicators [56, 114, 118, 121]. The prediction of future workloads or resource utilization
gives insight into the possible changes in the system that require a reconfiguration of resources.
For example, MLscale is an auto-scaler that uses the regression method to predict the values of
metrics and, consequently, the performance indicators of the system through a hypothetical scal-
ing and decides on the best action based on the results [114].

Another area within the domain of distributed resource management, where statistical tech-
niques have been commonly used, is analyzing the network-level state of the system, which helps
to distinguish between normal traffic and network-related security issues, such as attacks. Gu
et al. [44] employ relative entropy to compare the new traffic data with the baseline distribution
and identify anomalous traffic. Cao et al. [17] target DoS attacks launched by malicious tenants of
the VMs in cloud data centers. Entropy is calculated based on resource and network utilization in-
formation. They show that the entropy of a VM’s status drops when the attack starts. Ashfaq et al.
[10] divide the feature space of the problem based on the information content concept, putting
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statistically similar instances in the same subspaces. The idea behind this approach is to avoid the
effect of averaging out of anomaly points and also localizing noise artifacts in separate subspaces.

6.2.5 Machine Learning. Machine-learning concepts include techniques that enable a system
to learn from experiences over time without being explicitly programmed. The massive amount of
collectible data from a system is a valuable source of the information to be used by these techniques
to learn from the environment. Each technique tries to structure data in a different way to generate
an abstract model relating the input to output variables. Generally, we can divide these techniques
into two main categories: supervised and unsupervised. In the following, we explain each category
in more detail.

• Supervised Learning: Supervised algorithms require the dataset to be labelled, meaning that
the desired output should also be clear during the training phase. This approach is more
suitable for problems in which the goal is to find a mapping between the input and out-
put variables; thus, having the new input observation, one can find the possible output.
A common case of using this technique is the classification of a set of records when each
input should be assigned to one of the predefined classes. In the area of anomaly detec-
tion techniques, the classifiers can be used to categorize different types of anomalies or
more generally distinguish between the normal and anomalous state of the system. Follow-
ing this approach, Gu and Wang [43] try to detect the type of future anomalies by using
a naïve Bayesian classifier. A set of binary classifiers is trained to distinguish among dif-
ferent types of bottleneck problems. The authors show that the proposed classifiers can
achieve high accuracy, detecting the anomalous symptoms caused by some of the common
bottleneck issues at the application and resource level. Similarly, Tan et al. [105] exploit
TAN to predict the anomalous state of the system. Cunha and Moura e Silva [25] apply two
classification algorithms, J48 trees and naïve Bayes, on the historical data through tenfold
cross-validation. The goal is to differentiate between workload-related anomalies that are
caused by higher request rates and other types of performance anomalies. Decision trees
are leveraged in [29] for classification of traffic data by supervised learning of attack types.
The authors suggest that the simplicity and interpretability of trees can help humans to
better understand the nature of problems and their related features. Supervised learning is
also applicable for learning the features. Accordingly, Shi et al. [99] exploit the knowledge
from principle component structures and data labels to learn a more robust set of features
for traffic classification.
Neural networks are commonly applied for the prediction of future utilization, performance
indicators, or workload metrics to model the performance of the application [3, 56, 114].
Rather than a direct identification of anomalous events (considering only the context of
the data and patterns), these works usually focus on finding the symptoms of performance
degradation in the application. In contrast, Guan and Fu [45] identify anomalous events by
combining neural networks and Kalman filters to adaptively calculate the principal com-
ponents of data. The idea behind their approach is that a subset of principal components is
more related to specific types of failure in the system.
The aforementioned models are trained to find a relation between input and output variables
to predict output values for test instances. The outputs can be related performance metrics,
such as response time or a category of anomalous states assigned to the input instance. A
major limitation of these works is the requirement to have a labelled dataset for training.
The process of labelling a dataset is time-consuming and needs adequate knowledge of the
domain problem. Moreover, in a dynamic environment, there is always a chance that the

ACM Computing Surveys, Vol. 52, No. 4, Article 84. Publication date: August 2019.



Performance-Aware Management of Cloud Resources: A Taxonomy and Future Directions 84:21

underlying mapping of the variables changes, which requires continuous reconfiguration
and regeneration of the models for the new states of the system.

• Unsupervised Learning: In contrast to supervised learning, the unsupervised approach sifts
through data trying to find hidden structures and patterns. Therefore, it does not need any
prior information about the labels of training data. The objective is to cluster input data
based on their features without any assumption about their distribution [124]. Unsuper-
vised learning is particularly suited for the cloud environment, where the system admin-
istrators may not have access to detailed VM utilization states or may be unaware of the
internal performance of the application. Following this approach, Dean et al. [26] propose
unsupervised behavior learning (UBL) and investigate the unsupervised learning problem
for proactive anomaly detection. UBL is a framework that applies an SOM to identify the
anomalous states in cloud systems. An SOM is an unsupervised type of artificial neural net-
work that projects data instances from a high-dimensional space to a lower space (usually
two) while keeping the topological structure of the data. Comparing the neurons of the gen-
erated map distinguishes normal and anomalous states while a list of ranked metrics can
also be inferred as a springboard to finding the cause of the problems. Hidden Markov Mod-
els (HMMs) are used in [49] to model system as a Markov process. In a Markov process, it is
assumed that the state of the system at each time is dependent only on the previous state.
Two hidden states, normal and anomalous, are determined and the probability matrices are
initialized through an unsupervised training process. A two-phase clustering approach is
proposed in [64], which tries to find a VM placement solution to minimize the number of
PMs and reduce the performance degradation caused by the contention between co-located
VMs. Hierarchical and K-means clusterings are applied to cluster VMs based on the peak of
utilization metrics and the correlation among them. Alternatively, Ashfaq et al. [10] apply
clustering as a preprocessing phase to divide feature instances into distinctive categories
based on their statistical attributes. These clusters form the basic blocks of data to be ana-
lyzed separately by anomaly detection modules.
While the traditional methods of behavior learning can help to identify anomalous events,
the detection is usually a by-product of other purposes, such as clustering/classification.
Isolation-based technique is another unsupervised approach that addresses this problem by
directly targeting the characteristics of anomalous instances, which are few and different
from normal instances [66, 67]. This method is leveraged in [84] to design a sequential
unsupervised learning of the features where the calculated scores from isolation-based trees
are used as a signal for the selection of a subset of features for the next iterations.
Unsupervised learning helps the system to detect both known and unknown anomalies.
The process does not assume any prior knowledge about the statistical features or patterns
in the data and tries to find the common characteristics observed among different sets of
instances. However, depending on the level of details provided in data, the accuracy of
unsupervised learning to recognize the exact categories of anomalies may be affected.

6.2.6 Reinforcement Learning. Reinforcement learning (RL) focuses on the gradual learning
through sequential interactions of the agents with the environment. The target goal of the agent is
to maximize a reward function by selecting the best possible action based on the state of the sys-
tem. The important feature of this approach is learning by experience from the environment, which
helps to start the process without a prior knowledge of the system. In the area of cloud resource
management, an auto-scaler can act as an agent that interacts with system components, including
VMs and PMs. The state of the system is represented by the system attributes and performance
indicators, while the reward is shown by the degree of QoS (such as response time or throughput)
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achieved by the application. The set of actions includes all possible corrective actions, such as
resource- and application-level reconfigurations to avoid performance degradation. Dutreilh et al.
[34] compare threshold-based and Q-learning approaches for the problem of horizontal auto-
scaling in the cloud. They investigate the functionality of each method in the presence of the
main instability sources in the control systems, listing the observed potentials and weak points
for each case. Duggan et al. [33] target the problem of VM live migration, considering the avail-
able bandwidth and network congestion problem. They formulate the problem as an autonomous
control system through using RL and creating a multidimensional state/action space based on VM
utilization and available bandwidth. VScaler, proposed in [122], is another framework for fine-
grained resource management in the cloud that uses RL to decide on the times to scale up/down
in the system. To speed up the process of learning and exploration of the controller, the authors
introduce the parallel technique, which enables multiple agents to collaborate in different parts of
the state space.

As we can see, the gradual learning concept provided by RL fits the nature of the problems in
cloud performance management very well by involving dynamism and uncertainty factors dur-
ing the learning procedure. However, a main challenge that RL-based solutions face is the size of
the possible states and actions for the system. Considering the continuous nature of time series
measurements and the scale of the target machines to be handled in distributed environments, the
problem of high dimensionality is becoming more important. To overcome this limitation, differ-
ent approaches, such as fuzzification of the table or using more abstract representation of data
to limit the possible states or actions, are proposed in the literature [7, 68]. Arabnejad et al. [7]
extend a rule-based fuzzy controller with 2 different RL approaches, Q-learning and SARSA. The
fuzzy concept helps to reduce the dimensionality of the state/action table, which is an important
issue affecting the complexity of the RL algorithms. Alternatively, a combination of dimensional-
ity projections and sparsity-based data structures are used in [13] to overcome the dimensionality
problem. The proposed approach is used to manage efficient migration of VMs in real time with re-
spect to the energy and performance of the system. Adaptive partitioning of state space is another
approach that initiates the model with one or few states and gradually decides on the partitioning
of states during the interactions with the environment [70].

7 ACTION TRIGGER TIMING: FROM REACTIVE TO PROACTIVE

When a corrective action should be triggered is a challenging question, as it is highly dependent
on the nature of the application and SLAs. Traditional approaches to this problem are mostly re-
active. In reactive methods, any decision about changes in the number of VMs, configuration of
resources, or VM replacements is a response to the abnormal behavior of the system indicators
that identify changes in performance or QoS. As the degradation already has occurred and consid-
ering the delays before corrective actions take effect, a certain amount of SLA violations should be
allowed in SLA contracts. Moreover, in an unreliable environment involving various factors that
affect the stability of the system, fluctuations in performance are a common observation, which
can increase the number of SLA violations. Usually, these approaches follow a threshold-based
strategy where the scaling starts when the measured metrics exceed the accepted values [5, 55].
For example, when CPU utilization of the server exceeds the threshold, new resources are added
to the system. Therefore, the reactive approach does not consider the performance anomaly as a
gradually happening event with detectable presigns.

A step further in adaptive design of the resource management system is to include periodic ac-
tions to resolve possible performance problems at each time interval. While the reactive approach
performs resource adjustment action as a response to performance degradations, periodic solutions
are triggered by time. For example, software rejuvenation is a preventive technique that tries to
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clear the state of the software. This process can be repeated at regular intervals to resolve software
performance degradations or avoid possible problems caused by the software aging phenomenon
[76, 81]. These time-triggered techniques can also be categorized as proactive approaches when
regular updates of the system help to alleviate performance problems before they cause viola-
tions of SLAs. Alternatively, event-driven proactive approaches perform corrective actions when
an event is detected that is suspected to affect the behavior of the system in an undesired way.
Event-driven proactive methods attempt to find the warning signs before they can cause unac-
ceptable levels of performance degradation so that they can start preventive actions, such as mi-
grating VMs or adding new resources [79, 105, 121]. They focus on future events and are mainly
based on the prediction of future values and states. If proactive analysis of data can give an early
enough alert of a possible performance problem, it helps the RMM to plan and quickly initiate a
proper action before the system goes into an anomalous state. Accordingly, the system returns
or continues the normal condition, reducing the number of violations. One point worth mention-
ing here is how to decide on a proper value for the period of prediction. Short-term predictions
are more accurate in the case of workload-related metrics because the measurements made dur-
ing short periods of time show higher correlations compared with the observations made during
longer periods. Longer time predictions are more challenging and better fit the data with regular
patterns or seasonality. Di et al. [30] investigate the long-term prediction problem for workload
data in cloud data centers. They propose a Baysian-based method to predict the average load in the
system based on the derived features that capture different aspects of the statistical characteristics
of data. Another strategy to decide on prediction interval is considering the required time for the
corrective action to be effective in the system. If the workload is predicted for an interval shorter
than the action time, the value of proactive resource management diminishes. Islam et al. follow
this approach to determine a prediction interval based on the time it takes to launch a new VM.
Therefore, upon receiving an alert of a possible load problem, the system has enough time to start
the scaling action. Finally, hybrid solutions are based on a combination of reactive and proactive
approaches. These solutions are more realistic for the applications in the real environment where
there is always the possibility of new and unknown events happening that are not detected by
proactive mechanisms [38, 121]. In these cases, the reactive component helps the system to de-
crease the adversarial effects of undetected anomalies in the system while the proactive module
can learn the new undesired behavior by updating prediction models with recent observations.

8 PERFORMANCE ADJUSTMENT METHODS

Upon receiving an alert of an ongoing or possible performance problem in the system, the RMM
should start an adjustment process so that the active resources meet the new requirements of
workloads and applications. There are different solutions to alleviate the performance problems in
the system, including changing resource configurations, adding new computing units, or replacing
the VMs. In this section, we explain these techniques in detail, focusing on coarse-grained methods
at the resource and VM level, as shown in Figure 5. Table 1 presents an overview of some of the
advantages and limitations of these methods. As explained in Section 4.1, CSPs are included as
contributing users for all types of decision-making to highlight the importance of considering
the application side of SLAs regarding related objectives, such as budget and security constraints,
during the decision-making process.

8.1 Application-Level Methods

These actions are directly applied to the application and its environment; therefore, they are
not specific to cloud systems. This approach targets degradation in performance of the applica-
tion or operating system caused by internal problems, such as data corruption, numerical error
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Fig. 5. Cloud performance adjustment techniques.

Table 1. An Overview of Performance Adjustment Methods

Method
Contributing

users
Advantage Limitations

Application Level CSP No dependency on CRPs, No
cost from newly added
resources.

This approach may not solve
nonapplication-originated problems and
is not applicable for all types of
applications. It may cause short-term
performance degeneration caused by
nonresponsive components during
deactivation time.

Overprovisioning CRP, CSP Increases reliability for highly
dynamic workloads.

Resource wastages, Higher costs.

Horizontal Scaling CRP, CSP No need for special hardware
support.

Increases all resource types without
considering the source of the problem
(homogeneous VM types). Start-up
delays.

Vertical Scaling CRP, CSP Custom resource adjustment
(cost-effectiveness), No need
for new software instances
(license problems)

Requires special hardware supports.

Load Distribution CRP, CSP No extra resources
(cost-effectiveness)

Limited applicability (especially for
nonstateless systems).

Load Shedding CSP No extra resources
(cost-effectiveness)

Performance degradation by ignoring
some requests.

VM Migration CRP, CSP No extra resources
(cost-effectiveness), Reducing
cold spots (energy saving)

Short-term performance degeneration
during movement, security/privacy
issues.

accumulation, or exhaustion of operating system resources [112]. Software rejuvenation is a pos-
sible corrective action in these types of problems, which tries to identify the problematic appli-
cation or system component, clean its internal state, and restarts the components. Indeed, simple
application or VM restarts, which are used by system administrators as the first reaction to many
performance degradations, are preliminary cases of applying this approach. Dynamic component
activation can also be triggered at this level, when the deactivation of optional components helps
the system to manage higher loads or save energy according to the SLA requirements [119]. Since
the application-level methods directly affect the functionality of the application, CSPs or applica-
tion owners are actively involved in making these decisions.
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8.2 Overprovisioning

In order to efficiently use the capacity of cloud-offered resources, it is vital to have a proper esti-
mation of required resources that keep the performance and QoS of applications at an acceptable
level. However, resource estimation is a complex problem, especially for dynamic workloads with
time-dependent fluctuations. A traditional solution to handling the uncertainty in resource de-
mands of applications is to provide enough resources to process the maximum expected workload
in the system. This solution guarantees a stable application performance in the presence of work-
load fluctuations. However, peaks in workloads are usually transient events that do not last long
and happen very rarely. This means that, most of the time, resources are underutilized and in-
cur extra costs for CSPs. Considering the dynamic nature of applications, such as web workloads,
overprovisioning is not avoidable in fault-tolerant resource management solutions. However, re-
searchers are trying to find a proper trade-off between the level of fault tolerance of the system
and overprovisioned resources to have more control over the functionality of the system [90].

8.3 Auto-Scaling Methods

Scaling is defined as increasing or decreasing the amount of resources (e.g., CPU, RAM, disk) for
meeting SLA and performance standards. The scaling of resources can be done by changing the
number of machines in the system or at the VM level by changing the configuration of one VM.
In this section, we explain each of these approaches in more detail.

8.3.1 Horizontal Scaling. Horizontal scaling, which is the primary block of every RMM frame-
work, helps to provide more resources by adding new VMs to the system [55, 120, 121]. The unit
of changes in horizontal scaling is one VM. However, the newly added VMs can have a customized
resource configuration (CPU, RAM, I/O) or preconfigured VMs can be launched by selecting one
of the instance types offered by the provider. For example, Amazon offers a range of VM types
with different levels of configurations from small to very large instances [5]. As a complemen-
tary option, Google also offers users the chance to define their requirements with more details by
launching customized instances.

The time it takes for a new VM to be launched, also known as VM startup time, is highly im-
portant, especially for proactive RMMs. If startup times are longer than the predicted point for a
possible breach of the SLA, the effect of the scaling process will be same as the reactive strategies
with the added overhead of the data analysis module. Considering this, Mao and Humphrey [73]
investigate possible influential factors, such as the type of instance, OS image size, or VM location
for different providers. Their study provides researchers a basic understanding of the contributing
factors that should be constant during experiments and also estimated average times to be taken
into account in the simulation of the cloud environment [42].

8.3.2 Vertical Scaling. While horizontal scaling is a conventional strategy in the management
of resources offered by providers, the advent of virtualization techniques has introduced new
resource-level scaling opportunities, including elastic VMs. In vertical scaling, the VM elasticity
feature is used to change existing VM configurations, virtual cores or RAM, on the fly to adapt to
new requirements of the system [80, 121]. The online reconfiguration without turning the VM off
is getting more attention, especially when time and cost factors are considered in RMM decisions.
First, maintaining SLA objectives becomes challenging when there are sudden changes and spikes
in the workload, and the RMM needs a quick solution to increase the resources in the system. In
horizontal scaling, the time it takes to launch new VMs can be a bottleneck when a fast, effective
solution is needed. On the other hand, new VMs require new software to be installed, which
can lead to additional license costs. Elastic VMs can offer the required concepts and technologies
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to implement practicable strategies for these problems. Indeed, depending on the application,
resource level scalings might be the best idea in the case of resource shortages. For example, a
CPU-saturated system hosting a CPU-intensive application can be scaled by adding a new core
to the VM without wasting memory, bandwidth, and other resources. Moreover, the same VM
can continue the execution of existing requests without the need for interruption or transferring
their execution profiles to a separate VM.

However, the elastic VMs need the support from both the guest VM OS and hypervisor. There-
fore, owing to added complexity, many public providers do not offer this functionality. ProfitBricks
[89] is one of the Infrastructure as a Service (IaaS) providers that supports the live vertical scaling
of CPU cores, RAM, network interface card and hard disks. To have a better understanding of the
extent of support for vertical scaling, one can refer to work done by [110], which studies this ca-
pability for some of the common hypervisors and guest OSs as well as OpenStack framework in
the cloud environment.

8.4 Load Distribution

In a large scalable environment, we can find many replicas of one service, such as databases or
application server components. The problem of distributing application requests among existing
replicas of one component is a functionality provided by load balancers. A load balancer such
as haProxy can be configured with a weight for each replica and distribute the loads according to
this configuration among multiple VMs. Amazon Web Service Elastic Load Balancer (AWS ELB) [5]
offers a simple round-robin strategy that assigns an equal weight to all active VMs and selects them
from a list in the order of appearance. Therefore, in a round-robin–based balanced environment,
the utilization of all VMs is affected similarly. Noticeably, this approach does not provide a cost-
or energy-efficient solution, especially in an underutilized environment, where a small fraction of
the provided computing and storage resources are enough to maintain the required SLA. A more
efficient version of this approach assigns weights based on the specific server characteristics, such
as the load of the server, which helps to send new requests to least used servers first [108]. Grozev
and Buyya [42] follow this approach to consolidate web requests in a few servers without violating
the QoS. The proposed method monitors CPU and RAM utilizations of the servers along with the
availability of the network buffer capacity to assign new requests. Soni and Kalra [103] prioritize
the servers based on their hardware characteristics, distributing loads based on the computation
power and availability of the machines. These approaches help the system to balance the workload
among existing resources to keep performance at an acceptable level. However, load distribution
is task-level resource management, which does not control the amount of resources in the system.
Therefore, they should be integrated with other scaling methods that help to maintain enough
resources to handle the existing workload of the application.

8.5 Load Shedding

Load shedding is a type of self-healing approach primarily used in electrical power management
to handle high loads in the system. The idea behind this approach is to maintain the availability of
the system by sacrificing some QoS in the presence of faults. In datastream mining, load shedding
refers to mechanisms that try to find when and how much data can be discarded so that the sys-
tem can continue working with an acceptable degradation of performance [106]. This approach
is not effective for the applications with highly dynamic workloads and strict QoS requirements
[60]. However, one can consider request admission and resource reservation policies in the sys-
tem in terms of the SLA agreements so that the extra requests that cannot be handled by available
resources will be rejected, saving time and money for both users and service providers.
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Table 2. Comparison of Data-Aware Performance Management Approaches in Large-Scale Systems

Work Data Level Learning
Approach (ML,

Machine
Learning; RL,

Reinforcement
Learning)

Anomaly
Aware

Anomaly Problem Cause
Inference

Level

Proactive Resource
Adjustment
Techniques

(H, Horizontal;
V, Vertical)

Module

[30] System ML X _ _ � Load balancing Data

[18] System ML, Statistical X _ _ X _ Data

[121] System Threshold, ML X _ _ � V, H Data,
plan

[55] System,
Application

Threshold,
Statistical

X _ _ � H Data,
plan

[25] System,
Application

ML � _ X _ Data

[10] Network Statistical � Network _ X _ Data

[82] System,
Structure

ML � Software bug,
resource

bottleneck

Component,
Metrics

X _ Data

[45] System ML � Resource
bottleneck

Type of
anomaly

X _ Data

[43] System,
Application

ML � Resource
bottleneck

Type of
anomaly

� _ Data

[23] System ML � Deadlock,
starvation, livelock

Type of
anomaly

� _ Data

[26] System ML � CPU/Memory leak,
network hog

Metrics � _ Data

[105] System ML � Resource
bottleneck

Metrics � V, Migration Data,
plan

[68] System RL, ML X _ _ � H Data,
plan

[47] Network Signature, ML � Network Type of
anomaly

� _ Data

[116] System,
Application

ML, Statistical � Resource
bottleneck

Metrics X V, Migration Data,
plan

[118] System,
Application

ML, Statistical � Resource
bottleneck

Metrics X _ Data

[83] System Statistical � Resource
bottleneck, offload

bug, load
balancing bug

Component X _ Data

[28] System Statistical � Resource
bottleneck,

software bugs,
multi-tenancy

problem, network
packet loss,

deadlock

Type of
anomaly

(external vs.
internal)

X _ Data

[27] System ML, Signature � Software bugs Code level X _ Data

[109] Application Statistical � Software bugs Code level X _ Data

[124] System ML Resource
bottleneck,

database abuse

Target
thread/
process

X _ Data

[56] System ML, Statistical X _ _ � _ Data

[96] Network Statistical � DDos attacks _ X _ Data

(Continued)
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Table 2. Continued

Work Data Level Learning
Approach (ML,

Machine
Learning; RL,

Reinforcement
Learning)

Anomaly
Aware

Anomaly Problem Cause
Inference

Level

Proactive Resource
Adjustment
Techniques

(H, Horizontal;
V, Vertical)

Module

[24] System,
Application

Statistical � Resource
bottleneck

Metric X _ Data

[78] System,
Application

Signature � _ _ X _ Data

[22] System,
Application

Statistical, ML,
Signature

� Resource
bottleneck,

application update

_ X _ Data

[14] System,
Application,

Structure

Signature,
Statistical

X _ _ X _ Data

[97] System,
Application

Statistical,
Signature, ML

� Load, software
bugs

Metrics,
Type of
anomaly

X V, H, Migration Data,
plan

[38] System Threshold _ _ _ � H, Migrations Data,
plan

[46] System,
Application

Threshold X _ _ X H, V Data,
plan

[8] System,
Application

Control Theory X _ _ P H Data,
plan

[49] System ML � Resource
bottleneck

_ X _ Data

[41] System Control Theory � Load, hardware
failure

_ X H Data,
plan

[57] System,
Application

Control Theory X _ _ X V Data +
plan

[4] System,
Application

Control Theory X _ _ X H Data +
plan

[115] System Statistical � Resource
bottleneck,

software bugs

_ X _ Data

[52] System Statistical � Resource
bottleneck

_ X _ Data

[86] Application,
System

Threshold,
Statistical

� _ Metrics X _ Data

[75] System,
Application

Threshold,
Statistical

� Resource
bottleneck

Metrics X _ Data

[114] System,
Application

ML, Statistical X _ _ � H Data,
plan

[44] Network Statistical � Port scan Packet
information

X _ Data

[17] System Statistical � DoS Attack _ X _ Data

[3] System,
Application

ML X _ _ � _ Data

[64] System ML � Resource
bottleneck

_ � VM Placement Data,
plan

[79] System ML, threshold � Resource
bottleneck

Component,
metrics

� H, V Data,
plan

(Continued)
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Table 2. Continued

Work Data Level Learning
Approach (ML,

Machine
Learning; RL,

Reinforcement
Learning)

Anomaly
Aware

Anomaly Problem Cause
Inference

Level

Proactive Resource
Adjustment
Techniques

(H, Horizontal;
V, Vertical)

Module

[34] System,
Application

Threshold, RL X _ _ X H Data,
plan

[122] System RL, Statistical X _ _ � V Data,
plan

[33] System RL X _ _ X Migration Data,
plan

[7] System,
Application

RL X _ _ X H Data,
plan

[90] System Signature � Resource shortage _ X H, Over-
provisioning

Data,
plan

[98] System,
Application

Signature, ML � Resource
bottleneck

_ � V, Migration Data,
plan

[80] System Threshold � Resource
bottleneck

_ X V, Migration Data,
plan

[117] System,
Application

Threshold,
Statistical

� Resource
bottleneck

_ � Migration Data,
plan

[102] System Statistical X _ _ � Migration Data,
plan

[125] System Rule � Network-related
application bugs

Target
system calls

X _ Data

[5] System Threshold X _ _ X H Data,
plan

8.6 VM Migration

The scalability feature of cloud systems is highly dependent on virtualization technology that en-
ables multiple applications to reside on one PM by sharing available resources. VMs are preferably
not dependent on one machine and can be moved among different hosts when needed. This ca-
pability brings new opportunities for improving the use of cloud applications by finding proper
placement of VMs in the system [117]. Migration can be done to fulfill different objectives. Migrat-
ing VMs from underutilized hosts and consolidating them in few hosts enable the system to shut
down unused hosts, saving costs and energy. Duggan et al. [33] investigate this problem while
considering available bandwidth as a factor to determine the best time for migrations. An overuti-
lized host, where the guest VMs are consuming all of the available resources offered by the host,
is another target that can benefit from migration. In this case, the application on the overloaded
host may experience performance degeneration, as there are requests that cannot be handled in
time owing to the saturated resource and long waiting queues. Accordingly, Sommer et al. [102]
propose a prediction-based migration strategy to find the overloaded hosts and trigger migration
procedure to move some of the VMs to the existing underloaded hosts. A combination of multi-
ple forecasting methods is employed to predict the future resource consumptions of the VMs and
identify the possible overloaded hosts based on the predicted values.

Migration is also a complementary procedure when the host cannot fulfill requests to increase
the resource capacity required for vertical scaling actions. PREPARE, proposed in [105], uses this
strategy to correct the performance problems caused by internal faults or load anomalies. Live
migration is implemented when vertical scaling action is ineffective or not possible owing to the
lack of resources on the host.

ACM Computing Surveys, Vol. 52, No. 4, Article 84. Publication date: August 2019.



84:30 S. K. Moghaddam et al.

9 GAP ANALYSIS AND FUTURE DIRECTIONS

Based on the analysis of different aspects of performance-aware resource management in the cloud,
we propose a list of potential research areas and future directions.

9.1 VM Elasticity Analysis

Vertical elasticity is one of the rather new functionalities introduced for cloud resource scaling
that is not yet prevalent compared with horizontal scaling. Technical limitations to support VM
elasticity along the higher complexity of fine-grained scaling (CPU and RAM level compared to
VM level) management in data centers makes this approach limited in practice; most known public
providers do not offer this service. Therefore, a more detailed study of the characteristics of vertical
elasticity, especially time sensitivity analysis for different resource types, OS, and hypervisors, is
required to help in the design of accurate solutions in the area of proactive resource management.

9.2 Adaptable Learning in the Cloud

The effectiveness of many advanced machine-learning methods is highly dependent on precon-
figurations that define a proper threshold or parameter values, usually based on the character-
istics of data and applications. There are many works targeting the problem of parameter con-
figuration of learning methods in the field of data prediction and anomaly detection. However,
prediction and control of system behavior is becoming more complex with the growth of highly
dynamic environments such as the cloud. Considering these challenges, robust statistics metrics
and model/assumption-free frameworks are among techniques that require more attention to have
more realistic solutions. These mechanisms help to increase the flexibility and robustness of mod-
els, which is highly important for improving the adaptation of systems to a variety of applica-
tions and datasets. Dynamic tuning of model parameters in accordance with recent changes and
feedback of systems are interesting approaches for developing robust solutions to be applicable
for different workload patterns. Self-adaptable systems, which are discussed in Section 6.2.3, and
gradual learning frameworks, such as reinforcement learning from Section 6.2.6, are among ap-
proaches that can be effectively combined with data-learning techniques to enable a mechanism
of live interaction with the environment to facilitate adaptable resource management decision-
making. However, a common point of failure for these mechanisms is exploration capability in
terms of dealing with large state/action tables that affect the accuracy and convergence rate of the
solutions. While new approaches such as adaptive partitioning of state space [70] have been intro-
duced that address these types of problems, the applicability and efficiency of proposed solutions
should be investigated further.

9.3 Anomaly Cause Inference

Anomaly cause inference has been studied as part of the data analysis module to help the RMM
better decide on selecting corrective actions. However, existing works in this area mostly are
coarse-grained, giving suggestions about the bottleneck metrics based on resource-level infor-
mation. Moreover, the contribution of knowledge from cause identification in the process of RMM
planning and resource management has not been fully investigated. A more autonomic and inte-
grated cause identification process that has continuous interaction with planning modules to get
timely feedback on the quality of information is a challenge for future researchers.

9.4 Realistic View for Anomaly-Aware Auto-Scaling

In this article, we have tried to cover both areas of data analysis, including prediction and anomaly
detection as well as resource adjustment planning for performance management. The significance
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of having performance alerts ahead of time for planning modules to have enough time for prepara-
tion and triggering actions makes real-time sensitivity analysis a challenge that can be investigated
only in a real environment. There are several technical limitations that can affect the performance
of both parts, which can be detected only during a real implementation of the complete framework,
including all interactions among distributed components.

9.5 Application-Dependent Detection Accuracy Trade-offs

In data analysis, part of the investigated problem, Area Under the Curve (AUC), commonly is used
to show the performance of anomaly detection algorithms in detecting anomaly points. However,
in the area of cloud performance analysis, the number of normal instances in the collected data
usually is much higher than anomaly points. The lack of balance in the number of instances for
different classes raises the question of whether the AUC metric is biased by true negative points.
We believe that presenting the performance results by comparing both metrics AUC and Precision-
Recall Area Under the Curve (PRAUC), which demonstrate the functionality of the algorithms
from different points of view, is an important part of the anomaly detection problems in this area.
This is a point that can be very important for some applications, which require complex recovery
points in the case of true anomaly events. For example, for prevention mechanisms that target
disk-related problems with expensive mitigation actions, a solution with higher precision and a
minimum of false alarms may be preferred. Referring to our survey, this is an interesting point
that is highly neglected and requires a detailed analysis of the effectiveness of proposed anomaly
detection methods considering service owner preferences.

10 CONCLUSIONS

With the emergence of cloud computing and the power of data analytic methods, new opportu-
nities for improvement of performance-aware distributed resource management mechanisms has
been introduced. The analysis of collected data from measurable system attributes gives valuable
information about the health state of the system and performance of the hosted applications.

In this article, we investigate different approaches in the performance management of the cloud
environment. Identifying the major limitations and considerations in the selection of the best strat-
egy for proper resource configuration highlights the need for more complex and automated pro-
cedures to handle the dynamism of the environment. We have proposed a taxonomy of problems
focusing on the value of the data as a source of knowledge for resource management decision-
making and presented a survey of the existing works in the field of performance-aware cloud
resource management accordingly. The listed categories in the taxonomy are defined based on
the characteristics of the reviewed works, including presented architecture, the granularity of col-
lected performance data, targeted performance problems and the types of resource management
actions. Based on the reviewed works, a list of observed gaps and possible directions is suggested
that can give new insights and starting points for future researchers.
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