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a b s t r a c t

Technological advances and the emergence of the Internet of Things have lead to the collection of vast
amounts of scientific data from increasingly powerful scientific instruments and a growing number of
distributed sensors. This has not only exacerbated the significance of the analyses performed by scientific
applications but has also increased their complexity and scale. Hence, emerging extreme-scale scientific
workflows are becoming widespread and so is the need to efficiently automate their deployment on a
variety of platforms such as high performance computers, dedicated clusters, and cloud environments.
Performance anomalies can considerably affect the execution of these applications. Theymaybe caused by
different factors including failures and resource contention and theymay lead to undesired circumstances
such as lengthy delays in the workflow runtime or unnecessary costs in cloud environments. As a result,
it is essential for modern workflow management systems to enable the early detection of this type of
anomalies, to identify their cause, and to formulate and execute actions to mitigate their effects. In this
work, we propose the use of Hierarchical Temporal Memory (HTM) to detect performance anomalies
on real-time infrastructure metrics collected by continuously monitoring the resource consumption of
executingworkflow tasks. The framework is capable of processing a stream ofmeasurements in an online
and unsupervisedmanner and is successful in adapting to changes in the underlying statistics of the data.
This allows it to be easily deployed on a variety of infrastructure platformswithout the need of previously
collecting data and training a model. We evaluate our approach by using two real scientific workflows
deployed inMicrosoft Azure’s cloud infrastructure. Our experiment results demonstrate the ability of our
model to accurately capture performance anomalies on different resource consumption metrics caused
by a variety of competing workloads introduced into the system. A performance comparison of HTM to
other online anomaly detection algorithms is also presented, demonstrating the suitability of the chosen
algorithm for the problem presented in this work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Scientific applications enable the extraction of knowledge from
vast amounts of data. The volume and underlying value of these
data are continuously increasing as technological advances that
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support the creation ofmore powerful and precise scientific instru-
ments are made. The significance and importance of the analyses
performed by these applications becomes then of utmost impor-
tance for scientific progress. For instance, the LargeHadronCollider
(LHC) at CERN produces approximately 30 petabytes of data per
year that must be analyzed to understand the effects of particle
collisions. Another example is the Laser Interferometer Gravita-
tional Observatory (LIGO) project,which harnesses scientificwork-
flows to process data. Since the deployment of their advanced
interferometers leveraging hardware developments in optics and
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Fig. 1. High-level overview of a performance anomaly detection framework for
scientific workflows.

vibration suspension systems, gravitational waves stemming from
the collision of black holes were detected for the first time in 2015.
This discovery is not only fundamental in supporting Einstein’s
General Theory of Relativity, but has also paved the way for the
emerging field of gravitational wave astronomy which will even-
tually enable a better understanding of gravitational wave sources
and the universe.

This increased ability to collect data fromdifferent sources leads
to an inevitable growth in the scale and complexity of scientific
applications. This is also true for workflows, which have been
traditionally used as a way of structuring different scientific com-
putations and their dependencies. They enable scientist to describe
applications in a platform agnostic manner while Workflow Man-
agement Systems (WMS) hide the complexities of the underly-
ing computing infrastructure by transparently orchestrating the
execution of workflow tasks. Emerging extreme-scale workflows
are becoming more widespread and so is the need to efficiently
automate their execution on a variety of platforms such as high
performance computers, dedicated clusters, cloud computing in-
frastructures, and, more recently, fog environments.

It becomes paramount then to execute large-scale complex
scientific workflows in a reliable and scalable manner on dis-
tributed systems. In particular, being able to continuously monitor
their performance and create models of expected behavior that
adapt over time to the dynamicity of the underlying infrastruc-
ture can be of great benefit for scientists. Specifically, we argue
that WMSs can use runtime resource consumption information to
detect performance anomalies and mitigate their effects on the
overall workflow execution and Quality-of-Service (QoS) require-
ments. This can be achieved by making dynamic scheduling and
resource provisioning decisions that are triggered by the detection
of such anomalous behavior. For example, a performance anomaly
may be detected in the CPU consumption pattern of a running task.
This will eventually lead to the task taking longer than expected to
complete, ultimately having a negative impact on the total work-
flow execution time (i.e., makespan). Such effect becomes more
prominent as the scale of the applications in terms of the number
of tasks, the amount of data they process, and their computational
requirements continue to grow. Resource management modules
can attempt to correct performance issues by provisioning more
resources, executing unscheduled workflow tasks on more pow-
erful resources, migrating or replicating running tasks, or scaling
the compute resources vertically (e.g., increasing the memory of a
virtual machine), among other approaches.

As a result, our goal is to develop a framework that optimizes
the performance of complex data-intensive workflows by detect-
ing, diagnosing, and potentially correcting the cause of anomalous
runtime performance. An overview of the key components of such
a system are depicted in Fig. 1. In this work, we focus on the first

challenge; that is, the early detection of performance anomalies
through real-time infrastructure monitoring. In particular, we aim
to identify patterns in the data that do not conform to expected
behavior and we focus on analyzing time series data that contain
the resource consumption details of tasks at different stages of
their execution. Themetrics considered in our approach are related
to the CPU and I/O usage of a given task on a particular machine.

There are various requirements that arise from the nature of the
problem addressed and the monitored data. Mainly, we strive to
implement a model that is capable of learning in an online fashion
as data becomes available. The main reason for this requirement
is the nature of the computing infrastructures used for the de-
ployment of workflows. Firstly, there are a variety of platforms
currently used for this purpose; by having a model that learns
as data is collected, our framework can be deployed on different
computing infrastructures in a seamless manner. Secondly, there
are a wide range of factors impacting the performance of running
jobs in compute nodes, especially in increasingly popular multi
tenant, virtualized environments such as cloud and fog platforms.
By learning incrementally in an online manner, the model will
dynamically adjust to environmental changes such as peak hour
in a data center. Finally, online learning enables our framework
to be used to detect anomalies in the execution of different scien-
tific workflows, without the need of previously training a specific
model based on data collected from a dedicated infrastructure for
example. Another important requirement is for the framework to
be capable of processing sequential streaming data in one pass
and as the data becomes available. Finally, we are interested in
detecting temporal anomalies on these data, that is, identifying
a set of abnormal transitions between patterns as opposed to
identifying a single data point that deviates from what is standard
(i.e., spatial anomaly).

To achieve these requirements, we propose an anomaly de-
tection model that uses Hierarchical Temporal Memory (HTM)
networks. HTMs are continuous learning systems that meet our
requirements by mimicking the anatomy of the mammalian neo-
cortex and the behavior of neurons to perform learning, inference,
and prediction [1]. They are efficient, tolerant to noise, capable of
adapting to changes in the statistics of the data, and capable of
detecting subtle temporal anomalies [2]. Our detection algorithm
uses an HTM model for each monitored metric to detect CPU
or I/O related anomalies. For each workflow task deployed, its
resource consumption ismonitored at given intervals and analyzed
as soon as it becomes available. Our comprehensive evaluation
demonstrates the efficiency of our method in identifying anoma-
lies caused by different types of competing workloads on two
scientificworkflows from the bioinformatics field. Our solution has
also beendesigned in such away that it facilitates the identification
of the cause of the anomalies in our future work.

The rest of this paper is organized as follows. Section 2 presents
the related work followed by an overview of HTM systems in Sec-
tion 3. Section 4 explains the proposed anomaly detection method
and Section 5 presents the experimental setup and the evaluation
of our solution. Finally, conclusions and future work are outlined
in Section 6.

2. Related work

Anomaly detection in sequential data has been extensively re-
searched. There are a variety of existing approaches that are offline
and are designed to process data once a model capable of making
predictions has been built based on some training data. Netflix’s
Robust Anomaly Detection (RAD) [3] framework is an example.
It is a statistical approach based on Robust Principle Component
Analysis (RPCA) [4] that relies on data having high cardinality. An-
other example is HOT SAX [5], an algorithm capable of finding time
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series discords, defined as subsequences of a longer time series
that are maximally different to all the rest of the time series. More
recently, Malhotra et al. [6] addressed the anomaly detection prob-
lem in time series using long short term memory networks while
Akouemo et al. [7] proposed a probabilistic approach that uses
linear regression and a Bayesian maximum likelihood classifier.
Finally, ARIMA [8] is another widely used, batch-based statistical
time series forecasting model for temporal data with seasonality.

Our problem is more related to anomaly detection in streaming
data as it involves analyzing a continuous sequence of records
arriving continuously; that is, each record is processed once and
learning is done in an online fashion. There are several existing
approaches thatmeet these requirements. An example is EXPected
Similarity Estimation (EXPoSE) [9], a kernel-based algorithm de-
signed for large-scale datasets that is capable of efficiently com-
puting the similarity between new data points and the distribu-
tion of regular data. However, contrary to our problem definition,
EXPoSE was designed for datasets with high-dimensional features.
Another example is the method proposed by Wang et al. [10]; a
statistical technique based on relative entropy that is computa-
tionally lightweight and does not assume a particular form for the
distribution of the data, that is, it is non-parametric. The Bayesian
Online Checkpoint Detection [11] method is also designed to an-
alyze streaming data, however, it focuses on spatial anomalies
and assumes the underlying distribution of the data is known in
advance. Contrary to this, KNN-CAD [12] is a probabilistic, non-
parametric approach that relies on a density and distance based
nearest neighbor algorithm.

HTM systems have been used to address various learning tasks
in different domains. For example, they have been used to identify
anomalous traffic in computer networks [13,14], to detect anoma-
lies in the behavior of website users [15], to process bio-signals
and predict sensory and location data in the context of smart
homes [16], to model typical geospatial travel patterns and iden-
tify anomalies in movement [17], to detect anomalies in publicly
traded stocks [18], to detect the optic nerve in retina images [19],
and to build a commercial proactive and automatic IT incident
response system called Grok [20], among other applications.

In terms of its applications, anomaly detection has been widely
used in the context of distributed systems. For instance, it has
been extensively applied to intrusion detection in networked sys-
tems [21], to increase the reliability of web applications [22], to
monitor and diagnose faults in sensor networks [23], to prevent
DDoS attacks in clouds [24], and to detect anomalies in the usage
of virtual machine in clouds [25].

Performance anomaly detection has also been extensively im-
plemented and a variety of techniques have been used for this
purpose [26]. For example, statistical techniques such as regression
and correlation analysis have been used to diagnose potential
causes of SLA violations in virtualized systems [27] and to detect
performance anomalies in multi-server distributed systems [28].
Other statistical approaches used for this purpose include Markov
and probabilitymodels [29,30]. Machine learning approaches have
also been used for this purpose. Examples include the work by
Tan and Gu which uses Bayesian classifiers and tree augmented
networks to predict and classify anomalies [31], the work by Yu
and Lanwhich uses non-parametric clustering to detect anomalous
behavior in Hadoop clusters [32], and the work by Pannu et al.
which uses Support Vector Machines for detecting system failures
in cloud environments [33].

Finally, Gaikwad et al. [34] are the first to propose a frame-
work for the detection of performance anomalies on time series
monitoring data for scientific workflows. Although the motivation
behind their work and ours is similar, they propose the use of
an anomaly detection algorithm that uses auto-regression based
statistical methods. To generate anomaly triggers, they create

Fig. 2. Core algorithms of a region in a Hierarchical Temporal Memory model.

model parameters that fit the training data and estimate an error
based on the predicted and actual values. Their training data was
collected on a dedicated, controlled infrastructure, and hence the
assumption that the data analyzed for anomalies would stem from
a similar infrastructure is made.

3. Hierarchical Temporal Memory (HTM)

HTM is an unsupervised learning technique biologically derived
from the neocortical region of the brain. It aims to mimic the way
in which the brain continuously processes sensory data with tem-
poral awareness and spatial properties. In particular, HTM systems
have an inherent notion of time and are capable of continuously
learning the structure of unlabeled streaming data tomake predic-
tions and detect anomalies. They are capable of not only learning
the spatial representation of patterns but also sequences of those
patterns and the context in which they occur.

In anHTMsystem, sensory input data is processed to produce an
inference that can be interpreted as an invariant understanding of
the problem data. An overview of this process along with the main
components present in anHTMsystemare depicted in Fig. 2. In this
section, an introductory explanation of these components is given
and readers are referred to the work by Hawkins and Ahmad [35]
for a detailed description including examples of the intermediate
data produced at different stages of the HTM process.

Broadly, the input data It at time t is first encoded into a binary
representation that captures its semantic meaning. This represen-
tation, xt , is the input to the spatial pooler, the component respon-
sible for learning the spatial patterns in the data and producing a
sparse distributed representation (SDR) of it. The produced SDR,
a(xt ), is then used as input for the temporal memory. This com-
ponent learns recurrent sequences of SDRs and produces π (xt ),
another sparse binary vector predicting the next term (or terms)
in the sequence, that is, a(xt+1).

SDRs are the neocortically inspired data structure used in
HTMs; they represent neurons and their state bymeans of a binary
vector. For such a vector to be an SDR, only a small percentage,
typically twopercent, of its entries should be active (i.e., set to one).
This is based on the fact that the relative number of neurons that
are active in the neocortex at any given time is low. SDRs encode
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the semantic meaning of the data and have some valuable proper-
ties such as fault and noise tolerance, can be easily compressed,
and the semantic similarity between two inputs can be quickly
determined via a bit comparison, among others [36].

Transforming input data (It ) such as scalar values, dates, and
categorical values into binary arrays (xt ) is achieved by using
encoders. They are responsible for determining which entries in
the array, or which bits, will be ones and which ones will be zero.
This must be done in such a way that the semantic characteristics
of the data are captured in its encoding. In this way, encodings for
semantically similar data will have a larger number of overlapping
bits than dissimilar ones.

Each encoded pattern xt is transformed into an SDR represent-
ing a set of neurons arranged in columns by the spatial pooler. For
the purpose of this component, all neurons in a column are treated
as a unit since it is assumed that all neurons within a column
detect identical feedforward input patterns [37]. Similarly to the
input binary array, each column can be either active or inactive.
Furthermore, the resulting SDR maintains the semantic properties
of the input array; that is, SDRs of input arrays that are semantically
dissimilar will also be dissimilar and vice versa. This is achieved
by assigning each neuron with a set of potential connections (or
synapses) to a random subset of the input array. Each potential
synapse has a permanence value associated with it and only when
this permanence value is greater than a threshold, the synapse is
said to be connected. A neuron is then said to be active in the output
SDR if the number of connected synapses to active entries in the
input array is greater than a threshold. The learning process in the
spatial pooler consists on adjusting these permanence values so
that the model learns to represent spatial properties of the input
data using SDRs in a way in which the semantic properties of the
input vector are maintained.

The SDR produced by the spatial pooler, a(xt ), is fed as input
to the temporal memory. In this case, individual cells or neurons
within a column are differentiated upon as at any given point
in time, a subset of neurons in the active columns will be used
to represent the temporal context of the current spatial pattern.
Neurons within a column can be in three different states: active,
inactive, or predictive. Neurons in a predictive state become active
in the next time step if they receive sufficient feedforward input,
that is, if their column becomes active. In this way, neurons in such
a state are anticipating that they will be active in the next time
step, and hence are predicting what the next input may be. The
output of the temporal memory, π (xt ), can then be interpreted as
a prediction for a(xt+1), that is, columns that could potentially be
active in the next time step. In this way, it is possible to measure
how unexpected a given input was and compute an anomaly score
by comparing the columns that are active at time t and those that
had neurons in a predictive state at time t − 1. Eq. (1) shows how
this score is calculated.

st = 1 −
π (xt−1) · a(xt )

|a(xt )|
. (1)

This anomaly score is a measure of how well the system pre-
dicted the current pattern in the previous time step. As a result,
a score of zero is given in cases in which the current input was
successfully predicted, a score of one in cases in which it was not
predicted, and a value in between when the pattern was partially
predicted. Depending on the data, and particularly on the amount
of noise present, this anomaly score may produce too many false
positives. To address this issue, Ahmad et al. [2] proposed amethod
that uses a probabilistic model of the anomaly scores to output the
likelihood that the system is in an anomalous state. In this way,
rather than thresholding the prediction error directly to determine
whether a pattern is anomalous or not, a window of the last W
anomaly scores is maintained and the distribution is modeled as

a normal distribution with the mean and variance continuously
updated. The anomaly likelihood Lt is then estimated as a measure
of how well the corresponding score fits the given model, it is
defined as

Lt = 1 − Q
(

µ′
t − µt

σt

)
(2)

where

µt =

∑W−1
i=0 st−i

W
, (3)

σ 2
t =

∑W−1
i=0 (st−i − µt )1

W
, (4)

µ′

t =

∑W ′
−1

i=0 st−i

W ′
, (5)

and W ′ is a window for a short term moving average with W ′
≪

W .
Finally, a threshold on the anomaly likelihood determines

whether an anomalywas detected or not. In particular, an anomaly
is detected if lt ≥ 1 − ϵ where ϵ is a user-defined parameter.

4. Performance anomaly detection using HTM

This work considers workflows that are modeled as graphs and
are composed of a set of tasks and a set of dependencies between
them. We propose a model in which running workflow tasks are
continuously monitored by measuring the amount of computa-
tional resources they consume throughout their execution in a par-
ticular machine. Specifically, we require CPU and I/O consumption
metrics and that the time interval between measurements τ be a
configurable parameter. A smaller value will translate in a larger
amount of resources (e.g., network, processing capacity) used to
make predictions whereas a larger value may lead to a delay in
the detection of performance issues. In this work, we achieve this
by using the Pegasus [38] WMS. In fact, we use the monitoring
functionality added to Pegasus as part of the Panorama [39] project
and used by Gaikwad et al. [34] in their anomaly detection work.
The system uses a job wrapper called Kickstart [40] to collect the
resource usage metrics for each invocation of a task. The moni-
toring is done at a task level, not at a host or machine level, and
hencemeasurements correspond to the independent consumption
of resources by each executing task. The specific metrics that are
collected are outlined in Table 1. For further details on the im-
plementation of the monitoring mechanisms we refer the readers
to the work by Juve at al. [41]. To meet the online and contin-
uous processing requirements, we modified the system so that
monitoring data is published to a RabbitMQ queue (instead of an
InfluxDB database), fromwhere our anomaly detection framework
consumes the time series measurements.

We implemented an anomaly detection module that is inde-
pendent from the WMS and the monitoring system. Although
it can currently interface with RabbitMQ and InfluxDB, different
adaptors can be easily plugged in and the only requirement is for
a continuous input of time series data structured in the following
manner. Each data point is a tuple of the form (t, e, c) where t is
a timestamp, e is the time since the start of the task (or since the
first measurement was taken), and c is a measure of the resource
consumption at time t . The overall system architecture is depicted
in Fig. 3. We used the Numenta Platform for Intelligent Computing
(NuPIC) implementation of HTM, specifically, we used the Java
version of it.1

1 https://github.com/numenta/htm.java.

https://github.com/numenta/htm.java
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Table 1
Resource consumption metrics used to detect performance anomalies.

Metric Description

CPU utime Time spent in user code
stime Time spent in kernel code

I/O

read_bytes Number of bytes read from disk
write_bytes Number of bytes written to disk
wchar Number of bytes read using any read-like system call
rchar Number of bytes written using any write-like system call
iowait Time spent waiting on I/O

Fig. 3. Anomaly detection using multiple independent Hierarchical Temporal
Memory models.

Algorithm 1 Anomaly Detection using HTM
1: procedure detectAnomalies
2: Lt = empty set of all anomaly likelihoods at time t
3: At = empty set of all anomalies detected at time t
4: while there are unprocessed measurements in the message queue do
5: Mt = fetch new measurement
6: for each metric m ∈ Mt do
7: HTM = find HTMmodel corresponding to w, task, andm
8: e = t − t0
9: d = (t, e,m)
10: inference i = HTM.process(d)
11: st = i.anomalyScore
12: lt = anomalyLikelihood(st )
13: Lt .add(lt ,m, w, task)
14: if lt ≥ 1 − ϵ then
15: At .add(lt ,m, w, task)
16: end if
17: end for
18: end while
19: end procedure

Rather than combining multiple metrics to create a multi-
dimensional model, we create multiple single-metric models for
each task in theworkflow. Although theremay be some correlation
between different I/O relatedmetrics for example,we argue that (i)
a single high anomaly likelihood among all themetrics is enough to
identify an event that may require attention, (ii) since the number
ofmetricswe consider is not large, the anomaly score of othermet-
rics can be easily used to confirm this, and (iii) being able to identify
the specific metric, or metrics, causing an anomaly may facilitate
the process of diagnosing and creating an action plan tomitigate its
effects. Furthermore,we confirmed experimentally that combining
multiple metrics in a single model does not improve the ability of
the system to detect anomalies but rather, has the opposite effect.

With the aim of having a single HTMmodel per metric for each
task and of potentially reusing models across multiple equivalent
workflows, we assume workflows are deployed on homogeneous
compute resources. In cloud computing for example, this translates
in using a single VM type to deploy the workflow tasks. The reason
for this is that the consumption value for eachmetric is dependent
on the hardware, virtualized or not, in which the task is executing.
Eachmodel consists then of an encoder, a spatial pooler, a temporal
memory, and an anomaly detection module. The encoder consoli-
dates three values: timestamp, time since the start of the task, and
the resource consumptionmetric at that specific time. Specifically,
we encode the time of the day and day of week data contained in
the timestamp by using NuPIC’s date encoder and the remaining
two values as scalars using NuPICs randomdistributed scalar (RDS)
encoder. The three encodings are then concatenated into a single
one using NuPIC’s multi encoder. Details and examples of these
three encoders are explained in the work by Purdy [42].

We chose to encode the timestamp in order to capture the
dynamicity of the infrastructure. In shared environments for ex-
ample, it is not unusual to see an increased demand for resources in
certain days or times of a day. The time since the start of the task is
encoded so that themodel learns the amount of a specific resource
that a task normally consumes at different stages of its execution.
The corresponding HTM model will also use this information to
learn normal sequential resource consumption patterns as the
execution of the task progresses. For example, it may be common
for the amount of time spent in user code (utime) to rise by one
minute every monitoring interval, any deviation from this pattern
may indicate an issue such as resource contention due to a co-
located CPU intensive load on the same compute node.

At each time step, for each executing task, the (accumulated)
metrics at time t are collected by the task wrapper (Kickstart) and
published to a RabbitMQ queue. The measurement data published
is then a tuple of the form Mt = (t , w, task, m1, m2, . . ., mn),
where w is the workflow identifier, task the task identifier, and
mi is a metric value. The anomaly detection module consumes the
new data point from RabbitMQ and processes it in the following
way. Firstly, for each metric, it looks for an existing and active
HTMmodel corresponding to w and task. If no corresponding HTM
model has been created yet, then a newmodel is created. If there is
an existing HTM model but it is inactive (e.g., persisted), then the
model is loaded so that it can be used with the incoming data.

After the corresponding HTM model is identified, e (the time
elapsed since the first measurement was taken) is estimated as
the difference between the timestamp of the metric (t) and the
timestamp of the first recordedmetric for the given task. The tuple
(t, e,metric) is then passed to the HTM model to be processed.
The HTM model outputs an inference with an anomaly score (st ),
which is then used to estimate the anomaly likelihood (Lt ) for the
given data point. Finally, the likelihood is assessed against the pre-
defined threshold to determine whether an anomaly was detected
or not. At the end of each time step then, the system outputs n
anomaly likelihoods and has classified each of them as anomalous
or normal. This process is depicted in Algorithm 1 . Note that the
aim of the pseudo code is to detail the logic of the process but
not its actual implementation. Specifically, the processing of each
new measurement for different metrics is not done sequentially
but rather in parallel by making use of threads.
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Fig. 4. BLAST workflow.

Fig. 5. Sample 1000Genome workflow.

Table 2
Summary of datasets.

Workflow Task name Tasks per workflow Total tasks

BLAST blastn 4 1052

1000Genome

Individuals 10 1600
Individuals merge 1 160
Sifting 1 160
Mutations overlap 7 1120
Frequency 7 1120

5. Performance evaluation

This section presents the evaluation of the proposed HTM-
based anomaly detection approach with two workflows from the
bioinformatics field. The first workflow uses Basic Local Align-
ment Search Tool (BLAST) to find regions of similarity between
biological sequences. In particular, we used the blastn application,
which searches a nucleotide database using a nucleotide query. The
database used was envnt , which contains the nucleotide sequences
formetagenomes.We split the database in four equal subsets, each
of which was processed by a different blastn task in parallel. The
structure of the BLAST workflow used is depicted in Fig. 4.

The secondworkflow is based on the data collected by the 1000
Genomes Project [43]. The project reconstructed the genomes of
2504 individuals across 26 different populations and provides a
reference for human variation. Specifically, we used an existing
Pegasus workflow that analyses the project data [44], we refer to
it as 1000Genome from here on. Its structure is shown in Fig. 5.
The workflow measures the overlap in mutations among pairs
of individuals by population and the frequency of overlapping in
mutations. For our evaluation, we used a workflow to process one
chromosome across five populations. Namelywe analyzed the data
corresponding to chromosome 21 across the African (AFR), Mixed
American (AMR), East Asian (EAS), European (EUR), and South
Asian (SAS) populations. The number of tasks of each type of the
resulting workflow are depicted in Table 2.

5.1. Experiment setup

The evaluation was done by using resources from Microsoft
Azure. For each of the applications evaluated, an HTCondor cluster
composed of homogeneous VMs was set up, which was in turn

Table 3
Parameter values used for the encoders in the evaluation.

Encoder Parameter Value

RDS encoder
Size of the array (w) 50
Number of on bits (n) 3
Resolution 0.01

Date encoder

Time of day width 5
Time of day radius 4
Day of week width 1
Day of week radius 1

used by Pegasus to execute the workflow tasks. Considering the
number of tasks and the computational requirements of each
workflow, we used two different cluster settings for each appli-
cation. In both cases, the VMs used were of type Standard DS13-2
with 2 virtual CPUs, 56 GB of RAM, 25600 max IOPs, and a local
SSD storage of 112 GB. The clusters differed on the number of
worker VMs used, 2 worker VMs were used for BLAST and 4 for
1000Genome. In both cases, two additional VMs were deployed,
one with RabbitMQ and InfluxDB installed and another one that
acted as the Pegasusmaster andhad the anomaly detectionmodule
deployed on it.

For each application, multiple identical workflows were con-
tinuously and sequentially executed. The resource consumption
metrics for each running task were collected every 15 s for BLAST
and every 30 s for 1000Genome. TheBLASTworkflowwas executed
263 times and the 1000Genomeone160 times, Table 2 summarizes
the total number of tasks executed for each of the workflows.
We used the stress [45] benchmark to inject anomalies to specific
VMs in our system. This benchmark is a workload generator that
allows for the amount of CPU, memory, I/O, and disk stress to be
configured.

Regarding the HTM models, there are a number of parameters
that are configurable for each of the core algorithms. However,
there is a standard set that has been demonstrated toworkwell for
detecting anomalies in time series data of scalar metrics [2]. These
parameters and their values as used in the evaluation are shown
in Table 4. The encoders used also require some parameters to be
configured and their values are summarized in Table 3.

Furthermore, we define ϵ = 10−4. As a result, the anomaly
likelihoods must be equal to or greater than 0.9999 to be classified
as an anomaly. For better visualization, all of the graphs presented
in this section are log-scale plots of the anomaly likelihoods, with
0.4 being the threshold equivalent to 0.9999. Furthermore, from
here on, the term anomaly likelihood will refer to the log-scale
representation of the anomaly probabilities. This valuewas chosen
based on Numenta’s practical experience with various types of
applications in which ϵ = 10−4 is used to classify anomalies as
somewhat likely whereas ϵ = 10−5 is used to classify them as
highly likely [2].

5.2. Evaluation results

The experiment results were evaluated in two different ways.
Firstly, Sections 5.3 and 5.4 present a detailed analysis of the
performance of the HTM-based algorithm for the BLAST and
1000Genome workflows respectively. This is followed in Sec-
tion 5.5 by a performance comparison of the proposed solution
with three other anomaly detection algorithms over the dataset
generated after performing the proposed experiments.

5.3. Evaluation results for BLAST

We introduced various anomalies throughout the workflow
runs; in total, four different competing loads were introduced at
different stages. This can be seen in Fig. 6 depicting the anomaly
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Table 4
Parameter values for the Hierarchical Temporal Memory model used in the
evaluation.

Parameter Value

Numeric value encoder number of buckets 130
Number of columns 2048
Number of active columns 40
Spatial pooler connection threshold 0.2
Spatial pooler permanence increment 0.003
Spatial pooler permanence decrement 0.0005
Number of cells per column 32
Dendritic segment activation threshold 13
Maximum number of segments per cell 128
Maximum number of new synapses at each step 32
Temporal memory initial synaptic permanence 20
Temporal memory permanence increment 0.21
Temporal memory permanence decrement 0.1
Spatial value tolerance 0.05
Anomaly detectionW 8000
Anomaly detectionW ′ 10
Anomaly detection ϵ 10−4

likelihoods for the utime metric obtained throughout the exe-
cutions of two of the BLAST workflow tasks. For all the moni-
tored metrics, the anomaly likelihood is close to zero during non-
anomalous runs. The first anomaly was a CPU-intensive workload
introduced during the 99th workflow run, the second one an I/O
intensive workload introduced in run number 162, the third load
was memory-intensive, and finally the fourth one was a combina-
tion of the previous three, this is shown in Table 5 in addition to
the tasks that were affected by each of the anomalous workloads.

Fig. 7 shows the utime and stime metrics before, during, and
after the CPU anomaly introduction for one of the blastn tasks.
It also depicts the corresponding anomaly likelihoods. For both
metrics, the anomaly likelihoods climb to their maximum value
of 1 during the anomalous run; however, the threshold of 0.4 is
first reached by the anomaly probability associatedwithe the stime
metric. This occurs 530 s into the execution of the task, which is
approximately halfway through.

Fig. 8 shows the iowait, rchar, and wchar metrics during the
I/O anomaly for another blastn task. The likelihoods quickly climb
to one soon after the anomalous workload begins affecting the
execution of the task and the resource consumption patterns begin
to change. For the iowait metric, the anomaly threshold is first
exceeded with a value of 0.87 at approximately 12:23, one minute
after the I/O intensive load was introduced. The likelihood values
then return to a stable pattern close to 0 at 12:51 around the time
the anomalous load completed execution. As seen in the chart,
both of the other metrics, rchar and wchar, exhibit very similar
behaviors to iowait.

The read and write bytes metrics and corresponding anomaly
probabilities during the memory-intensive workload are shown
in Fig. 9. The anomaly is first detected in the read_bytes metric
at time 6:53 with a likelihood of 0.43. Although not detected as
early as in the case of the I/O anomaly, the detection still happens
approximately halfway through the execution of the task (756 s
elapsed out of a makespan of 1649 s), which can still be useful to
resource management modules. Anomalies continue to be flagged
until the execution of the task concludes, alerting to a resource
consumption pattern different from the normal one, as can be
clearly seen in the chart. The anomaly is also detected in the
write_bytes metric, however this occurs almost five minutes later,
at time 6:59. In the case of bothmetrics, false positives occur at the
beginning of theworkflow run 180. After analyzing the data, a pos-
sible contributing factor may be that the resource measurements
were taken at different time intervals for this run. Specifically, the
secondmeasurement was taken 10 s after the first one, as opposed
to the configured 15 s interval. This affects the time elapsed since

the execution of the task for consecutive measurements which in
turn affects the encoding of the data fed into the HTM system.

Finally, Fig. 10 shows the anomaly probabilities associated with
the stime, utime, wchar, and rchar metrics around the time the
combined anomaly was introduced. The anomaly likelihood for
stime is the first one to exceed the threshold at approximately
1:56, with a probability of 0.77. This is 674 s into the execution
of the task, which completed after 2774 s. For most metrics, as
the anomalous pattern extends for close to one hour, the anomaly
likelihoods gradually descend at around 2:06 as HTM learns the
sequence pattern as a new normal. This leads to a brief spike in
the anomaly probabilities at the beginning of a newworkflow run,
with false positives shortly occurring in the first measurements of
run 210. However, HTM quickly recovers from this and recognizes
the normal consumption pattern observed in the previous runs.

5.4. Evaluation results for 1000Genome

Similarly to the evaluation of BLAST, multiple anomalies were
introduced throughout the 1000Genome workflow runs; in fact,
the same types of anomalous workloads were used for both use
cases. We depict the resource consumption and anomaly likeli-
hood charts for four different metrics (utime, iowait, rchar, and
write_bytes) during, before, and after the combined anomaly was
introduced at the beginning of the execution of the 144th run
of the 100Genome workflow. The results are shown in Fig. 11
and correspond to the execution of task individuals_06 which was
deployed on the worker VM where the anomaly was introduced.

The performance anomaly is first detected in the utime, rchar
and write_bytes metrics at approximately the same time (9:49)
while the anomaly likelihood associated with the iowait metric
takes longer to reach the 0.4 threshold. The probability values
continue to increase quickly until they reach their maximum value
of one and hence the anomaly is clearly identified in the four cases.
Even though the anomaly is detected during the first half of the task
execution, it does take a few minutes before the likelihoods begin
to increase. One of the causes contributing to this delay is the fact
that the anomaly likelihoods are computed as the probability of a
short-term average of the raw anomaly scores. These raw scores
begin to rise earlier in the anomaly window but it takes several
of these higher scores to occur before the anomaly likelihood
begins to rise. Despite this, we still found the raw scores to be too
unpredictable making it hard to establish a threshold for them. It
would be of interest to further explore this issue in future work as
well as exploring other options that may lead to a faster detection
such as different HTM parameters or different encodings.

It is also observed that at the beginning (the first five measure-
ments) of the execution of the workflow run 145, the likelihood
values climb above the threshold in three out of the four metrics,
but quickly drop to values close to zero after HTM recognizes the
consumption pattern. This in fact has been a common occurrence
observed multiple times throughout the performance evaluation
and hence, it should be considered when embedding autonomous
performance anomaly recovery mechanisms in schedulers and
resource managers, at least for this specific type of scientific ap-
plications. Finally, another important insight from the obtained
results is the potential benefit of aggregating the anomaly likeli-
hoods of multiple metrics in order to get a more comprehensive
measurement of the state of the running tasks and possibly detect
anomalies earlier and better prevent false positives.

5.5. Algorithm performance comparison

To demonstrate the suitability of HTM to the problem defined
in this work and to corroborate its superiority in this particu-
lar scenario over other algorithms, in this section we present
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Table 5
Anomalous workloads used for BLAST.

Type Processes Time Workflow run Duration (s) Affected tasks

CPU 10 CPU-bound 10/29 12:23–12:53 99 1800 blastn_01/02
I/O 100 I/O-bound 10/30 12:22–12:52 162/163 1800 blastn_03/04
VM 50 VM-bound 10/30 06:41–07:11 179 1800 blastn_01/02
ALL 5 CPU-, 50 I/O-, 25 VM-bound 10/31 01:45–02:45 209 3600 blastn_01/02

(a) (b)

Fig. 6. Plots of the recorded utimemeasurements and their corresponding log-scale anomaly likelihoods for two different BLAST tasks. (a) utime for task blastn_02. (b) utime
for task blastn_03.

(a) (b)

Fig. 7. Plots of the stime and utime metrics and their corresponding log-scale anomaly likelihoods for task blastn_02 around the time the CPU anomaly was introduced
during the execution of the BLAST workflows. (a) stime. (b) utime.

a performance comparison of the HTM-based solution to other
online anomaly detection algorithms. In particular, the Numenta
Anomaly Benchmark (NAB) [2] was used to score and compare the
performance of the HTM-based anomaly detection algorithm with
three other approaches, namely KNN-CAD [12], Bayesian Online
Checkpoint Detection [11] (BOCD), and a Sliding Threshold [46]
(ST) approach.

NAB is a framework designed to evaluate anomaly detection
algorithms in streaming applications. The open source implemen-
tation of NAB [47] includes the implementation of the algorithms
used for comparison in this Section as well as the implementation
of a scoring mechanism. Overall, this mechanism favors detections
(anomaly scores above a predefined threshold) that are within an
anomaly window and penalizes those outside a window. More
importantly, the scoring system in NAB rewards early detection of
anomalies. This is achieved by using a set of predefined anomaly
windows to identify and weight true positives (TP), false positives

(FP), and false negatives (FN) (true negatives (TN) do not impact
the final score). Based on these, a sigmoidal scoring function gives
detections earlier in the window higher positive scores than those
later in the window and detections that appear slightly after the
anomaly window are penalized less (with lower negative scores)
than those that occur further away.We refer readers to thework by
Ahmad et al. [2] for a detailed description of this scoring function.

The dataset used to evaluate the algorithms corresponds to
the data collected during the execution of the experiments as
previously outlined in this Section. For each of the blastn tasks in
the BLAST workflow and the individuals tasks in the 1000Genomes
application, the timestamp and measurement values at each time
step for each of the metrics was recorded. NAB was then used
to obtain an anomaly score or likelihood for each entry in these
time series data for the KNN-CAD, BOCD, and ST algorithms. The
anomaly scores for the HTM-based algorithm correspond to those



632 M.A. Rodriguez et al. / Future Generation Computer Systems 88 (2018) 624–635

(a) (b)

(c) (d)

Fig. 8. Plots of the iowait, rchar, wchar, and utime metrics and their corresponding log-scale anomaly likelihoods for task blastn_04 around the time the I/O anomaly was
introduced during the execution of the BLAST workflows. (a) iowait. (b) rchar. (c) wchar. (d) utime.

(a) (b)

Fig. 9. Plots of the read_bytes and write_bytes metrics and their corresponding log-scale anomaly likelihoods for task blastn_01 around the time the VM anomaly was
introduced during the execution of the BLAST workflows. (a) read_bytes. (b) write_bytes.

collected online throughout the experiment lifecycle and were not
estimated using NAB.

To determine whether an anomaly score is classified as a detec-
tion or not, a threshold is used for each of the algorithms. These
anomaly scores along with the time windows when the anomalies
were introduced as outlined in Table 5 and Section 5.4 were used
by NAB to generate the overall performance scores. We used NAB

to optimize the threshold values for each algorithm so that their
final scores were maximized. This values are shown in Table 6.
For the HTM-based algorithm we depict the NAB scores for both
the optimized threshold (HTM-OT) and for the threshold used in
the evaluation of the online framework (HTM). It is worthwhile
mentioning that this optimized threshold was not used when
evaluating our framework in the previous sections as determining
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(a) (b)

(c) (d)

Fig. 10. Plots of the stime, utime, rchar, and wchar metrics and their corresponding log-scale anomaly likelihoods for task blastn_01 around the time the combined (CPU,
I/O, and VM) anomaly was introduced during the execution of the BLAST workflows. (a) stime. (b) utime. (c) rchar. (d) wchar.

Table 6
NAB Thresholds for the BLAST dataset.

Algorithm Reward low FN Reward low FP Standard

HTM 0.40 0.40 0.40
HTM-OT 0.07 0.12 0.07
KNN-CAD 0.99 0.99 0.99
ST 1.0 1.0 1.0
BOCD 1.1 1.1 1.1

its optimal value requires a priori knowledge of the anomaly scores
and windows for the entire dataset. The proposed online frame-
work does not accommodate this assumption and such data was
only available after the experiments completed their execution.

All the parameter values used for BOCD, KNN-CAD, and ST
correspond to those used in the NAB benchmark. These can be
found online in the algorithms implementation [47] and are also
described in the supplementary material of the work by Ahmad
et al. [2].

Three different NAB scores (scores range between 0 and 100)
are displayed in Table 7. The first two are called Reward Low FP
and Reward Low FN; they enforce higher penalties for false posi-
tives and false negatives respectively. The third one referred to as
Standard assigns true positives, false positives, and false negatives
with relative weights such that random detections made 10% of
the time would get a zero final score on average [2]. Finally, the
number of true positives, true negatives, false positives, and false
negatives corresponding to the Standard score and threshold are
also displayed as a reference to readers in Table 8.

The results demonstrate that HTM outperforms the other al-
gorithms on each of the three different scores. What is more, not
only is this achieved with an optimized threshold, but also with a
generic threshold that was not tailored for the specified problem.
KNN-CAD achieves the second largest scores, followed by ST, and
BCOD respectively. The vast difference between the HTM scores
and the BCOD ones may be due to the fact that BCOD assumes an
underlying distribution of the data; demonstrating the benefits of
a non-parametric approach for this specific problem. Finally, when
compared to KNN-CAD, the number of true positives obtained
with HTM is considerably larger. However, KNN-CAD has a lower
incidence of false positives. This may be explained by the pattern
seen in Sections 5.3 and 5.4 that show that it is common for HTM
likelihoods to be beyond the threshold for a few iterations after the
anomaly window.

It is worthwhile mentioning that for BOCD, the optimal thresh-
old is larger than one and hence, the algorithm performs best on
our particular dataset when in makes no anomaly detections at
all. This behavior is equivalent to that of the null detector in NAB,
which is used to normalize the scores to obtain values between
0 and 100. Threshold values equal or less than one for BOCD led
to the number of false positives degrading the performance of the
algorithm and hence the NAB score below 0.

Finally, the algorithms were also evaluated using the
1000Genome dataset. The performance of the HTM-based detector
was again better than that of the other approaches based on the
NAB scores. The Standard Scores for HTM, HTM-OT, KNN-CAD, ST,
and BOCDwhere 67.91, 82.38, 20.78, 21.20, and 52.11 respectively.
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(a) (b)

(c) (d)

Fig. 11. Plots of the utime, iowait, rchar, andwrite_bytesmetrics and their corresponding log-scale anomaly likelihoods for task individuals_06 around the time the combined
(CPU, I/O, and VM) anomaly was introduced during the execution of the 1000Genome workflows. (a) utime. (b) iowait. (c) rchar. (d) write_bytes.

Table 7
NAB scores for the BLAST dataset.

Algorithm Reward low FN Reward low FP Standard

HTM 74.21 63.62 69.35
HTM-OT 85.82 71.67 80.51
KNN-CAD 72.43 52.92 66.67
ST 5.40 3.55 4.53
BOCD 0.0 0.0 0.0

Table 8
TP, TN, FP, and FN associated with the standard score for each algorithm on the
BLAST dataset.

Algorithm TP TN FP FN

HTM 778 107727 332 4927
HTM-OT 2034 107570 489 3671
KNN-CAD 47 107919 140 5658
ST 18 108049 10 5687
BOCD 0 108059 0 5705

6. Conclusions and future work

In this work, we used HTM to detect performance anomalies
in the execution of scientific workflows in distributed computing
environments such as clouds. The proposed method is an online
approach that can be deployed on different infrastructures with-
out the need of previously collecting data for training purposes.
Instead, HTM enables the framework to learn incrementally and
detect anomalies in an unsupervised manner while adjusting to

changes in the statistics of the data. The data analyzed corre-
sponded to resource consumption metrics of executing workflow
tasks and was processed in an online manner, as it became avail-
able. We evaluated the HTM-based technique in a cloud envi-
ronment using two scientific workflows from the bioinformatics
domain and the Pegasus workflow management system. The re-
sults demonstrate the ability of the proposed technique to detect
anomalies on different resource consumption metrics caused by
external loads with different characteristics.

As future work, we plan to further investigate how anomaly
likelihoods that arise from different metrics can be aggregated to
detect and potentially diagnose anomalies earlier and more accu-
rately. We will also develop scheduling and resource provisioning
techniques that make use of the information collected by the
anomaly detection framework; initially wewill explore replicating
or rescheduling tasks exhibiting anomalous behaviors on different
compute nodes, avoiding theuse ofmachines that consistently lead
to anomalous behavior in tasks, and provisioning new resources
to minimize the impact on the makespan of the workflow when
anomalies are detected in tasks on the critical path of theworkflow.
Finally, we plan to explore how the proposed HTM-based anomaly
detection framework can be utilized in emerging fog platforms
as these environments and the latency-sensitive applications they
host can greatly benefit from a lightweight framework capable of
detecting anomalies in the performance of multiple tasks continu-
ously and in an online fashion.
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