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Abstract

Adjusting operator allocations based on changes in system metrics is one of the
key characteristic in distributed stream computing systems. However, Existing
work often fail to detect potential pattern features within data streams, replying
instead on outdated information for scheduling decisions. This results in delayed
responses to data stream fluctuations, causing significant performance volatil-
ity. To address these challenges, this paper proposes a pattern-aware scheduling
strategy called Pa-Stream. The main contributions of this work include: (1) Vali-
dation of performance issues: Through experiments conducted on Alibaba Cloud,
we evaluate the performance of Storm’s Resource Aware Scheduler under fluc-
tuating data streams. The results demonstrate that variations in data streams
degrade system performance and lead to resource waste. (2) Data stream pre-
diction strategy: We introduce a data stream prediction algorithm based on
the Long Short-Term Memory (LSTM) network to identify data stream pat-
terns and predict system performance. (3) Initial scheduling strategy: A novel
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scheduling strategy based on bin-packing algorithms and multi-objective non-
dominated sorting is proposed for the initial scheduling of operators. This
approach addresses the limitations of traditional bin-packing algorithms in han-
dling scheduling challenges in heterogeneous clusters. (4) Runtime scheduling
strategy: For runtime scheduling, we design a strategy based on the Deep Q-
network (DQN). This strategy incorporates DQN training, a scheduling scheme
generation algorithm, and an online scheduling algorithm to optimize runtime
decision-making. (5) Implementation and evaluation of Pa-Stream: We deploy
Pa-Stream and validate its performance through extensive experiments. The
results show that, compared to SP-Ant and R-storm,Pa-Stream reduces latency
by up to 57.24%, increases throughput by up to 76.18%, and decreases system
load by up to 52.91%.

Keywords: distributed computing system, Data stream pattern, Operator scheduling,
Long short-term memory network, Deep Q-network

1 Introduction

Stream computing has emerged as a critical area of research as the scale and complexity
of real-time data in various fields continue to grow [1, 2]. Distributed stream processing
systems are specifically designed to handle real-time data streams, capable of receiv-
ing, processing, and analyzing continuously generated data. Unlike traditional batch
processing systems, which handle static datasets offline, stream processing systems
focus on the continuous, real-time processing of dynamic data streams. In distributed
stream computing (DSC) systems, operators, implementing user-defined logic, perform
real-time computations, transformations, and aggregations on the incoming data. The
processed results are then passed to other operators for further analysis.

Operator scheduling is a crucial process in distributed stream computing systems.
It determines how operators in stream processing applications are deployed across
different computing nodes [3, 4]. To improve processing efficiency, each operator can
contain multiple parallel executors or instances, which can be placed on different
computing nodes. Additionally, multiple operators, whether identical or different, can
run on the same computing node. Finding the optimal operator placement layout in
such systems is an NP-hard problem, requiring approximation methods to enhance
system performance [5]. Moreover, clusters are often heterogeneous [6, 7]. In heteroge-
neous clusters, nodes exhibit varying computational capabilities, and communication
bandwidth and latency may differ significantly among them [8, 9]. The placement of
executors with diverse computational and communication requirements onto nodes
with varying performance characteristics further complicates the scheduling process.

Due to the real-time nature of stream computing, fluctuations in data stream can
lead to node overloading or underutilization, causing increased data processing latency,
reduced throughput, and wasted resources [10–12]. Therefore, a suitable reconfigura-
tion plan is necessary to evaluate whether node overloading or resource wastage occurs
under the current placement scheme when significant changes in the data stream arise.
By employing appropriate allocation strategies, it is possible to generate more efficient
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operator allocation schemes that maintain performance metrics during sudden data
stream fluctuations while ensuring optimal utilization of system resources.

Most existing approaches rely on passive adjustments based solely on current load
conditions, showing clear limitations when faced with fluctuating data streams. (1)
Poor predictive capability: They fail to accurately forecast future workload patterns
and proactively adjust scheduling strategies. (2) Weak learning capability: Existing
schedulers are mainly rule-based or heuristic-driven, with limited self-optimization
ability during long-term operation. Therefore, there is a need for a scheduler that can
accurately model future stream dynamics and proactively adapt resource allocation,
ensuring robust performance under complex and fluctuating data stream scenarios.

To address the operator scheduling problem, this paper proposes a data stream
pattern-aware scheduling strategy called Pa-Stream. By leveraging the Long Short-
Term Memory (LSTM) network to identify pattern information in data streams,
Pa-Stream monitors changes in real time during system operation, predicts system per-
formance, and adjusts operator allocation schemes before performance declines. The
strategy uses a variable-length action reinforcement learning (RL) algorithm, which is
faster at solving the optimal scheduling problem compared to fixed-length action RL
algorithms. As a result, Pa-Stream is more responsive in system scheduling, generates
scheduling schemes more quickly, and operates smoothly and efficiently.

1.1 Paper contributions

The key research contributions of this paper are:

(1) Validation of performance issues. We set up a computing cluster on Alibaba
Cloud servers to evaluate the performance of the widely-used Resource Aware
Scheduler scheduler in Storm under fluctuating data streams. Experimental
results reveal that rapid increases in data stream rates significantly raise system
latency and load, degrading performance. Conversely, sharp decreases in data
stream rates result in excessively low load, leading to resource waste.

(2) Data stream prediction strategy. We propose a data stream prediction algo-
rithm based on the LSTM network to capture pattern features in data streams
and predict system performance. This algorithm models the relationship between
data stream velocity, operator allocation schemes in heterogeneous clusters, and
system performance metrics.

(3) Initial scheduling strategy. A scheduling strategy based on bin-packing algo-
rithms and multi-objective non-dominated sorting is proposed for initial operator
scheduling. This algorithm performs multi-objective non-dominated sorting of
nodes, subdivides nodes at each sorting level, and then applies the bin-packing
algorithm to allocate operator instances efficiently to appropriate computing
resources.

(4) Runtime scheduling strategy. We design a runtime scheduling strategy
based on the Deep Q-network (DQN). This strategy includes DQN training, a
scheduling scheme generation algorithm, and an online scheduling algorithm. The
scheme generation algorithm utilizes the trained DQN to generate new scheduling
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schemes, while the online scheduling algorithm dynamically invokes the scheme
generation algorithm as needed.

(5) Implementation and evaluation. We implement the proposed Pa-Stream
framework on the Apache Storm platform and evaluate key system metrics,
including latency, throughput, and resource utilization, under real-world stream-
ing scenarios. The experimental results validate the effectiveness and robustness
of Pa-Stream.

1.2 Paper organization

The rest of this paper is organized as follows: Section 2 examines the impact of data
stream patterns on system performance. Section 3 models the operator scheduling
problem for stream computing applications in heterogeneous clusters. Section 4 intro-
duces the Pa-Stream scheduling strategy, detailing its framework and the design of
its key components, including the initial scheduling strategy based on multi-objective
bin packing, the LSTM-based data stream prediction strategy, and the reinforce-
ment learning-based online scheduling strategy. Section 5 evaluates the performance
of Pa-Stream through comparative experiments. Section 6 analyzes the current state
of research and limitations of stream computing operator scheduling, and intro-
duces related work on data stream pattern recognition algorithms. Finally, Section 7
summarizes the research findings, discusses limitations, and outlines future research
directions.

2 Observations

We intuitively illustrate the impact of data stream volatility on system performance
through experimental observations, emphasizing the necessity of adjusting scheduling
strategy under fluctuating input streams. This experiment aims to discover potential
issues of traditional schedulers, such as latency instability and load fluctuation, when
handling fluctuating data streams in a real cloud environment. The effectiveness of
Pa-Stream is to be validated through systematic experiments presented in Section 5.
The observations are based on a 6-node Storm cluster (each node equipped with a
2 GHz, 2-core CPU and 2 GB memory). The input stream rate fluctuates uniformly
between 500 and 5000 tuples/s. The application topology used is WordCount, which
is representative of real-world streaming analytics tasks.

Significant changes in the input data stream of a stream computing system can
lead to variations in system load. To verify the impact of data stream fluctuations on
system performance, we deploy a heterogeneous cluster using Alibaba Cloud servers
and evaluate the performance of Storm’s widely used scheduler, the Resource Aware
Scheduler (RAS), under varying data stream conditions. Figs. 1 and 2 illustrate the
changes in system latency and load as the data stream rate fluctuates. In these figures,
the yellow line represents the changes in data stream rate, while the blue lines show
variations in system latency and load, respectively.

Analysis of the data reveals that when the data stream rate increases rapidly,
the system’s latency and load rise correspondingly, leading to a significant decline in
performance. Conversely, when the data stream rate decreases sharply, system load
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Fig. 1: System latency variations caused by data stream fluctuations.

Fig. 2: System load variations caused by data stream fluctuations.

becomes excessively low, causing resource wastage. It is necessary to evaluate and
adjust existing allocation strategies in response to data stream fluctuations for system
performance stability. An effective approach for addressing stream fluctuations is to
predict the upcoming changes in the stream in advance. By forecasting these variations,
potential performance impacts can be anticipated, allowing timely adjustments to the
scheduling strategy to ensure stable system performance.

3 System model

To facilitate the discussion of Pa-Stream, we models the scheduling problem for stream
computing applications in heterogeneous clusters. First, the topology of stream com-
puting system is introduced and modeled, followed by the construction of a delay and
load model for system runtime. Then, a resource model for heterogeneous stream com-
puting clusters is established, and the resources are partitioned. Finally, based on the
topology and resource models, an operator allocation model for heterogeneous clusters
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Table 1: List of Symbols.

Symbol Description

G Directed acyclic graph
O Set of operators
E Set of the directed edges in the DAG
M Set of machines
I(oi) Instance set of operator oi
vi,k The k-th instance of operator oi, where k ∈ {1, 2, · · · , |I(oi)|}
m Number of operators in the topology
n Number of machines in the cluster
xi,j Number of instances of operator oi on machine Mj

oicpu CPU power required for each instance of operator oi
oimem Memory required for each instance of operator oi
Cj

cpu CPU of machine Mj

Cj
mem Memory of machine Mj

Cj
band Bandwidth of machine Mj

C Total CPU power of the cluster
Mem Total memory of the cluster
ns Number of slots per machine
U Vector containing the loads of all operators
Uoi

Load of operator oi
Tk End - to - end latency of the kth tuple
Z System load
Y System latency

is constructed, along with a resource constraint model for operator allocation. Table
1 lists the key symbols used in this paper.

3.1 Topological logic model

In a distributed stream computing system, an application topology can be represented
as a Directed Acyclic Graph (DAG), defined as G = (O,E) [13, 14]. The topol-
ogy specifies all the components required for the execution of the stream computing
application, including data sources, data processing components, and the relationships
between them. In the DAG, each vertex represents an operator in the topology. Let
there be m operators in total, denoted as O = {o1, o2, . . . , om}. These operators are
responsible for receiving or processing data within the topology. The set E represents
the directed edges in the DAG, where each edge signifies the flow of data between two
adjacent operators.

Each operator in a stream application consists of multiple parallel operator
instances, and the execution of the application is carried out by these instances. The
set of instances for an operator oi is defined as I(oi) = {vi,1, vi,2, . . . , vi,|I(oi)|}, where
|I(oi)| represents the number of instances of the operator. Due to differences in the
processing logic of various operators, their computational complexities vary, resulting
in heterogeneous CPU and memory resource requirements. Therefore, we need to clar-
ify the resource requirements for each operator instance: the CPU demand for each
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Fig. 3: Topological logic model.

parallel instance of operator oi is represented as oicpu, and the memory demand is rep-

resented as oimem. To simplify the analysis, we assume that for a given operator, both
the CPU and memory demands are the same across all its parallel instances.

As shown in Fig. 3, a simple topology includes three operators: o1, o2, and o3.
Operator o1 functions as a Spout, responsible for receiving data from external sources
and forwarding it into the topology, with a parallelism of 2 (i.e., 2 instances v1,1
and v1,2). Operators o2 and o3 are Bolts, tasked with receiving data from upstream
operators and processing it according to user-defined logic, with parallelisms of 3 (v2,1,
v2,2 and v2,3) and 1 (v3,1), respectively.

To facilitate a rigorous evaluation of the performance of Pa-Stream, we model
several system performance metrics. One of the critical metrics is Tk, the end - to - end
latency of the kth tuple, which refers to the time required for the kth tuple to be fully
processed from its generation to completion. Tk is primarily composed of processing
latency Tproc,k and transmission latency Ttran,k, as shown in Eq. (1):

Tk = Tproc,k + Ttran,k, (1)

where Tproc,k represents the processing latency, which is the time taken to process
the kth tuple across various components (including spouts and bolts). This latency
includes both the waiting time in the tuple queue and the actual time spent processing
this tuple. Additionally, Ttran,k refers to the transmission latency of the kth tuple,
which is the time taken to transmit the tuple between different operators.

Operator load is a crucial metric for assessing system performance. It is defined
as the average load among all instances of an operator. The load of the kth instance
of operator oi is calculated as the product of the number of tuples awaiting process-
ing within this instance during a specific detection interval and the average of tuple
processing times, presented as a proportion of the detection interval. The load of the
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operator instance vi,k during system runtime is formulated in Eq. (2).

Loadi,k =
(ti,k × Counti,k)

Inti,k
(2)

where ti,k represents the average of tuple processing times of vi,k, Counti,k refers to
the number of tuples queued for processing in vi,k, and Inti,k is the detection interval
for vi,k(e.g., 10 seconds in Apache Storm).

For an operator, a load value approaching 1 indicates that the operator is almost
continuously processing tuples without idle time, which may become a bottleneck for
improving system performance. If the load value exceeds 1, it suggests that the oper-
ator is overloaded, potentially leading to tuple backlogs. Conversely, a low load value
means significant idle time, indicating underutilized resources. While this provides
room for handling sudden increases in data streams, it also implies resource wastage
due to under-utilization.

Based on the operator load and the tuple end-to-end latency, we define the system
load Z as the average of all operator loads over a given time interval. The system
latency Y is defined as the average end-to-end latencies of all tuples processed within
the same time interval, as is shown in Eq. (3):

Y =
1

N

N∑
k=1

Tk, (3)

where N denotes the total number of tuples processed during the given time interval.

3.2 Computing resource model

In a heterogeneous cluster composed of n machines, denoted as M1,M2, . . . ,Mn, each
machine Mj has distinct CPU and memory resources. The CPU resources of machine
Mj are represented by Cj

cpu, defined as the product of the machine’s processor fre-
quency and the number of logical processors. The memory resources of machine Mj

are denoted as Cj
mem, and its bandwidth as Cj

band. The total CPU resources C and
memory M of the cluster are calculated by Eqs. (4) and (5).

C =

n∑
j=1

Cj
cpu, (4)

Mem =

n∑
j=1

Cj
mem. (5)

The operator instances in the topology are placed on the slots of machines during
execution. Each slot accommodates one operator instance. To simplify the issue, we
assume that each machine has the same number of slots, denoted as ns, which indi-
cates the maximum number of operator instances that can be placed on the machine,
provided the CPU and memory resource requirements are satisfied.
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To facilitate the initial scheduling of operators, machines in the cluster are cat-
egorized as either CPU-centric or memory-centric based on their configurations. A
machine is defined as CPU-centric if the proportion of its CPU resources relative to
the total cluster CPU resources exceeds the proportion of its memory resources rela-
tive to the total memory resources in the cluster. Otherwise, the machine is classified
as memory-centric, as expressed in Eq. (6).

Cj
cpu

C
>

Cj
mem

M
. (6)

3.3 Operator allocation model

The operator scheduling problem involves assigning operator instances to machines
within the cluster. Since operator instances run in parallel, instances of a single opera-
tor can be distributed across multiple machines, and a single machine can host multiple
instances of either the same or different operators. Given the heterogeneous nature of
the cluster, resource allocation and communication overheads differ depending on the
machine to which an operator instance is assigned.

In a cluster with n machines (i.e., M1, M2, . . . , Mn), let xi,j represent the number
of instances of operator oi placed on machine Mj . The scheduling problem in a hetero-
geneous cluster is to determine the values of xi,j for every operator oi and machineMj .
Using Storm as an example, its scheduling process is dynamic and requires real-time
adjustment of the operator instance allocation based on the application topology’s
runtime status and system load. By adjusting operator parallelism and instance allo-
cation, the system’s performance and scalability can be improved, ensuring smooth
operation of the system.

An effective scheduling strategy aims to maximize system performance under
resource constraints. These constraints include CPU and memory resources and the
number of available slots on each machine. The total CPU oicpu and memory resources

oimem required by each operator instance xi,j placed on machine Mj must not
exceed the machine’s available CPU Cj

cpu and memory resources Cj
mem, as defined by

constraints (7) and (8).

m∑
i=1

(xi,j × oicpu) ≤ Cj
cpu, ∀j ∈ [1, n], (7)

m∑
i=1

(xi,j × oimem) ≤ Cj
mem, ∀j ∈ [1, n], (8)

where m represents the number of operators in the topology. Furthermore, the total
number of operator instances xi,j allocated on machine Mj must not exceed the
machine’s number of available slots ns, as described in constraint (9).

0 ≤
m∑
i=1

xij ≤ ns. (9)
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4 Pa-Stream: architecture and algorithms

Pa-Stream is a data stream pattern awareness scheduling strategy designed for stream
computing systems in heterogeneous clusters. It includes three strategies: an initial
operator placement strategy, a data stream pattern awareness prediction strategy, and
an operator migration strategy to handle variations in data streams during runtime.

4.1 System architecture

Pa-Stream is integrated into the open-source distributed stream computing platform
Apache Storm. Please note that Apache Storm serves merely as the platform for our
experiments, Pa-Stream is equally applicable to other stream processing platforms
such as Spark Streaming [15] and Apache Flink [16]. Fig. 4 shows the architecture of
Pa-Stream, which consists of the following key modules.

Fig. 4: System architecture of Pa-Stream.

• Metrics Collection Module: This module consists of two components: Metrics
Monitor and Database. Metrics Monitor collects runtime data from the stream
computing system such as data stream rates and current operator placement
schemes by leveraging the built-in Metrics REST API of Apache Storm, while
Database persistently stores the data collected by the Metrics Monitor.

• Prediction Module: LSTM Network is the primary component of Prediction
Module. Trained using historical data, this component models the relationship
between data stream variations, operator placement schemes, and system per-
formance in heterogeneous clusters. It predicts system performance changes to
determine the timing of scheduling, and serves as the environment for the Agent
to interact with during reinforcement learning.
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• Adaptive Scheduling Module: There is two components in Adaptive Schedul-
ing module: Agent and Scheduler. Agent is a DQN model that interacts with the
environment, continuously learns, and generates new placement schemes. Sched-
uler executes both the initial scheduling scheme and the online scheduling scheme.
During online scheduling, it calculates the current system performance metrics
and retrieves predictions of system performance changes from the LSTM net-
work to evaluate whether rescheduling is necessary. If rescheduling is required, it
obtains a new placement scheme from the Agent and executes it.

4.2 Bin-packing-based initial scheduling

To ensure optimal performance at the startup of the stream application, a multi-
objective bin-packing algorithm [17] is employed for the initial scheduling of operators,
allocating operator instances to computing resources in a reasonable manner. This
algorithm employs multi-objective non-dominated sorting to solve scheduling problems
within heterogeneous clusters.

First, each machine Mj in the heterogeneous cluster is evaluated based on its

resources, including CPU, memory, and bandwidth, denoted as (Cj
cpu, C

j
mem, Cj

band).
Utilizing metrics such as computing power, memory size, and network latency, multi-
objective non-dominated sorting is conducted. The cluster machines are grouped into
independent non-dominated layers, considered as Pareto fronts. A Pareto front rep-
resents the set of optimal trade-offs among conflicting objectives in a multi-objective
optimization problem.

Next, Each machine is classified as either CPU-centric or memory-centric according
to (6), and operators are classified as either CPU-sensitive or memory-sensitive. If the
ratio of its CPU demand to the total CPU demand of all operators is higher than the
ratio of its memory demand to the total memory demand of all operators, the operator
is classified as CPU-sensitive. Otherwise, the operator is classified as memory-sensitive.

Then, the operators are topologically sorted according to their topological relation-
ships, and their instances are placed according to this order. The operator instances
will be placed on the machine within the optimal Pareto front. If there are multiple
machines within the same Pareto front, the placement of the operator instances is
determined according to the following rules.

(1) CPU-sensitive operators: Place them on CPU-centric machines; if none are
available, proceed to rule (3).

(2) Memory-sensitive operators: Place them on memory-centric machines; if none are
available, proceed to rule (3).

(3) If no suitable machines are found in (1) or (2), or if multiple machines are avail-
able, calculate the communication cost to all upstream operator machines and
select the machine with the minimum cost for placement.

Once an operator instance is assigned to a machine, the resources required by
the instance are deducted from the machine’s available resources, and the machine’s
remaining resource capacity and available slots are updated. Meanwhile, the machine
is re-evaluated for its non-dominance relationship and adjusted to the appropriate
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Pareto Front layer. This process is repeated until the initial placement of all operator
instances is completed.

4.3 LSTM-based data stream pattern prediction

In preliminary experiments, ARIMA and RNN models were tested but showed lim-
ited accuracy and stability, especially under fluctuating and non-stationary workloads.
LSTM outperformed both models and was therefore adopted as the prediction compo-
nent. We use an LSTM network to model the relationship between operator placement,
data stream fluctuations, and system performance metrics. By training the LSTM
on real-world data, we aim to rapidly predict changes in system performance during
the early stages of stream processing applications, while maintaining good prediction
accuracy. Additionally, during system operation, we perform incremental training with
real-time data to adapt to long-term changes in data stream patterns.

The LSTM network is trained and evaluated using theTwitter 2022 user behav-
ior dataset (30 GB), with 70% used for training and 30% for testing. The data is
injected into the WordCount topology via Kafka. Two workload patterns are con-
sidered: (1) a steady stream at approximately 1000 tuples/s, and (2) a fluctuating
stream uniformly sampled between 800 and 1200 tuples/s. The input features include
historical stream rates and operator placement states, while the prediction targets are
system latency and load. A sliding window mechanism is used to construct super-
vised samples, enabling the model to capture both short-term and long-term temporal
dependencies.

The LSTM-based prediction model captures the complex relationships between
data streams, operator allocation, and system performance. The network includes an
input layer, an output layer, and four hidden layers. Fig. 5 illustrates the structure
of our LSTM-based prediction model. The input layer corresponds to the input data
rates and the allocation states of operators. The output layer predicts both the system
latency and the system load. The hidden layers comprise three LSTM layers and one
fully connected layer, effectively capturing the temporal information of data streams
as they evolve over time. The fully layer maps the learned temporal information to
the output layer.

Input layer: This layer is structured with a shape of (TimeSteps,NumFeatures),
where TimeSteps = 4 specifies the number of time steps used as input to predict
the system performance at the fifth time step. By limiting the input to four time
steps, the model effectively captures short-term fluctuations in the data stream while
maintaining manageable computational complexity.

The parameter NumFeatures represents the dimensionality of the feature vector
for each time step and is based on two key metrics: data stream rate (f1t) and operator
placement scheme (f2t).

(1) f1t is a scalar value representing the rate of incoming data at time t, reflecting
the dynamic changes in the data stream.

(2) f2t is a vector that describes the allocation of operator instances across the cluster
at time t. The length of f2t depends on the number of operators m and machines
n, resulting in a vector of length m× n.
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These metrics are combined into a one-dimensional feature vector xt for each time
step, as shown in Eq. (10). Specifically, xt is formed by concatenating the scalar f1t
and the elements of the vector f2t.

xt = [f1t, f2t], (10)

The dimensionality of this feature vector, denoted as NumFeatures, is calculated
based on the structure of f2t and the inclusion of f1t. The value of NumFeatures is
given by Eq. (10).

NumFeatures = m× n+ 1, (11)

where m×n corresponds to the length of f2t, encoding the placement state of m oper-
ators across n machines, and the additional 1 accounts for the scalar f1t. Although
the input dimensionality varies with m and n, the core architecture of the LSTM,
specifically its gating mechanism and hidden layer size, remains fixed and indepen-
dent of the input size. Consequently, as the cluster scale changes, both the temporal
modeling capability and the architectural stability of the LSTM are preserved.

Hidden layers: The hidden layers include four layers: the first layer with 256
LSTM units; the second with 1024 LSTM units; the third with 512 LSTM units; and a
fully connected layer with 256 units. For the first two LSTM layers, return sequences
parameter is set to True, allowing data to be passed to the next layer, thereby
capturing detailed and implicit temporal information. In the third LSTM layer,
return sequences is set to False, simplifying the information to facilitate network
convergence and feature extraction.

We adopt the 256–1024–512–256 architecture based on the input dimensional-
ity and required model capacity. This structure provides sufficient expressive power
while maintaining generalization. Our experimental evaluation demonstrates that this
configuration yields stable and accurate performance. In Fig. 5, each LSTM layer is
expanded along the time dimension. Specifically, each layer contains four time steps
corresponding to input data from time step 1 to time step 4, denoted as t1, t2, t3,
and t4. This design intuitively reflects the temporal dependency characteristics of the
LSTM network when processing sequential data.

Output layer: The output layer consists of 2 units that output the predicted
results: system latency and system load, as shown in Eq. (12). The output yt at time
t includes two parts, where Yt and Zt represent the prediction of system latency and
system load at time t, respectively.

yt = [Yt, Zt]. (12)

In Fig. 5 , the data stacking process employs a sliding window mechanism to recon-
struct the time series. The window length is set to s = 4, and the original sequence
data {x1, x2, . . . , x|D|} is extracted using a stride of 1, generating the training sam-
ple set. Through this method, the original sequence is transformed into supervised
learning samples with spatiotemporal correlations. For instance, the first two train-
ing samples are ([x1, x2, x3, x4], y5) and ([x2, x3, x4, x5], y6), effectively capturing both
local patterns and long-term dependencies in the sequential data.
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Fig. 5: LSTM-based prediction model.

During training, the Mean Absolute Error (MAE), defined by Eq. (13), is used
as the loss function. MAE is widely used to measure average prediction errors by
calculating the sum of absolute differences between target values yi and predicted
values ŷi, emphasizing the magnitude of errors rather than their direction. In Eq.
(13), n represents the total number of samples, referring to the number of target-
prediction pairs used to compute the error. The ADAM gradient descent method is
used to optimize the model for faster convergence and better performance.

MAE =
1

n

n∑
i=1

|yi − ŷi|. (13)

The data stream prediction strategy consists of two key phases: training and predic-
tion. Before system operation, raw data is collected to train the LSTM network. This
raw data includes the data stream rate, operator allocation schemes, and corresponding
system performance metrics at different time steps.

The training set cannot be directly used for training the LSTM network and must
be processed using the sliding window method to transform it into feature-label pairs.
Each sliding window encompasses data from five consecutive time steps. Specifically,
the input features are derived from the first four time steps, which include the data
stream rate (f1t) and operator placement scheme (f2t). The system perfor-
mance metrics at the fifth time step, represented by system latency (Yt) and system
load (Zt), serve as the corresponding labels for supervised learning. During system
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operation, the trained LSTM network is capable of predicting the system performance
at the fifth time step based on the data from the previous four time steps.

After the LSTM model is trained, it can predict system performance for future
time steps. Specifically, the model takes as input the data from the previous four time
steps, including the data stream rate and operator placement scheme. It then outputs
predictions for the system latency and load at the next time step. These predictions
help evaluate the current system state and guide dynamic adjustments to optimize
resource allocation and adapt to changes in data streams.

4.4 DQN-based runtime scheduling

To dynamically adapt to data stream fluctuations and efficiently utilize the resources
of heterogeneous clusters, we propose an online scheduling strategy based on DQN,
which integrates data stream prediction [18]. This strategy includes DQN training, a
scheduling scheme generation algorithm, and an online scheduling algorithm.

To implement the proposed DQN-based runtime scheduling, we model the schedul-
ing process as a Markov Decision Process (MDP). By leveraging the MDP framework,
we can ensure that scheduling schemes are both adaptive to real-time changes in data
stream patterns and aligned with long-term system performance goals. We design its
state space, action space, reward function, and agent to align with the characteristics
of stream computing scheduling.

State Space: A state describes a specific situation within the environment, while
the state space defines the set of all possible states the environment can assume. The
agent observes these states and makes decisions accordingly. As shown in Eq. (14), the
state st represents the current state of the environment, comprising the allocation of
operator instances on machines X, the system latency Y , and the vector containing
the loads of all operators U .

For computational simplicity, the allocation of operators on machines is flattened
into a one-dimensional representation, as shown in Eq. (15), where xi,j represents the
number of instances of operator oi placed on machine Mj . The vector containing the
loads of all operators U is given by Eq. (16), where uoi indicates the load of operator
oi, n represents the number of machines, and m represents the number of operators.

st = (X,Y, U), (14)

X = [[x1,1, x1,2, . . . , x1,n], . . . , [xm,1, xm,2, . . . , xm,n]], (15)

U = [uO1 , uO2 , . . . , uOm ]. (16)

Action Space: The action space refers to the set of all possible actions that the
agent can take in a given state. A scheduling scheme is generated through a series
of actions, each defined as either increasing or decreasing the number of instances
of operator oi placed on machine Mj . The size of the action step determines the
agent’s exploration speed. Before execution, the model checks whether each scheduling
action satisfies resource constraints. Actions that violate constraints are filtered out or
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replaced with the nearest feasible action. The reward function penalizes such actions,
preventing the agent from repeatedly selecting infeasible scheduling decisions.

The step size, denoted as l, is defined as the number of instances of operator oi
that can be added to or removed from machine Mj , with the parameter e introduced
to balance the step size. In this context, e is a small decimal in the range [0, 1]. With
a probability of 1− e, the step size l is set to 1; with a probability of e, l is randomly
selected from the remaining resources on the machine. The step size is given in Eg.
(17), and the action a is given by Eq. (18). The size of the action space is |A| = 2m×n,
where m represents the number of machines and n represents the number of operators.

l =

{
1, with probability 1− e,

[2, remaining slots num], with probability e,
(17)

a = ⟨xi,j ± l⟩. (18)

Reward Function: In reinforcement learning, the reward function assesses the
quality of actions and plays a crucial role in guiding the agent’s future action choices
[19]. After the agent takes an action, if the action improves scheduling performance, the
agent receives a positive reward, increasing the probability of choosing similar actions
in the future. In stream computing, the primary objectives are to minimize system
latency and maximizing processing capacity. Achieving these objectives requires an
effective allocation scheme that reduces the end-to-end latency of data tuples while
maintaining load balancing. Therefore, the reward function R incorporates both delay
rewards and load rewards.

To address the dimensional differences between delay and load metrics, the arc-
tangent function is applied to the delay, normalizing it to the range [−1, 1]. The delay
reward is defined by Eq. (19). Here, ∆delay represents the change in system delay
from the previous time step. A negative reward is given when the delay increases
(∆delay > 0); conversely, a positive reward is assigned when the delay decreases.

Rdelay = − 2

π
arctan(∆delay). (19)

The load reward is defined by Eq. (20), where Z represents the system load, and
the parameter δ denotes the target system load. Runtime scheduling strategy aims
to keep the system load close to this target. For instance, when δ = 0.8, the system
reserves some resources to accommodate sudden traffic spikes, while δ = 1.0 implies
full utilization of cluster machines. Excessive deviation of the system load from the
target load δ results in a negative reward.

Rload = −(Z − δ)2 + 1. (20)

To balance multiple optimization objectives (latency, load, and stability) during
scheduling, the reward is formulated as a weighted combination, as shown in Eq.
(21). A larger weighting coefficient b emphasizes delay-sensitive, optimizing end-to-end
latency in the stream computing system. Conversely, a larger coefficient c prioritizes
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load-sensitive, focusing on optimizing the average load of operators in the system. The
overall reward function is given by Eq. (22):

R = b×Rdelay + c×Rload, (21)

R = −2b

π
arctan(∆delay)− c

(
(load− 0.8)2 − 1

)
, (22)

where parameters b and c control the relative importance of latency and load objec-
tives, allowing flexible policy preference. The parameter δ defines the target load level,
penalizing deviations from it to prevent overload and enhance stability. This formu-
lation provides interpretability and tunability across different runtime environments.
The parameter δ is set to 0.8 to reserve about 20% redundancy for handling traffic
fluctuations; the weights b and c are configured to reflect the latency-first objective
while also accounting for load balancing.

Exploration Strategy: In reinforcement learning, action selection primarily
involves balancing exploration and exploitation. Exploration refers to trying new
actions to discover potential rewards, while exploitation involves choosing the action
known to provide the highest return.

We utilize a hybrid method that combines the ϵ-greedy algorithm with the Softmax
approach. Specifically, instead of selecting the action with the maximum Q-value in
the exploitation phase of the ϵ-greedy algorithm, we apply the Softmax method, as
shown in Eq. (23). This modification transforms the Q-values output by the Q-network
into probabilities between 0 and 1, ensuring that the sum of all probabilities equals 1.
These probabilities are then used to guide action selection, enabling a smoother and
more informed decision-making process.

Softmax(x) =
exi∑
i e

xi
. (23)

In Eq. (23), i represents the i-th action and xi represents the Q-value for the i-
th action. This approach provides a more balanced way to managing exploration and
exploitation. Even if an action does not have the highest Q-value, it still has a chance
of being selected. For actions with high Q-values, they are not chosen blindly but
rather with a higher probability, reflecting their relative advantage.

The Q-value is computed using the action-value function, or Q-function, which
assigns a value to each state-action pair. The iterative formula for updating the Q-
function is given in Eq. (24), whereQ′(st, a) is the updated Q-value for action a in state
st, r is the reward received after taking action a, and max

a′
Q(st′, a′) is the maximum

Q-value across all possible actions a′ in the subsequent state st′. The discount factor
γ adjusts the importance of future rewards: a larger γ emphasizes future rewards,
whereas a smaller γ prioritizes immediate rewards. In practice, the Q-function iterative
formula is often simplified by setting α = 1.

Q′(st, a)← Q(st, a) + α[r + γmax
a′

Q(st′, a′)−Q(st, a)]. (24)
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Algorithm 1 DQN Training Algorithm

Input: State space S, action space A, num of training episodes E, num of max steps
N , epsilon decay δ, minimum epsilon ϵmin

Output: Trained DQN model Q
1: Q← Initialize Q-network with random weights
2: ϵ← 1.0

// Set initial exploration factor to 1.0 for maximum exploration
3: for each episode e ∈ {1, . . . , E} do
4: st← initial state (reasonable random state)
5: for each step t ∈ {1, . . . , N} do
6: if random number < ϵ then
7: a← randomly select an action from A
8: else
9: a← argmaxa(st, a)

// Select the action with the highest Q-value for the current state
10: end if
11: (st′, r)← ExecuteActionAndGetReward(st, a)

// Execute action and obtain the reward r and the new state st′

12: Store transition (st, a, r, st′) in replay buffer
13: Sample random batch from replay buffer
14: Set y = r + γmaxa′ Q(st′, a′) for the batch transitions
15: Perform a gradient descent step on (y − Q(st, a))2 with respect to the

Q-network weights
// Use gradient descent to train Q-network weights

16: st← st′

17: end for
18: ϵ← max(ϵ× δ, ϵmin)

// Perform decay on ϵ
19: end for
20: return Q

Following the modeling phase, we design a series of algorithms to implement
our runtime scheduling strategy. Algorithm 1 outlines the training process of the
DQN, which utilizes the ϵ-greedy algorithm to accelerate the convergence of the deep
reinforcement learning network. Additionally, Algorithm 2 is designed to execute a
specified action and obtain the corresponding reward.

In Algorithm 1, the input includes the state space S, action space A, number of
training episodes E, num of max steps N , and the ϵ decay factor δ. The output is the
trained DQN model Q.

Initially, the algorithm randomly initializes all weights of the Q-network and sets
the value of ϵ to 1.0 (lines 1-2). During each training episode, the state st is randomly
initialized under the specified constraints (lines 3-4). The algorithm then performs N
action steps. At each step, an action is selected based on ϵ: with a probability of ϵ, an
action is randomly chosen from the state space, and with a probability of 1 − ϵ, the
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action with the highest Q-value is selected (lines 6-10). The chosen action is executed
using Algorithm 2, which returns the reward r and the new state st′ (line 11). The
experience tuple (st, a, r, st′) is stored in the replay buffer, and a batch of experience
tuples is randomly sampled from replay buffer for training (lines 12-13). We adopt
a fixed-capacity replay buffer. When the buffer becomes full, a FIFO replacement
strategy is used to maintain sample freshness and prevent memory overflow.

The target value y, which represents the updated Q-value for action a in state st,
is calculated based on the reward r, the discount factor γ, and the maximum expected
reward for the next state (line 14). The DQN weights are then updated using gradient
descent to minimize the error between the current Q-value and the target y (line 15).
The state st is updated using the selected action (line 16). After completing all N
action steps in an episode, the value of ϵ is decayed, ensuring that it does not drop
below the minimum value ϵmin (line 18). Finally, the trained DQN model Q is returned
(line 20).

Algorithm 2 Executing Action And Getting Reward Algorithm

Input: State st, action a, trained LSTM
Output: Next state st′, reward r
1: Determine the target machine Mj and operator oi based on action a.
2: Calculate the maximum step size lengthmax based on the remaining slots of

machine Mj with constraint (9)
// Determine the maximum number of instances that can be modified

based on resource constraints
3: Generate a random number random number ∈ [0, 1].
4: if random number < 0.75 or lengthmax == 1 then
5: length← 1

// choose the step size
6: else
7: length← randomly choose length ∈ [2, lengthmax]
8: end if
9: st′ ← execute action a with length

// Execute the action to modify the operator instances and obtain the
next state

10: Y,Z ← predict using LSTM
11: r ← calculate reward based on Y,Z by Eq. (22)
12: return st′, r

In Algorithm 2, the input includes the current state st, the selected action a, and
the trained LSTM network, while the outputs are the next state st′ and the reward
value r. The algorithm first identifies the target machine Mj and operator oi based on
the action a, determining where the action will be applied (line 1). Next, the maximum
step size lengthmax is calculated based on the remaining slots of the target machine
Mj with constraint (9) (line 2). Then, a random number random number ∈ [0, 1] is
generated, and if random number < 0.75 or lengthmax == 1, the step size length is
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set to 1; otherwise, length is randomly chosen from the range [2, lengthmax] (line 3-8).
The step size length refers to the magnitude of adjustments made to the number of
operator instances on the target machine. For example, a small step size (length = 1)
indicates an adjustment of only one operator instance (either increasing or decreasing),
while a large step size (length > 1) represents adjustments involving multiple operator
instances (e.g., 2, 3, or more). We assign a probability of 0.75 to small step sizes to
constrain the adjustment magnitude of operator instances, thereby maintaining system
stability in most cases. Meanwhile, we reserve a probability of 0.25 for large step sizes,
enabling the algorithm to quickly adjust the number of operator instances and avoid
excessive conservatism.

After that, the action a is executed with the selected step size length, modifying
the number of operator instances on the target machine Mj and resulting in the next
state st′ (line 9). Subsequently, the trained LSTM model is used to predict the system
latency Y and system load Z for the new state st′ (line 10). Finally, the reward r
is computed using Eq. (22), which based on the predicted metrics Y and Z, and the
algorithm returns the next state st′ and the reward r (line 11-12).

Building on the trained DQN, we propose a scheduling scheme generation algo-
rithm, which combines the ϵ-greedy algorithm and the Softmax algorithm, as shown
in Algorithm 3. Additionally, Algorithm 4 illustrates the Softmax action selection
method.

In Algorithm 3, the input includes the trained DQN Q, the initial placement state
of operator instances stinit, the action space A, the maximum decision step length
maxSteps, the number of episodes E, and the parameter ϵ that controls the trade-
off between exploration and exploitation. The output is the set of operator placement
solutions P .

The algorithm begins by initializing the solution set P as an empty set (line 1).
In the outer loop, it iterates over the episodes, initializing the current state st to the
initial state stinit for each episode e, and setting pbest to “empty” to track the best
solution found during that episode (lines 2-4).

Within the inner loop, the algorithm iterates over the time steps t to choose actions.
If a generated random number is less than ε, the agent enters the exploration phase.
Within this phase, if the random number is also less than ε/2, the algorithm selects
a random action from the action space A; otherwise, it uses Softmax to select an
action (lines 5-11). Conversely, if the random number is greater than or equal to ε,
the algorithm chooses the action a that maximizes the Q-value for the current state
st (lines 12-14).

After the action a is selected, it is executed, resulting in a new state st′. The reward
rst′ for transitioning to state st′ is then calculated (lines 15-16). If the current reward
rst′ is greater than the previous reward rst, the algorithm updates pbest to state st′

(lines 17-19). Then the current state is updated to the new state st′ (lines 21). At the
end of the episode, pbest is added to the solution set P , and finally, the solution set P
is returned (lines 12-24).

In Algorithm 4, the input includes the trained DQN model Q, the action space A,
the initial state stinit, and the temperature coefficient τ . The output is the selected
action a. The temperature coefficient τ is a user-adjustable parameter that controls
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Algorithm 3 Scheduling Scheme Generation Algorithm

Input: Trained DQN model Q, initial state stinit, action space A, num of max steps
maxSteps, num of episodes E, epsilon ε

Output: Solution set P
1: P ← ∅
2: for each e ∈ {1, . . . , E} do
3: st← stinit
4: pbest ← empty
5: for each t ∈ {1, . . . ,maxSteps} do
6: if random number < ε then
7: if random number < ε/2 then
8: a← select an action from A randomly
9: else

10: a← execute Softmax Action Selection
// Select action using the Softmax policy for diversity

11: end if
12: else
13: a← argmaxa(st, a

′)
// Select the action with the highest Q-value for the current state

14: end if
15: Execute action a and obtain the next state st′

16: Calculate current reward rst′
17: if rst′ > rstinit then
18: pbest ← st′

// Update the best solution for this decision
19: end if
20: st← st′

// Update the current state to the new state
21: end for
22: Add pbest to solution set P
23: end for
24: return solution set P

the shape of the Softmax distribution. Specifically, a higher value of τ leads to a
flatter probability distribution, reducing the differences between action probabilities
and thus promoting exploration. Conversely, a lower value of τ results in a more peaked
distribution, favoring actions with higher Q-values and thus prioritizing exploitation
of existing knowledge.

To strike a balance between exploration and exploitation, we set τ = 0.5 in this
implementation. The algorithm computes a probability for each action a in the state
stinit, ensuring that all probabilities lie within the range [0, 1] and sum to 1 across the
action space A. Finally, an action is selected through random sampling according to
the computed Softmax probabilities, ensuring a probabilistic decision-making process
guided by the Q values.
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Algorithm 4 Softmax Action Selection Algorithm

Input: Trained DQN model Q, initial state stinit, action space A = {a1, a2, . . . , a|A|},
temperature parameter τ

Output: Next action a
1: Z ← 0

// Initialize the sum of exponentiated Q-values
2: for each action ai ∈ A do
3: exp Q[ai]← exp(Q(stinit, ai)/τ)

// Compute exponentiated Q-value for action ai in state stinit
4: Z ← Z + exp Q[ai]

// Accumulate the sum of exponentiated Q-values
5: end for
6: for each action ai ∈ A do
7: Softmax prob[ai]← exp Q[ai]/Z

// Compute Softmax probability for action ai
8: end for
9: random← Rand(0, 1)

// Generate a random number uniformly distributed in [0, 1]
10: total← 0

// Initialize the cumulative probability for action selection
11: for each action ai ∈ A do
12: total← total + Softmax prob[ai]

// Accumulate the probability of action ai
13: if total ≥ random then

// If the cumulative probability exceeds the random number
14: return ai

// Select and return action ai
15: end if
16: end for

5 Performance evaluation

We evaluate the performance of Pa-Stream by comparing it with the widely used R-
Storm [20] and the heuristic scheduling strategy SP-Ant [6] under two distinct data
stream scenarios. R-Storm and SP-Ant are well-established Storm scheduling baselines
[21, 22], representing resource balancing and task dependency optimization, respec-
tively. They serve as suitable references to highlight the performance improvements
achieved by Pa-Stream in dynamic scenarios.

Furthermore, we validate the accuracy of the proposed predictive algorithm.
Although this paper does not separately present training convergence curves or sam-
ple efficiency comparisons, Pa-Stream inherits the convergence stability of DQN and
improves sample efficiency through its prediction component. A more systematic
analysis of convergence and sample efficiency will be conducted in future work.
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5.1 Experimental setup

The experiments are conducted in a cluster deployed on the Alibaba Cloud computing
platform, which consists of 11 machines. Among them, one master node hosts Nimbus
and the Storm UI, 9 worker nodes handle job computation, and the remaining machine
is designated for the DQN agent’s calculations and online training of the LSTM net-
work. To evaluate the algorithm’s performance in a heterogeneous environment, the 9
worker nodes are selected from three different types of machines. The hardware con-
figurations used in the experiments are detailed in Table 2, and the Software versions
are listed in Table 3.

In our experiments, a dedicated node running the DQN agent and LSTM
online inference/training is sufficient to support real-time scheduling decisions. For
larger-scale topologies, however, computational and communication overheads may
increase, in which case engineering optimizations such as model lightweighting or
inference–training separation can be employed to maintain real-time performance.

The experiments use the WordCount application, a widely adopted benchmark in
the stream processing community that has been extensively used in prior research [23–
26]. The core scheduling mechanism of Pa-Stream is independent of specific application
logic and can be applied to more complex topologies such as fraud detection or IoT
pipelines, which we plan to explore in future work (see Section 7).

Due to space limitations, this section only presents the experimental data of the
aforementioned three strategies on the WordCount application. Fig. 6 presents a sam-
ple of the WordCount operator instance topology, and experimental parameters are
detailed in Table 4.

Table 2: Hardware configuration.

Parameter Master Node RL Node Worker Node
1

Worker Node
2

Worker Node
3

Quantity 1 1 3 3 3
vCPU 2GHz, 2

cores
2GHz, 8
cores

2GHz, 1 core 2GHz, 1 core 2GHz, 4 cores

Memory 4G 8G 2G 4G 4G
Disk 40G 40G 40G 40G 40G
Bandwidth 300Mbps 200Mbps 200Mbps 300Mbps 100Mbps

We use the Twitter 2022 user behavior dataset [27] as data source during our
experimental evaluation. 70% of the data is extracted for training the prediction net-
work, while the remaining 30% is extracted for testing in the experiments. The data
extraction criteria ensure that the data stream speed matches the experimental pre-
set and that the scale is within the carrying capacity of the experimental cluster. The
experimental data size is 30GB, with two data stream scenarios: a steady stream at
1000 tuples/s and a fluctuating stream varying randomly between 800 tuples/s and
1200 tuples/s.
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Table 3: Software and versions.

Software Version

Operating System Ubuntu 20.04.1
Storm Apache Storm 2.1.0
JDK 1.8
Zookeeper 3.6.3
Python 3.9
Kafka 2.1.2

Table 4: Experimental parameters.

Parameter Value

Learning Rate 0.001
Buffer Size 10,000
Experience Replay Buffer 64
Target Update Frequency 10 epochs
Training Episodes 1,000
Discount Factor γ 0.99
Dropout 0.5

Fig. 6: A sample of WordCount operator instance topology.

In the fluctuating stream scenario, the input rate is sampled from a uniform dis-
tribution between 800 and 1200 tuples/s with a fixed random seed. This ensures that
Pa-Stream and all baseline methods are evaluated under the same workload sequence,
guaranteeing fairness and reproducibility. Each experimental scenario is independently
executed three times, and the figures report the mean values from these runs. Due
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to experimental cost constraints, error bars are not displayed; however, the perfor-
mance trends remain consistent across repeated experiments, indicating stable system
behavior.

5.2 System latency

System latency is defined as the average end-to-end latency of tuples, measured from
the arrival of tuples at the application instance to the completion of their computa-
tion. This metric reflects the average duration for which tuples are processed within
the application instance, with lower latency indicating stronger real-time processing
capabilities.

Fig. 7: Latency comparison of Pa-Stream with R-Storm and SP-Ant under steady
data streams.

Figs. 7 and 8 present the system latency for Pa-Stream, R-Storm, and SP-Ant
under steady and fluctuating data streams, respectively. Under steady streams, R-
Storm exhibits a latency of approximately 41.64 milliseconds, while SP-Ant achieves
34.82 milliseconds. In comparison, Pa-Stream significantly reduces latency to 26.17
milliseconds, representing reductions of 37.17% and 24.86% compared to R-Storm and
SP-Ant, respectively. Under fluctuating streams, R-Storm’s latency increases to about
57.97 milliseconds, and SP-Ant achieves 46.61 milliseconds. Pa-Stream outperforms
both, with a latency of 24.79 milliseconds, which is 57.24% lower than R-Storm and
46.81% lower than SP-Ant. The latency reduction observed in Fig. 8 primarily stems
from the predictive capability of the LSTM module, which avoids scheduling delays
under transient workload fluctuations.

These results demonstrate that the proposed Pa-Stream improves system latency
under both steady and fluctuating streams, maintaining stable performance even in the
presence of substantial stream variations. The above experimental results demonstrate
that: whether under stable or fluctuating data rates, Pa-Stream’s rescheduling remains
stable. Under the stable stream rate, only a few initial migrations occur, while under
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the fluctuating stream rate, moderate migrations are triggered in response to load
variations, but no frequent oscillations are observed.

Fig. 8: Latency comparison of Pa-Stream with R-Storm and SP-Ant under fluctuating
data streams.

5.3 System throughput

System throughput is defined as the number of tuples processed per second from
the data source, reflecting the system’s data processing capability. Higher throughput
indicates stronger data processing performance.

Fig. 9: Throughput comparison of Pa-Stream with R-Storm and SP-Ant under steady
data streams.

Figs. 9 and 10 illustrate the throughput variations for Pa-Stream, R-Storm, and
SP-Ant under steady and fluctuating data streams, respectively. Under steady streams,
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the average throughput for R-Storm is approximately 507.50 tuples/s, while SP-Ant
achieves an average throughput of 694.67 tuples/s. In comparison, Pa-Stream’s average
throughput is 830.50 tuples/s, representing an increase of about 46.56% over R-Storm
and 19.55% over SP-Ant.

Fig. 10: Throughput comparison of Pa-Stream with R-Storm and SP-Ant under fluc-
tuating data streams.

Under fluctuating streams, R-Storm’s average throughput is approximately 575.75
tuples/s, while SP-Ant achieves 653.75 tuples/s. Pa-Stream outperforms both, with an
average throughput of 1014.33 tuples/s, which is about 76.18% higher than R-Storm
and 55.16% higher than SP-Ant. The throughput improvement in Fig. 10 results from
adaptive decisions made by the DQN agent, which balance operator migration and
resource utilization.

These results demonstrate that Pa-Stream achieves substantial improvements in
system throughput under both steady and fluctuating streams, with particularly
notable gains under fluctuating conditions.

5.4 System load

System load is defined as the capacity utilization of operators, representing the propor-
tion of time that operators are actively working within a given time frame. Excessive
load can lead to increased processing latency and reduced system performance, whereas
insufficient load indicates resource under-utilization within the cluster. An efficiently
operating stream computing system should ideally maintain a load value between 0.8
and 1.0.

Figs. 11 and 12 illustrate the load variations for Pa-Stream, R-Storm, and SP-Ant
under steady and fluctuating data streams, respectively. Under steady streams, R-
Storm’s load averages around 2.23, while SP-Ant achieves an average load of 1.73. In
contrast, Pa-Stream’s load is approximately 1.19, representing a reduction of about
46.55% compared to R-Storm and about 31.25% compared to SP-Ant.
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Fig. 11: Load comparison of Pa-Stream with R-Storm and SP-Ant under steady data
streams.

Under steady streams, Pa-Stream consistently maintains a stable load close to 0.8,
effectively avoiding excessive system load and data backlog while preventing resource
waste. In contrast, both R-Storm and SP-Ant exhibit significant load fluctuations
under rapid data stream changes, leading to unstable performance, a critical factor
behind increased latency and decreased throughput. Pa-Stream, however, exhibits only
minor load fluctuations even under severe variations in data stream rates, maintaining
a load close to 1. This balance ensures that the system avoids data backlog due to
excessive load and prevents resource underutilization caused by insufficient load.

Fig. 12: Load comparison of Pa-Stream with R-Storm and SP-Ant under fluctuating
data streams.

Under fluctuating streams, R-Storm’s average load is approximately 2.12, and SP-
Ant’s average load is around 1.90. Pa-Stream achieves a significantly lower and more
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Fig. 13: Comparison of LSTM network predicted latency with actual values.

stable average load of 0.99, reflecting a decrease of about 52.91% compared to R-Storm
and 47.47% compared to SP-Ant. The stable performance in Fig. 12 reflects the reward
design, which penalizes frequent reconfigurations, thereby minimizing thrashing and
enhancing stability.

The experimental results demonstrate that Pa-Stream maintains stable reschedul-
ing behaviour under both steady and fluctuating data rates. Under a stable stream
rate, as shown in Fig 7 and 11, due to only a few initial migrations occur, Pa-Stream
exhibits relatively stable latency and resource utilization, without any significant
fluctuations. While under fluctuating stream rates, as shown in Fig. 8 and 12, Pa-
Stream exhibits smoother latency variations and more stable resource load compared
to R-Storm and SP-Ant. This indicates that the system performs only limited oper-
ator reconfigurations during fluctuating workloads, effectively avoiding thrashing and
maintaining stable scheduling behaviour.

5.5 Prediction accuracy

To assess the accuracy of the predictive algorithm for system performance forecasting,
a portion of the dataset is used for training, and random samples from the remaining
data are used for prediction. The prediction period is set to one minute, using data
stream fluctuations from the first four minutes to predict system performance changes
in the fifth minute. The predicted values for latency and load are compared to the
actual values, and the MAE, as defined in Eq. (13), is used to measure prediction
accuracy.

System Latency Prediction. Figs. 13 and 14 compare the predicted latency
from the predictive algorithm with actual latency values and analyze the MAE results.
Fig. 13 indicates that the predicted latency trends closely match the actual values. The
MAE analysis in Fig. 14 reveals an average error of approximately 2.809 milliseconds.

System Load Prediction. Figs. 15 and 16 compare the predicted load values
with actual load values, and provide an MAE analysis. Fig. 15 shows that the predicted
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Fig. 14: Error analysis of LSTM network predicted latency compared to actual values.

Fig. 15: Comparison of LSTM network predicted system load with actual values.

and actual load trends align closely. Fig. 16 shows an average MAE of approximately
0.144.

This experimental results indicate that the trained LSTM network exhibits low pre-
diction errors for stream computing system performance metrics. This demonstrates
the network’s capability to predict system performance changes in real-time under
varying data stream conditions.

5.6 Generalizability to complex topologies

Although our experiments focused on the relatively simple WordCount application,
the insights gained are applicable to more complex real-world scenarios. In complex
topologies, the core challenge remains the dynamic adjustment of operator placement
schemes to accommodate fluctuations in data stream rates. The LSTM model and the
DQN model are the main components of Pa-Stream. The LSTM model captures the
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Fig. 16: Error analysis of LSTM network predicted system load compared to actual
values.

relationship between the current system state and future system performance. This
enables the model to effectively predict future outcomes, regardless of the complexity
of the underlying topology. Similarly, the DQN model is not dependent on specific
application structures. It generates scheduling schemes by using the LSTM model as
the decision-making environment, making it suitable for both simple and complex
topologies. Thus, Pa-Stream’s core mechanisms are broadly applicable across diverse
stream processing applications.

6 Related work

Learning-based algorithms directly optimize performance objectives, making them an
increasingly popular research area in data analysis and processing [28]. We review
and analyze existing studies on operator scheduling for distributed stream computing,
identifying achievements and key limitations. Furthermore, we examine the state of
research on data stream pattern recognition algorithms.

Table 5: Comparison of Pa-Stream and related work.

Algorithm Predictive Learnability Robustness Notes

R-Storm [20] × None Low 3D Bin Packing
I-Scheduler [7] × None Low Graph Partitioning
SP-Ant [6] × None Medium Ant Colony Algorithm
MT-Scheduler [29] × None Medium Dynamic Programming
ER-Storm [30] × Medium Medium Q-Learning
Pa-Stream (Ours) ✓ High High Deep Reinforcement Learning
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6.1 Operator scheduling for stream computing

Significant progress has been made in developing operator scheduling strategies for
stream computing. The most popular approaches include model-based scheduling,
heuristic algorithm-based scheduling, and reinforcement learning-based scheduling.
Table 5 presents a comparison between existing scheduling algorithms and the
proposed Pa-Stream.

In terms of static and heuristic-based schedulers, R-Storm [20] minimizes inter-
node communication by precomputing placement plans but depends heavily on
accurate user-provided resource requirements. I-Scheduler [7] leverages K-way graph
partitioning to reduce communication costs but determines partition thresholds empir-
ically. SP-Ant [6] combines heuristic and meta-heuristic algorithms (ant colony and
bin-packing), yet its iterative optimization results in slow convergence. Similarly, MT-
Scheduler [29] applies dynamic programming to map tasks based on static resource
descriptions, but it lacks adaptability to runtime workload variations. Overall, these
approaches assume relatively stable environments and do not adapt to dynamic
workload fluctuations.

In terms of Learning-based or adaptive schedulers attempt to address dynamic
workload changes using reinforcement learning or search-based algorithms. ER-Storm
[30] employs tabular Q-learning combined with replication and migration (RSR)
mechanisms to handle elasticity, but its reactive design and slow Q-learning conver-
gence limit responsiveness in highly dynamic scenarios. The MCTS (Monte Carlo tree
search)-based [31] approach achieves multi-objective optimization via stochastic sam-
pling but suffers from slow convergence and limited precision due to sampling noise.
The TBVI ((Trajectory-Based Value Iteration))-based method [32] improves sampling
efficiency over traditional Q-learning by function approximation but simplifies the
action space to single-operator scaling, leading to longer convergence trajectories and
higher reconfiguration costs.

In terms of industry schedulers, Apache Beam and Google Dataflow provide unified
programming abstractions for stream and batch data processing but rely on underlying
cluster resource managers for runtime scheduling [33]. Industrial schedulers such as
Kubernetes and YARN primarily focus on resource allocation and task isolation, rather
than proactive scheduling for latency or throughput optimization [34].

Current distributed stream computing task schedulers aim to minimize inter-node
communication, reduce latency, and improve throughput, but many limitations remain
as discussed below:

(1) Model-based algorithms: When solving NP-hard problems, these methods may
overlook useful information, such as data distribution during algorithm design,
leading to suboptimal solutions. They lack adaptability, often performing poorly
when applied to workloads different from those they were designed for. Their
development is time-consuming, requiring significant effort from developers to
test and fine-tune numerous rules empirically. They struggle with heterogeneous
clusters, as most schedulers designed for such environments reply on heuristic
algorithms.
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(2) Heuristic algorithms: While heuristic algorithms can produce optimal or near-
optimal solutions for single-operator scheduling, they depend on iterative pro-
cesses, which makes it difficult to obtain satisfactory solutions in the early stages
of computation. Repeated iterations lead to slower solving speeds, restricting
their applicability to offline scheduling. These algorithms are unable to reconfig-
ure flexibly in response to dynamic changes in real-time data streams, such as
input rate fluctuations or data skew, potentially leading to node overload. When
clusters experience failures or scale up, heuristic-based offline schedulers struggle
to adjust operator placement dynamically.

To address these challenges, runtime strategies are needed. These strategies allow
dynamic operator migration to adapt to changes in both the cluster and data
streams, ensuring flexibility, efficiency, and resilience in real-time stream comput-
ing environments. Unlike reactive schedulers such as ER-Storm, Pa-Stream integrates
LSTM-based prediction with DQN-driven adaptive scheduling to proactively antici-
pate and mitigate the impact of fluctuating workloads. This design enables Pa-Stream
to achieve more stable and forward-looking scheduling decisions.

6.2 Data stream pattern recognition

A data stream is defined as “an unbounded sequence of multidimensional, sporadic,
and transient observations available over time” [35]. A data stream pattern refers
to recurring, identifiable patterns or regularities within the data stream. These pat-
terns help characterize the data stream and predict future changes, enabling informed
decision-making. Trends in data streams over time can be periodic (e.g., seasonal
variations or daily fluctuations), or non-periodic (e.g., long-term trends or sudden
events). These trends can be identified and modeled using techniques such as time
series analysis and statistical analysis.

Recent advances in stream learning and concept drift adaptation have intro-
duced several algorithms that improve the accuracy and adaptability of models in
evolving data environments. Representative approaches such as Adaptive Random
Forest (ARF) [36], Streaming Random Patches (SRP) [37], and CS-ARF [38] employ
ensemble-based strategies to maintain predictive accuracy under drift. ARF introduces
adaptive resampling and operator adjustment to handle different drift types, while
SRP combines random subspace and online bagging for fast and diverse ensemble
learning. CS-ARF further integrates compressed sensing for dimensionality reduction,
enhancing performance in high-dimensional streams.

Other studies have explored neural and hybrid stream learners, such as the Ran-
domized Neural Network (RNN) [39] and the hybrid Hoeffding-tree-based methods
[40], which use random feature filters and GPU acceleration to balance accuracy and
efficiency. Frameworks such as River [41] provide unified toolkits for online learning and
continual model evaluation, integrating algorithms from Creme and scikit-multiflow.
In addition, Bahri et al. [42] proposed a time-weighted KNN method that adapts to
recent data trends using sliding-window mechanisms.

These methods have demonstrated effectiveness in addressing data classification
and concept drift in dynamic data streams. However, they tend to overlook the complex
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relationship between data stream fluctuations, operator placement strategies, and key
system performance metrics such as throughput, latency, and resource utilization. This
limitation hinders their ability to provide early-stage performance predictions, which
are essential for optimizing resource allocation and task scheduling in real-time stream
processing systems. Moreover, most algorithms are not designed to adapt to long-term
evolutions in data stream patterns, reducing their robustness in continuously changing
environments.

7 Conclusion and future work

This paper analyzes the impact of data stream variations on system performance
and investigates scheduling challenges in distributed stream computing systems. It
introduces a data stream pattern-aware scheduling strategy, Pa-Stream, for stream
computing systems. Experimental comparisons show that Pa-Stream significantly
enhances throughput, reduces latency, and optimizes resource utilization when pro-
cessing fluctuating data streams, outperforming R-Storm and SP-Ant.

While Pa-Stream effectively addresses the rescheduling challenges of stateless oper-
ators in heterogeneous clusters, its current implementation is limited to relatively
simple scenarios, such as the WordCount topology. Future work could explore its per-
formance on more complex applications. Specifically, future research will focus on the
following aspects.

(1) State management for stateful operators. Future work will address the state
management challenges associated with stateful operators during runtime schedul-
ing, extending the current Pa-Stream strategy. This includes designing algorithms for
state transitions, such as mechanisms for state backup, restoration, and consistency
maintenance during runtime scheduling.

(2) Evaluation on complex topologies. Future work will evaluate Pa-Stream’s per-
formance on complex topologies, such as multi-stage ETL pipelines, real-time fraud
detection systems, and large-scale graph processing tasks. These evaluations will pro-
vide deeper insights into the Pa-Stream’s effectiveness under diverse and challenging
scenarios.
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