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Abstract—Stream grouping strategy plays an important role in
stateful stream computing environments. Many existing grouping
strategies overlook various cost factors associated with grouping
while balancing stream load. To overcome this limitation, we
propose Pd-Stream, a popularity-aware discriminative grouping
strategy that identifies the hot keys in dynamic real-time streams
and assigns them to instances with high balance and low cost. Our
solution includes: (1) A stream application model is constructed,
along with a skewed data stream model and a data stream
grouping model. Data stream grouping optimization problems
are formalized. (2) A hot key probability estimation algorithm
is designed, which estimates real-time probabilities of hot keys
based on their popularity within the sampling window. (3) An
instance assignment algorithm is designed using dynamic routing.
This algorithm determines the minimal number of candidate
instances based on the probabilities of hot keys, and selects
the target instance with the lowest load through a dynamic
routing table. Experimental results show that Pd-Stream provides
near-optimal load balancing with low memory, achieving load
imbalance as low as 107° and replication factor as low as
1.74. 1t outperforms state-of-the-art works, reducing latency by
27%-46% and improving throughput by 23%-52%.

Index Terms—Stream computing system, Grouping strategy,
Load balancing, Popularity-aware, Hot key identification.

I. INTRODUCTION

In the big data era, there has been a growing demand for
real-time monitoring and analysis of massive volumes of data
[1]. Distributed stream computing systems, such as Storm [2],
Heron [3], Spark [4] and Flink [5], provide effective solutions
for processing dynamic and volatile data streams with high-
throughput and low-latency [6], [7]. These distributed stream
computing systems have been widely deployed in different
domains, such as social network analysis [8], real-time risk
detection [9], and Internet of Things (IoT) [10].

To achieve high system throughput, operator instances in
a stream application are deployed across multiple computing
nodes. Stream grouping strategies distribute data tuples to the

This work is supported by the National Natural Science Foundation of
China under Grant No. 62372419; and Fundamental Research Funds for the
Central Universities under Grant No. 265QZ2021001. (Corresponding author:
Dawei Sun.)

Dawei Sun, Minghui Wu and Jie Wen are with the School of Infor-
mation Engineering, China University of Geosciences, Beijing, 100083,
China (e-mail: sundaweicn@cugb.edu.cn; wuminghui @email.cugb.edu.cn;
wenjie2573 @email.cugb.edu.cn)

Shang Gao is with the School of
Deakin University, Waurn Ponds, Victoria,
shang.gao@deakin.edu.au)

Rajkumar Buyya is with the Quantum Cloud Computing and Distributed
Systems (qCLOUDS) Lab, School of Computing and Information Systems,
The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Aus-
tralia (e-mail: rbuyya@unimelb.edu.au)

Information  Technology,
3216, Australia (e-mail:

target operator instances on different nodes for parallel exe-
cution. Specifically, Shuffle Grouping (SG) is typically used
for stateless operators, where tuples are randomly and evenly
assigned to downstream operator instances. Key Grouping
(KG) is often used for stateful operators, where a specified
field value in tuples serves as a key, and tuples with the same
key are assigned to the same downstream operator instance.

However, in real-world scenarios, the distribution of keys
in data streams is often skewed, typically exhibiting a pro-
nounced long-tail property, where about 20% of frequent keys
are associated with more than 80% of the tuples [3]. For
instance, in social media, a small number of trending topics
usually attract massive user discussions, while in network
security, specific target IPs can trigger a large concentration of
alert events [11]. If the system cannot effectively discriminate
these hotspot keys, a large number of tuples will be mapped
to a few operator instances [12]. This results in resource
saturation on these instances, while other instances remain
underutilized, thereby causing severe load imbalance.

To deal with skewed data stream for stateful operators,
traditional solution is operator migration [13]-[16]. Once a
situation of load imbalance is detected, the system migrates
part of the keys and their associated states away from the
overloaded instances. To ensure consistency in mapping keys
to downstream instances, the source operator needs to main-
tain routing tables after state migration. However, in typical
network-mining applications, each routing table can easily
contain billions of keys [15], which leads to enormous memory
costs and greatly limits overall system performance.

To avoid the overhead incurred by operator migration,
PKG [17] is a widely adopted solution to addressing the
load imbalance caused by skewed data streams for stateful
operators. It employs a key splitting technique to assign each
key to two instances. While this solution is effective for mildly
skewed data streams, it struggles with highly skewed streams
and large-scale instances. Based on PKG, Anis et al. [18] uses
a heavy hitter algorithm to identify keys that are significantly
more frequent than others, referred to as “hot keys”, and
allocates these hot keys across more than two instances to
achieve load balancing. Given that hot keys often evolve over
time, some grouping strategies [12], [19] are dedicated to the
accurate identification of recent hot keys in dynamic real-time
streams. These approaches enhance load balancing through
reliable identification of hot keys.

In solutions that utilize key splitting for stream grouping,
tuples associated with each key are processed by multiple
instances, each instance generating a partial processing re-
sult. The final result is then obtained through a downstream
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aggregation step. While ensuring load balancing, these solu-
tions often overlook additional costs related to memory and
aggregation [20]. To reduce the memory and aggregation costs
caused by key splitting, several holistic grouping algorithms
[21]-[23] have been proposed. These algorithms consider both
the load on instances and the routing information for hot keys.
By calculating a comprehensive score that factors in both load
balancing and key splitting for each candidate instance through
an objective function, the instance with the highest score is
selected as the target instance for the incoming data tuple.
While these algorithms achieve promising load balancing, they
ignore these overheads: memory cost from maintaining key
state across multiple candidate instances and time cost from
the grouping computation itself.

As such, we propose Pd-Stream, a popularity-aware dis-
criminative grouping strategy with high balance and low cost.
Unlike existing methods that either split keys aggressively
or not at all, Pd-Stream dynamically calculates the real-time
popularity of each hot key and determines the appropriate
number of downstream instances to which it should be split.
Our novelty lies in this fine-grained control: instead of just
migrating a hot key to another instance, we intelligently
distribute its load across an optimally calculated number of
instances based on its popularity probability. This approach
offers two key advantages over existing work. First, by tai-
loring the degree of parallelism to the actual popularity of
each key, we achieve a higher degree of load balance than
methods that treat all hot keys uniformly. Second, by only
splitting the most popular keys and controlling the extent of the
split, we significantly reduce the size of the required routing
information, thereby minimizing the memory and aggregation
costs that burden conventional state-migration strategies. Our
contributions are as follows:

(1) We investigate stateful grouping for skewed data streams
and formalize data stream grouping optimization problems by
modeling stream application, skewed data stream, and data
stream grouping.

(2) We propose a hot key probability estimation algorithm
that leverages sliding window sampling. By optimally config-
uring the length of the sampling window based on a predefined
hot key probability threshold, we achieve precise real-time
estimation of hot key probability with minimal time and
memory Ccosts.

(3) We propose an instance assignment algorithm that first
determines the minimal number of candidate instances for
load balancing, informed by the probabilities of hot keys. It
then selects the target instance with the lowest load through
a dynamic routing table, minimizing both the memory cost of
the table and the time cost of target instance selection.

(4) We implement Pd-Stream on the Apache Storm platform
and evaluate metrics, including load imbalance, replication
factor, latency and throughput, to verify the efficiency of the
proposed stateful grouping strategy.

The rest of this paper is organized as follows: Section II
discusses related work. Section III introduces relevant models;
Section IV formalizes the grouping optimization problems;
Section V presents the Pd-Stream system and its main algo-
rithms; Section VI evaluates the performance of Pd-Stream;

Section VII concludes our work and outlines future directions.

II. RELATED WORK

In this section, we review related studies across two main
categories: data stream grouping and hot key identification.

A. Data stream grouping

Key grouping strategies often lead to load imbalance in tuple
transfer between upstream and downstream instances when
processing skewed data streams. Consequently, optimizing
load balancing for data stream grouping has been widely
studied in recent years.

Key-splitting-based state aggregation. To mitigate load
imbalance in skewed data streams, Chen et al. [24] extended
the “power of two choices” [17] with a (1 + [)-choice
partitioning scheme, where a fraction § € (0,1) of keys are
selectively split among multiple candidate instances. Zhang et
al. [25] further proposed Back Propagation Grouping (BPG),
which periodically exchanges global load information to en-
hance balance. However, limiting hot keys to two instances
remains inadequate under extreme skew. To address this, Nasir
et al. [18] developed D-Choices (D-C) and W-Choices (W-C),
which detect hot keys and distribute their load across multiple
instances, while non-hot keys continue to follow PKG. These
solutions achieve load balancing, but often at the expense of
increased memory and aggregation overhead.

Cost-aware and learning-based grouping. To minimize
load imbalance while considering memory and aggrega-
tion costs, Katsipoulakis et al. [21] proposed a cost-based
cardinality-aware grouping strategy. It maps each key to two
downstream instances and selects the target based on instance
cardinality and load. More recently, Zapridou et al. [26]
proposed Dalton, an adaptive grouping strategy that employs
reinforcement learning to balance load and cost under dy-
namic stream conditions, updating its global policy through
distributed state aggregation. However, these solutions ignore
the cost incurred by maintaining key state across multiple
candidate instances.

Our proposed Pd-Stream builds on the key-splitting tech-
nique in [17]. A dynamic routing table adaptively adjusts key
mapping according to the estimated probabilities to balance
load and control the degree of key splitting. The instance
assignment algorithm further leverages the probability and
routing tables to select target instances efficiently, thereby
reducing grouping latency.

B. Hot key identification

Current stream grouping strategies generally use approxi-
mate stream computing methods for hot key identification [23].
By estimating the frequency of items in the data stream, high-
frequency items can be determined to identify hot keys [22].
Approximate stream grouping can be broadly divided into two
categories: counter-based and sketch-based methods.

Counter-based grouping. A stream summary structure
[27], [28] is used to record approximate frequencies of data
items. It consists of m counter slots storing items and their
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frequency counts. When a new item arrives, the algorithm
replaces the item with the lowest frequency, setting the new
item’s count to 1,,;, + 1, where n,,;, is the minimum counter
value. These algorithms have a fixed space overhead of O(m).
However, they may introduce significant errors when the data
stream distribution changes rapidly, as they treat all new items
as potential high-frequency items.

Sketch-based grouping. The frequency of data items is
estimated by maintaining a two-dimensional array [29], [30].
Independent hash functions map each data item to positions
in one-dimensional arrays, and the corresponding counters
at these positions are incremented. The estimated frequency
of a data item is taken as the minimum value among all
its mapped counters. However, the multi-hashing strategy
improves frequency estimation accuracy at the cost of higher
memory usage [31], as each cell in the two-dimensional array
serves to aggregate hash collisions [12].

The aforementioned methods mainly focus on identifying
hot items from the beginning of the measurement period and
often overlook dynamic changes in the data stream, making
it difficult to identify hot items in real time. Therefore,
Pd-Stream detects hot keys and estimates their occurrence
probabilities using a sliding-window sampling mechanism to
update hot items dynamically.

III. SYSTEM MODEL

In this section, we formalize the foundational models in a
stateful stream computing environment, including the stream
application model, skewed data stream model, and data stream
grouping model. For the sake of clarity, in Table I, we
summarize the main notations used throughout the paper.

TABLE I
DESCRIPTION OF MAIN SYMBOLS USED IN THE PD-STREAM.

Symbol Description
v; The i-th vertex of the streaming application
€v;,0; A data stream path from vertex v; to v;
D(evi,v 7) Instance set of downstream vertex v; of vertex v;
ND(ew, v.) Number of instances in D(ev;,v; )

iy

?j n Load of downstream instance v, within a window

LI g (e ) Load imbalance degree between downstream instances

v,V
RFg(ew o) Replication factor of key splitting for D(ev,,v;)
X Appearance probability of hot key k
Py, (X}, = ny) Probability of hot key k appearing ny, times
@ Limit of the upper bound of P (X} = 0)

AC(D(ew, v, ), EStimated number of candidate instances for key k
iy
C(D(ev;,v;))k Set of candidate instances for the incoming tuple

A. Stream application model

The logical topology of a stream application can be modeled
as a Directed Acyclic Graph (DAG) G = (V(G), E(Q))
[32], where V(G) = {v;|i € 1,2,...,N} is a finite set
with N vertices and each vertex v; € V(G) represents
an operator with a specific function defined by the user.
E(G) = {evw,;|vi,v; € V(G),i # j} is a finite set of
directed edges. Each edge e,, ., indicates a data stream path
from vertex v; to vertex v;, where v; and v; denote the
upstream and downstream vertices of e,, ., respectively.

Vertex v; comprises multiple instances that work in parallel,
with each instance executing the same function. For a vertex
pair v; and v; connected via e, ,;, we use Uley, ;) =
{vim|m € 1,2,...,nU(eUMJ)} to represent the instance
set of upstream vertex v;, and D(ey, ;) = {vjnln €
1,2,... ’nD(evi,uj)} to represent the instance set of down-
stream vertex vj. ny(e,, ,.) = |U (e, ;)| denotes the number
of instances in U (e,, o, ), and ND(ey; ;) = |D(ey, ;)| denotes
the number of instances in D(ey, v, ).

B. Skewed data stream model

Each data stream ds = {dt;, dto, ...} consists of a sequence
of data tuples [29]. Each data tuple dt can be represented as
a triplet (7, k,v), where 7, k, and v represent the timestamp,
key, and value of data tuple dt, respectively. If the keys in
data stream ds follow a skewed distribution D in a finite key
space K, it means some of the keys appear more frequently
than others. Let pj, represent the probability of key k appearing
in the data stream ds. We can rank the keys based on their py
values, with a higher ranking indicating a higher probability of
the key appearing in the data stream. Therefore, the descending
probability ranking of the keys is as follows: pist > pona >
oo 2 pig|en, With Y0, o pr = 1. We define the key with a
probability greater than or equal to a set threshold 6 as a hot
key. The set of hot keys H (k) can be described by (1).

H(k) ={k € K |pr = 0}. (1)

To achieve lightweight hot key identification, we set a
static threshold 6 based on PKG [17]. However, using a
fixed 6 has certain limitations. It cannot flexibly control the
number of hot keys under different skew levels. In extremely
skewed data streams, most keys may either exceed 6 or fall
below it, which can make the grouping strategy suboptimal. A
dynamic threshold that adapts to the observed key distribution
could better handle such cases, although it would increase
computational overhead and system complexity.

C. Data stream grouping model

Each data tuple can be emitted to a specific operator
instance through the grouping strategy [16]. Pd-Stream in-
corporates a built-in window to monitor data stream runtime
information for identifying the popularity of keys. Each data
tuple passes through this built-in window and is distributed
to downstream instances. Then, each data stream ds can be
divided into a series of logical windows W(ds) : ds —
{ds',ds?,...,ds",...} based on time or data tuple count.
Data tuples within window ds™ are assigned from upstream
instances U(ey,,»;) to downstream instances D(ey, ;) via
€y,,v; Using a stream grouping function G(dsg(evi.vﬁ))
dsg(eij) — D(ey,,v;), where ds}j(e“iyvj) denotes the data
tuples in the upstream instances U (e,, ., ) within window ds*.

Ny, ooy (dE) = |dsy | denotes the number of data
tuples within window ds™ assigned from the upstream in-
stances v; ,,, to the downstream instance v; . The total number
n? (dt) of data tuples within window ds“ assigned from

Vj,n
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Fig. 1. Stream grouping from upstream to downstream instances.

upstream instances U (e, ;) to the downstream instance v; ,,
of D(ey, ;) can be calculated by (2).

U (ew;,0;)

n:LUl;,n (dt) = Z n;L)L;Jn;'Uj,n (dt). (2)
m=1
e, o (B) =1ldsy, || denotes the number of distinct

keys within window ds* ass1gned from the upstream instances
Vim to the downstream instance v;,. The total number
ny. (k) of distinct keys within window ds* assigned from
upstream instances U(evi’v_j) to the downstream instance v;

can be calculated by (3).

nU(“'ui,vj )

S (k). 3)

m=1

ny, (k) =

As depicted in Figure 1, nine data tuples within a window
ds", containing three keys, are distributed from the upstream
instances U (ey, v,) = {vi,1,v:,2} to the downstream instances
D(ev,v;) = {vj,1,vj,2,vj3} via the stream grouping func-
tion G(dsyj,, ), where the number of tuples for v;, is

v (dt) = 4 "the number of keys for v; 1 is ny | (k) = 3
51m11arly, wo(dt) = 3, ny (k) = 2; and n“’ (dt)
ny (k)= 1.

V5,3

IV. PROBLEM STATEMENT

Previous key splitting-based grouping strategies have strug-
gled to achieve load balancing and control key splitting under
low-latency conditions. To address the challenges, we formal-
ize the following grouping-related problems: load balancing
and key splitting, before proposing our optimization solutions.

A. Load balancing optimization

We aim to optimize the computational load distribution
across instances for better load balancing. The computational
load of an instance is proportional to the number of data
tuples it should process. Therefore, we quantify the load of
a downstream instance v;,, within window ds", denoted as
Ly . as the total number of data tuples n;’ (dt) assigned
from upstream instances U (e,, ;) to the downstream instance

Vjn. System performance often depends on the number of

parallel instances with the heaviest load [20], thus we define

load imbalance degree LI “’( o) as a metric to quantify

the load balancing across the set of downstream instances

D(ey,,»;) within window ds® after being grouped by the

stream grouping function G(ds}‘}(e%vj)). It can be described
avg

by (4).
max (L? ) — (L:j’ , )
v-j’neD(evi’“j) o ’Uj.,neD(evi,vj) o

6'07 ) avg (L:luu n ) ’
’l)jm,ED(ewi,vj) ”
4)

where max (Lﬁjn) is the maximum load of downstream

LI“’(

instances D(e,, ;) within window ds", and avg (L:j’J m) is
the average load of downstream instances D(ev ,v;) Within
window ds". The lower the imbalance degree LI}, D(eusu,)’ the
better the load balance of D(ey, v, ).

The load balancing optimization problem for stream group-
ing can be formalized as (5):

min (LT3, ), )
subject to
0< vaj‘n < max (L:)’;,n»vj,n € D(ey; ;) (6)

As shown in Figure 1, the maximum load max (Lw

among downstream instances D(e., ., ) is 4 (as n;,  (dt) = 4),
while the average load avg(L“’ )‘among downstream in-
stances D(ey, ;) is 3. This results in a load imbalance degree
LIy, o) of 0.33. A load imbalance degree LI} vivy)
of 0 51gn1ﬁes perfect balance across downstream instances
D(ey, v;) within window ds"

B. Key splitting optimization

Key splitting technique can effectively achieve load bal-
ancing without state migration, but it also incurs additional
costs. These costs consist of two parts: (1) Memory cost. The
stream grouping function assigns tuples with identical keys
to multiple instances of an operator, and each instance may
maintain partial results as states for various keys, requiring
memory to store these partial states. (2) Aggregation cost. The
partial states must be aggregated in the downstream instances,
leading to resource requirements during the aggregation pro-
cess. These costs are proportional to the degree of key splitting.
Our objective is to minimize the extent of key splitting as
much as possible, while still benefiting from the absence of
state migration.

We define replication factor RFg(evi,vj) as a metric to
quantify the extent of key splitting across the set of down-
stream instances D(e,, ;) within window ds" after being
grouped by the stream grouping function G (dsﬁ( . ). It can
be described by (7). o

nD(C'ui,'ui)

>, .0

n=1

o ; (N
nD(e'ui,vj ) (k)

RF'IU( —

€v;v;)
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where n;) (k) is the number of distinct keys within window
ds" assigned from upstream instances U(e,, ;) to down-
stream instance v, ,, and n%(eyuimv)(k) is the total number
of distinct keys within window ds™ assigned from upstream
instances U (ey, ;) to downstream instances D(e,, ;). The
lower the replication factor RFB’( o)’ the better the degree
of key splitting for D(ey, ;). ’

The key splitting optimization problem for stream grouping
can be formalized as (8):

min (RFS., ), ®)
subject to
0<ny (k)< n%(euim?)(k),vj,n € D(ew;). 9

As shown in Figure 1, the sum of number of distinct
keys n; (k) that each downstream instance v, receives
is 6, while the total number of distinct keys n7 . (k)

sent to downstream instances D(e,, ;) is 3. This leads to a
replication factor RFg(e ) of 2 for downstream instances

D(ev“,j), indicating that each key is split an average of two
times. A replication factor RFB’(%MJ_) of 1 indicates that
no key splitting has occurred across downstream instances
D(ev, »;) within window ds™. As we need to split the hot keys
in skewed data streams for load balancing, our optimization
objective is to keep the replication factor as close to 1 as
possible.

V. PD-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the above analysis, we propose Pd-Stream, a high-
balance, low-cost stream grouping strategy for skewed data
streams. In this section, we first provide an overview of Pd-
Stream’s architecture, followed by detailed descriptions of its
key components and algorithms.

A. System architecture

Built on Apache Storm platform, Pd-Stream is mainly com-
posed of Nimbus, Zookeeper and Supervisor. Nimbus serves as
the primary scheduler, assigning the tasks of a user-submitted
topology to available compute nodes. For cluster coordination,
Zookeeper maintains distributed state information, including
topology configurations and task assignments. It also monitors
the liveness of worker nodes through a heartbeat mecha-
nism, supplying Nimbus with the necessary information to
dynamically supervise the cluster and manage task placements.
Supervisor starts or stops the workers to Nimbus’s instructions.
Worker nodes are managed by Supervisors, with each Worker
containing multiple Executors. Each instance of a vertex in
the stream application’s topology corresponds to a stream
application task, and each task is executed by an Executor.

The Grouper proposed by Pd-Stream can be customized
by implementing the CustomStreamGrouping interface
[33]. Grouper operates within each Executor, distributing data
streams to the Executors responsible for downstream tasks
according to the stream application topology. If the Executor
fails, the Grouper’s state will be reinitialized along with the
deployment of a new Executor. As shown in Figure 2, the

Grouper consists of three components: a sliding sampling win-
dow, hot key probability estimation, and instance assignment.

Nimbus

Grouper

Instance
Assignment

Hot Key Probability
Estimation

Incoming dt Data stream

Zookeeper: Database

v v
Supervisor Supervisor
Executor Executor
Worker Worker

Fig. 2. Pd-Stream architecture.

The sliding window samples the key in each incoming
tuple. Its window length is determined based on a predefined
hot key probability threshold. Using this threshold, we can
calculate the minimum window length required to sample
hot keys in real time, ensuring that all current hot keys are
sampled while minimizing the memory overhead caused by
the sampling window. The sliding window moves along with
the input data stream, allowing for real-time updates on hot
keys and their associated probabilities.

The hot key probability estimation component estimates
the probabilities of hot keys based on their occurrence popular-
ity within the sliding window. In this component, we employ a
binary search algorithm to estimate the probability of each hot
key. To reduce the computational cost of the search process
and minimize grouping latency, we maintain a probability table
that records the mapping between hot key popularity and their
corresponding probability. This table is generated during the
Grouper initialization phase.

The instance assignment component selects an appropriate
target downstream instance for each incoming data tuple
through routing table generated by the hot key probability
estimations. In this component, we first calculate the required
number of candidate instances based on the real-time hot
key probability and determine a candidate set. This approach
allows for the selection of target instances from a subset
of downstream instances rather than from all downstream
instances, thereby reducing time costs. If the incoming tuple
does not contain a hot key, the candidate set is determined
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using two hash functions [17] based on the non-hot key value.
Otherwise, the candidate set is retrieved from a routing table,
which records the mapping between instances and hot keys.
If the required number of candidate instances exceeds the
number of candidate instances recorded in the table for the
hot key, we add the downstream instance with the lowest load
to the candidate set. The instance with the lowest load from
the candidate set is then selected as the target instance for the
incoming tuple. Subsequently, the candidate set is updated in
the table. As the sliding window advances, hot keys that fall
outside the window’s scope are removed from the routing table
to minimize memory cost. Details of this instance assignment
process are explained in Section V-D.

B. Sliding sampling window

To cope with the dynamic nature of data streams, we
use the sliding window as a forgetting mechanism, keeping
the frequency estimation aligned with current data distribu-
tion. As we continuously sample the key of each incoming
tuple within a sampling window, hot keys appear multiple
times. This allows us to approximate their probabilities based
on popularity. As the data stream progresses, the sampling
window slides forward, with outdated data discarded and
new data incorporated, enabling the frequency estimates to
remain sensitive to recent trends. In this way, we can timely
identify emerging hot items and react promptly to short-term
bursts by maintaining a focus on recent activity. Selecting an
optimal window length is crucial for accurately estimating
these probabilities. This window must be long enough to
capture sufficient occurrences of hot keys, yet not so long
as it incurs substantial memory overhead. Below, we outline
the process for determining the appropriate window length.

The window length N can be determined based on the
probability threshold 6 of hot keys. To ensure that a hot key
k is sampled with a probability of at least €, the likelihood of
it appearing at least once in [N consecutive samples should
be maximized. This implies that the probability of it not
appearing in N samples must be minimized. Let X}, represent
the appearance popularity of hot key k& within a window of
length N. The probability Py(X; = 0) of it not appearing
within the window of length N is calculated by (10).

P(Xp=0)=(1—p)¥ <(1-0)", (10)

where py, is the probability of key k appearing. We set 6 =
"D (ev, ,v;)

% based on PKG [17], and define N = o x ——4-,

where ND(ev;0,;) is the number of downstream instances
D(ey,v;) and « is the length coefficient to be determined.
The upper bound of probability Py(X; = 0) can be then
calculated by (11).

P(X=0) < [1-0)F]", (1n

The limit of (1 — 6)7 is calculated by (12).

(1-6) :é.

=

lim
n’D(ev,i,vj )-)OO

(12)

The limit of the upper bound of P (X} = 0) is calculated

by (13). Y
Pk(Xk = 0) < <6) .

13)

Regardless of the number of downstream instances, the upper
bound of P, (X}, = 0) will not exceed ().

Next, we determine the value of a based on the limit of
the upper bound of P, (X = 0). a determines the sampling
window length, which ensures that the window is sufficiently
large to capture enough occurrences of hot keys. For simplicity
in calculations, we default  to be an integer.

As illustrated in Table II, the upper bound of Py (X =
0) decreases markedly with an increase in «. This reduction
becomes more gradual upon reaching o = 3, and it approaches
a value close to zero when a = 6.

TABLE II
LIMIT OF UPPER BOUND OF P}, (X}, = 0) UNDER DIFFERENT c.

a 1 2 3 4 5 6

(1) | 36.78% | 13.53% | 4.97% | 1.83% | 0.67% | 0.24%

A lower upper bound correlates with a higher likelihood
of sampling all hot keys. However, this advantage is coun-
terbalanced by an increase in memory overhead caused by
the longer sampling window. To optimize both for a minimal
Py (X = 0) and reduced memory overhead, we set o = 4.
When o = 4, Py(X, = 0) < (1)*, meaning there is more than
98.16% probability that any hot key will appear at least once
in the sampling window. Consequently, we set the sampling
window length to N = 2np,_ , )-

We also need to determine the sliding step size of the
sampling window. By default, we set the step size to 1 to
ensure that hot keys and their probabilities are updated in
real time. This step size enhances the accuracy of subsequent
calculations for the number of hot key candidate instances,
thereby maintaining the real-time performance of the grouping
strategy. If the step size is set to 2 or another value, it could
result in delayed updates to the hot key probabilities. As a
result, when the probability of a hot key suddenly increases,
the number of hot key candidate instances might not increase
accordingly, leading to a brief load imbalance in downstream
instances. However, this step size of 1 also allows keys that
appear only once to enter the sampling window. To address
this, we consider such keys that appear only once in the
sampling window as non-hot keys. The method for handling
these non-hot keys is discussed in detail in Section V-D.

C. Hot key probability estimation

Upon determining the length and step size of the sampling
window, the next step involves estimating the probabilities of
hot keys. Given that each key behaves independently, their
occurrences or absence adhere to a binomial distribution [34].
For a hot key k, the probability Py (X}, = ny) of it appearing
ng times within a sampling window of length N can be
calculated by (14).

N o
Pu( Xk =ng) = <nk> X p™ o x (1 —pp)N T (14)
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This equation represents the probability mass function
(PMF) of a binomial distribution. (/) is the binomial coef-
ficient, which represents the number of ways to choose ny
occurrences of hot key k out of N samples. pi™* is the
probability of hot key k appearing ny, times, with py ben}\g> the
probability of a single appearance of hot key k. (1 —
is the probability of hot key k& not appearing in the remammg
N — ny, samples, with (1 — pg) being the probability of hot
key k not appearing in a single sample.

The probability Py (X > ng) of the hot key k appearing
at least ny times in the sampling window of length N can be
calculated by (15).

Pp(Xy > ng) = (15)

This equation represents the cumulative distribution func-
tion (CDF) of a binomial distribution. Due to the lack of a
closed-form solution for P, 1(Xk > ny), we adopt a binary
search method to estimate an appropriate hot key probability
pr. for the hot key k. Algorithm 1 shows the details of this
process.

Algorithm 1: Hot key probability search

Input: Number of occurrences ny, of hot key & in the
sampling window, expected probability
Pk(Xk > ny) of hot key k appearing at least
ng times in the sampling window, acceptable
margin of search error e.
Output: Estimated probability pj, of hot key k.
1 Initialize prower <= 0, Pupper < 1;
2 while p,pper — Plower > € do
/+ Calculate the midpoint */
3 Pmid < (pupper + plower)/2;
/* Calculate the probability of hot
key k appearing at least mng

times */
4 Calculate Py (X) > ny) by pmia according to (14)
and (15).;
/+ Update the midpoint based on the
calculated probability */
5 if Pk-(Xk- > nk) < pk(Xk > nk.) then
6 ‘ Plower < Pmid-s
7 else
8 ‘ Pupper < Pmid-s
9 end
10 end

1 pAk < Pmids
12 return pj

The input of this algorithm includes the occurrence number
ng of hot key k appearing in the sampling window, the
expected probability Py, (X, > ny) of hot key k appearing
at least n, times in the sampling window, and the acceptable
margin of search error €. The output is the estimated proba-
bility py of hot key k.

Step 1 sets the initial search range, with the lower bound
Dlower Set to 0, and the upper bound pyppe- set to 1. Steps

2 to 10 iteratively conduct a binary search, substituting the
midpoint p,,,;q (px) in (14) and (15) to compute the probability
Pi(Xy > ny) of key k appearing at least ny times in the
sampling window. One of the lower bound p;,e and upper
bound pypper is updated to py,;q by comparing Py (X5 > ny)
with the expected probability P, (X) > ny). The search pro-
cess concludes when the interval between piower and Dypper
narrows to less than the acceptable margin of search error
€. Step 11 sets the final search result p,,;q as the estimated
probability pj of the hot key k. The time complexity of
Algorithm 1 is O(loga(1/€)).

Using Algorithm 1, a probability table mapping n to Py can
be constructed based on the number of downstream instances.
Table III illustrates an example of such a probability table,
where the window length N = 16, the maximum expected
probability Py (X) > n) = 99.9%. The expected probability
primarily determines the number of candidate instances for
each hot key. The higher the expected probability, the larger
the number of candidate instances. We set the acceptable
margin of search error € to 10~%, which is the termination
condition of Algorithm 1, ensuring that the upper and lower
bounds (piower and pypper) converge. The occurrence number
ny, of key k appearing in the sampling window is a variable
that can range from 1 to 16. For each value of ny, we can
obtain an estimated probability p; by applying Algorithm 1.

TABLE III
AN EXAMPLE OF PROBABILITY TABLE WITH N = 16,
Py(Xy > n) = 99%, AND e = 10~%.

ng 1 2 3 4 5 6 7 8
Pk | 25.0% | 34.9% | 43.1% | 50.3% | 56.9% | 63.0% | 68.7% | 73.9%
ng 9 10 11 12 13 14 15 16
Pk | 78.8% | 83.4% | 87.5% | 91.2% | 94.5% | 97.1% | 99.0% | 99.9%

The probability table is integrated into the hot key probabil-
ity estimation component and constructed during the Grouper
initialization phase. Each Grouper has its own hot key proba-
bility table. During the execution of the application topology,
we can directly obtain the key’s probability for each incoming
tuple based on their popularity within the sampling window,
thus avoiding the computational cost caused by searching the
key probability by Algorithm 1.

D. Instance assignment

To choose an appropriate target instance v; ;qrget from the
downstream instances D(e,, ;) for an incoming data tuple dt,
we first need to determine the number of candidate instances.
According to Algorithm 1, the estimated number of candidate
instances N (p(e., ,)), for the incoming data tuple di with
key k can be calculated by (16).

RC(D(ey; e = [Pk X MD(ey, ) )5 (16)

where C'(D(ey,,0;))r is the set of candidate instances for
the incoming data tuple dt with key k, pj is the estimated
probability of key k derived from the probability table, and
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np(e,,,,,) is the number of downstream instances D(ey, v;)-
Since the number of candidate instances must be an integer, we
use flooring to get an estimated number of candidate instances
AC(D(euy o))k

Next, we utilize a heuristic approach to choose an appro-
priate target instance v; ¢qrget for the incoming data tuple dt.
Algorithm 2 outlines the details of this process.

Algorithm 2: Instance assignment

Input: Key k& of the incoming data tuple dt.
Output: Target instance v; qrget for dt.
1 Get number of occurrences ny of key k in the
sampling window;
/+ Get the candidate instances for
the incoming data tuple */
2 if ny = 1 then
/+ Non-hot key, get candidate
instances using two hash
functions */

3 | C(D(evv, )k < {v),m1 (k) Vi, Ha ()

4 end

5 else

6 Retrieve routing table entry e for key k;

7 if e; is null then

8 Create a new entry ey for key k;

9 Add instances v; 7, () and v; m, (k) to the new

entry e using hash functions H; and Ho;

10 end

11 Retrieve the candidate instances C(D (e, o, ))x
from entry ey, and get its size NO(D(ew;,0;))1>

12 Calculate the estimated number of candidate

instances No(pye,. ,.)),. by (16);

13 if ﬁC(D(e'ui,vj))k > nC(D(e%% Ne then
14 Add downstream instance with lowest load
from downstream instances D(e,, o) to
candidate instances C'(D(ey, v;))k;
15 end
16 end
/+ Choose the target instance */
17 Vj target < instance with lowest load in
C(D(evi,vj ))k;
/+ Update the sampling window and
routing table */
18 Add k to the head of the sampling window;
19 Remove the last key from tail of the sampling window;
20 if the sampling window does not contain the tail key
and the entry for tail key is not null then
21 Remove entry for tail key from routing table;
22 end
23 return v; tqrget

The input of this algorithm is the key k of the incoming
tuple dt. The output is the target instance v; ¢qrger fOr tuple
dt. Steps 1 to 15 select candidate downstream instances
C(D(ey,;))x from the downstream instances D(e,, ;) for
the incoming data tuple dt with key k. We determine whether

a key k is a hot key based on the number of its occurrences
ny in the sampling window.

If n equals to 1, we consider key k£ as a non-hot key
(Steps 2 to 3). Similar to PKG, we directly select candidate
instances C(D (e, v;))x using two hash functions, H; and Hy.
If key k is potentially a hot key, the number of occurrences
ny increases as corresponding data tuples arrive, allowing us
to pre-map key k to two downstream instances. Since we
directly select candidate instances for non-hot keys through
hash functions, there is no need to record them in the routing
table, thereby reducing the memory cost of the table.

If the number of occurrences ny is greater than or equal
to 2, we consider key k to be a hot key (Steps 4 to 15).
We then retrieve the candidate instances C'(D(ey,,v;))r from
entry k in the routing table. To balance load, each time the
routing table is updated, we only select the instance with
the lowest load from the downstream instances D(ey,,v;). If
the instance with the lowest load is already recorded in the
candidate instances C(D(ey, v;))x, there is no need to add
additional instance from the downstream instances D(ey, ;)
thereby minimizing the number of key splitting. The number of
candidate instances nc( D(euso; i is the minimum value that
satisfies load balancing, effectively minimizing key splitting
while ensuring balanced load distribution.

Step 16 selects the instance with the lowest load from the
candidate instances C(D(ey, ,))r as the target downstream
instance v; 1qrget- The target instance is chosen from the candi-
date instances C'(D(ey,,»;))r rather than from all downstream
instances D(e., v, ), Which reduces the algorithm’s latency.

Steps 17 to 21 update the sampling window and routing
table. As data streams vary, new hot keys emerge, and the
previous hot keys may become non-hot keys. If outdated hot
keys entries in the routing table are not deleted promptly,
they can consume significant memory resources. Therefore,
we only record the hot keys present in the sampling window
in the routing table. As the sampling window slides, entries for
outdated hot keys that are no longer present in the sampling
window are promptly deleted, ensuring a low memory cost for
the routing table.

Algorithm 2 requires traversing the entire sampling win-
dow to obtain the number of occurrences ny for key £ in
the window, as well as traversing the candidate instances
C(D(ey,,v;))x to select the instance with the lowest load
[18]. The time complexity of this algorithm is O(N +
NO(D(ew, ;) . ), where N is the length of the sampling win-
dow, and ng D(ew;.0; )k is the number of candidate instances
for the incoming data tuple dt with key k.

Figure 3 depicts an example of routing table being updated
as the sampling window slides. The dashed boxes in the
figures represent sliding windows, and each number represents
a distinct key. This example demonstrates three scenarios
of routing table updates resulting from sliding the sampling
window twice. The length of the sampling window N is
16, and the probability table used for routing table updates
is presented in Table III. For convenience, this table is also
replicated in Figure 3.

In Fig. 3(a), as the sampling window slides, the first key to
enter is key 1, which now appears 6 times, i.e., ny = 6. Based
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Incoming dt  Sampling Window (N=16)

Ml 1] 2|34 516
Pr |25.0134.9/43.1|50.3| 56.9| 63.0

Probability table
Key| Instance id Key| Instance id
1| viviavieVir | | 1 [VviaVieV;1V2
9 Vis Vi3

Routing table

(a) First update to routing table: add a new instance
vj 2 to entry e1, and delete the old entry eg.

Slide direction

Incoming dt  Sampling Window (N=16)

el 121314 |5]|6
Pr |25.0/34.9]43.1| 50.3| 56.9| 63.0
Probability table

Key| Instance id Key| Instance id
L [Vi1v4aV;6Yi7Vi2 1 [Vi1Vavi6V;7vi2
6 V8 Vis

Routing table

(b) Second update to routing table: create a new
entry eg.

Fig. 3. An example of routing table being updated as the sampling window
slides.

on the probability table, we derive its estimated probability py
to be 62.99%. We calculate the estimated number of candidate
instances f¢( D(ew; ;) to be 5 by (16), surpassing the number
of candidate instances n¢( D(eu;u;) (4) in the routing table.
Consequently, we select the instance with the lowest load (e.g.,
v;2) from the downstream instances D(evi,vj) and integrate
it into entry e;. As the sampling window advances, key 9 is
no longer within the sampling window, so we remove entry
eg from the routing table.

In Fig. 3(b), the second incoming key is key 6, which is
not present in the routing table (keys that appear only once are
considered non-hot keys). Since key 6 now appears twice in the
sampling window, we categorize it as a hot key. Subsequently,
we establish a new entry eg for key 6 and include two instances
(e.g., vjg and v;;5), determined by the two distinct hash
functions, H; and Hs. The new entry eg is then appended
to the routing table.

VI. PERFORMANCE EVALUATION

We evaluate the proposed Pd-Stream through comparative
experiments. Before analyzing the results, we first discuss the
experimental environment and parameter settings.

A. Experimental environment

The cluster comprises 50 compute nodes, with one serving
as the master node to host the Nimbus, while the remaining
nodes run Supervisors. The experimental setup utilizes Ubuntu
20.04.4 as the operating system and Storm 2.1.0 as the stream
computing system.

1) Datasets. The experimental datasets comprise both syn-
thetic and real-world datasets. The synthetic datasets follow a
Zipf distribution [20] with coefficients z ranging from 1.0 to
2.0. A higher coefficient indicates a greater degree of skewness
within the dataset. There are two real-world datasets. The
first contains a set of DDoS flows extracted from public IDS
datasets [35]. These flows include various features such as
timestamps, source and destination IPs, and more. We use the
source IP as the key. The second consists of hashtags extracted
from tweets related to the novel coronavirus (COVID-19) from
January to March 2022 [36]. We use the hashtag as the key.
Tables IV and V summarize the statistics of the synthetic
datasets with different Zipf coefficients and the real datasets,
respectively. The statistics include the number of messages,
the number of keys, and the probability of the most frequent

key (pist).

TABLE IV
SUMMARY OF THE SYNTHETIC DATASETS.
Zipt Coeff. No. of Messages No. of Keys pyst(%)
1.0 10M 1.OM 5.9%
1.2 10M 563K 18.5%
1.4 10M 127K 32.2%
1.6 10M 33.1K 43.7%
1.8 10M 10.7K 53.2%
2.0 10M 43K 60.7%
TABLE V
SUMMARY OF THE REAL-WORLD DATASETS.
Dataset Symbol  No. of Messages No. of Keys  pyst(%)
DDoS DS 12M 2.4M 20.2%
Hashtags HT 67M 2.2M 8.5%

2) Streaming applications. We use the streaming applica-
tion provided by the Benchmark [7] to evaluate the system
performance. The parallelism and function of each vertex in
the streaming application are presented in Table VI.

3) Baseline schemes. Pd-Stream is compared against three
grouping strategies: Partial Key Grouping (PKG), W-Choices
grouping [18] (W-C), and Distribution-Aware Greedy Group-
ing [22] (DAGreedy). These three grouping strategies repre-
sent the evolution of key splitting-based grouping strategies,
progressing from classical load balancing to comprehensive
state-of-the-art grouping optimization. Among them, PKG is
the first strategy to adopt key splitting technique. W-C achieves
the lowest load imbalance, while DAGreedy is the first holistic
strategy to consider both load imbalance and replication factor.

B. System latency

Latency is an important metric for evaluating system perfor-
mance. The average latency reflects the average time required
for the system to process a tuple.
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TABLE VI

VERTEX FUNCTION OF THE EXPERIMENTAL APPLICATION.
Vertex Parallelism Function
Vread 8 Read tuples from data stream
Vdeserialize 8 Convert the string to structured data
Ufilter Filter tuples
Vproject 8 Extract the identifier and timestamp
Vjoin 16,32,64,128  Join tuple identifiers
Vaggregate 4 Aggregate results from upstream
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(a) Average latency on DS. (b) Average latency on HT.

Fig. 4. Average latency comparison on real-world datasets under varying
levels of parallelism.

As shown in Fig. 4, the average latency for different
grouping strategies under various parallelism are compared
on the real-world datasets DS and HT, respectively. As the
level of parallelism increases, Pd-Stream’s system latency
significantly decreases. For dataset DS, Pd-Stream’s average
system latency is 61.92 ms at a parallelism of 16 and 26.11 ms
at a parallelism of 128, representing a reduction of 57.82%.
At a parallelism of 128, Pd-Stream reduces latency by 27.16%
and 46.92% compared to W-C and DAGreedy, respectively.
For dataset HT, Pd-Stream’s average system latency is 62.33
ms at a parallelism of 16 and 28.64 ms at a parallelism of
128, representing a reduction of 54.05%. At a parallelism
of 128, Pd-Stream reduces latency by 14.67% and 42.97%
compared to W-C and DAGreedy, respectively. Pd-Stream’s
low system latency is primarily due to its effective load
balancing, which allows stream applications to fully utilize
the increased computational resources provided by higher par-
allelism, significantly reducing data waiting time. Moreover,
Pd-Stream strictly controls key splitting, which reduces data
aggregation latency. Its inherent efficiency also contributes to
the reduction of grouping latency.
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Fig. 5. Real-time latency comparison on real-world datasets.

As shown in Fig. 5, the real-time system latency under
different grouping strategies is presented for the real-world

datasets DS and HT, with the parallelism level set to 128.
It can be observed that the system latency of the Pd-Stream
is significantly lower than that of PKG, DAGreedy, and W-
C. On dataset DS, the system latency of Pd-Stream remains
consistently around 26 ms, while on dataset HT, it fluctuates
slightly around 28 ms. The low and stable latency of the Pd-
Stream indicates that its hot-key probability estimation algo-
rithm can effectively identify real-time hot keys. Combined
with the dynamic routing allocation mechanism, it distributes
hot-key tuples appropriately to downstream instances, thereby
achieving efficient load balancing.

C. System throughput

The throughput evaluation metric is the average system
throughput, which reflects the average number of output tuples
per unit time of the system.
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Fig. 6. Average throughput comparison on real-world datasets under varying
levels of parallelism.

As shown in Fig. 6, the average throughput for different
grouping strategies under various parallelism are compared on
the real-world datasets DS and HT, respectively. As the level
of parallelism increases, Pd-Stream’s throughput increases
significantly. For dataset DS, Pd-Stream’s average throughput
is 445 tuples/s at a parallelism of 16 and 2582 tuples/s at
a parallelism of 128. At a parallelism of 128, Pd-Stream’s
throughput is 23.89% and 52.06% higher than W-C and
DAGreedy, respectively. For dataset HT, Pd-Stream’s average
throughput is 448 tuples/s at a parallelism of 16 and 2459
tuples/s at a parallelism of 128. At a parallelism of 128,
Pd-Stream’s throughput is 23.69% and 33.78% higher than
W-C and DAGreedy, respectively. The high throughput of
Pd-Stream is partly due to its effective load balancing, and
partly because Pd-Stream’s low key splitting and low grouping
latency do not become bottlenecks for system throughput. This
allows stream applications to fully utilize the increased com-
putational resources provided by higher parallelism, resulting
in a significant increase in throughput.

As shown in Fig. 7, the real-time throughput under different
grouping strategies is presented for the real-world datasets
DS and HT, with the parallelism level set to 128. It can be
observed that regardless of the degree of data skew, Pd-Stream
consistently achieves the highest throughput (approximately
2500 tuples/s for DS and around 2400 tuples/s for HT).
This advantage primarily stems from two factors: (1) Pd-
Stream exhibits strong load balancing capabilities, allowing
it to fully utilize the computational resources. (2) Pd-Stream
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Fig. 7. Real-time throughput comparison on real-world datasets.

effectively controls the degree of key splitting, thereby reduc-
ing aggregation overhead. In contrast, although W-C achieves
load balancing, it does not control key splitting, which leads
to significantly increased aggregation overhead under high
parallelism and thus lower throughput compared to Pd-Stream.
DAGreedy and PKG, due to their weaker load balancing
capabilities, show both lower throughput and less stability than
Pd-Stream.

D. Load imbalance

An effective grouping strategy must first ensure load bal-
ancing. We assess the load balancing capabilities of grouping
strategies using the load imbalance degree described in Section
IV. This metric is calculated by tracking the load on each
instance of vertex vjoin-

As illustrated in Figure 8, we compare the load imbalance
of different grouping strategies using synthetic datasets with
different Zipf coefficients and varying levels of parallelism.
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Fig. 8. Load imbalance comparison on synthetic datasets with different Zipf
coefficients under varying levels of parallelism p.

Since PKG only selects two downstream instances as can-
didate target instances, it can maintain low load imbalance
only when both the Zipf coefficient and downstream instance
parallelism are relatively low (e.g., z = 1.0, p = 16). However,
the load imbalance of PKG significantly increases as the
Zipf coefficient and parallelism rise. For example, when the

parallelism is 64, the load imbalance of PKG jumps from 0.97
at a Zipf coefficient of 1.0 to 18.45 at a Zipf coefficient of
2.0. Similarly, at a Zipf coefficient of 1.6, the load imbalance
of PKG increases from 3.85 at a parallelism of 16 to 27.01 at
a parallelism of 128.

In contrast, DAGreedy exhibits significantly lower load
imbalance, which is less affected by changes in the Zipf coeffi-
cient and parallelism, maintaining within a range of 0.1 to 1.0.
At lower Zipf coefficients, DAGreedy tends to limit the extent
of key splitting, while at higher Zipf coefficients, DAGreedy
tends to balance the load. This results in a downward trend
as the Zipf coefficient increases, yet the load imbalance still
falls significantly short of the ideal state (0).

W-C and Pd-Stream achieve nearly ideal load imbalance.
The load imbalance of W-C and Pd-Stream remains low and
is essentially unaffected by increases in the Zipf coefficient
and parallelism. At parallelism levels of 16 and 32, the load
imbalance of W-C and Pd-Stream stabilizes at 10~°. Even at
higher parallelism levels of 64 and 128, the load imbalance
of W-C and Pd-Stream only slightly increases, remaining at
10~5. This result demonstrates that Pd-Stream, which selects a
subset of downstream instances as candidate target instances,
can fully meet the load balancing requirements, matching the
performance of W-C, which selects all downstream instances
as candidate target instances for hot keys.
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Fig. 9. Load Imbalance comparison on real-world datasets under varying
levels of parallelism.

Figure 9 compares the load imbalance of these grouping
algorithms under various levels of parallelism on real datasets
(DS and HT). As shown in the figure, the degree of data skew
has minimal impact on the load imbalance of Pd-Stream, with
only a slow increase as parallelism increases. For dataset DS,
the load imbalance of Pd-Stream is 3.09 x 10~ at a parallelism
of 16 and 4.17 x 1075 at a parallelism of 128. For dataset HT,
the load imbalance of Pd-Stream is 3.23 x 1076 at a parallelism
of 16 and 1.98 x 10~ at a parallelism of 128. The load
imbalance of Pd-Stream at different levels of parallelism is
significantly lower than that of PKG and DAGreedy, although
slightly higher than that of W-C. Nevertheless, it is sufficient to
meet the load balancing requirements of real-world application
scenarios.

E. Replication factor

While ensuring load balancing, the grouping strategy needs
to minimize the extent of key splitting. We measure the
extent of key splitting by evaluating the replication factor, as
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described in Section IV. The replication factor is determined
by tracking the number of distinct keys on each instance of
VerteX Vjoin-

Figure 10 shows the replication factor of these grouping
strategies on synthetic datasets with different Zipf coefficients
under varying levels of parallelism.
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Fig. 10. Replication factor comparison on synthetic datasets with different
Zipf coefficients under varying levels of parallelism.

Since PKG maps each key to only two downstream in-
stances, its replication factor is not affected by increases in
parallelism and only slightly decreases as the Zipf coefficient
increases. As the Zipf coefficient rises from 1.0 to 2.0, PKG’s
replication factor decreases from approximately 1.15 to around
1.03. Similar to PKG, the replication factor of DAGreedy
is essentially unaffected by increases in the Zipf coefficient
and parallelism. Due to its strict control over key splitting,
DAGreedy’s replication factor is even slightly lower than that
of PKG, with a maximum of just 1.029 (when z = 2, p = 128).

W-C, which selects all downstream instances as candidate
instances for hot keys, experiences a significant increase in its
replication factor as the Zipf coefficient and parallelism grow.
From a Zipf coefficient of 1.0 and parallelism of 16 to a Zipf
coefficient of 2.0 and parallelism of 128, its replication factor
rises from 1.18 to 7.97, an increase of 5.75 times.

In contrast, Pd-Stream’s replication factor increases only
gradually with higher Zipf coefficients and parallelism, re-
maining below 2.0. When the Zipf coefficient is 1.2 and the
parallelism is 16, the replication factor of Pd-Stream is 1.05.
As the Zipf coefficient increases to 1.4 and the parallelism to
64, the replication factor rises to 1.19. With a Zipf coefficient
of 1.8 and parallelism of 64, Pd-Stream’s replication factor
further increases to 1.35. Even in the extreme case of a Zipf
coefficient of 2.0 and parallelism of 128, its replication factor
is only 1.74. This is because Pd-Stream controls the number of
downstream instances to which hot keys are mapped, with the
number of candidate instances determined by the probability
of hot keys. Mapping hot keys to this number of downstream
instances ensures load balancing without unnecessary key
splitting.
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Fig. 11. Replication factor comparison on real-world datasets under varying
levels of parallelism.

Figure 11 compares the replication factor of different group-
ing algorithms under various levels of parallelism on real
datasets. As shown in the figure, the replication factor of
Pd-Stream remains almost constant and is not affected by
increasing parallelism. For dataset DS, the replication factor
of Pd-Stream is 1.24 at a parallelism of 16 and 1.30 at a
parallelism of 128, representing an increase of only 4.8%.
For dataset HT, the replication factor of Pd-Stream is 1.02
at a parallelism of 16 and 1.12 at a parallelism of 128,
representing an increase of only 9.8%. Pd-Stream maintains
a low replication factor across different levels of parallelism
due to its ability to accurately identify hot keys and map only
the hot keys to multiple downstream instances. Additionally,
the degree of skew in real data streams is relatively low, with
hot keys accounting for only a small portion. For most non-hot
keys, Pd-Stream directly employs PKG for processing.

F. Grouping costs

To achieve load balancing, different partitioning strategies
commonly introduce varying degrees of key splitting to mit-
igate skewed loads. However, key splitting incurs additional
partitioning costs, which primarily include memory consump-
tion and grouping latency.
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Fig. 12. Memory consumption on real-world datasets under varying levels of
parallelism.

As shown in Fig. 12, the memory consumption for different
grouping strategies under various levels of parallelism is com-
pared on the real-world datasets DS and HT. The results show
that W-C exhibits the highest memory consumption, growing
non-linearly to 13,342 KB (DS) and 11,242 KB (HT) at 128
parallelism. Dalton increases from about 4,330 KB to 8,291
KB on DS and from 4,130 KB to 8,718 KB on HT as paral-
lelism increases from 16 to 128. DAGreedy remains the most
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memory-efficient, with usage staying around 2,932-3,054 KB
(DS) and 3,232-4,054 KB (HT) across parallelism levels.
Pd-Stream shows moderate memory consumption, reaching
approximately 4,457 KB (DS) and 4,757 KB (HT) at 128
parallelism.

The observed differences in memory overhead stem from
how each strategy handles hot keys and state information. W-
C incurs the highest overhead by broadcasting keys, which
causes severe data redundancy across worker states. Dalton
randomly assigns keys to multiple instances during early
learning, causing state replication and higher memory us-
age. DAGreedy minimizes memory use by computing near-
optimal, stable assignments for keys and thus keeps per-key
state compact, albeit with higher grouping latency. Pd-Stream
offers a balanced trade-off: it avoids the extremes of W-
C’s redundancy and Dalton’s exploration overhead, accepting
moderate memory usage to achieve lower latency and better
overall system performance.
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Fig. 13. Grouping latency comparison on real-world datasets under varying
levels of parallelism.

As shown in Fig. 13, the grouping latency for different
grouping strategies under various levels of parallelism is
compared on the real-world datasets DS and HT. As the level
of parallelism increases, Pd-Stream consistently maintains
low grouping latency. For dataset DS, Pd-Stream’s grouping
latency is 11.72 ps at a parallelism of 16 and 21.26 ps
at a parallelism of 128, representing reductions of 48.78%,
70.66% and 87.73% compared to Dalton, W-C and DAGreedy,
respectively. For dataset HT, Pd-Stream’s grouping latency is
14.73 ps at a parallelism of 16 and 19.13 ps at a parallelism of
128, representing reductions of 40.62%, 79.23% and 87.81%
compared to Dalton, W-C and DAGreedy, respectively. The
low grouping latency of Pd-Stream is due to its ability to effi-
ciently select an appropriate number of candidate downstream
instances based on key probability, allowing for quick selection
of the target instance.

VII. CONCLUSION AND FUTURE WORK

When handling skewed data streams, key splitting-based
stream grouping strategies achieve load balancing but incur
additional key aggregation costs. To address this issue, we
propose Pd-Stream, a lightweight, high-balance, and low-cost
data stream grouping strategy for skewed data streams in
stateful stream computing environments. This strategy identi-
fies hot keys using a sliding sampling window and calculates
real-time hot key probabilities based on the popularity of hot

keys appearing within the window. Tuples with hot keys are
assigned to the minimum number of downstream instances
necessary to satisfy load balancing, based on the hot keys’
probabilities, thereby reducing the extent of key splitting.

Experiments have shown that Pd-Stream can ensure load
balancing while reducing the degree of key splitting when
dealing with highly skewed data streams and highly parallel
downstream instances.

Our future work will focus on the following two aspects:

(1) Extending our implementation to other distributed
stream computing platforms to further demonstrate the gen-
erality of Pd-Stream.

(2) Further developing an adaptive mechanism that incorpo-
rates both an a-adjusted window size and a #-adjusted hot key
identification to handle the dynamic skewness of data streams.
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