
Peer-to-Peer Networks for Content Sharing

Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory,

Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

(chd, sarana, raj)@cs.mu.oz.au

ABSTRACT
Peer-to-peer (P2P) systems are popularly used as “file-swapping” networks to support
distributed content sharing. A number of P2P networks for file sharing have been
developed and deployed. Napster, Gnutella, and Fasttrack are three popular P2P systems.
This chapter presents a broad overview of P2P computing and focuses on content sharing
networks and technologies. It also emphasizes on the analysis of network topologies used
in popular P2P systems. In addition, this chapter also identifies and describes architecture
models and compares various characteristics of four P2P systems—Napster, Gnutella,
Fasttrack, and OpenFT.

Keywords: Peer-to-Peer Networks, Distributed Content Sharing, Distributed Systems,
Internet File Sharing, Fasttrack, Gnutella, Napster, and OpenFT.

1. INTRODUCTION
Peer-to-peer (P2P) content sharing technologies like Napster, Gnutella, and Kazaa are
applications that have been astonishingly successful on the Internet. P2P has gained
tremendous public attention through Napster which is a system supporting music sharing
on the Web. It is an emerging and interesting research technology with a promising
product base.

Intel P2P working group gave the definition of P2P as "The sharing of computer
resources and services by direct exchange between systems" (Kan, 2001). This thus gives
P2P systems two main key characteristics:

• Scalability: there is no algorithmic, or technical limitation of the size of the
system, e.g. the complexity of the system should be somewhat constant regardless
of number of nodes in the system.

• Reliability: The malfunction on any given node will not effect the whole system
(or maybe even any other nodes).

File sharing networks like Gnutella is a good example of scalability and reliability. In
Gnutella, peers are first connected to a flat overlay network, in which every peer is equal.
Peers are connected directly without the need of a master server's arrangement and the

malfunction of any node does not cause any other nodes in the system to malfunction as
well.

P2P can be categorized into two groups classified by the type of model: pure P2P, and
hybrid P2P. Pure P2P model, such as Gnutella and Freenet, does not have a central
server. Hybrid P2P models, such as Napster, Groove and Magi, employs a central server
to obtain meta-information such as the identity of the peer on which the information is
stored or to verify security credentials. In a hybrid model, peers always contact a central
server before they directly contact other peers.

2. P2P Networks Topologies
According to (Peter, 2002), all P2P topologies, no matter how different they may be, will
have one common feature. All file transfers made between peers are always done directly
through a data connection that is made between the peer sharing the file and the peer
requesting for it. The control process prior to the file transfer, however, can be
implemented in many other ways. As stated by (Minar, 2001), P2P file sharing networks
can be classified into four basic categories: the centralized, decentralized, hierarchical
and ring systems. Although these topologies can exist on their own, it is usually the
practice for distributed systems to have a more complex topology by combining several
basic systems to create, what is known now as hybrid systems. We will give a brief
introduction to the four basic systems and later delve deeper into the topic of hybrid
systems.

2.1 Centralized Topology
The concept of a centralized topology shown in Figure 1 is very much based on the
traditional client/server model. A centralized server must exist which is used to manage
the files and user databases of multiple peers that log onto it (Peter, 2002). The client
contacts the server to inform it of its current IP address and names of all the files that it is
willing to share. This is done every time the application is launched. The information
collected from the peers will then be used by the server to create a centralized database
dynamically, that maps file names to sets of IP addresses.

Figure 1: An illustration of the centralized topology.

All search queries will be sent to the server, who will perform a search through its locally
maintained database. If there is a match, a direct link to the peer sharing the file is
established and the transfer executed (Kurose, 2003). It should be noted here that under
no circumstances, will the file ever be placed on the server. Examples of applications that
make use of such a network would be seti@home, folding@home, and Napster (which
will be discussed in greater detail in the Napster section).

2.2 Ring Topology
It should be relatively clear that the drawback of a centralized topology is that the central
server can become a bottle neck (when load becomes heavy) and a single point of failure.
These are some of the main contributing factors led to emergence of the ring topology
shown in Figure 2. It is made up of a cluster of machines that are arranged in the form of
a ring to act as a distributed server (Minar, 2001). This cluster of machines will work
together to provide better load balancing and higher availability. This topology is
generally used when all the machines are relatively nearby on the network, which means
that it is most likely owned by a single organization; where anonymity is not an issue.
Figure 2 shows a simple illustration of a ring topology.

Figure 2: An illustration of the ring topology.

2.3 Hierarchical Topology
Hierarchical systems have been in existence since the beginning of human civilization.
Everything from a simple family to businesses and to the Government basically functions
in a hierarchical manner. Today, many of the Internet applications function in a
hierarchical environment. The best example of a hierarchical system on the Internet
would be the Domain Name Service (DNS) (Minar, 2001). Authority flows from the root
name servers to the servers of the registered name and so on. This topology is very
suitable for systems that require a form of governance that involves delegation of rights
or authority. Another good example of a system that makes use of the hierarchical
topology would be the Certification Authorities (CAs) that certify the validity of an entity
on the Internet. The root CA can actually delegate some of its authoritative rights to
companies that subscribe to it, so that those companies can, in turn grant certificates to

those that reside underneath it. Figure 3 provides a brief illustration of how a hierarchical
system looks like.

Figure 3: An illustration of the hierarchy topology.

2.4 Decentralized Topology
In a pure P2P architecture, no centralized servers exist. All peers are equal, hence
creating a flat, unstructured network topology (Peter, 2002). Please refer to Figure 4 for
illustration. In order to join the network, a peer must first, contact a bootstrapping node
(node that is always online), which gives the joining peer the IP address of one or more
existing peers, officially making it part of the ever dynamic network. Each peer, however,
will only have information about its neighbors, which are peers that have a direct edge to
it in the network.

Figure 4: An illustration of the decentralized topology.

Since there are no servers to manage searches, queries for files are flooded through the
network (Kurose, 2003). The act of query flooding is not exactly the best solution as it
entails a large overhead traffic in the network.

An example of an application that uses this model is Gnutella. Details of how it searches
and shares files in a pure P2P network will be discussed in the Gnutella section.

2.5 Hybrid Topology
Having discussed the basic topologies of P2P networks, we now come to the more
complex real world systems that generally combine several basic topologies into one
system. This is known as the Hybrid architecture (Yang, 2002). We will discuss several
of such examples in this section just to give a brief idea of this sort of architecture. In
such a system, nodes will usually play more than one role.

2.5.1 Centralized and Ring Topology
This hybrid topology is a very common sight in the world of web hosting (Minar, 2001).
As mentioned previously in the ring topology section, heavy loaded web servers usually
have a ring of servers that specializes in load balancing and failover. So, the servers
themselves maintain a ring topology. The clients however are connected to the ring of
servers through a centralized topology (i.e. client/server system) as shown in Figure 5.
Therefore, the entire system is actually a hybrid; mixture between the sturdiness of a ring
topology with the simplicity of a centralized system.

Figure 5: An illustration of the centralized and ring topology.

2.5.2 Centralized and Centralized Topology
It is often the case where the server of a network is itself a client of a bigger network
(Minar, 2001). This sort of hybrid topology shown in Figure 6 is a very common practice
in organizations that provide web services. A simple example that will help illustrate this
point would be, when a web browser contacts a centralized web server. The web server
may process and format the results so that they can be presented in HTML format and in
the process of doing that, these servers might themselves contact other servers (e.g.
Database server) in order to obtain the necessary information (Minar, 2002).

Figure 6: An illustration of the centralized and centralized topology.

2.5.3 Centralized and Decentralized Topology
In this topology, peers that function as group leaders are introduced (Kurose, 2003). They
have been known by many names. Some call them Group Leader Nodes, Super Nodes or
even Ultra Nodes. To keep things simple and consistent with the following sections about
Fasttrack (Sharma 2002), we will refer to them as Super Nodes hence forth.

These Super Nodes will perform the task of a centralized server as in the centralized
topology, but only for a subset of peers. The Super Nodes themselves are tied together in
a decentralized manner. Therefore, this hybrid topology actually introduces two different
tiers of control. The first is where ordinary peers connect to the Super Nodes in a
centralized topology fashion. The second is where the Super Nodes connect to each other
in a decentralized topology fashion as shown in Figure 7).

As with the centralized topology, the Super Nodes maintains a database that maps file
names to IP addresses of all peers that are assigned to it (Yang, 2002). It should be noted
here that the Super Node’s database only keeps track of the peers within its own group.
This greatly reduces the scope of peers that it needs to serve. So, any ordinary peer with a
high speed connection will qualify to be a Super Node. The best example of a P2P
application that utilizes such a topology would be Kazaa/FastTrack. Another good
example of such a topology would be the common Internet email. Mail clients have a
decentralized relationship to specific mail servers. Like the Super Nodes, these mail
servers share emails in a decentralized fashion among themselves.

Figure 7: An illustration of the centralized and decentralized topology.

2.5.4 Other Potential Topologies
Please take note that the hybrid topologies mentioned so far are just the common ones. As
can be seen, there can be a great deal of different combinations of hybrid topologies that
can be achieved from the basic topologies. However, if one were to make too many
combinations the resulting topology may become too complex hence making it difficult
to manage.

3. Napster
Napster is a file-sharing P2P application that allows people to search for and share MP3
music files through the vast Internet. It was single handedly written by a teenager named
Shawn Fanning (Tyson, 2000 and Shirky, 2001). Not only did he develop the application,
but he also pioneered the design of a protocol that would allow peer computers to
communicate directly with each other. This paved a way for more efficient and complex
P2P protocols by other organizations and groups.

3.1 The Napster Architecture
The architecture of Napster, shown in Figure 8, is based on the centralized model of P2P
file-sharing (Hebrank, 2000). It has a Server-Client structure where there is a central
server system which directs traffic between individual registered users. The central
servers maintain directories of the shared files stored on the respective PCs of registered
users of the network. These directories are updated every time a user logs on or off the
Napster server network. Clients connect automatically to an internally designated
"metaserver" that acts as common connection arbiter. This metaserver assigns at random
an available, lightly loaded server from one of the clusters. Servers appeared to be
clustered about five to a geographical site and Internet feed, and able to handle up to
15,000 users each. The client then registers with the assigned server, providing identity
and shared file information for the server’s local database. In turn, the client receives
information about connected users and available files from the server. Although formally
organized around a user directory design, the Napster implementation is very data centric.

The primary directory of users connected to a particular server is only used indirectly, to
create file lists of content reported as shared by each node (Barkai, 2001).

Napster
Client

Napster
Client

Napster
Client

Napster
Client

Napster
Client

Napster
Connection Host

Napster Index
Server

Query

Direct File
Transfer

Napster Server
Cluster

Assigned
Index Server

Connect

1

2

Reply

3

4

Figure 8: An illustration of the Napster architecture.

Users are almost always anonymous to each other; the user directory is never queried
directly. The only interest is to search for content and determine a node from which to
download. The directory therefore merely serves as a background translation service,
from the host identity associated with particular content, to the currently registered IP
address needed for a download connection to this client. Each time a user of a centralized
P2P file sharing system submits a request or search for a particular file, the central server
creates a list of files matching the search request, by cross-checking the request with the
server’s database of files belonging to users who are currently connected to the network.
The central server then displays that list to the requesting user. The requesting user can
then select the desired file from the list and open a direct HTTP link with the individual
computer which currently posses that file. The download of the actual file takes place
directly, from one network user to the other, without the intervention of the central
server. The actual MP3 file is never stored on the central server or on any intermediate
point on the network.

3.2 The Napster Protocol
Due to the fact that Napster is not an open source application, it was only possible to
build up a similar application to reveal the Napster protocol through reverse-engineering
(Turcan, 2002). In other words, no one will ever be totally sure how the Napster protocol
specification is like, except for the creator of Napster himself. Project OpenNap has
made it possible to run a Napster server on many platforms without using the original
Napster application and the index server. The following are the protocol specification for
Napster with reference to (Turcan, 2002).

Napster works with a central server which maintains an index of all the MP3 files of the
peers. To get a file you have to send a query to this server which sends you the port and
IP address of a client sharing the requested file. With the Napster application it is now
possible to establish a direct connection with the host and to download a file.

The Napster protocol also uses a whole lot of different types of messages. Every state of
the hosts, acting like clients towards the server, is related to the central Napster server.
Thus the Napster protocol makes anonymity impossible. At first, one may think that this
is a drawback, but this complex protocol actually makes a lot of services possible. Some
examples are:

• Creating Hotlists: notifying when users of your own hotlist sign on or off the
server

• List of ignored User
• Instant Messaging: sending public or private messages to other users; creating and

joining channels of shared interests

3.2.1 Napster Message Data Structures
The format of each message that flow to/from the Napster central server is shown below:

Where:

• Length specifies the length of the payload.
• Function defines the message type of the packet (see next paragraph)
• Payload this portion of the message is a plain ASCII string

Every block of header and payload is separated by "blanks" which make the
synchronization of the incoming messages possible. Most of blocks have no fixed length.
The blanks make separation of data blocks in incoming bit streams possible.

3.2.2 Initialisation
A registered Napster host, acting like a client, sends to the server a LOGIN message with
the following format:

Where:

• Nick & Password identifies the user
• Port is the port which the client is listening on for data transfer.
• Client_Info is a string containing the client version info.
• Link_Type is an integer indicating the client’s bandwidth.

The details of what the integers in Link_Type represent are given in Table 1:

Table 1: Integer representations for Link_Type
Representation Bandwidth Representation Bandwidth
0 unknown 1 14.4 kbps
2 28.8 kbps 3 33.6 kbps
4 56.7 kbps 5 64k ISDN
6 128k ISDN 7 Cable
8 DSL 9 T1
10 T3 or greater

The host’s IP address need not be added to the message. However, the server can extract
it automatically from the TCP packet in which the message is packed for the
transmission.

An unregistered host sends a New User Login which is similar to the format of Login,
with the addition of the email address on the end. The server sends a Login
Acknowledgement to the client after a successful login. If the nick is registered, the email
address given at registration time is returned, else, a dummy value will be returned.

3.2.3 Client Notification of Shared File
With the Client Notification of Shared File message the client sends successively all the
files it wants to share. It uses the following message notification format:

Where:

• Filename is the name of the file to be shared.
• MD5 (Message Digest 5) is the hash value of the shared file. The MD5 algorithm

produces a 128-bit "fingerprint" of any file. It is nearly computationally infeasible
to produce two messages having the same hash value. The MD5 algorithm is
intended to provide any user the possibility to secure the origin of his shared file,
even if the file is laying on drives of other Napster users.

• Size is the file size in bytes
• Bit-rate is the bit rate of the MP3 in kbps (kilobits per second)
• Frequency is the sample rate of the mp3 in Hz (Hertz)
• Time is the duration of the music file in seconds

3.2.4 File Request
The downloading client will first issue either a Search or Browse. The first search
message has the following format:

Where:

• Artist Name is the name of the artist of the MP3 song.
• Title is the title of the MP3 song.
• Bit-rate is the range of bit-rates to be used.
• Max Results is the maximum number of results.
• Link-Type is the range of link-types.
• Frequency Range is the range of sample frequencies in Hz.

The artist name and the song title are checked from the file name only. Napster does not
make use of the ID3 in MP3 files in its search criteria. The payload of the Browse
message does only contains the <nick> of the host. It requests a list of the host’s shared
files.

3.2.5 Response and Browse Response
The server answers respectively with a Search Response or a Browse Response with the
formats given below:

Where:

• Filename is the name of the file that is found.
• MD5 is the hash value of the requested file
• Size is the file size in bytes
• Bit-rate is the bit rate of the MP3 in kbps
• Frequency is the sample rate of the MP3 in Hz
• Time specifies the length of the file
• Nick is to identify the user who shares the file
• IP is a 4 Byte integer representing the IP address of the user with the file.
• Link-Type refers to the Login Message.

3.2.6 Download Request
In order to request a download, a DOWNLOAD REQUEST message is sent to the server.
This message will have the following payload format:

Where:

• Nick is to identify the user who shares the file.
• Filename is the name of the file to be downloaded.

3.2.7 Download ACK
The server will answer with a DOWNLOAD ACK containing more information about
the file (Line speed, Port Number, etc). This message has the following payload format:

Where:

• Nick is to identify the user who shares the file.
• IP is a 4 Byte integer representing the IP address of the user with the file.
• Port is the port which the client is listening on for data transfer.
• Filename is the name of the file to be downloaded.
• MD5 is the hash value of the requested file.
• Link-Type is the range of link-types.

3.2.8 Alternate Download Request
It is like the normal "Download Request". The only difference is that this request is used
only when the person sharing the file can only make outgoing TCP connection because of
the firewall that is blocking the incoming messages. The ALTERNATE DOWNLOAD
REQUEST message should be used to request files from users who have specified their
data port as ’0’ in their login message.

3.2.9 Alternate Download Ack
ALTERNATE DOWNLOAD ACK message is sent to the uploader when its data port is
set to 0 to indicate they are behind a firewall and need to push all data. The uploader is
responsible for connecting to the downloader to transfer the file.

3.2.10 File Transfer
From this point onwards, the hosts don’t send messages to the central server anymore.
The host requesting the file makes a TCP connection to the data port specified in the
0xCC message from the server. To request for the file that the client wish to download, it
sends the following HTTP - messages: a string "GET" in a single packet and a message
with the format:

Where:

• Nick is the client’s nick.
• Filename is the name of the file to be downloaded.
• Offset is the byte offset in the file to begin the transfer at. It is needed to resume

prior transfer.

The remote host will then return the file size and, immediately following, the data stream.
The direct file transfer between Napster’s hosts uses a P2P architecture. Once the data
transfer is initiated, the downloader should notify the server that they are downloading a
file by sending the DOWNLOADING FILE message. Once the transfer is completed, the
client sends a DOWNLOAD COMPLETE message.

3.2.11 Firewalled Downloading
Napster also has a method to allow clients behind firewalls to share their contents. As
described above, when the file needs to be pushed from a client behind a firewall, the
downloader sends a message ALTERNATE DOWNLOAD REQUEST message to the
server. This causes an ALTERNATE DOWNLOAD ACK to be sent to the uploader,
which is similar to the DOWNLOAD REQUEST message for a normal download.

Once the uploader receives the message from the server, it should make a TCP
connection to the downloader's data port (given in the message). Upon connection, the
downloader's client will send one byte, which is the ASCII character `1`. The uploader
should then send the string "SEND" in a single packet, and then the message (format was
shown before).

Upon receipt, the downloading client will either send the byte offset at which the transfer
should start, or an error message such as "INVALID REQUEST". The byte offset should
be sent as a single packet in plain ASCII digits. A 0 byte offset indicates the transfer
should begin at the start of the file.

3.3 Implementation
The Napster protocol was a closed one, meaning no one knows for sure how file
searching and transfer is done. So, when Napster was first introduced, there was only one
client implementation, which was called the Napster, for obvious reasons.

Napster exclusively focuses on MP3-encoded music files. Although no other file types
were supported, an intriguing subculture of client clones and tools soon arose, reverse-
engineered from the Napster's closed-source clients.

The intent behind the development was to have greater user control. For instance, a form
of MP3 spoofing implemented by tools such as Wrapster could enclose an arbitrary file
with a kind of wrapper that made it look like an MP3 file to the Napster servers. It would
then appear in the server databases and be searchable by other clients wishing to
download files other than music. An obstacle to this effort was that the artist-title

description field allowed little information about the non-music file. This, the low ratio of
non-music to music files, and the normal random distribution of connecting nodes
conspired to make Napster’s scope-limited searches highly unlikely to find special
content. Tools such as Napigator were developed to allow users to connect to specific
servers, bypassing metaserver arbitration. In this way, certain servers became known as
Wrapster hangouts-primary sites for non-music content. Users looking for this kind of
content were then more likely find it.

Non-music exchanges over Napster were never more than marginal, at least compared to
alternative, content-agnostic systems such as Gnutella. Some alternative Napster servers
such as OpenNap which started as "safe-havens" for Napster users when Napster began
filtering content, did for a while begin to fill the gap, tying together former Napster
clients, clones and variations with a new kind of server that extended the original Napster
protocol to all file types. No matter how much the Napster model was reengineered,
however, the fundamental requirement of a "Napster-compatible" central server remained
a serious constraint for a network based on this technology or any of its clones. To
transcend this limitation, other protocols and architecture models are needed-for example,
serverless networks in the style of Gnutella.

4. Gnutella
In the early of March 2000, Gnutella was created by Justin Frankel and Tom Pepper, who
were both working under the Gnullsoft, which is one of AOL’s subsidiaries. Gnutella's
development was later halted by AOL shortly after it was published, but the short
duration where Gnutella was made online was enough to allow curious programmers to
download and later reverse-engineer Gnutella’s communication protocol. As a result, a
number of Gnutella clones with improvements were introduced. (e.g., LimeWire,
BearShear, Gnucleus, XoloX, and Shareaza).

4.1 The Gnutella Architecture
Instead of using a centralized index directory like Napster, Gnutella uses a flat network of
peers called servents, to maintain the index directory of all of the content in the system.

In a Gnutella network, servents are connected to each other in a flat ad-hoc topology. A
servent works both as a client and a server by itself. As a server, it responds to queries
from another peer servent. As a client, it issues queries to other peer servents.

For a servent to join the Gnutella network, it must find the address of a servent that is
already connected to the network. This can be done by using host caches, such as
GnuCache, which caches Gnutella servents (hosts) that always connect to the Gnutella
network. After an address is found, it then sends a request message GNUTELLA
CONNECT to the already connected servent. The requested servent may either accept the
request by sending a reply message GNUTELLA OK, or reject the request message by
sending any other response back to the requesting servent. A rejection can happen due to
different reasons such as, an exhaustion of connection slots, having different versions of
the protocol, etc (Limewire). Once attached to the network, the servent periodically pings
its neighbors to discover other servents. Typically, each servent should connect to more

than one servent since the Gnutella network is dynamic, which means any servents can
go off-line or disconnect any time.

It is thus important to stay in contact with several servents at the same time to prevent
from being disconnected from the network. Once a server receives the ping message, it
sends back a pong message to the server that originated the ping message using the same
path that the ping message came from. A pong message contains the details of the servent
like port, IP address, the number of files shared, and the number of kilobytes shared.
Gnutella does not use any directory servers, as each servent maintains their local index
directory. To search for a file, a node sends a query to all its neighbors that are directly
connected to it. Once a query is received by a neighbor, the query criterion is checked
against the local index directory and the message is in turn propagated to all its neighbors
and so on so forth.

If the check matches with the local data in any servent, the servent will send back a
queryHit message to the servent that initiated the query along the same path that carried
the query message. However, when the servent generating the queryHit message is
behind a firewall, the requesting servent cannot create a connection to it. In this case, the
push message will be sent by the requesting servent to the servent that generates the
queryHit message and stays behind the firewall to initiate the connection instead. Note
that file transfer is done using the HTTP protocol, and not using the Gnutella protocol.

Since Gnutella broadcasts its messages, in order to prevent flooding the network with
messages, the TTL (Time-To-Live) field is included in the header of every Gnutella
message. The TTL field will be decremented by one every time the message is passed
through one servent. The servent decrementing the TTL and finding that its value equals
to zero will drop that message. Each servent also needs to maintain a list of recently seen
messages by storing the Descriptor ID and the Payload Descriptor of each incoming
message to prevent forwarding the same message repeatedly. A detailed description of
the Gnutella message and protocol will be explained in the next section. Figure 9 shows
an example that illustrates the concept of the Gnutella protocol.

GnuCache

A

User A connects to the GnuCache to get the list of available servents already connected in
the network
GnuCache sends back the list to the user A
User A sends the request message GNUTELLA CONNECT to the user B
User B replies with the GNUTELLA OK message granting user A to join the network

B

D

C

F

G

E

H

J

I

(1) (2)

(3)

(4)
(1)

(1)

(1)

(2)

(2)

(2)

(3)

(3)

(3) (3)

(2)

Figure 9: Example of Gnutella protocol.

From the figure above, suppose that user A that is connected to the network wants to
search for some files. He sends a query message to his neighbor, user B. User B first
checks that the message is not an old one. It then checks for a match with its local data. If
there is a match, he sends the queryHit message back to user A. User B then decrements
TTL by 1 and forwards the query message to users C, D, and E. Users C, D, and E
performs the same steps as user B and forwards the query message further to users F, G,
H, and I who will again repeat the same process mentioned earlier. Suppose that user H is
the first one to forward the query message over to user J. Any subsequent query messages
forwarded by users G and I to user J will be discarded since checks against its local table
shows that it has already received those messages. This holds for user G as well when
user H forwards the query message to him. Suppose now that user J finds a match against
his local data. He responds by sending a queryHit message back to user A, following the
same path the query message was carried through which is from J, to H, to E, to B, and to
A. Now, user A can initiate the file down load directly with user J using the HTTP
protocol.

4.2 The Gnutella Protocol
This section describes in detail the messages that are used in the Gnutella protocol with
reference to (Kan, 2001). The message used to communicate between the servents is
called Gnutella descriptors. Gnutella descriptors consist of the Descriptor Header and the
Descriptor Payload. There are five types of Gnutella Descriptors and they are: Ping,
Pong, Query, queryHit, and Push as discussed in Table 2.

Table 2: Five descriptors used in the Gnutella protocol.

Descriptor Description
Ping Used to actively discover hosts on the network. A servent receiving a

Ping descriptor is expected to respond with one or more Pong
descriptors.

Pong The response to a Ping. Includes the address of a connected Gnutella
servent and information regarding the amount of data it is making
available to the network.

Query The primary mechanism for searching the distributed network. A
servent receiving a Query descriptor will respond with a QueryHit if a
match is found against its local data set.

QueryHit The response to a Query. This descriptor provides the recipient with
enough information to acquire the data matching the corresponding
Query.

Push A mechanism that allows a firewalled servent to contribute file-based
data to the network.

4.2.1 Descriptor Header
The Descriptor Header consists of five parts: Descriptor ID, Payload Descriptor, TTL,
Hops, and Payload Length.

• Descriptor ID is a unique identifier for the descriptor on the network.
• Payload Descriptor identifies the type of each descriptor: 0x00 for Ping, 0x01 for

Pong, 0x40 for Push, 0x80 for Query, and 0x81 for QueryHit.
• TTL represents the number of times the descriptor will be forwarded by Gnutella

servents before it is discarded from the network.
• Hops represent the number of times the descriptors has been forwarded. The

result of the current hops value plus the current TTL value always equals to the
initial TTL value.

• Payload Length is used to locate the next descriptor. The next descriptor header is
located exactly Payload_Length bytes from the end of this header.

4.2.2 Descriptor Payload
There are five types of descriptor payload: Ping, Pong, Query, QueryHit, and Push.

1. Ping (0x00)
Ping descriptor has no associated payload and is of zero length. A servent uses Ping
descriptors to actively probe the network for other servents.

2. Pong (0x01)

Pong descriptor payload has four parts: port, IP address, the number of files shared, and
the number of kilobytes shared. Pong descriptors are only sent in response to an incoming
Ping descriptor. One Ping descriptor can be replied with many Pong descriptors.
Port is the port number on which the responding host can accept incoming connections.

• IP Address is the IP address of the responding host.
• #Files Shared is the number of files that the servent with the given IP address and

port is sharing on the network.
• #Kilobytes Shared is the number of kilobytes of data that the servent with the

given IP address and port is sharing on the network.

3. Query (0x80)

The Query descriptor which is the Gnutella’s search message format consists of two parts:
minimum speed, and search criteria. Minimum Speed is the minimum speed in
KBytes/sec of the servent that should respond to this message. Search Criteria contains
the search criteria of the requesting servent. The maximum length of the search criteria is
bounded by the Payload_Length field of the descriptor header.

 4. QueryHit (0x81)

QueryHit descriptors are the responses to the Query descriptor mentioned above. These
descriptors are sent by the servents when they find a match against their local data. The
descriptor ID field in the Descriptor Header of the QueryHit should be the same as that of
the associated Query descriptor. This will allow the requesting servent to identify the
QueryHit descriptor associated with the Query descriptor it generated.

• Number of Hits is the number of query hits in the result set.
• Port is the port number on which the responding host can accept incoming

connections.
• IP Address is the IP address of the responding host.
• Speed is the speed in KBytes/sec of the responding host.
• Result Set is a set of responses to the corresponding Query. This set contains the

Number_of_Hits elements, each of which has the structure comprising file index,
file size, and file name.

• Servent Identifier is a 16-byte string uniquely identifying the responding servent
on the network.

 5. Push (0x40)

The Push descriptor is used by the requesting servent to ask for a responding servent
behind the firewall to initiate the connection.

• Servent Identifier is a 16-byte string uniquely identifying the servent who is being
requested to push the file with index File_Index. This servent identifier is set to be
the same as the servent identifier returned in the corresponding QueryHit
descriptor sent by the servent behind the firewall.

• File Index uniquely identifies the file to be pushed from the requested servent.
• IP Address is the IP address of the requesting host.
• Port is the port number of the requesting host.

4.2.3 Rules
There are generally 5 rules in the Gnutella protocol for servents to follow in order to
maintain desirable network traffics.

• Rule 1: All Servents must memorize the unique 128-bit Descriptor ID every time
a message is delivered or originated. If these memorized messages are received
again, it will not be forwarded. This helps eliminating looping in the network
thereby reducing the unnecessary traffic.

• Rule 2: Pong, QueryHit, and Push descriptors may only be sent along the same
path that carried the incoming Ping, Query, and QueryHit descriptors,
respectively. This ensures that only those servents that routed the Ping (Query,
and QueryHit) descriptor will see the Pong (QueryHit, and Push) descriptor in
response. A servent that receives a Pong (QueryHit, and Push) descriptor with
Descriptor ID = n, but has not seen a Ping (Query, and QueryHit) descriptor with
Descriptor ID = n should discard the Pong (QueryHit, and Push) descriptor from
the network.

• Rule 3: A servent will forward incoming Ping and Query descriptor to all of its
directly connected servents, except for the one that sent the incoming Ping or
Query.

• Rule 4: A servent will decrement a descriptor header’s TTL field, and increment
the Hops field, before it forwards the descriptor to any directly connected servent.
If after decrementing the header’s TTL field, the TTL field is found to be zero, the
descriptor is discarded.

• Rule 5: If a servent receives a descriptor with the same Payload Descriptor and
Descriptor ID as the one it has received before (check by comparing with the ones
the servent stores in the table), a servent should discard this descriptor.

4.3 Gnutella protocol analysis and improvement methods
As with other P2P file-sharing protocols, Gnutella was intentionally designed to achieve
the four basic goals:

• Flexibility: Since the Gnutella network is ad-hoc, any servents can join or leave
the network at anytime they want and this occurs very frequently. Therefore, the
Gnutella protocol must be designed to be flexible enough to keep operating
efficiently despite the constantly changing set of servents.

• Performance and Scalability: Performance is measured in terms of the throughput
that any servents initiating query messages will get the QueryHit messages
replying back in an acceptable time. Scalability implies that the Gnutella protocol
should be able to handle a large number of servents without so much degradation
in performance.

• Reliability: Reliability focuses on security issues that external attacks should not
be able to degrade significant data or performance loss.

• Anonymity: Anonymity concerns mainly with protecting the privacy of
participants and the identity of the people seeking or providing the information.

4.3.1 Flexibility
With regards to the issue of dynamic environments in Gnutella, since a servent
periodically pings other servents, this will prevent it from being cut from the network and

will keep the network to stay functioning as long as there is a connection between any
servents. However, the strength of Gnutella comes from the fact that there are a huge
amount of users being on-line concurrently and most of them share their information.

4.3.2 Performance and Scalability
Performance and scalability can be considered as one of the biggest concerns in the
Gnutella community. Problems relating to the issue of performance arise from many
servents connecting to the network via low-speed modems. These servents are usually
scattered all over the network and they get over-flooded with messages until they become
unresponsive, which is no more different from them being off-line. This causes the
network to be highly fragmented (peers appear to be in isolated clusters), thus causing
query messages to be limited and not to go beyond each clustered fragment. This
degrades the search results drastically.

The second problem is concerned with ping and pong messages that are sent between
servents throughout the network. Since every servent has to constantly ping other
servents in order to obtain their addresses; the very fact that there are usually a large
number of servents indicates that the number of ping and pong messages would be
enormous as well. An investigation conducted by Dimitri (2002), shows that the number
of pong messages can consume up to about 50% of all Gnutella traffic. This will prevent
other more important messages such as query, QueryHit, and push to route through the
network. The consequence is that the performance of the network will eventually be
degraded because most of the network bandwidths are used to send ping and pong
messages (note that ping messages are broadcasted to every directly connected peer).

The third performance problem stems from the fact that Gnutella does not enforce its
users to share files. This encourages most users to be free-loaders as most of them just
join the network without sharing any of their files. Suppose that the TTL of the query
messages is 7 and every servent is connected to four other servents. Theoretically, the
search will go through 16,384 servents, but if only 10% of those servents share their files,
the search will drop to only around 1,600 servents. This reduces the probability to find
the desired files dramatically, and this still does not consider the fact that some servents
may go off-line or some servents may drop the query messages due to network
congestion problems.

The fourth problem involves download failures which, may very well have been caused
by the sharing of partial files or the limitation of upload speed by the users who share
those files. Back to the issue of scalability, (Ritter, 2001) argues that the Gnutella
network is not as scalable as it claims to be. This is due to the propagating nature of the
Gnutella protocol which consumes a lot of network bandwidth, hence causing the number
of Gnutella users to be limited by the underlying network bandwidth (network congestion
because of the large number of messages transmitted over the network). This contradicts
the original design intention of Gnutella which was to be able to support an unlimited
number of users. The TTL field in the Descriptor Header, the cache of previously seen
message kept by each servent, and the rules imposed by the Gnutella protocol are
designed to help reduce this problem, but more powerful techniques are needed to ensure
true scalability.

There are several approaches (LimeWire, 2003; Ivkovic, 2001) that are proposed to help
achieve higher performance and scalability, encourage content sharing, dishearten
freeloaders, reduce unnecessary network traffic, create and maintain a healthy network
structure, etc. Encouragement of content sharing may be done by making it a default
feature to automatically share completed downloads. This means that when a download is
completed, the newly downloaded file should be shared automatically by the user.
Download failures can be resolved by having an incomplete download directory to
prevent the sharing of partial files.

There are two types of freeloaders: Users who only download files for themselves
without ever providing files for download to others, and users who provide low-quality
contents to others for download. The problem of freeloaders can be solved by blocking
web-based downloads; blocking queries from web-based indexing tools, or through
reward and punish methods (this may require slight changes in the protocol).

To reduce unnecessary network traffic, would mean to reduce the number of ping and
pong messages. One approach to accomplish this is to avoid periodically pinging the
network, by setting a rule whereby a node can only start sending ping messages when it
detects that the peers directly connected to it are two or less. To task of creating and
maintaining the healthy network can be achieved by dropping a connection that has a
high potential to get clogged (this may remove the slower modem users from the center
or fast areas of the networks) and using the prioritization scheme to discard unnecessary
messages if necessary. The rule of dropping a connection may be of the following form:
Drop a connection to a node if it has not been able to receive or send the message for
about 10 seconds, and does not respond to a ping with TTL = 1. A prioritization scheme
can be used to selectively drop the most useless message first if necessary. The priorities
of messages are ordered from high to low: push > queryHit > query > pong > ping.

Another approach to improve performance is through the use of Super-peers (this is used
in newer P2P architectures like FastTrack and OpenFT) and caching of the results. One
of the main causes of performance degradation comes from the assumption that every
servent has the same resource capacity. The truth in fact, is many servents have weak
connections (low-speed modem), and participate in the network only for a short time
interval. This makes these slow servents unsuitable for taking an active role in the
protocol. Super-peers can be used as proxies for less powerful servents. Super-peers,
which typically have high bandwidth, act as local search hubs on behalf of the less
powerful peers connecting to them and they always stay on-line permanently. Super-
peers can also help reduce network traffic by caching query routing information.
Actually, Gnutella v0.6 protocol already proposed the use of Super-peers. The use of
Super-peers will make the Gnutella network topology to be a mix of centralized and
decentralized network as illustrated in Figure 10.

.

Figure 10: Centralized and Decentralized network topology (Minar, 2001).

In order to reduce the time needed to find a match for a query, each servent can cache a
queryHit message that is sent back through it, which is associated with the query sent to it
before. In case when there is the same query associated with that queryHit sent to it
again, that servent can send back the queryHit corresponding to that query immediately.
This method will perform best when repeated queries are common. We can make this
effect by arranging the servents interested in the same contents staying closed together in
the network. Note that pong messages can also be cached in the same way so that the next
time the ping messages come, a servent can return the cached pong messages
immediately eliminating the need to forward the ping message further. The idea is that
each servent remembers all pong messages that it has received. When its neighbor sends
a ping message with TTL of n to it, the servent will reply with a pong message and all its
cached pongs with hop counts less than n. This will result with each ping message
propagated to only the directly connected neighbors, and servents will not need to
forward the same pong messages repeatedly.

4.3.3 Reliability
The issue of reliability has been a heated discussion topic recently. Reliability focuses on
the security issues because malicious users can cause the network to malfunction causing
reliability to be compromised. Since the Gnutella network is fully distributed, the
contents are spread throughout many nodes which make attacking a specific machine
useless as that cannot bring the Gnutella network down. However, with the introduction
of Super-peers, the reliability of the Gnutella network may be questionable as attackers
can target the Super-peers. Even though this will not make the entire Gnutella network
down, some parts of the network can suffer significantly. Apart from that, there are three
kinds of attacks that can be done easily in the loosely structured, highly dynamic P2P
network like Gnutella: Flooding, Malicious or Fake Contents, and Hijacking queries. This
will be discussed based on (Dimitri, 2002). In fact, Gnutella network opens many security
risks since the design focus is primarily on functionality and efficiency.

Flooding the network with a large number of query messages or supplying erroneous
replies to all queries is a form of Denial of Service attack. Note that the flooding of pong
or queryHit messages is useless since they will be discarded if there are no matching ping
or query messages sent over the same network previously. Flooding of ping messages is
also unfruitful because of the caching of pong messages discussed previously. The author
of (Dimitri, 2002) said that flooding problem can not be prevented but can minimize by
through load balancing.

Providing malicious or fake contents, such as files that contain viruses, files with altered
or corrupted content, or advertising and misleading others to believe a file to be
something else can be a real problem. What is worse is that the virus files, if they exist in
the network, tend to propagate quickly. Therefore, it is essential to have a way to
authenticate the content of the file before receiving it. The author of (Dimitri, 2002)
suggested the Fourier Transforms technique to determine the content in the file, that are
not bit-wise identical, to see whether it is what is expected.

Hijacking queries can be done easily in the Gnutella network. This stems from the trust of
intermediate third parties in the network. The use of Super-peers also makes it easy to
hijack the queries since each Super-peer can see a large portion of queries. Point-to-point
encryption, Distributed Hash Tables, and Selection mechanism are all the techniques
proposed by (Dimitri, 2002) to help resist flooding and query interception attacks.

 According to (Ripeanu, 2001), the current Gnutella network follows a multi-modal
distribution, which is a combination of a power-law and quasi-constant distribution. This
topology keeps the network reliable almost as a power-law distribution topology; which
allows the network to tolerate random node failures.

Unfortunately, Gnutella network topology can be acquired easily through the use of a
crawler and analyzing the data gathered. This would permit highly efficient denial of
service attacks by educated attackers.

4.3.4 Anonymity
The last issue, anonymity, can be achieved naturally in the Gnutella network. The
requested servents will not know who the requesters are since the requesters can be
anyone along the query paths. In the same way, the requesting servents do not know who
the requested servents are either. This can be a problem as anonymity makes it possible
for many security threats to occur easily.
On the other hand, although one may think that the Gnutella protocol provides total
anonymity in the network, unfortunately a hacker can still invade ones privacy by
scanning the Descriptor ID in the Descriptor header to trace back on the Gnutella
messages. So, no servent is totally anonymous, at least not yet!

5. FastTrack
One of the newer and more innovative peer-to-peer architectures would be the FastTrack
network. It came as a solution to the problems that both Napster and Gnutella were
facing. The FastTrack network is by nature a Hybrid Architecture which, as mentioned in
the earlier sections, is a cross between two or more basic network topologies. For
FastTrack, it is namely the cross of the centralized and decentralized topologies. (Yang,
2002).

5.1 The FastTrack Protocol
The FastTrack protocol is a proprietary architecture, where rights to use the network has
to be obtained through a company called Sherman Networks (Bergner, 2003). Therefore,
very little is known of the actual protocol used. Many attempts have been made to reverse
engineer the FastTrack protocol. The most well known to date would be the giFT project

(SourceForge, 2002), as they were the closest to finally cracking the protocol. FastTrack
reacted by changing its encryption, to the point where it was virtually impossible to
reverse engineer (Bergner, 2003). The work done by the giFT project however, was
sufficient to give a rough outline of how the FastTrack protocol actually works, even if
the information may now very well be outdated. The following section contains a
description of the architecture used by the all FastTrack clients.

This technology uses two tiers of control in its network as shown in Figure 11. The first
tier is made up of clusters of ordinary nodes that log onto Super Nodes (ordinary
machines with high speed connection). As discussed previously, this sort of connection
mimics the centralized topology. The second tier consists of only Super Nodes that are
connected to one another in a decentralized fashion.

Figure 11: An illustration of the FastTrack topology.

The number of peers that can be designated as Super Nodes can vary from tens to several
thousand. This is because these Super Nodes themselves are just ordinary nodes that can
and will join or leave the network as they please. Therefore, the network is dynamic and
always changing. In order to ensure the constant availability of the network, there exists a
need for a dedicated peer (or several of these peers) that will monitor and keep track of
the network. Such a peer is called a bootstrapping node (Kurose, 2003) and it should
always be available online. When a FastTrack client, for example Kazaa is executed on a
peer, it will first contact the bootstrapping node. The bootstrapping node will then
determine if that particular peer qualifies to be a Super Node. If it does, then it will be
provided with some (if not all) IP addresses of other Super Nodes. If it only qualifies to
be an ordinary peer, then the bootstrapping node will respond by providing the IP address
of one of the Super Nodes (Balakrishnan, 2003).

Certain FastTrack clients like Kazaa uses a method known as the ’Reputation System’,
where the reputation of a certain user is reflected by their participation level (a number
between 0 and 1000) in the network. The longer the user stays connected to the network,
the higher their participation level will be, which in turn means that they will be more
favoured in queuing policies and hence should receive better service. This is mainly to
encourage users to share files and thus effectively reducing the number of ’passenger
clients’ on the network.

Resource discovery is accomplished through the act of broadcasting between Super
Nodes. When a node from the second tier makes a query, it is first directed to its own
Super Node, who will in turn broadcast that same query out to all other Super Nodes that

it is currently connected to. This is done repeatedly until the TTL of that query reaches
zero (Sharma, 2002). So, if for example, the TTL of a query is set to 7 and the average
amount of nodes per Super Node is 10, a FastTrack client is able to search 11 times more
nodes on a FastTrack network as compared to Gnutella (Aitken, 2001). This provides
FastTrack clients a much greater coverage and better search results. There is one
drawback to such a broadcasting method, and that is the daunting amount of data that
needs to be transferred from Super Node to Super Node. This is the very same problem
that has been plaguing the Gnutella network. This, however, is not a serious problem for
Kazaa as opposed to Gnutella, for the Super Nodes are nodes that are guaranteed to have
fast connections.

Each of the Super Nodes that received the query will then perform a search through its
indexed database that contains information of all the files shared by its connected nodes.
Once a match is found, a reply will be sent back following the same path the search query
was propagated through until it reaches back to the original node that issued the query.
This method of routing replies is similar to Gnutella, and hence runs the risk of facing the
same problem of losing replies as it is routed back through the network. This is due to the
fact that the Gnutella network backbone, as mentioned previously, is made up of peers
that connect and disconnect from the network very sporadically. This would mean that
reply packets that are being routed back may be lost as the path it took is no longer there
because one or more of the nodes making up the link disconnected itself. The afore
mentioned problem however, is not as serious for Kazaa users as the FastTrack network
backbone is made up of peers that have high speed connections (Super Nodes) and hence
the return paths can be considered more reliable.

6. OpenFT
As mentioned in the previous section, the FastTrack network protocol is proprietary
hence not much about its protocol is known. This very fact has become the source of
motivation for various individuals and groups to try and break the FastTrack protocol.
The most well known of all, would be the giFT project. According to (Bergner, 2003),
the initial meaning of the abbreviation giFT was Generic Interface to FastTrack or giFT
isn’t FastTrack. The giFT project came very close to actually breaking the FastTrack
protocol. However, FastTrack reacted by changing their encryption, making it impossible
to reverse engineer.

Since the FastTrack protocol was no longer feasible to crack, the aim of the giFT project
was changed to develop a system which can connect many different heterogeneous
networks and still be able to share files between them. Therefore, the meaning of its
abbreviation was also changed to giFT Internet File Transfer (Bergner, 2003). The
project led to the development of a new and improved network protocol that was very
much like FastTrack; it was called OpenFT.

6.1 The OpenFT Architecture
Like FastTrack, the OpenFT protocol also classifies the nodes in its network into
different roles, but instead of a two-tier control architecture, OpenFT has added an extra
tier making it a three-tier control architecture as show in its topology Figure 12. The

classification of nodes is done based on the speed of its network connection, its
processing power, its memory consumption and also its availability (SourceForge, 2002).

The first tier would be made up of clusters of ordinary machines which we refer to as
User Nodes. These nodes themselves, maintain connections to a large set of Search
Nodes (ordinary machines with high speed connection). The user nodes will then update
a subset of the search nodes that it is connected to with information regarding files that
are being shared (SourceForge, 2002).

The second tier is made up of machines that are referred to as Search Nodes. These nodes
are the actual servers in the OpenFT network. These servers have the responsibility to
maintain indices of files that are shared by all the user nodes under them. On default, a
search node can manage information about files stored at 500 user nodes (SourceForge,
2002).

The third tier is made up of a group that it much smaller, because the requirements to
qualify for this group are much more stringent. One has to be a very reliable host that has
to be up and available most of the time. These nodes are referred to as Index Nodes as
their main purpose is to maintain indices of existing Search Nodes. They also perform
tasks like collecting statistics and monitoring network structure. Basically, this group can
be seen as the administrator group that ensures all other participating nodes are working
fine and are up to expectation (SourceForge, 2002).

It should be noted that the second and third tier of control can actually be performed by
the same node. In other words, a node can function both as a Search Node and as an
Index Node at the same time.

By default, each User Node has to select 3 Search Nodes to maintain their shared file
information. If accepted, the selected Search Node will be a Parent to that particular User
Node, who will now have to send the list of its shared files to it (Bergner, 2003). In
addition, all nodes will also have to maintain a list of available Search Nodes. When a
query is sent, it will be sent to all nodes that are found in this list (SourceForge, 2002).

Figure 12: An illustration of the OpenFT topology.

6.2 The OpenFT Protocol
The OpenFT network protocol uses a simple packet structure to make it easy to parse.
There are all together 28 packet types and all of them have the following packet header.

Length describes the length of the packet excluding the header. The current
implementation uses bits 16-31 to store both flags and packet type information (Bergner,
2003).

As mentioned in the previous section, each node is assigned a particular role in the
network. At the moment of writing, there is still yet a distributed algorithm that can be
implemented to perform the role assignment task. For now, the users themselves choose
the role it wants to play in the network. Table 3 provides a summary of the packets used
by the OpenFT network protocol (Bergner, 2003; Guilfoyle, 2003).

Table 3: Summary of packets used in the OpenFT network protocol.

Packet Description
version Used to indicate protocol version and check to see if it is outdated.
nodeinfo Used to communicate node information such as IP address, port

numbers and OpenFT node category.
nodelist Used to list down other nodes.
nodecap Used to indicate node capabilities.
ping Used to keep connection alive.
session Used to establish session.
child Used to request to be the child of a particular Search Node.
addshare Used to add information about the files that are shared in a User

Node to the registry of a Search Node.
remshare Used to remove information about the files that are shared in a

User Node to the registry of a Search Node.
Modshare Used to modify information about the files that are shared in a

User Node to the registry of a Search Node.
Stats Used to request network statistics from Index Nodes.
Search Used to query for files.
Browse Used to browse the files shared by a particular node.
Push Used to perform HTTP PUSH (like the one mention in Gnutella)

through firewalls.
All the packets mentioned can basically be categorized into several categories so that
their usage and function can be seen more clearly. With reference made to (Bergner,
2003), they are:-

• Session Establishment: version, nodeinfo, nodelist, nodecap, session
• Connection Maintenance: ping
• File Sharing Management: child, addshare, remshare, modshare
• Searching for files: search, browse
• Misc: stats, push

7. COMPARISONS
P2P systems use different architectural models and techniques for resource discovery and
handling performance and security issues. A comparison between various P2P systems is
given in Table 4.

Table 4: A comparison of various P2P systems.

Characteristics System Description

Napster MP3 file sharing.
Gnutella File sharing of all types.
FastTrack File sharing of all types.

Purpose

OpenFT File sharing of all types.
Napster Peers connected to a centralized server
Gnutella Flat/Ad-hoc network of peer servents (Pure P2P)
FastTrack Decentralized two-level hierarchical network of

group-leader peers and
ordinary peers

Architecture

OpenFT Decentralized three-level hierarchical network of
search peers, index peers and
ordinary peers

Napster Using central directory
Gnutella Query flooding: Broadcast queries to peers and

make a direct connection when download.
FastTrack Using group-leader peers

Lookup Method

OpenFT Using the search peers
Napster The system is highly centralized. Peers are

connected directly to the central index server.
Gnutella The system is highly centralized. The topology is

flat and each peer is truly equal.
FastTrack The system is decentralized in the sense that

there is no explicit central server. However, in
each group, the ordinary peers are still connected
to their group-leader peer in a centralized
manner.

Decentralization

OpenFT The network structure is very much like
FastTrack, only OpenFT is slightly more
optimized for performance.

Napster The system is not scalable because having every
one connected to the directory server is
bottleneck prone.

Scalability

Gnutella Theoretically, the system can easily expand
indefinitely but in practice may be limited by the
underlying bandwidth. Traffic jams of a large
number of messages transmitted over the
network can cause the network to stop
functioning properly.

FastTrack The scalability of the system is medium.
Although the architecture is fairly decentralized,
it is not entirely serverless. A bottleneck may
occur locally within a group.

OpenFT The scalability of the system is just like
FastTrack. It is easily scalable, but bottlenecks
may occur within a group since it is not entirely
serverless.

Napster Hardly any anonymity since all users have to
sign up onto the central server before they can
connect to the network. Users are almost always
anonymous to each other though, since the user
directory is never queried directly.

Gnutella Anonymity is preserved naturally by the protocol
itself since the messages may come from any
peers in the local paths. However, the Descriptor
ID in the Descriptor header may be used to trace
back the messages, intermediate. Nosy nodes can
record queries, responses.

FastTrack Level of anonymity is slightly better than
Napster but less than Gnutella. Users are not
fully anonymous in the FastTrack network.

Anonymity

OpenFT Level of anonymity is similar to FastTrack.
Security

Napster Moderate, since Napster is managed by a
centralized server. This allows Napster to exert
much more control which makes it much harder
for clients to fake IP addresses, port numbers,
etc. And since Napster only allows the sharing of
MP3 files, this makes security threats that are
related to fake content, viruses, etc. are not too
prone and more traceable as compared to the
other three protocols.

 Gnutella Low, since the protocol design primarily focuses
on the functionality and efficiency. Prone to
several security threats: flooding, malicious or
fake content, virus spread, hijacking of queries,
denial of service attacks. Security threats mainly
focus on services rather than host. In the case of
one user staying behind the firewall, download
can be achieve by requesters sending a push
message to ask the firewalled user to initiate a
connection. In the case of two users both staying
behind firewall, a connection cannot be created.

 FastTrack Low, but is still better than Gnutella, since it
maintains a hybrid architecture. Security threats
such as flooding, malicious or fake content,
viruses, etc. can be reduced as all the Super
Nodes actually function as centralized servers to
nodes that are under their domain. Another threat
is the integration of spyware into the popular
FastTrack client, Kazaa. These spywares monitor
the activities of users in the background. Any
information from surfing habits to favourite web
sites can be gathered and sent back to the server,
who will then use this information for targeted
marketing, etc.

 OpenFT Very similar to threats faced by FastTrack. One
of the main differences is that it doesn’t have
spywares integrated into its clients.

Self-organization

Napster A highly self-organized system is not necessary.
Organization of nodes/resources are handled by
the central servers.

 Gnutella The system is highly self-organized. It adapts
gracefully with the dynamic nature of the
Internet through the use of ping messages to
periodically find the available peers connected to
the network. But this comes with a drawback,
which is the staggering amount of data transfer
involved.

 FastTrack The system is very much self-organized as well.
It adapts to the dynamic nature of the Internet,
just like Gnutella. The slight difference in its
protocol allows FastTrack to achieve a highly
self-organized system with much less data
transfer as compared to Gnutella.

 OpenFT Self-organization in OpenFT is similar to
FastTrack.

Lookup
Completeness

Napster The lookup method is complete, because search
is done by the central server which has the
complete index directory.

 Gnutella The lookup method is incomplete, because a
query may not reach all the servents. I has a
much greater coverage compared to Napster, but
it takes a much longer time to perform a lookup.

 FastTrack The lookup method in FastTrack is incomplete as
well, but it is able to search many times more
nodes as compared to Gnutella for the same time
span.

 OpenFT The lookup method on OpenFT is similar to
FastTrack. There maybe some minor adjustments
to improve performance, but on the baseline,
they are both the same.

Fault Resilience

Napster The malfunction of the central server can cause a
system wide malfunction.

 Gnutella The malfunction of some nodes would not cause
the system to stop functioning as long as there
are enough nodes connected to the network at a
given time. But this will definitely degrade
performance.

 FastTrack The malfunction of an ordinary peer would not
hurt the system. The malfunction of a group-
leader peer is taken care by re-assigning all
ordinary peers connected to other group-leader
peers.

 OpenFT Fault resilience for OpenFT is similar to
FastTrack, where the malfunction of a user node
would not hurt the system. If any of the index
nodes or search nodes fails, all that needs to be
done is just re-assign all user nodes affected to
other index or search nodes.

8. Summary
It should be relatively clear by now that P2P technology is still in its infant stage of its
development. There is still great potential for growth and improvements that can be done.
From this chapter alone, we can see how P2P has evolved from a more centralized
architecture like Napster into a fully distributed architecture like Gnutella; only to evolve
again into hybrid architectures like FastTrack and OpenFT. This evolution in technology
is spurred mainly by the need to achieve better efficiency and speed in content sharing as
well as for the need to survive law suits against these architectures. Much more
innovative architectures will surface as the race toward network efficiency and survival
continues.

9. REFERENCES
1. Peter, B., Tim, W., Bart, D., & Piet, D. (2002), A Comparison of Peer-to-Peer

Architectures, Broadband Communication Networks Group (IBCN), Department of
Information Technology (INTEC), Ghent University, Belgium, 1-2.

2. Minar, N. (2001), Distributed Systems Topologies: Part 1, Oreilly Network,
http://www.openp2p.com/pub/a/p2p/2001/12/14/topologies_one.html

3. Minar, N. (2002), Distributed Systems Topologies: Part 2, Oreilly Network,
http://www.openp2p.com/pub/a/p2p/2002/01/08/p2p_topologies_pt2.html

4. Kurose, J. F. & Ross, K. W. (2003), Computer Networking: A Top-Down Approach
Featuring the Internet, Addison Wesley, Boston, USA.

5. Yang, B. H. & Garcia-Moline (February 2002), Designing a Super-Peer Network,
Standford University.

6. Shirky, C. (2001), Listening to Napster, Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, A. Oram (ed.), O’Reilly Press, USA.

7. Tyson, J. (2000), Marshall Brain's HowStuffWorks, How Napster Worked
http://www.howstuffworks.com/napster1.htm

8. Hebrank, M., Gnutella & Napster. HUH? or What do I need to know to keep from
looking like an idiot, http://www.wacked.org/~heller/gnutella/

9. Barkai, D., (2001), An Introduction to Peer-to-Peer Computing
http://www.intel.com/update/departments/initech/it02012.pdf

10. Turcan, E., (2002), Peer-to-Peer: The Third Generation Internet
http://csdl.computer.org/comp/proceedings/p2p/2001/1503/00/15030095.pdf

11. LimeWire, The Gnutella Protocol Specification v0.4, Document Revision 1.2,
http://www.clip2.com

12. Kan, G., (2001), Gnutella, Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, A. Oram (ed.), O’Reilly Press, USA.

13. Dimitri, D. & Antonio, G. & Bill, K. (2002), Analysis of Peer-to-Peer Network
Security using Gnutella, http://www.cs.berkeley.edu/~daw/teaching/cs261-
f02/reports/defig.pdf

14. Ritter, J., (February 2001), Why Gnutella Can’t Scale. No, Really,
http://www.darkridge.com/~jpr5/doc/gnutella.html

15. LimeWire LLC (2003), Improving the Gnutella Network,
http://www.limewire.com/index.jsp/im_require

16. Ivkovic, I., (2001), Improving Gnutella Protocol: Protocol Analysis and Research
Proposals, http://www.swen.uwaterloo.ca/~iivkovic/Gnutella.Limewire2001.pdf

17. Ripeanu, M., (July, 2001), Peer-to-Peer Architecture Case Study: Gnutella Network,
Technical Report TR-2001-26, University of Chicago, USA.
http://people.cs.uchicago.edu/~matei/PAPERS/gnutella-rc.pdf

18. Bergner, M., (2003), Improving Performance of Modern Peer-to-Peer Services,
UMEA University, Department of Computer Science

19. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., & Stoica, I., (February
2003), Looking Up Data in P2P Systems, Communications of the ACM, Volume 46 ,
Issue 2, ACM Press, USA.

20. Sharma, A., (Sept. 2002), The FastTrack Network, PC Quest Magazine, India.
http://www.pcquest.com/content/p2p/102091205.asp

21. Aitken, D., Bligh, J., Callanan, O., Corcoran, D., & Tobin, J., (2001), Peer-to-Peer
Technologies and Protocols

22. Source Forge (Sep 14, 2002), What is the giFT project?,
http://cvs.sourceforge.net/viewcvs.py/gift/giFT/README?rev=1.9

23. Guilfoyle, J., & Lempsink, E., (2003), giFT’s Interface Protocol, Source Forge,
http://gift.sourceforge.net/docs.php?document=interface.html

