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Abstract—In this paper we present an autonomic web services
architecture that manages both the performance of service
containers and the interconnection of those containers into a
service overlay network. The advantages of this approach include
the easing of management tasks through the autonomic systems
ability to self-configure, self-optimise and self-heal. We also
benefit from improved resilience and anticipate an improvement
in overall performance. In our architecture we incorporate a
structured distributed hash table peer-to-peer overlay network
within our autonomic web services container. Our architecture is
inherently non-hierarchical, widely distributed and enables SLA
compliant deployment of WSRF services. We have simplified
the management of such a system by adhering to autonomic
principles, and we maintain the performance of the system
by tightly integrating SLA compliance and migrating services
between containers to preserve QoS. We have developed a
workable system for both service deployment and migration
without the need for global state.

I. INTRODUCTION

It is not simple to organise a collection of web services

for a Service Oriented Architecture (SOA), especially when

we desire to meet a set of Quality of Service (QoS) require-

ments. Various management tasks can be eased by engineering

autonomic service containers. Autonomic service containers

enable self-configuration, self-optimisation, self-healing and

self-adaption [1], [2], [3] to improve resilience and overall

system performance. QoS is often seen as the satisfaction

of Service Level Agreements (SLAs), and therefore the au-

tonomic service container must monitor for and correct any

SLA violations.

Organising the containers in a hierarchy [4], [5] makes it

difficult to manage the resulting network as the management

role each container plays is dependent on its position within

the hierarchy. We believe that each autonomic WSRF container

should contribute to the management of the overlay network

and avoid any specialised or static hierarchical roles. These

requirements fit well with the principles of peer-to-peer net-

working [6] and such systems typically permit a wide distribu-

tion of workload, decentralised management, failure tolerance

and replica management. In our architecture we incorporate

a modified Pastry node within each of our autonomic WSRF

service containers.

Our contributions: (1) We have developed a scalable decen-

tralised solution to the deployment of distributed web services.

(2) We have simplified the management of such a system by

adhering to autonomic principles, and we maintain the perfor-

mance of the system by tightly integrating SLA compliance

and migrating services between containers to preserve QoS.

(3) We have developed a workable system for both service

deployment and migration without the need for global state. (4)

We collect load information by observation of the peer-to-peer

routing packets and find resources using a computed search

tree that overlays the network of autonomic WSRF service

containers. (5) Finally, we have constructed the architecture

using standard modern technologies which allows us to hist

legacy webservices with only minor adaption.

The rest of the paper is organised as follows: in section II

we describe the architectural design of the autonomic WSRF

container, in section III we describe the peer-to-peer network

architecture and how it is integrated with and managed au-

tonomically by the WSRF container, in section IV we detail

the prototype and our experimental results, in section V we

explore related work, and finally in section VI we conclude

the paper.

II. WSRF CONTAINER ARCHITECTURE

In this paper we focus on the peer-to-peer architecture

for interconnecting our autonomic WSRF containers. A more

detailed treatment of the engineering of the WSRF container

is available in [7]. For brevity the autonomic WSRF container

will be simply referred to as the container for the remainder

of this paper. Figure 1 outlines the internal architecture of

the container. The container is embedded within a Geron-

imo [8] application server and WSRF services are deployed in

Axis2 [9] running in Tomcat [10]. JSR-77 [11] provided via

JMX [12] is used to monitor the WSRF services inside the



service container (e.g. request counter, processing time, etc.).

MAPE [13] is implemented using Geronimo’s GBeans [14]

and provides autonomic management and utilises SLAs and

performance metrics to trigger self managing operations such

as service migration.
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Fig. 1. Internal structure of the WSRF container

An SLA for each service is registered with the host con-

tainer when the service is deployed. The SLA encodes three

differentiated service levels, gold, red and green (priority is

in the given order). These service levels define the acceptable

performance limits for each service level. In addition to QoS

monitoring, we also use these service levels to rank services

for deployment or migration. For example, gold services

are the most valuable and are therefore prioritised during

deployment and are only migrated as a last resort. A more

detailed description of the SLA and differentiated service

levels is available in an earlier paper [15].

If a container is not able to internally (within the container)

resolve an actual or a predicted SLA violation detected via

the MAPE-K loop, it will generate a help message indicating

which resource is oversubscribed. This message is delivered to

a subset of containers, which in response generate a specific

health value (H-value) computed using a health metric (H-

metric) and biased towards the oversubscribed resource. The

H-metric is detailed in [15], but in essence, each monitored

resource is normalised and then all of the resources are

summed and normalised. This allows the state of the re-

sponding machine to be summarised in a single comparable

number, but permits the particular resource of interest to carry

more weight when selecting a destination for migration. To

emphasise, two simultaneous requests with different violating

resources, will result in different H-value responses from the

same container.

III. CONTAINER PEER-TO-PEER ARCHITECTURE

To build scalable, flexible, self configuring autonomic ser-

vice overlay network, each container contributes to the man-

agement of the overlay network and avoids all specialised and

static roles. The lack of specialised or static roles increases

robustness in case of failure, and most importantly permits a
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Fig. 2. Peer-to-peer network interconnection of the WSRF service container

wide distribution of workload. In particular we want services

to be locatable within the network without relying on a

centralized index server. This will avoid any single point of

failure in the system. Pastry [6] is a good fit with our design

requirements and was used as the basis for our peer to peer

network. To store data each data object Pastry maps to the

numerically closest real storage node (both node ID and data

object ID are hashed). Thus, each storage node in the network

is responsible for storing objects with numerically close IDs,

and the resulting load is distributed evenly by the SHA-1 hash

function. Figure 2 illustrates the extension of the container to

integrate a customized peer-to-peer node and routing servlet

within the Geronimo application server. The modified peer-to-

peer node stores a mapping of Service ID to Container ID. For

this paper we have made the simplifying assumption that the

containers and services all belong to the same organisation.

With our simplifying assumption, peer-to-peer problems such

as churn [16] are not a significant. Service discovery takes

place outside of our architecture, using any of the many

available systems (such as the Globus MDS). The following

subsections III-A through III-E outline our architecture based

on the operating phases of the system, e.g. service access,

creation, deployment, and maintenance.

A. Creation and Initialisation Phase

New containers join the network via any existing container,

through which they bootstrap themselves into the network.

The degree to which resources are normalised during the

calculation of the H-value needs to be common throughout

the network so that containers may be compared. If the new

container advises that it has more memory or a higher MIPS

performance than the current maximums, then its values are

selected as the new maximums for normalisation and are

propagated via sequential ring traversal to all containers in

the network. The maximums have associated version numbers

(derived from the source machine ID) and only normalized

values with the same version numbers are comparable. This is

to prevent incorrect migration decisions between nodes using

different normalization maximums that could occur during the

propagation of new values through the ring.



B. Container Discovery

In a ring overlay network there is no hierarchy to determine

how a potential host container should be queried for its H-

value. As we want a scalable overlay network, solutions such

as broadcast and sequential ring traversal are not plausible.

Our solution is to treat the ID space of the containers as

evenly populated and to compute an overlay binary query tree.

Algorithm 1 findIDs gives the algorithm used to find the

children of a container (id) to depth level. In order to balance

load and void containers becoming hot-spots, we often pick a

random container as root and balance the load by computing

different search trees for subsequent queries.

Algorithm 1 Pseudo-code for findIDs

input level, id

output C

if level < maxlvl then

o = max
2level+1

C1← findIDs(level + 1, mod(max + id− o, max))

C2← findIDs(level + 1, mod(max + id + o, max))

end if

return C1 ∪ C2

For example, for a maximum container ID of 191 (max),

a maximum level of 3 (maxlvl) and using container 31 (id)

as the root, the resulting set C is {31, 175, 143, 189, 69,

37, 83}. The algorithm is also easily modified to find only

the containers within a specific level. This is very useful and

efficient; say your query was unsuccessful at a depth of 2,

you can simply compute the containers for level 3 and you

need not revisit the containers from level 2 during the level 3

query. The example given in Figure 3, in which container 31

has experienced an SLA violation, illustrates this.

C. WSRF Service Deployment Phase

Services can be deployed at any time during the life of a

WSRF-peer-to-peer container network. However bulk service

deployment into a new network is somewhat of a special case

as we desire to have a good initial distribution of services

to containers to minimise the amount of QoS maintenance

required later on. This phase of operation is essentially initial

placement [17]. We distinguish 2 types of services that apply

during initial placement:

• Constrained services: These services have specific loca-

tion dependencies. For example, if the service needs to

be close to an existing database or other unique resource.

These requirements are spelt out in the SLA governing

the execution of this service along with other more

flexible requirements such as the type of machine, hard

disk speed, etc.

• Unconstrained services: These services have no special

requirements for the location. They can be deployed

anywhere, providing the container’s performance is suffi-

cient to meet the other SLA specifications. Unconstrained

SLAs are differentiated into three classes, Gold, Red and

Green [15].
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Fig. 3. H-value query and resulting migration as a response to an SLA
violation at container 31. Container 31 starts by computing a level 2 overlay
tree and issues a help message to containers {69 and 175}. These container
IDs are resolved to real containers 67 and 162, which return their H-values
and willingness to receive a service migration. In this case container 67

is refusing incoming migrations and 162 is overloaded. Container 31 then
computes the container IDs for level 3, {37, 83, 143 and 189} and sends
the help message to these containers. When the container IDs are resolved to
real containers the duplicates (37 → 31) and (83 → 67) are detected as
having duplicate message version numbers and are discarded by the containers
themselves. Container 184 is selected as the migration destination and service
S is migrated.

When performing the initial bulk deployment of services to

a new container network, the order of the service placement

is important. In this case, we select the constrained services

first and place these such that their SLA requirements are

met. We next deploy the unconstrained services slotting in

around the deployed constrained services. However, were the

same container to be used as the root for these deployments,

then the H-value queries would all query the same nodes

and give very poor efficiency and resulting distribution. So,

during deployment we pick a random container as the root for

each unconstrained deployment and begin the search from that

point.

Deploying into an existing network is slightly different.

Unconstrained services are placed on the first container for

which the H-value query returns a sufficiently low H-value

and will therefore not cause an SLA violation. For constrained

services, there is no choice about the destination container, and

as such the service must be placed there. This can have the

effect of introducing SLA violations for the chosen container,

and we rely on normal maintenance (see section III-D) to

remove enough unconstrained services to return the container

to SLA compliance.

D. Service Migration

After the services have been initially deployed, we use

service migration to ensure SLA compliant performance. At

this point it is worth pointing out that not all services are can-

didates for migration. The constrained services mentioned in

section III-C are not. Also, some of the initially unconstrained

services can also not be moved at certain times due to run-time



constraints such as open files, locally generated data and other

resources that they are consuming. We note that these services

are temporarily constrained, and rely on the service to report

to the container when it changes state between unconstrained

and temporarily constrained.

There are four occasions when our system may attempt to

migrate services: (1) in response to a constrained deployment

(migrate unconstrained services away), (2) in response to a

new container joining the network (opportunity to offload

services), (3) in response to a container having few services

(again, opportunity to offload services), or (4) in response to

a predicted or real SLA violation. In essence our migration

system is symmetrically initiated [17] where; during light

loading of the system heavily loaded containers operate to

offload excess workload and during heavy loading when under-

loaded containers operate to import workload. The following

sections III-D1 through III-D3 provide algorithmic equivalents

to the maintenance actions taken in the MAPE-K loop –

including violations and load initiated actions.

1) H-value Observation: To avoid non-productive attempts

to offload or obtain services, some information about the gen-

eral load on the system needs to be obtained. Conventionally

this is collected at a single place for easy access, however

solutions are not usually scalable or robust. As H-value queries

are in essence directed polls and are used to make the final

placement decisions, any global information need not be

completely accurate. We in fact only use this information to

determine if a service migration is worth pursuing.

Our novel solution to this problem is to note that in Pastry

and many other peer-to-peer systems, individual containers act

as routers, as well as storage devices. When acting as a router,

messages for other containers will pass through this container

and we can therefore record any H-values contained in those

messages. These H-values are recorded for each container (the

source of the message) using a weighted decaying average

(Lmsg.src ← (1−α)Lmsg.src +α×msg.Hvalue). The value

α is a tuneable parameter, and for our experiments was set

to 0.5. The resulting load vector L can be used to provide an

estimate on the current state of each container and the overall

loading in the system. To emphasise the point, collection of

this data requires no additional messages for communicating

the system’s load. The accuracy of the observation based

estimates is presented in section IV-C. When a new node

joins the network it has not yet been able to observe any load

values in the system and therefore will have difficulty making

migration decisions. This is resolved during bootstrapping,

when the new node obtains the observed load values from

its immediate neighbors and averages them.

2) Under-utilized Containers: If a container has few ser-

vices or has just joined the network it may determine that it is

under-utilised and will attempt to obtain services to execute.

This is first step in the receiver initiated [18] phase of the

receiverInitiated Algorithm 2. The next step is to

examine the observed H-value. If the H-value of the current

container is less than the average load in the system less

the threshold Tpull (The threshold Tpull defines the amount a

container must be below the average load before it will attempt

to import workload), it will attempt to find a service to host

by issuing a query (see section III-B) specifying it’s least used

resource r and query depth n. The responses to this query will

be generated with reference to the specified resource and the

responses received are placed in vector H . Vector H is then

filtered based on whether the container is willing to offload a

service to produce the vector A. The query will continue to

loop increasing the depth until a source candidate has been

located or until the depth of the query exceeds the maximum.

The container in A returning the highest resource targeted H-

value will be offered the opportunity to offload a service to the

requesting container. It is also worth noting that in a loaded

system the query should easily find workload, hence in practice

we do not allow the query to exceed a depth of max = 3.

Algorithm 2 Pseudo-code for receiverInitiated

input L

output success, failure

if this.Hvalue < Tnoload then

if this.Hvalue < average(L)− Tpull then

r ← min(∀R)
n← 2
while A is empty & n ≤ max do

H ← HvalueQuery(msg.request(r, n))
A← ∀h ∈ H | isAccepting(h)
inc(n)

end while

source← max(A)
if source is not NULL then

return source.migrationRequest(this, r)
end if

end if

end if

return failure

The migrationRequest Algorithm 3 is then instanti-

ated on the selected source container. The source container

verifies that it is still overloaded using threshold Tloaded, and

then chooses and migrates an unconstrained service ranked

preferentially by the target resource r.

Algorithm 3 Pseudo-code for migrationRequest

input destination, r

output success, failure

if this.Hvalue > Tloaded then

S ← choose(r)
if S is NULL then

return failure

end if

end if

return migrate(S, destination)

The choose Algorithm 4 selects an unconstrained service

in decreasing preference from green, red and gold services.



Algorithm 4 Pseudo-code for choose

input r

output S

S ← NULL

S ← selectUnconstrained(green, ranked by r)
if S is NULL then

S ← selectUnconstrained(red, ranked by r)
if S is NULL then

S ← selectUnconstrained(gold, ranked by r)
end if

end if

return S

3) Over-utilization: A container may also attempt to offload

services either in response to a constrained service deploy-

ment, or in response to a predicted or real SLA violation. In

the case of a SLA violation, the violation Algorithm 5 is

called from the MAPE-K loop in response to a monitored

service violation. The algorithm stops registering violation

events and prevents any incoming service migrations. We then

obtain the violating resource r from the SLA violation event

and use this resource when issuing the H-value query to locate

a migration destination. The remainder of the algorithm is sim-

ilar to the ReceiverInitiated Algorithm 2, except we

select the destination with the lowest H-value with reference

to the violating resource r, and the value of max is higher. If

this search fails, then an error is generated and logged, as the

system is unable to resolve the problem.

Algorithm 5 Pseudo-code for violation

Input: violation

Output: success, failure

STOP registering violations

START refusing inbound service migrations

r ← violation.getResource()
n← 2
while A is empty & n ≤ max do

H ← HvalueQuery(msg.request(r, n))
A← ∀h ∈ H | isAccepting(h)
inc(n)

end while

destination← min(A)
if destination is not NULL then

if migrationRequest(destination, r) then

START registering violations

STOP refusing inbound service migrations

return success

end if

end if

return failure

When we are responding to a constrained deployment,

we call the SenderInitiated [19] Algorithm with the

observed global load vector L rather than the SLA violation.

Otherwise the only differences between this algorithm and the

violation Algorithm 5 are that we test that the local H-

value is in excess of the threshold Tloaded and that it is also in

excess of the average observed global load plus the threshold

Tsend. If a service migration is worth attempting, the container

will issue identify its most oversubscribed resource r and issue

an H-value query to locate a migration destination.

E. WSRF Service Access

To obtain a service, the client only needs to know a single

container in the container overlay network and the service’s

name. Binding to the service can take place either via any

known container or via a proxy. the advantage of the proxy

is that we can hide rebinding when services migrate or fail or

when containers fail. Another advantage of the proxy is that

by picking random container IDs we can spread the load on

well known containers which may become hot-spots for client

requests.

IV. PROTOTYPE AND EVALUATION

The architecture has been implemented and installed on

five machines with a small test set of webservices. However

to properly exercise the prototype, we elected to use the

freePastry simulation mode with 100 containers and deploy

a synthetic webservice workload. The code executed in the

simulation was the same container code that was deployed

and tested on the real machines.

The focus of this paper is on the peer-to-peer architecture for

interconnecting our containers, and therefore the experiments

herein are designed to support this focus. We have also

investigated the QoS in terms of SLA violations in our system,

and these results are available in the paper [15]. The In the first

set of experiments we examined the impact of query depth on

the quality of the initial distribution of services. In the second

set of experiments we investigated the impact of query depth

on a simple migration policy during the maintenance phase.

In the third set of experiments it was our aim to find out

how much global information a container could observe with

no additional effort, and in the forth set of experiments we

looked at the cost of duplicates during our computed binary

tree H-value queries.

A. Deployment

The deployment experiments test the sensitivity of the

service distribution to the depth of the H-value search. The

basic premise of the experiment is the insertion of 600 services

into a clean 100 container network. The 600 services were all

unconstrained services and contributed load as follows: 200

services each with a H-value of 0.1; 200 services each with

a H-value of 0.05; 200 services each with a H-value of 0.01.

The ideal distribution is two services of H-value 0.1, 0.05 and

0.01 deployed to each container.

Figure 4 shows the result for H-value query searches from

depth 1 through 4. A level 1 search simply selects a random

container and the results exhibit a large std deviation of 0.22.

A level 2 search obtains the H-value from 3 containers and

performs significantly better (std deviation of 0.17). As the



Fig. 4. This graph shows the load on each of the 100 machines as the
H-value query depth is increased from 1 (random) to a tree of depth 4. The
load at each machine is measured in terms of H-value, and the machines are
sorted by load to enable a direct comparison of the results for each depth. The
dashed line shows the ideal load, that would be seen by each machine if the
distribution was perfect. As can be seen from the graph, the more levels in
the H-value search, the closer the load presented to each machine approaches
the ideal. For example, looking at search depth 1 and search depth 4, search
depth 1 has many more overloaded and underloaded than search depth 4, this
is especially evident in the first and last 20% of the machines.

depth of the search increases to 3 (std deviation of 0.11) and

4 (std deviation of 0.09) the graph demonstrates an increasing

convergence to the ideal. This data suggests that in practice,

a search depth of 3 or 4 would usually be sufficient.

B. Maintenance

Once the initial workload has been deployed, the system

needs migration to avoid SLA violations. In this experiment,

the same configuration as above has been used, but after

the initial deployment to a depth of 1, the experiment was

permitted to enter a maintenance phase.

The depth of the H-value query in this case was limited

to a depth of 2 as the results given in figure 4 show only a

minor improvement in our experiments at greater depths than

this, however we would expect larger networks to benefit from

greater search depths. The container with the lowest H-value

was selected as the destination. Even with such a simple policy

and limited search depth, figure 5 shows a clear improvement

to the overall performance of the system with the standard

deviation decreasing from 0.22 to 0.16. Clearly there is scope

for an improved migration policy, and further improvements

could be expected from increasing the depth of the H-value

query.

C. Observation and Determining Global Load

Before we can enter either sender-initiated or receiver

initiated migration mode, we need to have an estimate of

the overall load in the system. This information could be

obtained via a central load information repository – or via

explicit polling. However, a very interesting question that arose

Fig. 5. This graph shows the load on each machine as the migration policy
becomes more aggressive in finding a better host. The policy in this experiment
used a load threshold of 0.8, so that only machines with a load worse than
this would initiate a service migration. The load at each machine is measured
in terms of H-value, and the machines are sorted by load to enable a direct
comparison of the results for each depth. The dashed line shows the idealised
load, that would be seen by each machine if the distribution was perfectly
even. As can be seen from the graph, even with the same threshold, increasing
the query depth from 1 to 2 significantly improves the distribution of services
in the system.

during the design of the architecture was the extent to which

the observation of H-value messages being routed through a

container could provide a reasonable snapshot of the state

whole of the system. Figure 6 shows the H-values and the

containers that generated them as observed by an arbitrary

container, in this case container number 90. The average of this

data is 0.24 whereas the imposed average load in the system

is 0.32. We believe that this is due to the fact that one help

message will generate many more responses, giving a greater

weighting to underloaded hosts in the system. Overloaded

hosts need not respond to a help message. However this

information is obtained at no additional messaging cost. More

complex models with more communication between groups

of observing peers that could estimate the system load more

accurately are certainly possible and are worthy of future

investigation. In addition, 100 nodes is a rather small network.

It is not clear if there would be sufficient observed load

samples in a very large network, and this is an interesting

problem for future work.

D. Duplicate Messages

When the H-value queries are performed, a binary search

tree is computed and overlaid on the ring. This is dependent on

the uniformity of the hash and therefore where the containers

happen to fall within the number space of the ring. It is clear

that a simple computation to fold a binary search structure over

this ring will likely result in duplicate H-value requests. This

was emphasised in the example given in Figure 3. To resolve

this problem all H-value queries have version numbers so that

any duplicates can be discarded. However, we had no practical



Fig. 6. This graphs shows view of the global load in the system as observed
by container 90 (its load is not included in the observation data) at the end
of the simulation run. This information is collected by observing H-value
messages routed through container 90 on their way to other containers.

feel for the number of duplicates and how much overhead

would result. Figure 7 shows the percentage of duplicate

messages. With 100 containers and a query depth of 2 there

are 7200 messages sent when deploying 600 services and at

depth 3 there are 10800 messages.

Fig. 7. When the H-value query tree is computed, there is the possibility
for some containers to occur in multiple positions within the resulting binary
tree due to hash ranges resolving a single container. This graph quantifies
the percentage of duplicate packets received at each container (sorted by
frequency to aid comparison) for for H-value query depths of 2 and 3.

As can be seen from these graphs there is very little

percentage increase in the number of duplicates as the depth

of the H-value query increases. In both cases the number of

duplicate packets seen by the containers is very small, and

will not contribute significant overhead to the network.

V. RELATED WORK

There have been a number of projects focusing on au-

tonomic behaviour for managing web services, in particu-

lar Ecosystem [3] analyses and reconfigures a service-based

system (with MAPE) to satisfy SLAs with minimal resource

consumption. They conclude that migration is a heavy-weight

exercise and should be avoided whenever possible and that

migrating services to satisfy the minimal resource consump-

tion can lead to unnecessary overhead. Like our approach, the

principle is to migrate only when resource bottlenecks occur.

Hao [20] carries out migration of weblets, specialized Web

services, that can be migrated, according to the round trip time,

message size, data location and load of the weblet containers.

Other projects have attempted to address scalability issues

including El-Darieby and Krishnamurthy [5], who partition

resources into individual, cluster and grid resources. Haas

et. al [4] examine the use of hierachical structures for the

automated deployment of services over heterogeneous net-

works. They utilise QoS aware routing in the network, but

do not provide any mechanisms for supporting the choice

of host machines or for maintaing a larger QoS picture.

Dowlatshahi et. al [21] have developed an architecture that

uses a hierarchical tree structure for participating containers

distant from the Internet backbone, and uses a single peer-

to-peer structure for service discovery at the root layer of

the underlying tree structures. The key characteristics of their

architecture are optimal search for both distant and close

services, minimal overhead traffic, scalability, robustness, and

easier QoS support. A self-organizing peer-to-peer network

of resource pools managed by CONDOR has been imple-

mented by Butt et. al [22]. Each resource manager periodically

transmits a list of resources that it is willing to share to

resource managers that are in close proximity. If a manager

has insufficient resources to handle their jobs, they can forward

some of their jobs to the advertising resource manager.

Kang et. al [23] divide SLAs into function domains (low,

medium and high function domains). The 95-percentile re-

sponse time of the real server is used as base for determining

whether to allocate more computing resources to clients de-

manding a high level of service. They do not consider service

migration to meet the QoS targets. Lee and Lee[24] discuss

how to integrate a service provider in a negotiation framework.

An important aspect is the need for a quality measurement like

the H-value developed in this paper. Mikic-Rakic et. al. [25]

present an applied self-reconfiguration approach to support

disconnected operations by allowing the system to monitor

and automatically redeploy itself.

Gokhale and Natarajan [26] have developed a model driven

architecture for Grid Webservices, that ensures end-to-end

QoS and tie this in to a Meta Resource broker to meet

more general QoS requirements. They do not look at SLA

maintenance and do not migrate services to preserve QoS.

They also do not use any form of overlay network, and have

not addressed the issue of scalability.

Berenbrink et. al [27] introduce a game-theoretic mecha-

nism which they use to find suitable allocations. Each task is

associated with a “selfish agent”, and requires each agent to

select a resource, with the cost of a resource being the number

of agents to select it. Agents would then be expected to migrate

from overloaded to under loaded resources until the allocation

becomes balanced. This system is unlikely to scale well, as

the resource discovery is centralised. The research of Zeid and

Gurguis [28] aims to prove that with autonomic Web services,

computing systems will be able to manage themselves as well

as their relationships with each other. To achieve this objective,



the research proposes a system that implements the concept

of autonomic Web services but without service migration.

The closest work to ours is that of P2PWeb [29], which

uses a peer-to-peer structure to deliver a SOA middleware

platform. However, although we share many of the high level

goals such as scalability, transparency and fault tolerance, there

are many significant differences in the architecture itself. Load

balancing in P2PWeb is an exercise in selecting a replica, that

is, P2PWeb does not deploy or migrate services to satisfy QoS

requirements.

VI. CONCLUSIONS

In this paper we have presented a novel architecture that

combines the decentralised, fault tolerant and dynamic prop-

erties of a structured peer-to-peer overlay to create a scalable

decentralised autonomic web service middleware that monitors

SLA compliance to achieve QoS goals. Management of the

system is autonomic and therefore reduces and simplifies

maintenance. SLA aware deployment and migration maintain

the QoS of the system, and we utilise a novel H-value query

to locate suitable WSRF containers for deploying specific web

services. The H-value query solves the problem of finding a

suitable container for hosting a web service, and this search

is shown to be efficient experimentally. The results also show

that the H-value query does not suffer any significant overhead

from duplicate requests. Another advantage of this approach is

that WSRF containers can observe H-values as they are routed

via the container, at no additional messaging cost in small

to medium networks. This allows the container to observe

the state of the network and decide best how it should be

operating, that is, looking for other containers on which to

offload work or relieving other containers of their excess work-

load. Migration of services is shown to improve the workload

balance within the system, and even a simple policy achieves

a large improvement. Client workload is evenly distributed

throughout the network, by ensuring that the client proxy

always selects a random container through which it obtains

its services. This avoids one or two favoured entry points

into the container overlay network could become overloaded.

Our use of high levels of transparency, current standards and

technologies ensure that legacy webservices can be deployed

within the system with minimum alteration.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J.
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