
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2009; 39:1419–1438

Published online inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.942

Ontology-based Grid resource
management

Balachandar R. Amarnath1,∗,†, Thamarai Selvi Somasundaram1,
Mahendran Ellappan1 and Rajkumar Buyya2

1CARE, Department of Information Technology, Madras Institute of Technology,

Anna University Chennai, Chromepet, Chennai 600 044, India
2Cloud Computing and Distributed Systems Laboratory, Department of Computer

Science and Software Engineering, The University of Melbourne, VIC 3010,

Australia

SUMMARY

Grid resources are typically diverse in nature with respect to their software and hardware configurations,
resource usage policies and the kind of application they support. Aggregating and monitoring these
resources, and discovering suitable resources for the applications become a challenging issue. This is
partially due to the representation of Grid metadata supported by the existing Grid middleware which
offers limited scope for matching the job requirements that directly affect scheduling decisions. This paper
proposes a semantic component in conventional Grid architecture to support ontology-based representation
of Grid metadata and facilitate context-based information retrieval that complements Grid schedulers
for effective resource management. Web Ontology language is used for creating Grid resource ontology
and Algernon inference engine has been used for resource discovery. This semantic component has
been integrated with conventional Grid schedulers. Several experiments have also been carried out to
investigate the performance overhead that arises while integrating this component with Grid schedulers.
Copyright © 2009 John Wiley & Sons, Ltd.

Received 9 June 2009; Revised 28 August 2009; Accepted 2 September 2009

KEY WORDS: Grid computing; semantic Grid; ontology; Grid resource; management

1. INTRODUCTION

The emergence of scientific and industrial applications requiring large amount of computational

power needs seamless access to geographically distributed computational resources. This forces

the respective institutions and organizations to harness idle computers on an international scale.

∗Correspondence to: Balachandar R. Amarnath, CARE, Department of Information Technology, Madras Institute of Tech-
nology, Anna University Chennai, Chromepet, Chennai 600 044, India.

†E-mail: balachandar.ra@gmail.com

Contract/grant sponsor: Ministry of Communication and Information Technology, Government of India
Contract/grant sponsor: Australian Department of Innovation, Industry, Science and Research

Copyright 2009 John Wiley & Sons, Ltd.

1420 B. R. AMARNATH ET AL.

However, there was no technology to support flexible and controlled sharing of various types of

resources that are needed to solve computationally intensive applications. To address this issue, an

extended distributed computing technology, termed as ‘Grid’, was proposed which facilitates the

aggregation of distributed computational resources that spans beyond organizational boundaries,

and their coordinated utilization to meet the requirements of advanced science and engineering

applications [1–3]. Consequently, Grid middleware has been proposed, that performs basic authen-

tication and authorization of the participants of the Grid and governs execution of job and monitors

the dynamic state of the participating resources. However, due to the diverse nature of participating

Grid resources, Grid middlewares are limited in functionality with respect to coordinating and

managing the resources for application execution. Further, Grid applications often require compu-

tational resources with different software and hardware configurations. Hence, discovering suitable

resources that match the application requirements are really a difficult task. In such an environ-

ment, the role of Grid schedulers is very important as they often need to manage various resources

information and their status during application scheduling. For instance, as soon as a job arrives in

the job queue, the Grid scheduler aggregates Grid resource information and performs matchmaking

to find out suitable Grid resource information. A sophisticated Grid scheduling mechanism also

considers resource usage policies before scheduling application to the resources, and establishes

service level agreement to ensure the proper delivery of the requested Quality of Service (QoS)

parameters. However, the representation of these metadata supports the keyword-based discovery of

resources that often miss relatively capable resources. For instance, an application requests Linux

Operating System for execution. If this resource is not available, conventional Grid schedulers put

the application in pending state due to non-availability of suitable resource. However, in most cases,

this application can also be executed in resource that has Fedora or other Unix-based Operating

Systems. Unfortunately, currently existing Grid schedulers do not possess the capability to infer

the relationship between the two operating systems. This is due to the fact that the underlying

Grid middleware such as Globus [4], gLite [5] and Unicore [6] defines and implements mecha-

nisms for resource discovery and monitoring, which supports traditional service matching based on

symmetric, attribute-based matching and does not support semantic descriptions of Grid resources.

Meanwhile, semantic web technology offers greater support in describing a particular domain

that makes it possible to infer semantic relationship between two entities. Exploiting such tech-

nologies in Grid resource management provides greater flexibility in making scheduling decisions

such as resource discovery for application execution, policy negotiation and establishing Service

Level Agreements (SLA) between the users and Grid resource providers. This initiative has led to

the emergence of Semantic Grid technology. The Semantic Grid is an extension of the current Grid

in which information and services are given well-defined meaning through machine understandable

descriptions which helps in making intelligent scheduling decisions with a high degree of automa-

tion in computational Grid infrastructure [7]. Metadata in Grid includes available Grid resource

information, job execution status and information related to resource usage policies. Representing

such information with the help of semantic web technologies would support context-based infor-

mation retrieval that can complement Grid schedulers while making scheduling decisions such as

resource allocation and policy management. The objective of semantic Grid’s approach is to make

information ‘understandable’ by computers. Information must therefore be described in such a way

that computers can interpret it and derive its meaning. The concept of ontology helps to describe

the information by expressing the relationship between them. The semantic representation of infor-

mation is exploited while retrieving information using an ontology reasoning language. Hence,

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1421

these technologies enable computers to work more intelligently with the information in assisting

humans in classifying, filtering and discovering information. Integrating such semantic component

in Grid architecture requires clear understanding of the Grid middleware and the mechanism it uses

for resource aggregation across the Grid infrastructure, and the type of information that the Grid

scheduler requires during resource management.

In this paper, a four-layered conceptual Grid architecture is proposed with knowledge layer incor-

porated in the high-level middleware layer. The semantic component implemented in the knowledge

layer supports ontological representation of Grid metadata. It also implements information retrieval

component that matches user’s application requirements against the available Grid resources repre-

sented in ontological form and takes appropriate scheduling decisions. The requirements arematched

against the capability of existing Grid resources based on the semantic relationship between them.

It uses web ontology language (OWL) [8] for representing ontology of Grid resources through

protégé ontology editor. A rule-based inference engine called Algernon [9] is used for infor-

mation retrieval from the ontology knowledge base. This component has been tested with Grid

scheduler such as Gridbus Broker and Moab [10]. Several experiments have been carried out to

analyze the performance of the semantic component with respect to information retrieval, perfor-

mance of Algernon inference engine against its counterparts, and overhead arises in ontology-based

matchmaking mechanisms against database and the one implemented in the popular ‘Gridway’

metascheduler [11]. The contributions of this paper are summarized below:

• Ontology description module that dynamically aggregates Grid resource information from the

underlying Grid resources describes them onto the ontology template and thus creating Grid

resources knowledge base.

• Ontology-based resource discovery module that matches the requirements of applications

against the available Grid resources based on the ‘context’ of the request instead of keyword-

based discovery mechanism. Further, an approach is proposed that stores new keywords present

in the request in the database that allows the discovery module to learn them.

• Integration of the semantic component with Grid schedulers such as Gridbus broker, and Moab

metascheduler used in Garuda, a national Grid computing initiative of India, and

• Comparative study of effective information retrieval using several inference engines.

• The overhead involved in implementing semantic component in Grid infrastructure is compared

against other standard approaches.

The remainder of the paper is organized as follows: Section 2 highlights few important research

works related to our proposal. Section 3 describes background concepts such as ontology, semantic

web and other related technologies exploited in our work. Section 4 presents the proposed archi-

tecture and their high-level description. The creation of ontology and knowledge base has been

explained in Section 5. The integration of the proposed semantic component with Gridbus broker

and with Garuda infrastructure is explained in Section 6. Section 7 discusses the experiments

carried out to analyze the overhead and performance issues arising due to this semantic component.

Section 8 concludes the paper by highlighting the features and further scope of the proposed work.

2. RELATED WORK

Several researches have been carried out in this field and here we discuss in brief some of the works

closely related to our work.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1422 B. R. AMARNATH ET AL.

2.1. Matchmaking system in grid

Gridway [11] is a Grid metascheduler built over Globus middleware. It supports job scheduling

across Globus-based Grid resources, aggregates resource information and performs keyword-based

matchmaking to discover suitable resources that match application requirements.

The Monitoring and Discovery System (MDS) implemented in Globus middleware [12] is

designed to provide a standard interface for publishing and discovering Grid resources status and

configuration information in GLUE schema as well as its own schema called MDS schema. The

representation of the information aggregated by MDS is used by Grid schedulers and it supports

keyword-based matchmaking of resource requirements against the available resources.

Condor [13] is a cluster manager that supports job submission across several clusters. The Work-

load Management System (WMS) implemented in gLite middleware uses condor for matchmaking

user’s application requirements against the available resources in the Grid. Condor specifies a stan-

dard for describing jobs, workstations and other resources. However, with this representation, it

is not possible to understand the semantic relationship between the available resource information

and the requested ones.

Gridbus broker [14] is a resource broker designed to support scheduling of both computational

and data Grid applications. However, the resource discovery module implemented in the Gridbus

broker does not support semantic description and discovery of Grid resources, and it uses the Globus

Grid Index Information Services (GIIS) [15] or Grid Market Directory (GMD) [16] to gather Grid

resource information.

In all the above middlewares and metaschedulers, the matchmaking is carried out based on the

keywords present in the request. The work presented in this paper can bypass the conventional

matchmaking system and performs semantic-based resource discovery. It can also be easily inte-

grated with Grid metaschedulers and we describe two such integrations in the following sections.

2.2. Semantic grid projects

A reference architecture that extends OGSA to support the explicit handling of semantics is proposed

in [17]. It defines the associated knowledge services to support a spectrum of service capabilities,

and a model, the capabilities and the mechanisms for the semantic Grid. It extends the capabilities

of Grid middleware to include semantic provisioning services and semantically aware Grid services.

An extensive survey on semantic web and semantic Grid technologies is presented in [18]. It explores

the potential and predicted impact of emerging technologies on collaborative industrial design,

and outlines a reference architecture that can be implemented to meet the specific requirements of

industrial business.

The U.K. myGrid [19] project uses ontologies to describe and select web-based services used

in the Life Sciences; the U.K. Geodise project uses ontologies to guide aeronautical engineers to

select and conFigure Matlab scripts [20]. Mirza Pahlevi Said and Isao Kojima in [21] proposed

Semantic Monitoring and Discovery System (S-MDS) built on the top of WS-Resource Framework.

Here, they extended MDS4 of Globus middleware to support RDF/OWL descriptions and accept

query from the SPARQL inference engine. The authors provided an extension to S-MDS in [22]

by incorporating the rule-based approach in conjunction with inference capability. However, the

S-MDS approach is tightly coupled with the underlying Globus middleware, and the authors did

not provide information about support for other middlewares.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1423

An ontology-based Matchmaker Service proposed in [23] supports dynamic resource discovery

and resource descriptions. However, the request is expressed using request ontology and hence there

is a need to compile the user request as ontology descriptions. Pernas et al. in [24] use ontology

for describing Grid resources thereby enabling semantic discovery. They define the concept-

classification tree to create resource ontology which uses protégé axioms to discover resources

semantically. Similarly, the literature [25] exploits semantic web technology for resource matching

in the Grid. This literature also utilizes background ontology and matchmaking rules to perform

matchmaking of the resources. Zhang et al. in [26] proposed a semantic Grid infrastructure for

e-government applications. They argue the necessity of such infrastructure for the management

of e-government resources in the form of services across virtual government agencies. We differ

from this work with respect to the domain considered. Yin et al. in [27] presented an agent-based

semantic Grid for collaboration across virtual enterprises by forming a super peer network over the

semantic Grid. Michael Hartung et al. in [28] provided a platform and a metamodel that allows the

user to create and edit Grid related metadata present across the Grid infrastructure. They have also

implemented this platform in German D-Grid. However, our focus is to devise a semantic system to

complement Grid scheduling decisions and hence must be adaptable to integrate with Grid sched-

ulers. Further, it requires a different approach to represent and manage distributed computational

Grid resources.

Although in these works, several approaches have been proposed for semantic-basedGrid resource

management, an extensive analysis in devising a mechanism for resource representation, selection

of reasoning engine and integration of such component with Grid scheduler is still missing.

The semantic component proposed in our earlier work [29] supports context-based Grid resource

discovery and is incorporated with Gridbus Broker. In this paper, we propose a generic architecture

that supports ontology-based representation and discovery of computational Grid resources. The

semantic component has been integrated with the existing Grid schedulers. Further, the performance

of the component has been improved by coupling the technique of updating the new keywords

used for request in the database. The selection of Algernon inference engine has been justified by

comparing the performances with other popular inference engines. In addition, the performance of

this semantic component against other conventional approaches has also been discussed.

3. FUNDAMENTALS OF SEMANTIC GRID

The emergence of Semantic Web concepts offers sophisticated tools and mechanism to describe

a particular domain of interest, and querying and rule-based languages for information retrieval.

They provide a new dimension for describing web content for efficient information retrieval and

solve interoperability issues in collaborative computing. Semantic web, proposed by Berners Lee

et al. in [30], is a collection of information described in a hierarchical manner so that they are

easily understandable by computers thereby bringing human and computer, a step closer. Such

explicit specification of conceptualization is called Ontology. Ontologies facilitate the interchange

and integration of heterogeneous information. They are used to capture knowledge about some

domain of interest. Ontology describes the concepts in the domain and also the relationships that

hold between those concepts a.k.a. classes. It also allows to model the real-time entities of a domain

as instances of classes. The ontology together with instances forms knowledge base of that domain.

Semantic web uses Resource Description Framework (RDF) [31] over XML-based representation

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1424 B. R. AMARNATH ET AL.

of data as a standard data interchange format to create ontologies. Unlike traditional XML, RDF

schemas allows to provide a semantic relationship between the two concepts such as ‘Cluster is a

type of computingResource’ where ‘Cluster’ and ‘computingResource’ are referred to as ‘classes’

and ‘a type of’ is referred to as ‘property’. With the wide adoption of RDF by the semantic web

communities, RDF continued to grow. The most recent development in standard ontology language

is Web Ontology Language (OWL) from the World Wide Web Consortium. OWL is developed as

a vocabulary extension to RDF and is capable of representing several relationships such as disjoint

and cardinality. Classes and Properties described using ontology languages are identified as URIs,

and can be easily accessible through internet which enables flexible sharing and reusing them.

To facilitate the creation of ontologies, several editors were developed. Protégé [32] is one such

editor that supports the creation of ontology using OWL language and is widely used for developing

ontology-based applications. An ontology description of a particular domain supports semantic-

or context-based information retrieval especially in Artificial Intelligence (AI) applications where

semantic relationships between concepts are established using description logic. There are inference

engines such as Algernon that provides versatile DL-based querying mechanism for knowledge

retrieval from ontology knowledge base. Further, using rule languages like SWRL [33], allows

even more sophisticated information retrieval mechanisms. Such developments in semantic web

technologies tempted Grid researchers to integrate them with Grid environment to address, espe-

cially, Grid resource and data management. This initiative has led to the notion of ‘Semantic Grid’

that suggests machine processable descriptions of particular domain to maximize the potential for

sharing and reuse, and thus better enabling computers and people to work in cooperation [34].

In computational Grid environment, users and software agents should be able to discover, invoke,

compose and monitor Grid nodes offering the required services and possessing particular properties.

Describing these resources and services using the concepts of semantic web technology supports

understanding the meaning of the request. This would help the Grid scheduler to identify computa-

tional resources that are not exactly matching with the application requirements but can still execute

the application. For instance, an application has been compiled for Linux operating system and

submits a request to the Grid scheduler for such resources in the Grid. If such resources are not

available, the Grid scheduler can suggest resources with Fedora operating system for executing this

application. This is for the simplest case of scheduling decision. In real environments, there would

be a large amount of metadata that need to be processed for making versatile scheduling deci-

sions. In such situation, the conventional description of metadata supported by current middleware

components offers limited flexibility with regard to knowledge retrieval. For instance, a Globus 2.4

middleware-based Grid aggregates Grid resource information and stores in volatile LDAP server.

The description of resource is found to be an ‘object’ and corresponding attribute. In the advanced

versions of Globus such as Globus 4.x, information is stored as XML documents. High-level services

such as Resource management services and Resource brokering services use such conventional

description of resources and make appropriate scheduling decisions such as resource discovery,

verifying resource usage policies and application scheduling to selected resources. They compare

the characteristics requested by the applications with the available resource configuration based on

the keyword present in the request. Hence, such discovery offers limited flexibility and restricted

amount of information retrieval. However, if the Grid metadata are described using the concepts of

ontology, the Grid scheduler can employ semantic-based information retrieval mechanism using the

appropriate inference engine. In this paper, the scope has been limited to semantic-based resource

discovery which allows us to provide more details on the implementation and experimental results.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1425

4. ARCHITECTURE

The semantic Grid architecture interacts with the underlying Grid resources and creates its ontology

representation to support semantic-based information retrieval. Further, it should not impose any

special requirements to be fulfilled by the participating Grid resources. In addition, semantic compo-

nent must be able to incorporate with different Grid middlewares. To meet the above requirements,

the implementation of semantic component is not tightly coupled with the underlying Grid middle-

ware. It uses the standard way of interacting with the Grid middleware and automatically creates

ontology description of Grid resources.

A four-layered semantic Grid architecture is modeled with the knowledge layer sitting at the top

of the Grid scheduler in the high-level Grid middleware layer as shown in Figure 1.

Fabric layer: The Grid Fabric layer provides the resources to which shared access is mediated

by Grid protocols. The resources may be computational resources, storage systems, catalogues,

network resources and sensors or may be a logical entity, such as a distributed file system, computer

cluster or distributed computer pool.

Figure 1. Semantic grid architecture.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1426 B. R. AMARNATH ET AL.

Core middleware layer: This layer consists of low-level middleware that provides secure and

unified access to remote resources. Depending on the type of resources, we can choose different

middlewares such as Globus, Unicore, Alchemi and SRB. Using the services of such low-level

middleware layer, one can create high-level middleware services that support rapid creation and

deployment of applications on global Grids.

High-level middleware layer: In our architecture, this layer is proposed to be implemented using

a Grid scheduler. It discovers suitable resources that match the user requirements and schedules job

to that selected resource. Further, the scheduler monitors the execution of the job in the resource

and aggregates the results of the execution. It obtains the services provided by the knowledge layer

for discovery of suitable resource. The knowledge layer provides knowledge discovery from the

data aggregated from the information services of the underlying middleware layer. Moreover, this

layer is domain oriented and usually uses domain knowledge built with domain ontology. In the

proposed architecture, the knowledge layer contains necessary functions and services for creating

ontology description of the available Grid resource information. It also provides programming and

user interfaces that enable semantic-based discovery of suitable Grid resources using the ontology

description maintained in this layer. The knowledge layer is modeled as a separate layer and is

not tightly coupled with the underlying middleware layer. In this paper, it has been implemented

in such a way that, it creates ontology description of Grid resources present in a text file or from

a database. In addition, it can directly query the Globus-based Grid resources to aggregate the

resource information and creates ontology description.

Application layer: The application layer enables the use of resources in a Grid environment

through various collaboration and resource access protocols. The discovery portal present in this

layer allows the resource requester to submit resource requirements to find out suitable resources

for application execution. It also includes software and tools to support application workflow and

composition.

5. KNOWLEDGE LAYER

The components proposed in the knowledge layer can be divided into two types based on their

functionalities as resource description and discovery component as shown in Figure 2. The resource

description module supports representation of Grid metadata whereas discovery module discovers

suitable resources for application execution. Both the modules implemented in the knowledge layer

use semantic web’s approach of making information understandable by computers.

Further, based on Karlshruhe ontology model [35], we define the following relations that can

exist between the resources viz.,

• Subsumption relation, ≤c:(C×C)U (R×R)→{true, false} for example ‘≤c(g,h)= true’

means: ‘g is a subtype of h’.

• Conformity relation, which relates each individual instance (I) in I to one, and one only

concept type in C .

• conf: I →C where C is concept instantiation and R is relation instantiation.

The semantic component exploits the abovementioned properties in creating ontology of Grid

resource and suitable resource discovery.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1427

Figure 2. Semantic component.

5.1. Resource description using ontology template

Creating ontology is inevitably a very laborious process, and there is a need to at least partially

automate the process of ontology creation and knowledge extraction. Hence, we can imagine a

predefined ontology of concepts and relationships, plus a knowledge base of instances [36]. To

realize this, the resource description module defines resource ontology template created using

Protégé editor and it provides necessary concepts and properties with which a resource can be

described. Various possible computing resources are considered for creating the ontology template.

The resource description module defines resource ontology template created using Protégé editor

and provides necessary concepts and properties with which a resource can be described. Different

possible computing resources are considered for creating ontology template. Our structuring of the

ontology of resources is motivated by the need to provide semantic information about a resource and

also to provide transparent access to Grid resources. We propose the following precise definitions

to explain the motivation behind the creation of ontology template and how it can be used for

semantic description.

Definition 1. An ontology template is a domain specific ontology that provides hierarchy of

concepts along with properties to define their characteristics.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1428 B. R. AMARNATH ET AL.

Definition 2. Any resource can be modeled as an instance of a specific concept provided that the

resource can be described using the properties defined in that concept.

Once the ontology template is created, knowledge base can be built with the instances and the

specific property instantiations. Together the ontology and the knowledge base make up a semantic

repository. When a resource is registered in the Grid, its information can be obtained using a Grid

resource monitoring tool such as MDS of Globus Middleware. With this information, an instance of

the appropriate resource concept in the ontology template is created for every computing resource

in the Grid. The characteristics of the resource for ex, freeRAMSpace, are also defined in the

respective property of the appropriate resource concept in the ontology template. For example, an

existence of a computer with Linux OS can be represented in the ontology template by creating

an instance for the concept ‘computer’ and the ‘hasOS’ property of the concept ‘computer’ will be

assigned the value ‘Linux’.

Protégé-OWL APIs are used to dynamically create instances of a particular concept and also to

assign values to appropriate properties in the resource ontology template. With these features, the

resource information of the entire Grid environment can be described semantically which in turn

enables semantic discovery of Grid resources.

5.2. Semantics-based resource discovery

Grid schedulers obtain resource requirement from the users for application execution, perform

matchmaking of available resources against the requested ones, and discover suitable resources that

match the requirements. In Grid, every participating resource advertises its capabilities in terms

of properties such as Number of CPUs, Memory, storage capacity, CPU Load, etc., through a

Grid scheduler. Matchmaking refers to capability matching of the requested Grid resources with

the advertised ones. Grid scheduler implements a mechanism to support expression of application

requirements that include nature of task, type of computing resources it requires, their config-

uration in terms of properties mentioned above in addition to other parameters such as budget,

deadline and at what time the resource is actually needed. Some schedulers such as condor

also allow to specify the resource requirements through mathematical expression (such as <, >,

<=, >=, and ==). For instance, a sample job submission request supported by condor is given

below:

Executable = /bin/ls

Requirements = Memory > = 128 &&

OpSys == ‘LINUX_2.4’ &&

Arch == ‘i686’

Rank = Memory >= 256

Error = ls.err.$(Process)

Output = ls.out.$(Process)

The matchmaking algorithm evaluates the requirements present in this request and finds out the

suitable resources available in the Grid by matching the keywords present in the request. Such

keyword-based matchmaking mechanism retrieves the resource that exactly matches the require-

ments. However, there are situations when potential resources are available, which can possibly

execute the application but still miss from the search. Keyword-based matchmaking mechanism

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1429

is not able to find such resources and hence no suggestion can be made to the user about these

resources. This is due to the fact that the algorithm does not understand the semantic relation-

ship between the keywords. However, a semantic relationship can be established by the ontology

representation of Grid resources and their characteristics and modifying matchmaking algorithm to

exploit the same during resource discovery phase.

The resource discovery module proposed in this paper implements an ontology-based match-

making mechanism that determines the semantic relationship between the request and the advertised

resource information and hence determines closely related Grid resources when exact match fails.

The algorithm classifies resources into three broad categories, viz exact, resources that exactly

match with the requested resource requirements, subsume, if the advertised resources have more

capabilities than that requested, plugin, an exact contrary to the previous case, that is, the application

expects more capabilities than that is advertised, and disjoint, which actually is not a match but

infers that both the request and the available resources are completely different [37].

In the Grid context, it is possible to consider the resources that fall into first two categories for

application execution while the plugin resources cannot execute the application. This can be very

well explained with the following scenario. Let us consider that an application requires Linux 2.4

version of Operating system and five numbers of CPUs for execution. An instance of Linux 2.4

or Linux 2.6 operating system with more than five CPUs falls into subsume categories whereas

an instance of Linux 2.2 operating system with less than five numbers of CPUs would fall into

plugin category. In this case, the plugin resource cannot execute the application as it expects more

capabilities than that are available.

To determine the semantic relationship, the matchmaking system has to interact with the ontology

knowledge base and retrieve information from it. Inference engines are widely used for this purpose

and in this paper, the Algernon inference engine, developed by Stanford University is used for

information retrieval from the knowledge base. It offers versatile queries that can be executed onto

the knowledge base. Algernon is a rule-based inference engine that allows specifying rules and

executing query according to the rules. The discovery module based on the user’s request generates

appropriate Algernon-based query and executes it into knowledge base. If the exactly matching

resources are not available, it then determines the resources that exhibit subsumption relation with

the request. This kind of inference is possible if the requested concept is modeled as a subconcept

of the advertised concept in the ontology template, then it is possible to conclude that there exists a

subsume match between the advertised and requested capabilities. For instance, while constructing

computational resource ontology, a resource with Linux operating system would be modeled as

a subconcept of the Unix-based resource. In such cases, it can be concluded that a request of

resource with Unix operating system subsumes an advertisement of a resource with Linux operating

system.

The resources identified from this module can be suggested to the user or Grid scheduler for

making scheduling decisions and to execute application in it.

6. DESIGN AND IMPLEMENTATION

The proposed semantic component is implemented and tested in the Grid Computing Laboratory

of Anna University. The necessary software including Globus Toolkit 4.0 and protégé was success-

fully installed in all local machines. Various components of Globus were successfully configured

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1430 B. R. AMARNATH ET AL.

and tested for proper operation. In addition, the MDS component has been tested properly for

aggregating resource information about the local machines. Further, one of the local machines are

designated as ‘submission node’ and configured so as to aggregate resource information about

all the local machines. The semantic component is installed in this machine which includes the

semantic description and discovery module. Ontology template is also maintained in this machine.

The process of creating ontology template and the implementation aspect of discovery mechanism

is explained in detail in the following subsections.

6.1. Creation of knowledge base

Ontology template has been created by considering different computing resources in the Grid. The

concept of these resources has been defined properly using relations and properties so that the

characteristics of any resource can be defined by its properties. The resource description module

accesses the Grid nodes and retrieves resource information by executing ldap queries on those

nodes and updates into the ontology template. For every type of information retrieved from the Grid

node, the module creates an instance of the appropriate concept in the ontology template forming

conformity relation between instances and their respective concept types. Further, an instance will

be exactly related to only one type of concept. In addition, the values of various properties retrieved

from MDS are assigned to the respective properties of the appropriate concepts in the ontology

template.

At this point, the ontology template with concepts and properties and the corresponding instances

and property values together constitute the knowledge base of the Grid resources. To create such

knowledge base, protégé-OWL libraries are used. The libraries contain necessary APIs to create

instances for a concept, assign values to properties and other ontology operations. This semantic

description of resources facilitates the use of inference engines to interact with the knowledge

base and retrieves information semantically. Moreover, the description module is made to execute

periodically so that addition and removal of resources is updated in the knowledge base dynamically.

A portion of the ontology template is shown in Figure 3.

6.2. Resource discovery mechanism

The discovery module relies on the power of the Algernon inference engine. A query tags with the

format label:label value is considered in which the properties of the resource are denoted as label

and the requested value as label value. It may also include operators in query label for flexible

querying. For instance, if the user wants to search for machines with free RAM greater than 200MB,

the query should be RAM :>200. Currently, the system supports>,<, = and also NOT operators. In

addition, the query mechanism allows querying a resource with multiple constraints. For example, if

the user wants to query a machine with free RAM of 200MB and free Hard disk space of 10 000MB,

then the query ‘freeRAM:200 freeHDD:10 000’ will retrieve all resources with 200MB and hard

disk space with 10 000MB. The Query generator module parses the user query using regular

expression, stores left tag and right tag in a vector and converts it into suitable Algernon query. For

example, the query ‘freeRAM:200’ will be converted into the following machine understandable

query.

((instance RAM ?inst)(hasFreeMB ?inst ?val)(:TEST(:LISP(=?val”+rightTag+”))) (presentIn-

Computer?inst ?instanceComputer)).

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1431

Figure 3. Portion of Ontology template.

The discovery module executes the query over the knowledge base of the Grid and obtains the

resource that is matching with the user’s request. It not only discovers the resource that exactly

matches with that of the request, but also retrieves resources that exhibit subsumption relation when

the exact match is not found. For example, if the user requests a computer with IRIX Operating

system, and if the knowledge base does not possess instances of IRIX-based machine, the discovery

module retrieves all Unix-based resources. This is because, the Algernon reasoner infers from the

ontology template that IRIX is a subconcept of Unix that is,

‘≤(Unix, IRIX)= true’

as shown in Figure 3.

Hence, the discovery module retrieves instances of Unix as it is compatible with the IRIX

Operating System.

6.3. Integration with gridbus broker

The Gridbus broker has been developed by the University of Melbourne as part of the Gridbus

Project. It follows a service-oriented architecture and is designed on object-oriented principles with

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1432 B. R. AMARNATH ET AL.

a focus on the idea of promoting simplicity, modularity, reusability, extensibility and flexibility. The

broker has been designed to operate with different Grid middleware frameworks and toolkits such

as Globus that primarily runs on Unix-class machines and Alchemi, which is a .NET-based Grid

computing platform for Microsoft Windows enabled computers. Recently it has been extended to

work with Cloud Computing technologies such as Aneka and Amazon EC2. Hence it is possible to

create a cross-platform Grid implementation using the Gridbus broker. However, it does not possess

its own resource monitoring and discovery mechanism and relies on external information services

such as GIIS or GMD as a resource repository. Hence, the semantic component is integrated with

the broker in discovering suitable resources based on the semantics of the request for executing

user’s jobs.

6.3.1. Job descriptor

The broker requires two files, namely the Application description file and a resource description

file. In application description file, the user’s job will be described which includes the location of

the required input files and executable, and also the output file. In resource description file, the

identity of the resource in which the user’s job should be executed is mentioned. It also contains

the information about the middleware such as the name of the middleware and the version. This

information is needed by the broker to invoke the appropriate middleware interface for proper

execution of the job submitted by the user. The user submits his requirements to the semantic

component which in turn discovers suitable resource, and sends the hostname of the resource to

the job descriptor. Meanwhile, the user’s job and the command needed to execute the job are

submitted to the descriptor. A special component called job descriptor is implemented which creates

application description and resource description files which will be submitted to the broker to

initiate scheduling of jobs (see Figure 4). Once the execution is over, the results will be collected

and presented to the user.

Figure 4. Semantic component with Gridbus Broker.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1433

6.4. Integration with Garuda

To develop the Indian eScience infrastructure and to provide Indian researchers, the seamless access

of supercomputer-level processing power and knowledge resources, the Department of Information

Technology (DIT), Government of India has funded its Centre for Development of Advanced

Computing (CDAC) to deploy nationwide computational Grid termed as ‘Garuda’. It connects and

aggregates high end computational resources from 45 research laboratories spanning over 17 cities

across the country [38]. In such an environment, there exists heterogeneity in the nature of resources

and difference in usage policies.

In Garuda, the hardware and software configuration of all the computational resources are stored in

a text file. Suitable resources are selected manually from the job submission portal. Further, Garuda

can submit jobs to the selected resources in two ways, that is, either to the Moab metascheduler, or,

directly to ‘GRAM’ component of the Globus middleware installed in the Grid resources. When

the number of resources participating in the Grid is more, selecting them manually becomes highly

difficult and hence a resource discovery mechanism was highly in demand.

The semantic component was modified for integration with Garuda, as the later needed only the

components to construct ontology representation of Grid resources and an interface to discover the

resources that matches the user’s requirements.

First of all, the ontology of Garuda Grid resources was created using protégé editor. It establishes

a semantic relationship between all types of computational resources in the Garuda Grid. One of the

main requirements of Garuda applications are that an application compiled for lower release of the

operating system can also be executed in higher releases. With this notion, the ontology template

is constructed so that the higher releases were modeled as a subconcept of the lower releases.

The resource information present in the text file contains the operating system, release, location,

hostname and processor Type. The semantic description module parses the resource file and extracts

the resource information. These information are read sequentially and modeled as instances and

appropriate slots in the ontology template. This creates knowledge base that supports the semantic

retrieval of information.

The discovery module provides a user interface to submit resource request in terms of operating

system, and two other variables referring to the release and the search level. The search level can

be one of two values 0 and 1 that refers to the kind of search the user wants to perform while

discovering suitable resource. The search level 0 refers to the direct match, that is, the resource

that exactly matches with the user’s requests and are to be discovered. The search level 1 retrieves

resources that match closely with the requested, called Compatible match. In this case, the discovery

module retrieves the resources information that matches exactly with the request as well as the

ones that closely match with the request, that is, those that exhibit subsumption relations with the

request. The GUI used for submitting resource request is shown in Figure 5.

7. EXPERIMENTS

Several experiments have been carried out with the semantic component to determine the perfor-

mance with respect to the following aspects:

• The amount of resources retrieved for a request,

• Effect of maintaining a database to store new tags

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1434 B. R. AMARNATH ET AL.

• Effect of inference engine in resource discovery

• Time complexity—Comparison with matchmaking based on conventional matchmaking,

matchmaking by retrieving resource information from database, and matchmaking by

retrieving resource information from ontology knowledge base.

The performance of the proposed semantic-based resource discovery module has been evaluated

by comparing the amount of results obtained from conventional keyword-based searching mech-

anisms by submitting various resource requirement requests. These requests were converted into

‘queries’ of the format described in Section 6.2. Semantic description module is made to run peri-

odically across the Grid resources that contact the MDS, aggregate resource information, and create

ontology knowledge base. Initially, the queries were executed through conventional matchmaking

mechanism without considering the semantic present in the request (direct query). Then, the queries

were all converted into Algernon query and executed over knowledge base for resource discovery.

Based on the experimental results, it has been concluded that the semantic-based searching mecha-

nism retrieved more closely matching (refer to Figure 6) resources and thus resulted in greater ‘hits’

than the conventional searching mechanism. This is because, even though, the resource requested

by the user is not exactly matching with available ones described in the knowledge base, the

semantic component retrieved resources that exhibit subsumption relationships with the request.

These resources are then suggested to the users for job execution.

The second experiment was focused on increasing the efficiency of the discovery mechanism

by maintaining a database to store unknown query tags and reused for the next query. It has been

mentioned in the earlier section that separate query tags are proposed such as ‘hasRAM’ to specify

requirements. This puts a minor restriction on the user forcing him to adhere to some pre-defined

format. Whenever the user provides a new tag which is unknown to the discovery module, the

searching process fails. Hence, the discovery mechanism is extended to support the user to use

a different tag to specify a particular property which is not defined and allows the user to map

the unknown label to the corresponding tag used in the ontology template and thereby update the

database with new tag. The performance of this extension has been estimated by considering ‘hit’

and ‘miss’ for a particular query. The discovery module is tested with several naı̈ve users to navigate

Figure 5. Semantic component in Garuda.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1435

Figure 6. Direct vs semantic results.

Figure 7. Effect of updating keywords in database.

the discovery portal and search for a particular resource by specifying the various characteristics of

a resource. Queries were executed on the knowledge base and results were obtained. Initially, the

database of synonymous words was empty and it was updated by the users whenever they provided

a new label. Hence, with the number of users increasing and hence the amount of synonymous

words were also increasing, the semantic search becomes more efficient as the user grows as shown

in Figure 7.

The third experiment is to compare the performance of the Algernon inference engine with

another popular reasoning language SPARQL query language used in S-MDS project for information

retrieval from ontology knowledge base. The performance of the discovery module is heavily relying

on the inference engine used for information retrieval from the knowledge base. Several open

source and freely available reasoning languages were analyzed and practiced. The requirement of

the discovery mechanism is to discover instances of resources that possess particular characteristics.

Hence, query-based ontology reasoners were preferred and eventually Algernon and SPARQL were

selected. The performance of both the languages was experimented by populating knowledge base

with several numbers of resources and queries based on both the languages were tested. The time

taken for executing the queries on to the knowledge base was measured. The experimental results

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1436 B. R. AMARNATH ET AL.

Figure 8. Algernon vs SPARQL inference engine.

Figure 9. Performance comparison of matchmaking mechanism in Gridway scheduler, semantic-based match-
making and database-based matchmaking.

showed that Algernon-based queries were executed quicker than the SPARQL queries as shown in

Figure 8.

The last experiment was carried out to analyze time overhead in various matchmaking systems.

Every Grid scheduler uses its own matchmaking strategy for discovering suitable resources.

For example, Gridway, a Globus-based Grid metascheduler, aggregates the available resource

information through the information manager and stores them in hostpool, and then compared with

the requirements expressed in the job request. In gLite middleware, Berkeley database is maintained

for storing resource information. In such cases, the discovery module retrieves information from the

database and performs matchmaking. In semantic discovery mechanism, information is retrieved

from the ontology knowledge base and matchmaking is carried out. In this experiment, the time

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

ONTOLOGY-BASED GRID RESOURCE MANAGEMENT 1437

complexity occurs during matchmaking in all the abovementioned techniques. It is observed that

the object-based gives the best results with respect to the time taken and semantic-based discovery

is better than the matchmaking carried out by retrieving information from the database. This

experiment can also be interpreted such that the time taken while retrieving information from the

knowledge base is less than retrieving information from the database. The results are shown in

Figure 9.

8. CONCLUSION

The proposed knowledge layer components support the ontology representation of Grid resources

which in turn enable the discovery of suitable Grid resources based on the semantics of the request.

This feature complements the Grid scheduler to find out closely related resource and can suggest

to the users a flexible way of scheduling application to the resources. Integration of semantic

component with Grid schedulers requires a knowledge of the operational flow of that scheduler.

Appropriate interface need to be developed to communicate the resources discovered by the semantic

component to the Grid scheduler for deployment of applications.

Further, ontology can also be used to represent the resource usage policies and in such cases,

the discovery mechanism needs to be extended to discover the resources to consider the policies

before making scheduling decision. Protégé-OWL libraries allow to modify the structure of ontology

template dynamically and hence it is possible to extend the template when new ‘concepts’ are to be

included. Exploitation of the rule-based inference can further improve the performance of resource

discovery mechanism.

ACKNOWLEDGEMENTS

The authors sincerely thank the Ministry of Communication and Information Technology, Government of India,
for financially supporting the Centre for Advanced Computing Research and Education of Anna University
Chennai, India. This work is also supported by the Australian Department of Innovation, Industry, Science and
Research.

REFERENCES

1. Foster I, Kesselman C (eds). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: Los Altos,
1999; 259–278.

2. Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling virtual organizations. International Journal of High
Performance Computing Applications 2001; 15(3):200–222.

3. Foster I, Kesselman X, Nick J, Tuecke S. The physiology of the grid: An open grid services architecture for distributed
systems integration. Open Grid Service Infrastructure WG, Global Grid Forum, 22 June 2002; 1–5.

4. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer

Applications 1997; 11(2):115–128. Globus Middleware. Available at: http://www.globus.org [18 September 2005].

5. gLite Middleware. Available at: http://www.gLite.org [5 October 2007].

6. Erwin D. UNICORE—A grid computing environment. Concurrency, Practice and Experience Journal 2002; 14:1395–
1410. Unicore Middleware. Available at: http://www.unicore.eu [19 October 2007].

7. De Roure D, Jennings NR, Shadbolt NR. The semantic grid: A future e-science infrastructure. Grid Computing—Making

the Global Infrastructure a Reality. Wiley: New York, 2003; 437–470.

8. Saha GK. Web Ontology Language (OWL) and Semantic Web. ACM Ubiquity, September 2007; 1.

9. Algernon Inference Engine. Available at: http://Algernon-j.sourceforge.net/doc/overview.html [5 December 2005].

10. Moab Metascheduler. Available at: http://www.clusterresources.com/resources/documentation.php [21 January 2006].

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

1438 B. R. AMARNATH ET AL.

11. Huedo E, Montero RS, Llorente IM. The gridway framework for adaptive scheduling and execution on grids. Scalable
Computing—Practice and Experience 2005; 6(3):1–8. Gridway Metascheduler. Available at: http://www.Gridway.org
[13 November 2006].

12. Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for distributed resource sharing. Proceedings
of the Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10). IEEE Press:
New York, 2001; 181.

13. Imamagic E, Radic B, Dobrenic D. An approach to grid scheduling by using condor-G matchmaking mechanism. Journal
of Computing and Information Technology 2006; 14:329–336.

14. Venugopal S, Buyya R, Winton L. A grid service broker for scheduling e-science applications on global data grids.
Concurrency and Computation: Practice and Experience 2006; 18(6):685–699.

15. Monitoring and Discovery Service. Available at: http://www.globus.org/toolkit/mds [3 October 2005].
16. Yu J, Venugopal S, Buyya R. A market-oriented grid directory service for publication and discovery of grid service

providers and their services. The Journal of Supercomputing 2006; 36(1):17–31.
17. Corcho O, Alper P, Kotsiopoulos L, Missier P, Bechhofer S, Goble1 C. An overview of S-OGSA: A reference semantic

grid architecture. Journal of Web Semantics 2006; 4(2):102–115.
18. Wroe C, Goble C, Greenwood M, Lord P, Miles S, Papay J, Payne T, Moreau L. Automating experiments using semantic

data on a bioinformatics grid. IEEE Intelligent Systems (Special issue on e-Science Jan/Feb) 2004; 19:48–55.
19. Murphy MJ, Dick M, Fischer T. Towards the semantic grid: A state of the art survey of semantic web services and their

applicability to collaborative design, engineering, and procurement. Communications of the IIMA 2008; 8(3):11–24.
20. Chen L, Shadbolt NR, Goble CA, Tao F, Cox SJ, Puleston C, Smart PR. Towards a knowledge-based approach to

semantic service composition. Second International Semantic Web Conference, Sanibel Island, FL, U.S.A., 20–24 October
2003.

21. He H, Tangmunarunkit H, Decker S, Kesselman C. A Semantic Matchmaker Service on the Grid. WWW2004,
17–22 May 2004; 326–327.

22. Said M, Kojima I. S-MDS: Semantic monitoring and discovery system. Journal of Grid Computing 2009; 7:205–224.
23. Pahlevi Said M, Kojima I. Semantic grid resource monitoring and discovery with rule processing based on the time-series

statistical data. Proceedings of 9th International Conference on Grid Computing, Tsukuba, Japan, 2008; 358–360.
24. Pernas AM, Dantas MAR. Using ontology for description of grid resources. Proceedings of 19th International Symposium

on High Performance Computing Systems and Applications (HPCS’2005), 2005; 223–229.
25. Tangmunarunkit H, Decker S, Kesselman C. Ontology-based resource matching in the grid—The grid meets the semantic

web. Proceedings of 1st Workshop of Semantics in Peer to Peer and Grid Computing in Conjunction with 12th W3C,
Budapest, 2003; 706–721.

26. Zhang WY, Wang Y. Towards building a semantic grid for e-government applications. WSEAS Transactions on Computer

Research 2008; 3(4):273–282.
27. Yin JW, Zhang WY, Cai M. Weaving an agent-based semantic grid for distributed collaborative manufacturing.

International Journal of Production Research 2009; 47:3079–3095.
28. Hartung M, Loebe F, Herre H, Rahm E. A platform for collaborative management of semantic grid metadata. Book

Chapter from Intelligent Distributed Computing, Systems, and Applications, vol. 162. Springer: Berlin/Heidelberg, 2008;
115–225.

29. Selvi T, Balachandar RA, Kandasamy V, Buyya R, Raman R, Mohanram N, Varun S. Semantic-based grid resource
discovery and its integration with the grid service broker. Proceedings of the 14th International Conference on Advanced

Computing and Communications, Surathkal Karnataka, India, 20–23 December 2006.
30. Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Scientific American, May 2001.
31. Resource Description Framework. Available at: http://www.w3.org/RDF.
32. Horridge M, Knublauch H, Rector A, Stevens R, Wroe C. A practical guide to building OWL ontologies using the

protege-OWL plugin and CO-ODETools edition 1.0. The University of Manchester, Stanford University, August 2004;
11–50.

33. Semantic Web Rule Language. Available at: http://www.w3.org/Submission/SWRL/.
34. Roure D, Jennings N, Shadbolt N. The semantic grid: A future e-science infrastructure. Grid Computing—Making the

Global Infrastructure a Reality. Wiley: New York, 2003.
35. Stumme G, Ehrig M, Handschuh S, Hotho A, Maedche A, Motik B, Oberle D, Schmitz C, Staab S, Stojanovic L,

Stojanovic N, Studer R, Sure Y, Volz R, Zacharias V. The Karlsruhe view on ontologies. Technical Report, University
of Karlsruhe, Institute AIFB, 2003; 3–5.

36. Davies J, Studer R, Sure Y, Warren PW. Next generation knowledge management. BT Technology Journal 2005;
23(3):175–190.

37. Thamarai Selvi S, Balachandar RA, Vijayakumar K, Mohanram N, Vandana M, Rajagopalan R. Semantic description and
discovery of grid services using functionality based matchmaking algorithm. Proceedings from International Conference

on Web Intelligence, Hong Kong, China, December 2006; 170–173.
38. Prahlada Rao BB, Ramakrishnan S, Raja Gopalan MR, Subrata C, Mangala N, Sridharan R. e-Infrastructures in IT:

A case study on Indian national grid computing initiative—GARUDA. Computer Science—Research and Development,
vol. 23(3–4). Springer: Berlin, Heidelberg, June 2009; 283–290.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1419–1438

DOI: 10.1002/spe

