
Future Generation Computer Systems 56 (2016) 421–435
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Workload-aware incremental repartitioning of shared-nothing
distributed databases for scalable OLTP applications
Joarder Kamal a,∗, Manzur Murshed b, Rajkumar Buyya c

a Faculty of Information Technology, Monash University, Australia
b Faculty of Science and Technology, Federation University Australia, Australia
c Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems,
The University of Melbourne, Australia

h i g h l i g h t s

• We propose incremental repartitioning of distributed OLTP databases for high-scalability.
• Wemodel two incremental repartitioning algorithm and lookup mechanism.
• We develop a unique transaction generation model for simulation.
• We derive novel impact metrics for distributed transactions.
• Simulation results indicate adaptability of the methods scalable OLTP applications.

a r t i c l e i n f o

Article history:
Received 3 March 2015
Received in revised form
18 August 2015
Accepted 21 September 2015
Available online 3 October 2015

Keywords:
Shared-nothing
OLTP
Distributed transactions
Incremental repartitioning
Load-balance
Data migration

a b s t r a c t

On-line Transaction Processing (OLTP) applications often rely on shared-nothing distributed databases
that can sustain rapid growth in data volume. Distributed transactions (DTs) that involve data tuples
from multiple geo-distributed servers can adversely impact the performance of such databases, espe-
cially when the transactions are short-lived and these require immediate responses. The k-way min-cut
graph clustering based database repartitioning algorithms can be used to reduce the number of DTs with
acceptable level of load balancing. Web applications, where DT profile changes over time due to dynam-
ically varying workload patterns, frequent database repartitioning is needed to keep up with the change.
This paper addresses this emerging challenge by introducing incremental repartitioning. In each repar-
titioning cycle, DT profile is learnt online and k-way min-cut clustering algorithm is applied on a special
sub-graph representing all DTs as well as those non-DTs that have at least one tuple in a DT. The latter
ensures that the min-cut algorithm minimally reintroduces new DTs from the non-DTs while maximally
transforming existing DTs into non-DTs in the new partitioning. Potential load imbalance risk ismitigated
by applying the graph clustering algorithm on the finer logical partitions instead of the servers and relying
on random one-to-one cluster-to-partition mapping that naturally balances out loads. Inter-server data-
migration due to repartitioning is kept in checkwith two specialmappings favouring the current partition
ofmajority tuples in a cluster—themany-to-one versionminimising datamigrations alone and the one-to-
one version reducing data migration without affecting load balancing. A distributed data lookup process,
inspired by the roaming protocol in mobile networks, is introduced to efficiently handle data migration
without affecting scalability. The effectiveness of the proposed framework is evaluated on realistic TPC-C
workloads comprehensively using graph, hypergraph, and compressed hypergraph representations used
in the literature. To compare the performance of any incremental repartitioning framework without any
bias of the external min-cut algorithm due to graph size variations, a transaction generation model is
developed that can maintain a target number of unique transactions in any arbitrary observation win-
dow, irrespective of new transaction arrival rate. The overall impact of DTs at any instance is estimated
from the exponential moving average of the recurrence period of unique transactions to avoid transient
fluctuations. The effectiveness and adaptability of the proposed incremental repartitioning framework for
transactional workloads have been establishedwith extensive simulations on both range partitioned and
consistent hash partitioned databases.

© 2015 Elsevier B.V. All rights reserved.
∗ Corresponding author. Tel.: +61 351226133; fax: +61 399055159.
E-mail addresses: joarder.kamal@monash.edu (J. Kamal),

manzur.murshed@federation.edu.au (M. Murshed), rbuyya@unimelb.edu.au
(R. Buyya).

http://dx.doi.org/10.1016/j.future.2015.09.024
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.09.024
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.024&domain=pdf
mailto:joarder.kamal@monash.edu
mailto:manzur.murshed@federation.edu.au
mailto:rbuyya@unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2015.09.024

422 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
1. Introduction

Electronic data management was never more challenging than
today with the global expansion of e-commerce, digital media,
telecommunications, and social networks. It is estimated that
around 2.3 trillion gigabytes of digitised data are generated every-
day [1] with dynamic usage patterns during our daily interactions
in the Web. As an example, we interact with over 30 billion pieces
of shared contents (e.g., Web links, news stories, posts, notes, pho-
tos, etc.) in Facebook and watch more than 4 billion hours of
videos inYouTube everymonth [1]. Such interactiveWeb traffic are
primarily driven by On-line Transaction Processing (OLTP) appli-
cations requiring real-time responsiveness from end-users’ per-
spective. From data management perspective, these applications
generate short-lived transactions in underlying databases access-
ing less than hundred records—tuples from a fewer number of
tables. OLTP applications typically require a normalised database
schema, expose entity–relationship data model, and tend to scale-
out for millions of simultaneously connected Web users. How-
ever, legacy Relational Database Management Systems (RDBMS)
deployed in a shared-nothing distributed cluster serving modern
OLTP workloads struggle to meet such high-scalability require-
ments.

Since the rise of cluster computing in late 90s, shared-nothing
architecture triumphed over shared-disk systems for leveraging
the power of commodity workstations and operating systems
to scale-out Web applications. With the recent advancements
of Cloud computing, shared-nothing distributed databases with
horizontal data partitioning (also called Sharding) becomes the
de-facto technique to manage scalable OLTP applications for
the Web. Unfortunately, traditional horizontal data partitioning
hardly adopt—dynamic workload characteristics, eliminate data
hotspots, and sudden workload spikes without expansive data
redistributions risking potential service downtimes within a geo-
distributed database cluster [2]. Therefore, scaling out modern
OLTP applications in a shared-nothing database cluster is extremely
challenging. Transactional workloads are update intensive, highly
concurrent, and require results within very low response times
from the databases. The main bottleneck to scalability comes
from concurrent nature of accessing shared application data
structures and entity–relationships in a partitioned databases [3].
Distributed transactions (DTs) that access data tuples from
multiple physical servers holding partitioned database tables
adversely impact the database scalability while executing 2PC
(Two-Phase Commit) and 2PL (Two-Phase Locking) operations
to maintain ACID guarantees [4]. The only way to minimise the
impact of DTs is to cluster the most frequently accessed data
tuples together depending on the workload characteristics which
requires dynamic repartitioning of the database.

Clustering frequently accessed workload tuples for eliminating
DTs causes data distribution imbalance within the shared-nothing
data nodes, requires expansive inter-node data migrations, and
challenges scalable data lookup operations. Moreover, it is even
difficult to pinpoint when we need to execute a repartitioning op-
eration and whether in a proactive or reactive manner. Neverthe-
less, inappropriate and static partitioning can lead to unscalable
transaction processing, potential disk failures or downtimes, and
overloading inter-node bandwidth. In summary, the primary chal-
lenges to manage scalable OLTP applications deployed in a shared-
nothing RDBS cluster are (1) how to incremental repartitioning to
reduce the impact of DTs which arise from workload character-
istics; (2) how to repartitioning the database independent of the
number of physical servers; (3) how to perform on-the-fly data
migration and minimise its cost; (4) how to perform scalable data
lookup; and (5) how to maintain balance on server- and partition-
level data distributions.
Recently proposed techniques for workload-aware data
partitioning [5,6] monitor the transactional logs and periodically
create workload networks using graph or hyper graph represen-
tation. Each edge in a workload graph connects a pair of tuples
originated from the same transaction whereas a hyper edge con-
nects all tuples within a transaction in a hypergraph. Later, these
workload representations are clustered using k-way min-cut clus-
tering, and then randomly placed across the set of physical servers
within a database cluster. As long as workload characteristics do
not change dramatically, and tuples from a cluster stay together
in a physical server, the occurrences and adverse impacts of DTs
are reduced rapidly. A number of centralised data lookup and rout-
ing mechanisms are also proposed to support such dynamic data
redistribution. Large-scale OLTP service providers also utilise par-
tition management libraries like YouTube’s Vitess [7], Tumblr’s
JetPants [8], Twitter’s Gizzard [9], and Apache Giraf [10] to deal
with scalable data growth. Nonetheless, the underlying data place-
ment techniques are not transparent to application codes, and re-
distributions are not aware of workload dynamics. Furthermore,
none of these techniques provide any explicit way to minimise
physical data migrations overWAN, and global load-balance at the
same time for a geo-distributed shared-nothing cluster.

This paper presents a novel workload-aware incremental
database repartitioning framework, which transparently redis-
tributes tuples to reduce the overall impact of DTs while ensur-
ing minimum data migrations and preserving global load-balance.
The framework periodically collects and pre-processes transac-
tional logs. A unique transaction classification process then identi-
fies DTs and moveable non-DTs that share at least one tuple with
a DT. A workload network is constructed using only these two
types of transactions. A graph min-cut based clustering algorithm
is used to create balanced clusters of tuples. Finally, these clus-
ters are assigned to database partitions using a cluster-to-partition
mapping algorithm. We perform sensitivity analysis by represent-
ing the workload networks in fine, exact, and coarse granularity
using graphs, hypergraphs, and compressed hypergraphs. In con-
trary to previous works, a fixed number of clusters are created
from the workload network for the total number of logical data
partitions in the entire database instead of the number of physical
servers. This provides finer control in load-balance over the set of
both partitions and servers. We also avoid tuple-level replications
to observe the quality of incremental repartitioning under worst-
case scenario of DTs. We also propose two innovative cluster-
to-partition mapping strategies that cater for minimising both
physical data migrations and distribution imbalance. Our dis-
tributed data lookup mechanism ensures high-scalability, and
guarantees a maximum of two lookups to locate a tuple within the
partitioned database.

A set of novel metrics are developed to evaluate the quality
of incremental repartitioning and also provide a way to admin-
istratively configure a particular repartitioning objective using a
composite metric. We also design and develop a novel transac-
tion generation model that is capable of simulating a wide-range
of OLTP systems via parametric configurations. By enforcing the
system to generate a fixed amount of unique transactions per
observation window we carefully eliminate any undue effect of
external graph or hypergraph partitioning libraries. We examine
reactive—hourly and proactive—threshold-based incremental repar-
titioning strategies deployed in a range and a consistent-hash par-
titioned shared-nothing database cluster. We compare the results
against a no repartitioning and a static repartitioning (similar to [5])
strategies for different workload representations and cluster-to-
partition mapping techniques.

The main contributions are summarised in below:

1. Investigate possible design choices for workload network
representations and their applicability.

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 423
2. Propose a proactive transaction classification technique that
identifies DTs and moveable non-DTs to create workload
networks.

3. Present two cluster-to-partitionmapping strategies that ensure
minimum inter-server data migrations and load-imbalance
across partitions and servers.

4. Develop a scalable distributed data lookup technique that
requires amaximumof two I/O roundtrips to locate a data tuple
within the entire database.

5. Devise a set of qualitymetrics for the incremental repartitioning
process defining different objectives.

6. Design and develop of a generic transaction generation model
with comprehensive sensitivity analysis to demonstrate its
capability for simulating wide variety of transactional systems
for evaluating graph min-cut based incremental database
repartitioning.

7. Develop a new definition for the impact of distributed transac-
tions which can accurately measure the system-level impact of
processing large number of DTs simultaneously and insensitive
to workload variations.

8. Evaluate the performance of the proposed incremental reparti-
tioning methods for both range and consistent-hash based ini-
tial data partitioning. This demonstrates the adaptability of our
novel transaction generationmodel and ground truth about dif-
ferent repartitioning schemes over a common platform.

The remainder of this paper is organised as follows: we re-
view the related works in Section 2; a high-level overview of the
proposed framework is discussed in Section 3; Section 4 details
the steps, formulations,modelling approaches, and design philoso-
phies with necessary illustrations; Section 5 discusses the exper-
imental results and remarks; and finally Section 6 concludes the
paper.

2. Related works

Workload-aware load-balance with I/O overhead minimisation
in distributed database systemswas studied before with respect to
parallel disk system [11] and for finding optimal data placement
strategy in shared-nothing parallel databases [12]. Recent works
primarily focus on OLTP workloads for scaling-out the Web
applications to minimise the number of DTs. Graph min-cut based
workload-aware data partitioning approach is first introduced
by [5] for OLTP databases. The authors proposed ‘Schism’ which
represents the transactional workload as a graph, and performs
k-way replicated graph partitioning to minimise the effect of
DTs. However, ‘Schism’ usually generates very large graphs, does
not deal with dynamic workload changes, and the more general
problem of incremental repartitioning. Transactional workloads
are modelled as compressed hypergraph in [6,13] by hashing data
tuple’s primary key to reduce the overhead of k-way clustering. The
authors propose ‘SWORD’, an incremental repartitioning technique
which moves a fixed amount of data in a regular interval upon
notifying workload changes, and by observing the increase in the
percentage of DTs from a predefined threshold. However, this
reactive approach only ensures local load-balance, and does not
always guarantees reduction in DTs. Due to the selective swapping
of the randomly compressed tuple sets and newly transformed
DTs, the quality of min-cut clustering may lost, and gradually lead
to global data distribution imbalance.

In [14], another automatic workload-aware database partition-
ingmethod is proposed alongwith an analytical model to estimate
skew and coordination cost for DTs. It uses the same graph based
workload representation of [5], and primarily focuses on optimal
database design based onworkload characteristics. However, it did
not consider the necessity of incremental repartitioning as well.
‘Elasca’ is proposed in [15], where a multi-object workload-aware
online optimiser is developed for optimal partition placement en-
suring minimum data movement, however it does not support in-
cremental repartitioning. In [2] the authors consider the problem
of cost minimisation in big data processing systems and partic-
ularly investigate the relationship between physical data place-
ment and routing. The scenario turns out to be an optimisation
problem and mixed-integer linear programming (MILP) solver is
used to find an optimal answer. By logically partitioning the phys-
ical data accesses, [16] propose physiological partitioning (PLP)—a
transaction processing approachwhere physical access to database
pages and indexes are continuously repartitioned and maintain
load-balance based on data access patterns. However, applications
that have less impact on the underlying storages can be penalised
as mentioned by the authors, and understanding the directional
flow and dependencies of data access for each transactions can be
a costly operation. Similar approach is proposed in [17] as well
whichworks at a higher granularity of assigning partitions of trans-
actional access to threads.

Workload-aware data partitioning has been also studied with
respect to social networks. In [18], a Social Partitioning and
Replication middleware—(SPAR) is proposed that explores the
social network graph from user interaction, and then performs
joint partitioning and replication to ensure local data semantics
for the users. Similarly, in [19], temporal activity hypergraphs are
used to model user interactions in social network, and then min-
cut clustering is used tominimise the impact of DTswithminimum
load-imbalance. A distributed lookup method for transactional
databases requiring special ‘knowledge nodes’ for coordination
is proposed in [20], however it may perform incorrect routing
due to inconsistent values. [5,13] also used a centralised data
lookup scheme which is a clear bottleneck for high-scalability. In
contrast, our proposed distributed lookup operation is based on
the well known concept of roaming [21], and it always guarantees
consistent results with a maximum of two lookups.

In overall, none of these techniques explore the incremental
repartitioning problem, and the effect of physical data migrations
in global load-balance. Moreover, the existing literature primar-
ily focusing on reducing the percentage of DTs in a system for a
particular observation. None of the previous studies propose a set
of metrics which can clearly capture the actual impact of DTs on
system wide resource consumption, incremental load-imbalance
across the physical servers and logical partitions, and cost physi-
cal data migrations. Notably, [22] presents a detailed performance
modelling foundation and framework for distributed and repli-
cated databases, although it did not capture the necessity of incre-
mental repartitioning at that time. Furthermore, apart from being
evaluating the proposed architectures through heterogeneous
benchmark environments, none of the existing works have con-
sidered modelling a theoretical framework to compare different
repartitioning solutions within a common ground. We argue that
there is a clear requirement to establish a theoretical ground for
studying workload-aware incremental repartition schemes in a
homogeneous manner that is independent of their benchmarking
results.

3. System architecture

A high-level architecture of a shared-nothing distributed
database cluster enabling workload-aware incremental reparti-
tioning is shown in Fig. 1. We assume a set of Transaction Coor-
dinator nodes residing in the application servers serving database
queries generated by the higher level application processors.
Transaction Coordinators are connectedwith a set of shared-nothing
Data Nodes where the logical partitions are located. Each Transac-
tion Coordinator contains a Distributed Transaction Manager that
executes DTs or XA transactions [23] through the ODBC inter-
face [24] exists between the ODBCManager and the ODBC Driver in

424 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
Fig. 1. High-level architecture of a shared-nothing distributed database cluster with workload-aware incremental repartitioning.
the Data Node. Transaction Coordinators also administrate partition
management jobs (like split, merge, andmigration) and balance in-
coming read/write workloads. Each logical partition in a Data Node
contains a location catalogue that keeps track of the current lo-
cation (i.e., current partition ids) of the data tuples as id–location
pairs. Note that, individual Data Nodes can be synchronously repli-
cated as master–slave within independent groups to ensure high
availability which is a common deployment practice nowadays.
Therefore, in thisworkwedonot explicitly handle tuple level repli-
cation like [5].

Streams of transactional logs are continuously pulled by the
Workload Analyser Node, and pre-process for analysis either in
a time or workload sensitive window. Workload Analyser Node
can also cache the most frequently appeared tuple location in a
workload-specific catalogue which is kept updated upon inter-
partition data migrations. Upon receiving incremental reparti-
tioning command, the Workload Analyser starts processing the
transactional logs to generate a suitable data migration plan. Fig. 2
details this procedure using blocks a–g. The input of the workload-
aware incremental repartitioning component (in dotted rectangle)
is the transactional logs while the output is a partition-level data
migration plan. The overall process has four primary steps:

Pre-processing, parsing, and classification. Client applica-
tions submit database queries in step 1, which is then processed by
a Distributed Transaction Coordinator that manages the execution
of DTs within a shared-nothing Data Node cluster. Upon pulling the
streams of transactional workloads in step 2, individual transac-
tions are processed to extract the contained SQL statements at step
3a. For each SQL statement, the primary keys of individual tuples
are extracted, and corresponding partition ids are retrieved from
the embedded workload specific location catalogue in step 3b. In
the classification process at step 3c, original DT andmoveable non-
DTs are identified along with their frequency counts in the current
workload, and their associated costs of spanning multiple servers.

Workload representation and k-way Clustering. In step 3d,
workload networks are generated from the extracted transactional
logs gathered in the previous step using graph or hypergraph.
Tuple-level compression can further reduce the size of workload
network. Since transactional graphs cannot fully represent trans-
actionswithmore than two tuples using pair-wise relationship,we
cannot directly minimise the impact of DTs in the workload. How-
ever, graph representations are much simpler to produce, and it
adopted wide ranges of application specific usages that also help
us to understand its importance in creating workload networks.
On the other hand, hypergraphs can exploit exact transactional re-
lationships, thus the number of hyper edge cuts exactly matches
the number of DTs. Yet, popular hypergraph clustering libraries
are computationally slower than the graph clustering libraries, and
produce less effective results [5].

In reality, with the increase in size and complexity, both of
these representations are computation intensive in manipulation.
Furthermore, compression techniques can confine an algorithm
within a specified target, dramatic degradation in clustering
quality and overall load-balance occur with a high compression
ratio [6]. Finally, workload networks are clustered using k min-
cut clustering employed by the graph and hypergraph clustering
libraries in step 3e.

Cluster-to-partition mapping. At step 3f, a mapping matrix
is created with the counts for tuples that are placed in the

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 425
Fig. 2. An overview of the workload-aware incremental repartitioning framework using numbered notations. Steps 3a–g represent the flow of workload analysis,
representation, clustering, and repartitioning decision generation.
newly created cluster and originated from the same partition
as the matrix element. The produced clusters from the min-cut
clustering are then mapped to the existing set of logical partitions
by following three distinct strategies. At first, we employ uniform
random tuple distribution for mapping clusters to database
partitions which naturally balances the distribution of tuples over
the partitions. However, there is no proactive consideration in
this random strategy for minimising data migrations. The second
strategy employs a straight forward but optimal approach. It
maps a cluster to a respective partition which originally contains
maximum number of tuples from that cluster, hence minimum
physical data migrations take place.

In many cases, this simple strategy turns out to be many-
to-one cluster-to-partition mapping, and diverges uniform tuple
distribution. Again, incremental repartitioning can create server
hot-spot as similar transactions from new workload batches will
always drive more new tuples to migrate into a hot server.
As a consequence, overall load-balance decreases over time,
which is also observed in our experimental results. A way to
recover from this situation is by ensuring that cluster-to-partition
mapping remains one-to-one, which is used as the third strategy.
This simple, yet effective, scheme restores the original uniform
random tuple distribution with the constraint of minimising
data migrations. Finally, in step 3g, based on different mapping
strategies and appliedheuristics a datamigrationplan is generated,
and then forwarded to the data tuple migrator module in step 5.

Distributed location update and routing. The analyser node
keeps a workload specific location catalogue for the most
frequently accessed tuples, and updates the associated locations
at each repartitioning cycle in step 4. The analyser also directly
invokes the corresponding data nodes to perform data migrations
in step 6 without interrupting the ongoing transactional services.
Until a tuple fully migrates to a new partition, its existing partition
serves all the query requests. Distributed databases using range
partitioning require keeping a central lookup table for the clients to
retrieve tuples. Hash partitioning requires the client to use a fixed
hash function to lookup the required tuples in the specified server.
Consistent hash partitioning [25] employs distributed lookup
mechanism using distributed hash table. However, none of these
partitioning schemes provide scalable data lookupmechanisms for
successive data redistribution.

To solve this problem, we use the well established concept
of roaming from wireless telecommunications and computer data
networks. The problem of location independent routing is already
solved in IPv6 using Mobile IP [26], and in GSM networks using
roaming mobile stations [21]. In a similar way, the attached
location catalogue within each data partition keeps track of
the roaming tuples and their corresponding foreign partitions. A
maximum of two lookups are required to find a tuple without
client-side caching. With proper caching enabled, this lookup cost
can be even amortised to one for most of the cases with high cash
hit.

4. Workload-aware incremental repartitioning

4.1. Problem formulation

Let S = {S1, . . . , Sn} be the set of n shared-nothing physical
database servers where each Si = {Pi,1, . . . , Pi,m} denotes the set
of m logical partitions reside in Si. Let DPi,j = {δi,j,1, . . . , δi,j,|Pi,j|}
denotes the set of data tuples reside in Pi,j. Hence, we get the total
number of data tuples reside in Si as |DSi | =

∀j |DPi,j |. Finally,

426 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
|DS | =

∀i |DSi | denotes the total number of data tuples in the
entire partitioned database.

Let W be the observation window consisting of |W | number
of preceding transactions at the time of repartitioning. Let the
transactional workload in W be represented by T = {τ1, . . . , τ|T |}

where τi’s are the |T | unique transactions observed in W . Note
that, repartitioning decision is made considering only the unique
transactions and hence the term ‘unique’ will be dropped in the
rest of the paper. Furthermore, the set of distributed and non-
distributed transactions are respectively denoted as Td and Td̂. Thus
T = Td

Td̂ and Td

Td̂ = φ where Td = {τd1 , . . . , τd|Td |

}

and Td̂ = {τd̂1 , . . . , τd̂|Td̂ |
}. Any distributed or non-distributed

transaction τdi or τd̂i can appear (i.e., repeat) multiple times within
W hence its frequency can be represented by either f (τdi) or f (τd̂i).
As any τdi can spanmultiple servers, we define the cost of spanning
as s(τdi). We consider the cost of spanning multiple partitions by a
non-distributed transaction negligible in terms I/O overhead and
define s(τd̂i) = 1. Lets now define the problem of incremental
repartitioning as:

Problem definition: For a given observation window W, S
homogeneous servers containing a total of P logical partitions,
and a maximum allowed imbalance ratio ϵ, find an incremental
repartitioning solution Xi from the output of a k-way balanced
clustering ζ which minimises the impact of DTs in W and
imbalance in DS by performing minimum inter-server data
migrations.

4.2. Workload modelling

We model the workload networks using three distinct repre-
sentations. Firstly, Graph Representation (GR) produces fine-grain
workload network although it is unable to fully capture the ac-
tual transactional relationship between different tuples. Yet, graph
min-cut process can still generate high quality k-way clustering
and minimises the impact of DTs, unless the overall graph size
increases with workload variability, and adequate level of sam-
pling is performed [5]. Secondly, Hypergraph Representation (HR)
generates most accurate, and exact workload networks thus also
able to produce balanced clusters with min-cut hypergraph clus-
tering. Moreover, from our empirical studies we found that, k-way
min-cut balanced hypergraph clustering producesmore consistent
results in terms of achieving the repartitioning goals, and is also
mentioned in [19]. Finally, Compressed Hypergraph Representation
(CHR) produces coarse-grainworkload networks depending on the
compress level. With lower level of compression, less coarse net-
works are generated and k-way clustering performs better. How-
ever, as shown in [6], as the level of compression increases the
quality of the clustering process degrades dramatically. We for-
mally define the individual representations as in below:

4.2.1. Graph representation
A graph G = (V, Eg) represents W where each edge eg ∈ Eg

links a pair of tuples (vx, vy) from V = {v1, . . . , v|V|} ⊂ DS
for a transaction τi where vi = ∃a∃b∃c δa,b,c . Individual tuples
from (vx, vy) connects to their respective set of adjacent tuples
Avx and Avy originated from the same τi. Any edge within τi has
a weight representing the frequency of τi in W which co-access
the pair (vx, vy), while vertex weight represents the tuple’s size (in
volume).

4.2.2. Hypergraph representation
A hypergraph, H = (V, Eh) represents W where a hyperedge

eh ∈ Eh characterises a transaction τi and overlays its contained set
of tuples Vτi ⊂ V . A hyperedge representing τi is associated with
a weight denoting the frequency of eh within W and its vertices’
weight represent data tuples’ size (in volume).
Fig. 3. Transaction classification identifying DTs and moveable non-DTs.

4.2.3. Compressed hypergraph representation
A hypergraph, H = (V, Eh) can be compressed by collapsing

the vertices to a set of virtual vertices V ′ using a simple hash
function on the primary keys [6]. A compressed hypergraph
Hc = (V ′, E ′

h) represents W where each virtual hyperedge e′

h ∈

E ′

h constitutes the set of virtual vertices v′
eh ⊂ V ′ where the

original vertices of eh are mapped into and |v′
eh | ≥ 2. Virtual

vertex weight represents the combined data volume sizes of
the corresponding compressed tuples. And hyperedge weight
represents the frequency of transactions which access the
corresponding virtual vertices. Cl denotes the compression level as
|V|/|V ′

| and equals to 1 for no compression while to |V| for full
compression.

4.3. Proactive transaction classification

In constructing the classification technique, we argue that
there always exists a group of tuples which are retrieved while
processing the DTs, and also participated in the execution of non-
distributed but frequently occurred transactions. These particular
groups of tuples when move into different database servers due
to the database repartitioning process can turn the previously
non-DTs into newly distributed ones. We use this intuitive to
classify the workload transactions into three different categories—
distributed, non-distributed moveable and non-distributed non-
moveable as shown in Fig. 3. As an example, transactions τ1, τ2, and
τ5 from the sampleworkload of Table 2 are identified as distributed,
whereas τ3 and τ4 are labelled asmoveable non-distributed. Finally,
τ6 and τ7 are discarded as purely non-distributed transactions.

Clearly, a number of non-distributed moveable transactions
will be remain protected within k-way clustering as the min-cut
clustering always tries to preserve as much as transactional edges
it could. As the tuples in these moveable transactions did not
participate into any DTs, they are residing in isolation within the
workload network. Thus, they are highly likely to be preserved
together in the same cluster after k-way clustering. If we added
the DTs τ1, τ2, and τ5 in the workload sub-graphs, then at the
next incremental repartitioning phase τ3 and τ4 would have been
appeared as DT. Since, tuple with id 9, which by this time would
have been alreadymoved to another partition located in a different
physical server, would cause its associated transactions to become
distributed. There exists a clear trade-off between the increase of
size of the workload networks and achieved benefits. At one end,
the smaller is the workload network, it will less computationally
costly to process with respect to time and I/O. On the other hand,
if we include all the workload tuples in the representations, it may
reduce the impact of DT better than in a particular repartitioning
cycle, but with the price of unwanted data migrations to create
new DTs. By aggressively classifying the non-distributed moveable
transactions, the quality of the overall repartitioning process
increases as the impact of DTs decreases comparing to a static
partitioning strategy as shown later in our experimental results.

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 427
Table 1
Sample database—physical and logical layout.

Servers Partitions

S1(10) P1(5) = {2, 4, 6, 8, 10}
P3(5) = {12, 14, 16, 18, 20}

S2(10) P2(5) = {1, 3, 5, 7, 9}
P4(5) = {11, 13, 15, 17, 19}

4.4. k-way balanced clustering of workload

Given G and a maximum allowed imbalance ratio ϵ, we can
define the problem as find the k-way clustering ζG = {V1, . . . , Vk}

that minimises transactional edge cut with the balance constraint
bounds by (1 + ϵ). Similarly, the k-way constrained and balanced
clustering of H is ζH = {V1, . . . , Vk} such that minimum number
of hyper edges are cut having the imbalance ratio ϵ. Analogously,
the k-way balanced clustering of Hc is ζHc = {V ′

1, . . . , V
′

k} with an
imbalance ratio ϵ aiming at minimum virtual hyperedge cuts. Note
that, we denote k as the total number of logical partitions instead
of the number of physical servers. From our empirical experiments
we find that executing the k-way clustering processing with k as
the number of partitions provide finer granularity in balancing the
distribution of data volume over the set of physical servers.

The k-way balanced clustering generates clusters of similar size
with respect to the number of tuples given a balance constraint
which is defined as k(max(ωVi)/ωV), and tells whether the clusters
are equally-weighted or not. Here, (wVi) is the sum of the weights
of the vertices in Vi. The partitions are said to be balanced if the
balance measure is equals to or close to 1 otherwise imbalanced if
greater than 1.

4.5. Cluster-to-partition mapping strategies

In the following, we use illustrative examples using a simple
database construction with 20 data tuples distributed using hash-
partitioning over 4 logical partitions and 2 physical servers as
shown in Table 1. A sample workload batch with 7 transactions
and corresponding data tuples are also shown in Table 2. Finally,
a detail illustration on how the cluster-to-partition mapping
strategies work with different workload representations are
shown in Fig. 4. In these figures the workload networks as GR,
HR, and CHR (with Cl = 2) for the transactions listed in
Table 2. Three distinctive cluster-to-partition mapping strategies
(in matrix format) are also shown beneath their respective
workload network representations. The rows and columns of the
matrices represent partition and cluster id respectively. Individual
matrix element represents tuple counts from a particular partition
which is placed by the clustering libraries under a specific cluster
id. The shadowed locations in the mapping matrix with the counts
in bold face represents the resulting decision block with respect
to the particular cluster and partition id. Individual tables below
the matrices represent the state of the physical and logical layouts
of the sample database. The last row of these tables reveals the
counts of inter- and intra-server data migrations for each of these
nine representative database layouts. The bold face numbers in
the layout tables at bottom denote most balanced distribution and
least count for data migrations.

4.5.1. Random mapping (RM)
Naturally, the best way to achieve load-balance in any

granularity is to assign the clusters randomly. Clustering tools
like Metis and hMetis randomly generates the cluster ids, and do
not have any knowledge about how the data tuples are originally
distributed within the servers or partitions. As a straightforward
approach, the cluster ids can be simply mapped one-to-one to
Table 2
Sample transactional workload for illustration.

Id Tuples Class

τ1 {1, 4, 5, 6, 7, 8, 10} DT
τ2 {1, 4, 6, 9, 11} DT
τ3 {9, 15, 17} Moveable non-DT
τ4 {9, 17} Moveable non-DT
τ5 {5, 7, 18} DT
τ6 {15, 17} Non-moveable non-DT
τ7 {2, 14, 16} Non-moveable non-DT

the corresponding partition id as they are generated. Although,
this random assignment balances the workload tuples across the
partitions it not necessarily guaranteesminimum inter-server data
migrations. As shown in Fig. 4, the mapping matrices labelled with
RM and database layouts with GR-RM, HR-RM and CHR-RM are the
representatives of this class.

4.5.2. Maximum column mapping (MCM)
We aim at minimising the physical data migration within

the repartitioning process using this strategy. In the cluster-
to-partition mapping matrix the maximum tuple count of an
individual column is discovered, and the entire cluster column is
mapped to the represented partition id of that maximum count.
If multiple maximum counts are found then we choose the one
directing the partition containing lowest number of data tuples.
Thus, multiple clusters can be assigned to a single partition. As
maximum numbers of tuples are originated from this designated
partition, they do not tend to leave from their home partitions
which reduce the overall inter-server physical data migrations.
For OLTP workloads with skewed tuple distributions and dynamic
data popularity, the impact of DTs can rapidly decrease from this
greedy heuristic as tuples from multiple clusters may map to a
single partition in the same physical server. However, this may
lead to data volume imbalance across the partitions and servers
besides our selection preference of the partition id in the mapping
matrix. Mapping matrices labelled as MCM with corresponding
database layouts of GR-MCM, HR-MCM, and CHR-MCM represent
this mapping strategy in Fig. 4.

4.5.3. Maximum submatrix mapping (MSM)
To both minimise load-imbalance and data migrations, we fork

lift the natural advantages of the previous strategies and combine
them together. At first, the largest tuple counts within the entire
mapping matrix are found and placed at the diagonally top left
position by performing successive row–column rearrangements.
The next phase begins by omitting the elements in the first row
and column then recursively search the remaining submatrices
for element with maximum tuple counts. Finally, all the diagonal
positions of the matrix are filled up with elements having
maximum tuple counts. Now, mapping the respective clusters
one-to-one to the corresponding partitions results both minimum
data migrations and distribution load-balance. Note that, multiple
maximum tuple counts can be found in different matrix positions,
and the first such encountered element is chosen for simplicity.
The MSM strategy works similarly to the MCM strategy as it
prioritises themaximumtuple countswithin the sub-matrices, and
map the clusters one-to-one to the partitions like the RM strategy
thus preventing potential load-imbalance across both the logical
partitions and physical servers. In Fig. 4, mappingmatrices labelled
as MSM, and representative database layouts GR-MSM, HR-MSM,
and CHR-MSM depict this mapping strategy.

428 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
Fig. 4. k-way min-cut clustering of transactional workload networks followed by 3 cluster-to-partition mapping strategies.
4.6. Distributed data lookup

As mentioned in Sections 1 and 3, any centralised lookup
mechanism is always at risk to be the bottleneck in achieving high-
availability and scalability requirements. We take a sophisticated
approach to distribute the data tuple lookup process into
individual database partition level. Thus, datamigration operations
are totally transparent to distributed transaction processing and
coordination. By maintaining a key-value list of roaming and
foreign data id with their corresponding partition id, individual
partitions can answer the lookup queries. Tuples are assigned
permanent home partition id for its lifetime when the database
is initially partitioned using range, hash, or consistent hash [25].
Home partition id only changes while a partition splits or merges
and these operations are overseen by the transaction coordinators
as shown in Fig. 1, thus transparent to the lookup process.
As the tuple locations are managed by their home partitions,
data inconsistency are strictly prevented. Unless a tuple is fully
migrated to another partition, and its roaming location is written
in the catalogue, the old partition continue serving transactional
processing.

When a tuple migrates to another partition within the process
of incremental repartitioning, only its respective home partition
needs to be aware of it. The target roaming partition will treat
this migrated tuple as a foreign and updates its lookup table
accordingly whereas the original home partition will mark this
tuple as roaming in its lookup table and update its current location
with the roaming partition’s id. A lookup process always query the
tuple’s home partition to retrieve it. If the tuple is not initially found
in its original location, the lookup table entry thus immediately
informs the most recent location of the tuple and redirect the
search towards the roaming partition. Thus, a maximum of two
lookup operations can be required to find a tuple within the entire
database.

Note that, the cost of physical data migration may increase
while using such distributed lookup process. With a high prob-
ability individual data migrations in the incremental repartition
process may involve running location update process up to three
physical servers serving the home partition and two roaming
partitions—current and target partitions. At present, we are inves-
tigating the implication of this cost, and how to include this in the
formulation of the quality measures.
4.7. Transaction generation model

In order to evaluate the performance of the proposed graph
min-cut based repartitioning algorithms, we need to be careful
to avoid any undue influence of the external graph partitioning
library. The easiest way to achieve this is to carefully design a
transaction generation model capable of generating transactions
at a target rate R while maintaining a target unique transaction
proportion U = |T |/|W | in the observation window W . This
will allow us to use similar sized graphs while comparing the
performance of the same repartitioning algorithm on different
scenarios or different repartitioning algorithms under the same
scenario. The transaction generation model, however, has to be
flexible enough to allow us to control the transaction mix such
that at any transaction generation instance, a new transaction is
introduced with probability p; otherwise an existing transaction
is repeated. By setting the system parameters ⟨R, p, W, U⟩ with
appropriate values, a wide variety of transactional systems can
be modelled for simulation purpose. Let η = Rp be the average
generation rate of new transaction in the current observation
window. Obviously U is bounded as follows:
η ≤ U ≤ R. (1)

Implementation of this transaction model is quite straightfor-
ward. The only challenge remains is to set a limit on how far back
the generator should look into for transaction repetitions so that
the target U is achieved. Let the generator consider only the latest
U′

|W | unique transactions and randomly select one of them with
uniform distribution for repetition. For average-case analysis, we
may now restrict U′ within the following lower and upper bounds

U − η ≤ U′
≤ U. (2)

IfU′ < U−η, the targetU is likely to be under-achieved as the
number of unique transactions in the repetition pool is less than
(U − η)W . On the other hand, if U′ > U, the target U is likely
to be over-achieved as the number of unique transactions in the
repetition pool is more than ηW .

The functional model

U′
= U

1 −

 η

U

q
(3)

can ensure the above mentioned boundaries when q is finite and
q > 1. Our empirical analysis has found that the target U can be
achieved best for q = 2.

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 429
Fig. 5. Transactional workload generations validating (a) the consistency of generating a target percentage of new transactions for different observation windows for a
given probability of new transaction generation, and (b) consistency of generating a target percentage of unique transactions for different probabilities of new transaction
generation against different observation windows.
The proportion of unique transactions in the generated trans-
actional workload will vary from the target U if the observation
window size deviates from W used by the transaction generation
model. If the window size is smaller thanW , the proportionwill be
higher for p < U and lower for p > U. The opposite occurs when
the window size is larger than W .

4.7.1. Sensitivity analysis
We perform a detail sensitivity analysis of the above described

transaction generation model for different combinations of
⟨R, U, W, p⟩ by varying p. We choose an average transaction
generation rate R of 1 transaction per second (tps) and a target
of achieving 25% unique transactions in a given W of 3600s (1 h)
containing 3600 preceding transactions to generate transactional
workloads for a total of 24 h. The value of p is varied from
0.05 to 0.25 by 0.05. Fig. 5 shows – (a) the generation of new
transactions against different values of p observed over 5 distinct
observation windows containing – 1200, 2400, 3600, 4800, and
6000 transactions; and (b) the generation of unique transactions
against these observation windows grouped by p values. From the
results of Fig. 5(a), the consistency of the proposed transaction
generation model in generating new transactions for any given
p within different observation windows are noticed. Fig. 5(b), on
the other hand, shows the consistency of generating a target of
25% unique transactions within every 3600 preceding transactions
generated in W .

As mentioned earlier, following (2) and (3), if we vary the
observation window from the given |W | the target U will be
either underachieved or overachieved. These phenomenons are
observed from the grouped bar plots for the observation windows
of 1200 and 2400 where the target U was overachieved while
it was underachieved for window sizes 4800 and 6000 except
where p = 0.25. As per our experimental setting p = 0.25
determines that for a givenR of 1 tps 25% new transactions will be
generated within any |W |. At the same time, we also set an initial
target U for generating 25% unique transactions considering |W |

given R = 1—a fixed amount of 3600 preceding transactions. The
results of Fig. 5(b) thus holds the relationship of (2) which restricts
the repetitions of newly generated transactions. Furthermore, if
we decrease the window size to 1200 and 2400 then with the
decrement of p the target number of unique transactions are over
achieved. In contrast, if we increase the window size to 4800 and
6000 from 3600, the target number of unique transactions are
under achieved with the increment of p. When the value of p
matches with the proportion of unique transaction generation set
as U, no transactional repetitions is took place according to (3).
Table 3 lists the statistics of transactional repetitions for the given
|W | of 3600 transactions varying p. From the statistics, at p = 0.25
inter-repetition interval reaches to 3600 which leaves no unique
transactions for repetition thus all the generated transactions are
new. In overall, by setting appropriate parameter values of the
proposed transaction generation model one can easily generate
transactional workload with desired repetition, uniqueness, and
new transaction generation properties.

4.8. Quality metrics for incremental repartitioning

In evaluating the performance of the incremental repartition-
ing, previous works [5,13] only measure the percentage of reduc-
tion in DTs. However, this single measure fails to imply any mean-
ing conclusion about how the impact of distributed transaction is
minimised. Further, there are nomeasures for overall load-balance
and data migrations. We propose three independent metrics to
measure the successive repartitioning quality achieving three dis-
tinct objectives—(1) minimise the impact of DTs; (2) minimise
load-imbalance; and (3) minimise the number of physical data mi-
grations. The first metric measures the impact associating the fre-
quency of DTs and their related spanning cost which is directly
related to system resource consumption. The second metric mea-
sures the tuple-level load distribution over the set of servers us-
ing coefficient of variation which effectively shows the dispersion
of data load over successive period of observations. The third met-
ric measures the mean inter-server data migrations for successive
repartitioning processes. By combining all three aforementioned
mentionedmetrics, a compositemetric is also proposedwhichwill
able tell us the required combination of different workload repre-
sentations and cluster-to-partitionmapping strategies for a partic-
ular incremental repartitioning cycle to achieve a certain objective.
The detail modelling follows in below:

4.8.1. The impact of distributed transaction
Considering the formal definitions provided in Section 4.1, for

any given τdi wemultiply the spanning cost s(τi)with its frequency

430 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
Table 3
Transactional repetition statistics for different values of p given ⟨R, p, W, U⟩ = ⟨1, 3600, 0.25⟩.

p 0.05 0.10 0.15 0.20 0.25

Number of unique transactions used for repetition, U′ 864 756 576 324 0
Mean inter-repetition interval 768.1072 645.5693 474.8184 261.9204 3600
Mean repetition frequency 4.6868 5.5764 7.5818 13.7446 1
within W, f (τdi) to get the total cost of distributed transaction for
τdi . Here, s(τdi) = Sτdi

= {∀v ∈ τ : a | ∃a∃b∃c δa,b,c = v} which
denotes the number of physical servers involved in processing τdi ,
whereas, s(τd̂i) = 1 for any non-distributed transaction. Note that,
in reality this cost represents the overhead of I/O over the network
while processing the DTs. Eq. (4) defines the spanning cost of Td
within W for all τdi ∈ Td

c(Td) =

∀τdi∈Td

f (τdi)s(τdi). (4)

Similarly, (5) denotes c(Td̂) for all τd̂i ∈ Td̂

c(Td̂) =

∀τd̂i

∈Td̂

f (τd̂i). (5)

Finally, the impact of distributed transaction is defined as:

Id(W) =
c(Td)

c(Td) + c(Td̂)
. (6)

According to the definition in (6), the impact of distributed
transaction is estimated in real domainwithin the range [0, 1]; the
lower and upper limit are reached when there is no distributed
transaction (Td = φ) and no non-distributed transaction (Td̂ =

φ), respectively. This impact metric, however, suffers from the
following shortcomings:

1. It is insensitive to the server spanning cost of the dis-
tributed transactions when they significantly outnumber non-
distributed transactions, i.e., |Td| ≫ |Td̂|. For example, when
90% of transactions are distributed, the impact metric Id(W)
varies within a very narrow range of [0.95, 1).

2. It is unstable when observed in a sliding window as the
frequency f (τ) of each transaction τ is estimated locally within
the window, without considering the trend. For example, the
impact metric in two reasonably overlapped windows with the
same set of unique transactions may vary significantly due to
frequency differences.

It is, therefore, reasonable for this paper to deviate from the
definition of impact we presented in its preliminary version [27].
The first shortcoming is addressed by expressing the impact
relative to the worst scenario, when every transaction is spanned
across all the servers S. The second problem is mitigated by
estimating the frequency of a transaction at the current instance
from its expected period of recurrence, calculated from the
exponential moving average of its so far observed periods.

Let tτ (k) denote the time of the kth occurrence of the
transaction τ in the system from the start of the system. Its
observed period rτ (k) and expected period of recurrence r̃τ (k) is
updated as follows:

rτ (k) = tτ (k) − tτ (k − 1) (7)

for k > 1 and

r̃(k) =

U′ k = 1
αr(k) + (1 − α)r̃(k − 1) k > 1 (8)

where the coefficient α represents the degree of weighting
decrease, a constant smoothing factor between 0 and 1; a higher
α discounts older observations faster. The expected period of
recurrence is initialised with the number of unique recurring
(not new) transactions U′, derived in (3) from the target number
of unique transactions U and the average number of new
transactions added in the observation window W , under uniform
recurrence assumption.

Now, let Tu = {τu1 , . . . , τu|Tu |
} be the set of unique transactions

inW . Wemay now estimate the impact of distributed transactions
in W as

Id(W) =

∀j

s(τuj)f (τuj)

|S|

∀j

f (τuj)

=

∀j

s(τuj)/r̃τuj (kj)

∀j

|S|/r̃τuj

 (9)

where kj denotes the number of occurrences of unique transaction
τuj from the start of the system. Note that, according to (8), Id(W)
is bounded in the range [1/|S|, 1] and hence it is also an indicator
of system resource consumption due to a certain transactional
workload.

4.8.2. Server-level load-balance
The measure of load-balance across the physical servers is

determined from the growth of the data volume with the set of
physical servers. If we compute the standard deviation of data
volume σ|DS | for all the physical servers, then, the variation of
distribution of tuples within the servers can be observed. The
coefficient of variation (Cv) defines the ratio between σ|DS | and
µ|DS | for all S under deployment, and independent of the unit of
measurement.Cv can tell the variability of tuple distributionwithin
the servers in relation to the mean data volume µ|DS |. Eq. (10)
determines the Cv of the server-level load-balance of the entire
database cluster independent of any observation instance.

Lb =
σ|DS |

µ|DS |
(10)

where

µ|DS | =
1
n

n
i=1

|DSi |

σ|DS | =

1
n

n
i=1

|DSi | − µ|DS |

2
.

4.8.3. Inter-server data migrations
At any W , the total of inter-server data migrations within a

repartitioning process can be normalised by dividing the total
number inter-server data migrations by the mean data volume
µ|DS |. As shown in (11), Dm is the inter-server data migration
metric with respect to an observed W during a particular
repartitioning process.

Dm =
Mv

µ|DS |
(11)

where Mv is the total number of migrations during the observed
W .

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 431
Fig. 6. Combined effect of Id, Lb , and Dm through composite metric Cm . Note that, lower values of Cm indicate better solutions. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
4.8.4. Composite metric
Let Cm be the compositemetricwithweight factorsωId , ωLb , and

ωDm respectively for the objective measures Id, Lb, and Dm where
ωId + ωLb + ωDm = 1 providing two degrees of freedom to choose
between different repartitioning goals. Given the application and
system requirements, system administrators can set specific goal
towards achieving certain quality objectives—minimise Id, Lb, or
Dm for the incremental repartitioning process. Based on different
weight distributions, it is thus possible to find a repartitioning
sweet-spot preferring particular choices of workload network
representation and cluster-to-partition mapping strategy. By fine
tuning the combinations in weight distribution one can instantly
tackle unpredictable situations by tweaking the direction of
incremental repartitioning process to maintain acceptable level of
transactional services. We define the Cm as follows:

Cm = ωId Id + ωLbLb + ωDmDm. (12)

Based on our preliminary paper [27], the combined effect of
Id, Lb, and Dm is examined using (12) with different combinations
of weight factors such that ωId + ωLb + ωDm = 1. Fig. 6
shows the resulting measure of Cm in a 2-d perspective plot
using coloured scale where Lb and Id are plotted in the X-axis
and Y -axis respectively. The locations presenting the values of
Dm can be determined by calculating 1 − (ωId + ωLb) in the
individual subplots. We can set specific preferences to prioritise
one particular repartitioning quality measure over other. Individual
extremes of Id, Lb, and Dm can be found at (1, 0), (0, 1), and (0, 0)
locations. By following the colour codes from the legend, one can
easily identify how individual repartitioning objectives would be
met.

From the plots, we can also identify the repartitioning choices
for general-purpose OLTP application as GR-MSM and GR-RM
followed by CHR-MSM and CHR-RM, while all of the HR based
settings are highly tunable depending on the repartitioning
objectives in response to different administrative situations. A key
observation here is that, the choices of workload representation
andmapping strategy are not bounded to any specific combination.
To confirm this, two-way ANOVA test was conducted and later
the interaction plots were analysed [27]. However, there was
hardly any true evidence of interactions between the choices of
representation and mapping strategy. Results from ANOVA table
also support this finding. These series of observations strongly
support the arguments presented in Sections 3 and 4, and justifies
the goal of sensitivity analysis within a broad design space.

5. Experimental results

We evaluate the performance of the proposed incremental
repartitioning methods using simulations. We design and develop

432 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
Fig. 7. An overview of the simulation framework.

a novel simulation platform using SSJ [28] capable of driving
synthetic transactional workloads into distributed OLTP database
cluster to evaluate different repartitioning algorithms. Using a
parametric representation of the workload, underlying database,
and system under test, we simulate a distributed OLTP database
deployed in |S| physical servers with a range or consistent-
hash based initial data partitioning and supports workload-aware
incremental repartitioning. Fig. 7 presents a high-level overview of
the database simulation framework.

5.1. Workload and transaction profile

The simulation setup consist of distributed OLTP database and
a workload generation process mimicking a scaled TPC-C [29]
benchmark workload. A typical TPC-C database contains 9 tables,
5 transactions and simulates a order-processing transactional
system within geo-graphically distributed districts and associated
warehouses. The schema diagram for the considered TPC-C
benchmark is shown in Fig. 8. Among the nine tables ‘Stock’
and ‘Order-Line’ tables grow faster in volume, thus all the
logical database partitions are not homogeneous in size while the
database is initially range partitioned.

New tuples are also inserted into ‘Order’ and ‘Order-Line’
tables using the ‘New-Order Transaction’ which usually occupies
nearly 44.5% of the workload. However, all the 90 partitions
are distributed equally within the physical servers following a
round-robin placement strategy thus ensures equal load at the
very beginning of the database life cycle. The five transactions
are weighted from heavy to light (in terms of processing) and
occur in high to low frequencies. Two of the most high frequent
transactions have strict response time requirements and covers
almost 87.6% of the total generated transactions. The synthetic data
generation process follows Zipf’s law for generating ‘Warehouse’
and ‘Item’ tables’ data and use the table relationship to generate
others. We use the transaction generation model described at
Section 4.7 with a parameter combination of ⟨R, U, W, p⟩ =

⟨1, 0.25, 3600, 0.15⟩ for simulation purpose.

5.2. Simulation setup

We use both range and consistent-hash based initial data
partitioning to evaluate four different scenarios to evaluate the
proposed incremental repartitioning methods. Table 4 lists the
related simulation parameters. Note that, tuple-level replication
is not use in these settings as discussed in Sections 1 and 4.
We simulate range and consistent-hash partitioned OLTP databases
following two strategies – (1) no repartitioning or static (i.e., a
single) repartitioning, and (2) incremental repartitioning – hourly
or based on a defined threshold. We consider No Repartitioning
Fig. 8. Schema diagram of the TPC-C workload profile.

Table 4
Key simulation parameters.

Workload TPC-C (Scale: 0.01)
Database tables 9
Number of physical servers, S 4
Partition assignment to server Round-robin

Initial data partitioning

Range
(36 Partitions)
Consistent-hash
(16 Partitions)

Workload modelling GR, HR, CHR
Cluster-to-Partition mappings RM, MCM, MSM
⟨R, U, W, p⟩ ⟨1, 0.25, 3600, 0.15⟩
User defined Id threshold 2/S
Smoothing factor for r̃, α 0.4
Compression level, Cl 6
Repartitioning schemes NR, SR, HR, TR
Database warm-up period 03 h
Database operational period 24 h

(NR) and Static Repartitioning (SR) schemes as the baseline
for comparing Hourly Repartitioning (HR), and Threshold-based
Repartitioning (TR) based incremental repartitioning strategies. In
SR the database is repartitioned only once following the end of
initial warm-up period and remain static for the remaining of
its lifetime. As a proactive approach, HR repartition the database
at the end of each observation window regardless of whether
the value of Id is below the threshold or not. This eventually
reveals the highest ability of any data migration strategy to
reduce the impact of distributed transactions in a successive
manner. Finally, TR works upon an user defined value of Id and
only reacts when the per transaction per unit time Id increases
over the set threshold. Furthermore, we use metis [30] and
hmetis [31] k-way min-cut clustering libraries with their default
settings. These comprehensive analyses help to understand the
applicability of incremental database repartitioning within a wide
varieties of settings. We aim to evaluate the effectiveness of the
proposed techniques with respect to—Id, Lb, and Dm (as detailed
in Section 4.8) for consecutive incremental repartitioning cycles
based on (7), (10), and (11). Hence, we do not compare the results
against the performance measures like transactional throughput
and latency.

5.3. Result analysis

We simulate OLTP databases with two different initial data
partitioning schemes—(1) range, and (2) consistent-hash. We adopt
the following definition of range and consistent-hash schemes for

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 433
initial data partitioning in the simulation. Range scheme partition
each database table into a number of logical partitions with fixed
volume size based on the total number physical servers allocated.
When data volume reaches its bound a partition split takes place
to create two new equal sized logical partitions, and later the
partition management module can redistribute the partitions for
load-balance purpose. Consistent-hash, on the other hand, starts
with a predefined number of logical partitions with very large data
volume limit. For example, a consistent-hash ringmadewith ‘SHA-
1’ has a bit space 2160 and having 16 fixed logical partitions each of
them can hold up to 2160/16 data rows of a partitioned database.

In terms of scalability management, a new physical server can
be easily added by redistributing only a fixed amount of data
tuples within the cluster while consistent-hash scheme is in use.
Data lookup process is also distributed and highly scalable as
the consistent-hash function never changes. On the contrary, a
centralised lookup server is required for range scheme and large
volume of data migrations are required while adding a new server
in the system. By adopting the proposed distributed data lookup
method based on the concept of roaming (detailed in Section 4.6),
we manage to include both of these data partitioning schemes
into the simulation model. To clearly distinguish the difference
between different incremental repartitioning schemes and data
migration strategies we do not consider any workload variation
during the lifetime of the simulated database. We also disable
replication at the tuple level so that the actual performance of
graph or hypergraphmin-cut based clustering can be revealed.We
compare four different repartitioning scenarios in the conducted
experiments. Without adopting any repartitioning scheme at all
the underlying database maintains a steady Id over its lifetime.
By applying any repartitioning scheme within this steady state
causes data redistribution to minimise the value of Id, and our
goal is to find out how a static, proactive and reactive approach
fit into this decision space. We examine the performance of 9
different incremental repartitioning schemes under 4 categories
for both range and consistent-hash based partitioned databases.
While setting the user-define threshold for Id we prefer to set it
as |S|/2 as it also means the target threshold should be such that,
on average each transaction only spans half of the physical servers
thus maintains a balance for physical resource consumptions.

5.3.1. Range partitioned database
Fig. 9(a) demonstrates the impact of distributed transactions

for range partitioned database. As we observe, the value of Id
remains around 0.7 for the entire lifetime of the database if no
repartitioning scheme is applied. This is the worst-case scenario
according to the natural transactional properties of the underlying
database. A single repartitioning step can hold down the rise of
Id for a certain amount of time, after that it gradually touches
the margin again. Surprisingly, for RM data migration techniques
and GR-MSM the increase of Id is beyond 0.7 mark which also
indicates that the SR is rather worse than having no repartitioning
at all for some cases. Both HR and TR strategies for RM and MSM
based data migrations reduce the value of Id within the range of
0.65 0.60 but not below that. Hence, it is the maximum ability
of these repartitioning schemes to hold down the increase of Id
by redistributing data tuples within a database for this particular
workload pattern. MCM based strategies are the only incremental
repartitioning technique that able to hold down Id below the
threshold margin. As MCM strategy tries to gather similar data
tupleswithin a single server over the lifetime,HR tends to decrease
Id up to its lower bound. TR for MCM strategies, on the other
hand,works as anticipated and perform incremental repartitioning
whenever Id suppresses the user-defined threshold level. For
all the MCM strategies under this scheme have 9 incremental
repartitioning cycles over the period of 24 h.
The server-level load-balance and inter-server data migration
statistics are presented in Fig. 10(b) using (6) and (7). From the
results it is clear that both RM andMSM based strategies maintain
the load-balance for all workload representation types for both HR
and TR schemes. In case ofMCM, severe load-imbalance occurs for
HR scheme because of the tendency to migrate more and more
data tuples into the same physical machine over the successive
repartitioning cycles. Initial Range partitioning also produces
uneven sized logical partitions which also play an inherent role
here as we make the decision of data migration at partition level.
TR, on the other hand, perform better and the mean values for all
workload representations are very close to SR technique.

In terms of inter-server data migrations, both RM and MSM
strategies perform very similarly although the later exhibits
slightly less movements than the former. For all the cases ofMCM,
data migrations kept very low although TR scheme has a higher
range fluctuations comparing to HR. In overall, the proposed MCM
strategy works very well for Range partitioned OLTP database that
adopts TR in terms of reducing the overall impact of distributed
transaction, maintain adequate server-level load-balance, and
minimum inter-server data migrations.

5.3.2. Consistent-hash partitioned database
We compare the overall impact of distributed transactions in a

consistent-hash partitioned OLTP database in Fig. 10(a). While NR
scheme is applied, Id maintains a steady margin just above 0.8 for
all the scenarios which is higher than a Range partitioned system
as shown in Fig. 9(a) and is expected. Although SR reduces the
margin of Id in between 0.7 0.75 for both RM and MSM strategies
while in between 0.65 0.7 for MCM, but its a matter of time when
Id gradually increase to reach the NR margin again. RM and MSM
strategies perform similarly while MSM tends to indicate slightly
better results. However, both of them fail to reduce Id below the
user-defined threshold limit for both HR and TR schemes. Similar
to the Range partitioned database, MCM strategy performs well
for all of the workload representations. Although, on average 15
repartitioning cycles are required for TR scheme comparing to
the results of Fig. 9(a), but in overall MCM is the only strategy
that is capable of holding any preset Id threshold by the system
administrator. HR scheme also perform similar to that of Fig. 9(a)
and continue to reduce Id in incremental repartitioning cycles for
all workload representation types.

While analysing server-level load-balance as shown in Fig. 10(b),
both RM andMSM strategies work very strictly in maintaining the
ridge load-balance adopted by the initial consistent-hash data par-
titioning for all the cases. Although MCM strategies increases the
flexibility of being balanced, however, the TR scheme continues to
show better control over load-imbalance than the proactive HR ap-
proach. In terms of inter-server data migrations, MSM strategies
perform slightly better than the RM ones, however both of them
require a good amount of physical data migrations between the
server tomaintain a strict load-balance criteria. On the other hand,
the flexibility adopted by MCM set it apart and by performing less
data migrations thus adopting slight load-imbalance it can still re-
duce the impact of distributed transactions in a controlled man-
ner. In comparing the reactive TR schemewith the proactive HR one,
inter-server data migrations are higher in the former.

5.4. Remarks on experimental results

From the above discussed experimental analysis it is clear
that TR based MCM strategy is better suited for all kind of
databases—range or consistent-hash partitioned. In comparison
with the proactive approach, reactive incremental cycles able to
maintain a user-defined Id threshold while keep constant check on
the server-level load-balance with necessary amount of physical

434 J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435
Fig. 9. Comparison of different incremental repartitioning schemes in a range partitioned shared-nothing OLTP database cluster for observing the variations of (a) impact
of distributed transactions; (b) server-level load balance; and (c) inter-server data migrations.
Fig. 10. Comparison of different incremental repartitioning schemes in a consistent-hash partitioned shared-nothing OLTP database cluster for observing the variations of
(a) impact of distributed transactions; (b) server-level load-balance and (c) inter-server data migrations.
data migrations. In terms of workload representations, graph
network representation is somehow ambiguous and not capable
in producing the exact workload network, therefore, in sever cases
the results are not consistent with the expected outcomes. For HR,
although it represents the exactworkload network but this provide
more flexibility to the external min-cut libraries to produce such
clusters which require higher amount of physical data migrations
to maintain adequate load-balance. CHR, on the other hand,
provide less flexibility for the external libraries as it combines
inter-related hyper edges together and thus produce better results
in reducing the overall impact of distributed transactions. In
overall, TR based CHR-MCM incremental repartitioning shows
better control and adaptability to both range and consistent-hash
partitioned databases in a reactivemanner.
6. Conclusions and future work

In this paper, we present a workload-aware incremental repar-
titioning framework for OLTP databases which minimises—(1)
the impact of DTs using the k-way balanced min-cut clustering;
(2) the overall load-imbalance through the randomness of the
one-to-one cluster-to-partition mapping strategies; and (3) the
physical data migrations by applying heuristics. Our innovative
transaction classification technique ensures global minimisation
in overall load-imbalance and data migrations comparing to the
worst-case scenario of a Static Partitioning framework implement-
ing random cluster-to-partition mapping for different workload
representations. The elaborate modelling approach clearly iden-
tifies the inter-related goals within the repartitioning process,

J. Kamal et al. / Future Generation Computer Systems 56 (2016) 421–435 435
and provides effective heuristics to achieve them based on op-
erational requirements. By adopting the concept of roaming, the
proposed distributed data lookup technique transparently decen-
tralise lookup operations from the distributed transaction coordi-
nator guaranteeing high-scalability. Our philosophical arguments
broaden the decision space with comprehensive sensitivity anal-
ysis by combining different workload representations and map-
ping strategies. The proposed set of quality metrics presents a
sophisticated way to measure the quality of successive reparti-
tioning, and the use of composite metric shows an effective way
of operational intelligence for OLTP applications suffering from
dynamic workload behaviours. For seamlessly evaluate the per-
formance of any graph min-cut based incremental repartitioning
we develop a generic transaction generation model for simulat-
ing OLTP partitioned databases which ensures avoiding any su-
perfluous effects of external clustering libraries. Later, our detail
sensitivity analysis and comparing the proposed methods in both
range and consistent-hash based partitioned databases show the
effectiveness of incremental repartitioning for achieving scalable
transactional processing for modern OLTP applications. Our future
works include—(1) analysis of workload networks to understand
the underlying community structures for effective repartitioning,
(2) utilise data stream mining for improved transaction classifica-
tion and association rule based incremental repartitioning.

References

[1] IBM Data Hub, www.ibmbigdatahub.com/infographic/four-vs-big-data
[Online: Last accessed 2015-03-02].

[2] L. Gu, D. Zeng, P. Li, S. Guo, Cost minimization for big data processing in
geo-distributed data centers, IEEE Trans. Emerging Top. Comput. 2 (3) (2014)
314–323.

[3] R. Johnson, I. Pandis, A. Ailamaki, Eliminating unscalable communication in
transaction processing, VLDB J. 23 (1) (2014) 1–23.

[4] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, first ed.,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[5] C. Curino, E. Jones, Y. Zhang, S. Madden, Schism: a workload-driven approach
to database replication and partitioning, Proc. VLDB Endow. 3 (1–2) (2010)
48–57.

[6] A. Quamar, K.A. Kumar, A. Deshpande, SWORD: scalable workload-aware
data placement for transactional workloads, in: Proceedings of the 16th
International Conference on Extending Database Technology, EDBT’13, ACM,
NY, USA, 2013, pp. 430–441.

[7] Vitess—scaling MySQL databases for large scale web services,
https://github.com/youtube/vitess [Online: Last accessed 2015-03-02].

[8] MySQL toolkit for managing billions of rows and hundreds of database
machines. https://github.com/tumblr/jetpants [Online: Last accessed 2015-
03-02].

[9] A flexible sharding framework for creating eventually-consistent distributed
datastores. https://github.com/twitter/gizzard/ [Online: Last accessed 2015-
03-02].

[10] Apache Giraph. http://giraph.apache.org/ [Online: Last accessed 2015-03-02].
[11] P. Scheuermann, G. Weikum, P. Zabback, Data partitioning and load balancing

in parallel disk systems, VLDB J. 7 (1) (1998) 48–66.
[12] M. Mehta, D.J. DeWitt, Data placement in shared-nothing parallel database

systems, VLDB J. 6 (1) (1997) 53–72.
[13] K.A. Kumar, A. Quamar, A. Deshpande, S. Khuller, Sword:workload-aware data

placement and replica selection for cloud data management systems, VLDB J.
23 (6) (2014) 845–870.

[14] A. Pavlo, C. Curino, S. Zdonik, Skew-aware automatic database partitioning
in shared-nothing, parallel OLTP systems, in: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD’12, ACM,
NY, USA, 2012, pp. 61–72.

[15] T. Rafiq, Elasca: Workload-aware elastic scalability for partition based
database systems (Master’s thesis), University of Waterloo, Canada, 2013,
http://uwspace.uwaterloo.ca/handle/10012/7525.

[16] P. Tözün, I. Pandis, R. Johnson, A. Ailamaki, Scalable and dynamically balanced
shared-everything oltp with physiological partitioning, VLDB J. 22 (2) (2013)
151–175.

[17] I. Pandis, R. Johnson, N. Hardavellas, A. Ailamaki, Data-oriented transaction
execution, Proc. VLDB Endow. 3 (1–2) (2010) 928–939.
[18] J.M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, P.
Rodriguez, The little engine(s) that could: Scaling online social networks,
IEEE/ACM Trans. Netw. (TON) 20 (4) (2012) 1162–1175.

[19] A. Turk, R.O. Selvitopi, H. Ferhatosmanoglu, C. Aykanat, Temporal workload-
aware replicated partitioning for social networks, IEEE Trans. Knowl. Data Eng.
26 (11) (2014) 2832–2845.

[20] B.P. Swift, Data placement in a scalable transactional data store
(Master’s thesis), Vrije Universiteit, Amsterdam, Netherland, 2012,
http://www.globule.org/publi/DPSTDS_master2012.pdf.

[21] Roaming in GSM Network. http://en.wikipedia.org/wiki/Roaming [Online:
Last accessed 2015-03-02].

[22] M. Nicola, M. Jarke, Performance modeling of distributed and replicated
databases, IEEE Trans. Knowl. Data Eng. 12 (4) (2000) 645–672.

[23] X/Open XA. http://en.wikipedia.org/wiki/X/Open_XA [Online: Last accessed
2015-03-02].

[24] Open Database Connectivity. http://en.wikipedia.org/wiki/Open_Database_
Connectivity [Online: Last accessed 2015-03-02].

[25] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, D. Lewin, Consistent
hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web, in: Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, STOC’97, ACM, NY, USA, 1997,
pp. 654–663.

[26] Mobile IP. http://en.wikipedia.org/wiki/Mobile_IP [Online: Last accessed
2015-03-02].

[27] J. Kamal,M.Murshed, R. Buyya,Workload-aware incremental repartitioning of
shared-nothing distributed databases for scalable cloud applications, in: 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC,
2014, pp. 213–222.

[28] SSJ: Stochastic Simulation in Java. http://simul.iro.umontreal.ca/ssj/indexe.
html [Online: Last accessed 2015-03-02].

[29] TPC-C—on-line transaction processing benchmark. http://www.tpc.org/
tpcc/ [Online: Last accessed 2015-03-02].

[30] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, J. Parallel Distrib. Comput. 48 (1) (1998) 96–129.

[31] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Proceed-
ings of the 36th Annual ACM/IEEE Design Automation Conference, DAC’99,
ACM, NY, USA, 1999, pp. 343–348.

Joarder Kamal received his Bachelor of Science in Com-
puter Science and Engineering degree from Military In-
stitute of Science and Technology, University of Dhaka,
Bangladesh in 2008. He received his Masters by Re-
search in Computing Science degree from Staffordshire
University, United Kingdom in 2011. He also worked as a
telecommunication engineer for network design and in-
tegration between 2008 to 2012. He is currently a final
year Ph.D. student at the Faculty of Information Technol-
ogy, Monash University, Australia. His research interests
include large-scale distributed systems, big data analytic,

machine learning, and mobile computing.

ManzurMurshed received theB.Sc. Engg. (Hons) degree in
computer science and engineering from Bangladesh Uni-
versity of Engineering and Technology, Dhaka, Bangladesh,
in 1994 and the Ph.D. degree in computer science from
the Australian National University, Canberra, Australia, in
1999. He is currently a Robert HT Smith Professor and Per-
sonal Chair at the Faculty of Science and Technology, Fed-
eration University Australia. His major research interests
are in the fields of video technology, information theory,
wireless communications, distributed computing, and se-
curity and privacy. He has so far published 200 refereed re-

search papers and received more than $1M nationally competitive research grants.

RajkumarBuyya is a Fellowof IEEE, Professor of Computer
Science and Software Engineering, Future Fellow of the
Australian Research Council, and Director of the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory
at theUniversity ofMelbourne, Australia. He is also serving
as the founding CEO of Manjrasoft, a spin-off company of
the University, commercialising its innovations in Cloud
Computing. He has authored over 450 publications and
four text books. He is one of the highly cited authors in
computer science and software engineering worldwide
(h-index + 92, 41400+ citations). He has served as the

foundation Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing and now
serving as Co-EiC of Journal of Software: Practice and Experience.

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref2
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref3
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref4
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref5
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref6
https://github.com/youtube/vitess
https://github.com/tumblr/jetpants
https://github.com/twitter/gizzard/
http://giraph.apache.org/
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref11
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref12
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref13
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref14
http://uwspace.uwaterloo.ca/handle/10012/7525
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref16
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref17
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref18
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref19
http://www.globule.org/publi/DPSTDS_master2012.pdf
http://en.wikipedia.org/wiki/Roaming
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref22
http://en.wikipedia.org/wiki/X/Open_XA
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref25
http://en.wikipedia.org/wiki/Mobile_IP
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://simul.iro.umontreal.ca/ssj/indexe.html
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref30
http://refhub.elsevier.com/S0167-739X(15)00304-0/sbref31

	Workload-aware incremental repartitioning of shared-nothing distributed databases for scalable OLTP applications
	Introduction
	Related works
	System architecture
	Workload-aware incremental repartitioning
	Problem formulation
	Workload modelling
	Graph representation
	Hypergraph representation
	Compressed hypergraph representation

	Proactive transaction classification
	 k -way balanced clustering of workload
	Cluster-to-partition mapping strategies
	Random mapping (RM)
	Maximum column mapping (MCM)
	Maximum submatrix mapping (MSM)

	Distributed data lookup
	Transaction generation model
	Sensitivity analysis

	Quality metrics for incremental repartitioning
	The impact of distributed transaction
	Server-level load-balance
	Inter-server data migrations
	Composite metric

	Experimental results
	Workload and transaction profile
	Simulation setup
	Result analysis
	Range partitioned database
	Consistent-hash partitioned database

	Remarks on experimental results

	Conclusions and future work
	References

