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Abstract
Cloud computing has become a critical infrastructure for modern society, like
electric power grids and roads. As the backbone of the modern economy, it offers
subscription-based computing services anytime, anywhere, on a pay-as-you-go
basis. Its use is growing exponentially with the continued development of new
classes of applications driven by a huge number of emerging networked devices.
However, the success of Cloud computing has created a new global energy chal-
lenge, as it comes at the cost of vast energy usage. Currently, data centres hosting
Cloud services world-wide consume more energy than most countries. Glob-
ally, by 2025, they are projected to consume 20% of global electricity and emit
up to 5.5% of the world’s carbon emissions. In addition, a significant part of the
energy consumed is transformed into heat which leads to operational problems,
including a reduction in system reliability and the life expectancy of devices,
and escalation in cooling requirements. Therefore, for the future generations of
Cloud computing to address the environmental and operational consequences
of such significant energy usage, they must become energy-efficient and envi-
ronmentally sustainable while continuing to deliver high-quality services. In
this article, we propose a vision for learning-centric approach for the integrated
management of new generation Cloud computing environments to reduce their
energy consumption and carbon footprint while delivering service quality guar-
antees. In this article, we identify the dimensions and key issues of integrated
resource management and our envisioned approaches to address them. We
present a conceptual architecture for energy-efficient new generation Clouds
and early results on the integrated management of resources and workloads that
evidence its potential benefits towards energy efficiency and sustainability.
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1 INTRODUCTION

Cloud computing is pervasive in our economy and society as it hosts a wide variety of applications including enterprise,
banking, transport and healthcare, and delivers their services to consumers. Applications in the Cloud perform are sig-
nificantly faster for users as they tap into the on-demand processing power of multiple servers on the backend. Further,
to support emerging applications driven by IoT,1 Big Data, and artificial intelligence (AI), major Cloud service providers
such as Amazon and Microsoft are deploying data centres (DCs) worldwide.

However, Cloud computing is causing an enormous escalation of energy usage, with increasingly pervasive front-end
client devices, such as smartphones, interacting with DCs’ back-end. A typical DC consumes as much energy as 25,000
households.2 According to the Greenpeace, DCs world-wide consume more energy than most countries and only the four
largest economies (USA, China, Russia, Japan) surpass them in their annual electricity usage. Furthermore, there are
over 8 million active DCs world-wide3 and they are projected to grow over 12% per year. As their numbers and size grow,
they will be consuming an increasing amount of energy.

Due to excessive reliance on brown energy (fossil fuel-based), DCs significantly contribute to the greenhouse gas
emissions resulting in high carbon footprints (43 million tons of CO2/year growing at an annual rate of 11%), and
they are projected to contribute up to 5.5% of the world’s carbon emissions by 2025,4 and by 2030, they would con-
sume about 8000 TWh (see Figure 1).5 Thus, it is imperative to have strategies for DCs to reduce their carbon footprints
in our carbon-constrained future. Although harnessing renewable energy addresses this issue, its availability can be
intermittent, and energy efficiency within DCs also continues to remain a significant problem to be solved. Moreover,
93% of the energy used in DCs support ICT equipment operation and cooling6 (see Table 1). Therefore, we envi-
sion the reduction of the energy needs and carbon footprint substantially through the integrated management of all
resources.

Through this research, with focus on integrated energy efficient management of DC resources, we aim to bring
down the energy consumption of DCs world-wide up to 80%, from 8000 TWh (worst case) in 2030 to about 1200 TWh
(see Figure 1).5 Therefore, there is a need for a new approach for the management of DCs, where every component is
instrumented and dealt in an integrated manner to ensure the energy-efficient execution of applications.7

F I G U R E 1 Electricity use by DCs worldwide.

T A B L E 1 Data centre energy usage by its different components.

DC Components % Use

Servers 50

Cooling systems 35

Networks 8

Others (UPS, PDU, etc.) 7
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26 BUYYA et al.

F I G U R E 2 A distributed environment for enterprise and Smart * Applications with edge and cloud DCs.

With the emergence of pervasive IoT-based applications, demand for low-latency (i.e. near real-time) services has
increased tremendously8 and is creating a highly distributed environment (see Figure 2). Applications such as smart cars,
smart cities, and smart healthcare require edge-affinity to the DC services to meet their low latency quality of service
(QoS) requirements. Such developments will lead to the deployment of many DCs at the edge and across many regions
with different capabilities and energy sources. Monitoring agents (MA) monitors state of the data centre resources and
applications and continuously provides live data to and help to take the informed decisions for optimising data cen-
tre resources. Brokering agents (BAs) as part of a DC resource management seamlessly offload tasks to other DCs. By
dynamically offloading requests, they facilitate harnessing green energy, edge affinity, and exploiting the availability of a
smart grid’s energy at a low price. Thus, the proposed research approach enables the optimal use of resources, network
traffic reduction, service cost reduction, and increased operational efficiency, along with the reduction in DCs’ energy
consumption and carbon footprint, while delivering Cloud services that meet the QoS requirements of end users.

In this direction, this article introduces our vision towards energy efficiency and sustainability in the new generation
of DCs, including: (i) minimise energy consumption through sustainable use of resources while maintaining QoS demand
of users, (ii) investigate energy efficiency across all types of DC resources, application models and Cloud services and (iii)
achieve a paradigm shift in management systems from control-centric to dynamic learning-centric algorithms.

The rest of the article is organised as follows. Section 2 introduces the significance and innovations of our
energy-centric proposal. The dimensions of integrated management as well as the research questions that arise from
them are discussed in Section 3. In Section 4, we present our conceptual architecture for energy-efficient new genera-
tion Cloud computing. Section 5 identifies the key issues of integrated resource management systems and our envisioned
approaches to address them. A case study for critical-business applications is presented in Section 6 to demonstrate the
potential impact of the integrated resource management on energy efficiency. In Section 7, conclusions and guidelines
for future research are drawn.

2 SIGNIFICANCE AND INNOVATION OF THE PROPOSED VISION

In the state-of-the-art, systematic alignment for energy efficiency across all DC resources and service models with inte-
grated management has not been prioritised to date. Existing approaches are confined to energy efficiency at a ‘single’
level of the Cloud computing stack,9 that is, either at the infrastructure or platform level. In addition, they primarily focus
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BUYYA et al. 27

on a ‘single’ type of resource (e.g. server only) independently, without explicitly considering other types (e.g. cooling sys-
tems)10 and can achieve only up to 25% reduction in energy use.11 The same approach is followed while dealing with
users and their application workloads. Such approaches are limited in their effectiveness because of the complexity and
interrelationship between different elements of the Cloud computing stack and resources. They also lead to unintended
consequences such as the creation of hot spots, which can cause system failures and escalate cooling energy require-
ments. Therefore, to achieve significant reductions in energy consumption, in the range of 50%–80%, a quantum leap in
research is required. We propose to go beyond the current research boundaries to enable integrated management of major
power consuming elements of DCs – servers, cooling systems and networks – to enhance energy efficiency, resilience and
sustainability.

The innovations presented in this article will fundamentally change the way energy efficiency and sustainability are
aligned, engineered and realised in new generation Clouds. Through close synthesis of theory and practice, it will deliver
timely innovations for significant scientific, economic, environmental and societal impacts.

2.1 Delivering service quality guarantees

Clouds hosting time-critical and always-on applications need QoS guarantees such as availability, response time, cost,
throughput, etc., along with tolerating faults. We propose approaches that address service quality guarantees through the
development of QoS-driven provisioning and scheduling of resources along with energy-efficient techniques for execu-
tion of applications. We envision future DCs that are energy-efficient, resilient, available 24/7, and that have a minimal
impact on the environment at a time when the huge growth in Cloud computing is at odds with the world’s need for
a smaller carbon footprint. Achieving an efficient trade-off between the conflicting objectives of optimising energy effi-
ciency and minimising execution time/cost is challenging due to the inherent diversity associated with Cloud workloads,
and heterogeneity of underlying infrastructures. By harnessing geographically distributed DCs, we can route requests
with edge affinity and deliver time-critical and reliable services to users in a cost-efficient manner. Thus, the result-
ing scientific innovations are both timely and extremely important to provide a fault-tolerant scenario for new Cloud
infrastructures.

2.2 Integrated resource management for energy efficiency

One of the main sources of energy inefficiencies in DCs is that its servers are often underutilised, only using about
10%–50% of their capacity.12 This problem is amplified by the fact that their energy consumption is not in proportion
to their load (idle servers often consume up to 30 % of energy equivalent to their full load in virtualised Cloud environ-
ments13). Consolidation of virtual machines (VMs) is used to reduce the number of active servers and increase resource
utilisation to minimise server energy usage. However, this approach typically ignores other core components of high
energy use, such as networks and cooling systems. It also potentially increases the number of hot spots in DCs, increas-
ing the likelihood of server failure besides increasing cooling requirements. On the other hand, hotspot mitigation can
be performed by spreading load across servers and racks, but it will place communicating VMs far apart, which increases
network latency and deteriorates service quality. In this context, we would require novel integrated resource management
algorithms that considers all these elements and manages trade-offs. Through the interplay between user QoS require-
ments, workloads, energy sources, and IoT-enabled cooling systems, we can dynamically manage resources in time and
space dimensions.

2.3 New learning-based algorithms for Cloud resource management systems (RMS)

Data centres are enormously complex, and it is hard to manually fine-tune their parameters for energy efficiency and
performance. This is due to the large number of heterogeneous servers hosting a wide variety of applications and com-
plex interactions between servers, networks, and cooling systems. For example, just 10 pieces of equipment, each with
10 settings, would have 1010 possible configurations, a set of possibilities impossible to manually fine-tune. Current
heuristics/rule-based solutions are unable to provide high efficiency as they are static, manually fine-tuned and can-
not adjust to the complex dynamic contexts. We propose machine learning (ML) and reinforcement learning (RL)-based
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28 BUYYA et al.

methods to employ proactive measures and adapt to the complex dynamicity to deliver energy efficiency across all
resources and the whole system. These algorithms will be most efficient as they dynamically learn the complexity of
Cloud environments by incorporating the experience, the current status and the workload characteristics.

These innovations embody a set of highly novel theories, principles and techniques that together will produce
new learning-centric algorithms and systems for the integrated management of new generation Cloud computing
environments to reduce their energy consumption and carbon footprint.

3 DIMENSIONS AND RESEARCH CHALLENGES

Achieving sustainable and energy-efficient new generation Clouds is a complex challenge as it impacts from many
dimensions. Computing and cooling resources, application models, nature of workloads, deployment models, energy
sources, monitoring systems and user QoS demand are dimensions of integrated management identified in our research
as shown in Figure 3. Integrated management involves considering every aspect of all the elements and their effect on
other domains, making learning-centric approaches an interesting option to explore. This complex and challenging cloud
computing environment raises the following key research questions:

1. How to trade-off QoS requirements of different users?
2. Which is the most optimal physical machine (PM) for hosting a VM for a specific application and network model?
3. When to provision or de-provision resources for a given workload?
4. How to consolidate virtual resources (which, when and where) to reduce energy consumption without compromising

QoS?
5. What is the best operating frequency of computing resources to minimise energy and meet QoS?
6. How to manage/schedule workloads without creating hotspots while meeting the QoS of the applications?
7. How to accurately predict/estimate the thermal status of the Cloud data centre and the temperature of its resources?
8. What is the best temperature-aware approach for the placement of workloads to avoid failures/outages and minimise

cooling energy (reducing peak temperature).
9. How to harness temperature sensors data to reduce cooling systems’ energy consumption by varying the supply air

temperature?
10. How to organise workloads and harness diverse variable renewable energy sources (wind and solar power among

others) to minimise carbon footprint?
11. How to balance the load across geo-distributed DCs to ensure sustainability?

F I G U R E 3 Dimensions of integrated management.
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BUYYA et al. 29

4 ARCHITECTURAL FRAMEWORK

The aim of our vision is to consider all aspects of energy efficiency and sustainability in new generation Cloud comput-
ing across architectures, algorithms, software systems, and applications, dealing with device and system-wide resilience,
energy and thermal issues. To this end, our approach is driven by a set of key requirements: (1) energy efficiency across all
types of DC resources, Cloud services and application models, (2) shift from control-centric to dynamic learning centric
algorithms in system management and (3) sustainable use of resources of DCs to minimise energy consumption and car-
bon footprint and meet QoS demands of users. They can be met through integrated management of resources, interplay
between different service layers, and use of machine-learning based methods for proactive management of resources.

Figure 4 illustrates the high-level architectural framework guiding our approach and the main elements of the new
energy-efficient, integrated resource management system. From the top, service consumers define their QoS requirements
and access Cloud services, submitting their requests from anywhere in the world. Our proposed RMS is responsible for
energy-efficient management of user requests, applications, and all resources of DCs, which can be edge data centres
(EDCs) or remote Cloud data centres (CDCs) to deliver quality services. The RMS can only achieve its goals if algorithms
and techniques for energy-efficient Cloud computing are integrated at all levels of the Cloud stack, from the physical
layer (comprising DC’s computing, networking, and cooling resources) to the application layer. To this end, the DC must
contain heat sensors that monitor the temperature at different places, power sensors that monitor energy consumption
of servers and networking equipment, and programmable cooling systems.

F I G U R E 4 A data centre resource management system.
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30 BUYYA et al.

Our RMS implements the logic enabling fine grained control of cooling systems and load distribution across servers
to avoid hotspots. To ensure the QoS of accepted requests, the entry point of the RMS will be an admission control mod-
ule that filters out requests that cannot be served within the desired QoS. RMS takes care of provisioning of resources
and scheduling application tasks to suitable resources. As regular monitoring is critical in decision-making, RMS closely
monitors and manages the health and load of the servers and the status of the cooling system to proactively balance the
overall system for energy efficiency. A green resource broker agent handles the distribution of requests across multiple
DCs to reduce their carbon footprint and meet user QoS requirements.

5 RESEARCH ISSUES AND ENVISIONED APPROACHES AS FUTURE
DIRECTIONS

As we aim towards the development of our new integrated resource management system, we identified some issues in
essential areas related to energy efficiency that need to be addressed. In this section, we present the key issues and the
approaches we envision to solve them.

5.1 Workload and power-aware dynamic resource provisioning and placement

Clouds allocate resources to applications dynamically based on the users’ requirements. These resources are offered as
VMs or containers with various configurations ready to be leased and used as long as they are needed. This model calls for
a resource provisioning strategy that works together with the scheduling algorithm driven by QoS requirements. Provi-
sioning of virtual resources for user requests includes estimating the number of required resources and providing suitable
resources accordingly. A broad range of applications executed in Clouds differ from each other in terms of duration (rang-
ing from web transactions running for a fraction of a second to streaming applications that run continuously), the use
of resources (e.g. CPU or I/O-intensive), degree of parallelism and dependencies between tasks (which dictate the max-
imum number of tasks that can be executed concurrently). The huge variation in application characteristics means that
no single provisioning solution can optimise and support all of them. When the same provisioning approach is utilised
for different applications, they exhibit a huge difference in performance.14

To counter this limitation of ‘one size fits all’ provisioning, we aim to develop provisioning algorithms that are applica-
tion structure-aware and balance both QoS and energy utilisation. Provisioning of virtual machines and containers raises
another infrastructure issue, namely the placement of VMs. This problem includes the selection of the best-suited PM, that
is, server, for each VM, taking into consideration requirements of the VM, current usage and energy utilisation levels of
available servers in the DC, and the structure of applications to maintain the VMs-affinity for their interrelated commu-
nicating tasks. We aim to address this through placement policies to maintain meta-data of VMs containing information
about application topologies.

5.2 QoS-driven energy-efficient scheduling of applications

In creating elastic/scalable applications for execution on Clouds, a variety of application programming models, such as
task farming, workflow and stream-oriented models are used. Each of these models needs its own scheduling algorithm.
Most of the prior works15,16 have focused on the general problem of energy-efficient scheduling without focusing on
fine tuning the scheduling mechanisms to suit workload characteristics and all types of resources. To illustrate our
learning-based scheduling approach, let us consider a scheduling model for workflow-oriented applications, which are
common in scientific and business domains. In workflow applications, precedence constraints among tasks and cor-
responding inter-task communications are amongst the unique characteristics that need to be exploited to optimise
the utilisation of resources. Each workflow task can be either batch or stream-based, and their performance can vary
depending on the type of resources on which the tasks are scheduled.

As shown in Figure 5, our proposed deep reinforcement learning (DRL)-based RMS interacts with the DC environ-
ment to learn intelligent scheduling policies. Its key components are (1) scheduling agent, which observes the current
state of the system, takes an action (scheduling decision) and sends it to the application execution manager, and
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BUYYA et al. 31

F I G U R E 5 DRL-based energy-efficient scheduling system.

fetches a reward from the reward generator for the current action; (2) application execution manager, which takes care
of submission of tasks to the DC VMs and monitoring resource usage, resource availability and system health; and
(3) reward generator, which uses the monitoring system to generate RL reward that can be used to train RL-based
scheduling agents.

A common weakness of the existing DRL-based techniques17 is that their agents are provided with a limited repre-
sentation of the actual environment and as a result, agents learn suboptimal resource allocation policies. In contrast,
we will facilitate the agents to learn integrated resource allocation policies by formulating the state-spaces to incorpo-
rate the statuses of multiple components including servers, networks as well as cooling systems. The agents will learn
to optimise the utilisation of resources and establish the right trade-off among multiple conflicting objectives by learn-
ing through their interactions with the operating environments. We will create advanced reward structures coupled
with comprehensive state representations for expediting the learning process of the agents. The policies thus learnt
will surpass the limitations associated with human-designed heuristics and mathematical optimisations with high time
complexities. Whenever provisioned resources are unable to meet QoS requirements, the scheduler requests additional
resources from the resource provisioner and interacts with the power state manager to configure optimal frequencies
to execute tasks with minimal energy consumption. To this end we aim to develop QoS-aware scheduling policies to
enhance utilisation and energy efficiency of underlying DC infrastructures by leveraging the unique characteristics of
application models.

5.3 Application-aware management of power states of computing elements

The speed and power consumption of computing elements such as CPUs, GPUs, TPUs and memory are controlled
by regulating their clock frequencies and, accordingly, transitioning into different power states. However, their power
management is a complex phenomenon due to nonlinear power curves of different computing elements for different
applications. For instance, the execution time of compute-intensive tasks reduces linearly, whereas power consumption
reduces quadratically with reduction in CPU frequency.18 Hence, managing efficient power states becomes a significant
challenge in such conditions. In this direction, our proposed approach is to develop mechanisms for management of
power states of computing elements and schedule tasks in a power-aware manner to reduce the energy utilisation of DCs
through DVFS (dynamic voltage and frequency scaling).

A memory-intensive application would require higher memory frequency compared to CPU frequencies, and such
heterogeneity needs to be accounted for in the solution. In our recent work,19 we proposed data-driven ML techniques
for an energy-efficient frequency scaling of GPUs for commonly used benchmarking applications. We created prediction
models that learn different applications’ behaviour on different frequency settings, which helps the scheduler to configure
energy-efficient frequencies while meeting applications’ QoS requirements. Building on our recent work, we propose to
investigate how to dynamically configure operating frequencies and power states of different elements to execute a variety
of applications with minimal energy consumption.
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5.4 Energy-aware dynamic consolidation

Consolidation plays a vital role in minimising the DCs energy consumption as it focuses on how to minimise the num-
ber of active PMs hosting VMs so that inactive PMs can be shut down or placed into idle mode. This is an important
requirement as servers consume a significant amount of energy even at their lower utilisation. Consolidation helps to
utilise the active PMs efficiently by migrating VMs from underutilised PMs to suitable PMs. However, this should be
done without introducing significant migration overheads and ensuring service quality of applications. Hence, we pro-
pose to go beyond simply consolidating users’ applications based on what resources they currently require meeting their
current QoS requirements. Users’ activities and performance requirements both vary in time, in ways that may to some
extent be predictable. We aim to answer the question: Can the observed history of the application behaviour lead to bet-
ter workload consolidation? That is, can measurement lead to reduced physical resources required, improved application
performance, or reduced need for migration? We propose to address this issue by developing consolidation algorithms
that will use the information about the historical workload patterns and application behaviour to select which applica-
tions will share physical resources. These will minimise overlapping of the applications’ resource usage, and thus their
influence on each other, as well as reducing the amount of migration needed as applications’ need change. A consol-
idation algorithm can be designed as a centralised or decentralised algorithm, depending on the infrastructure and its
workload requirements. A consolidation algorithm needs to have knowledge of all the resources and workload status in
data centre, in such case, a centralised controller is feasible where we can aggregate information and take the informed
decisions accordingly.20 However, this may not be feasible or efficient in multi-cloud scenarios, where DCs are geograph-
ically distributed and may incur latency and communication overhead. A decentralised consolidation algorithm, on the
other hand, allows local communication and optimization among DCs,8 which can improve resource utilization and
performance.

In multi-component applications, VMs’ affinity needs to be maintained to reduce the network latency between their
components. In addition, consolidation techniques should also avoid creating hotspots as overutilisation may lead to
increased heat dissipation. Currently, these issues are addressed independently. In this regard, we aim to create integrated
consolidation policies that reduce energy consumption and the number of migrations while meeting QoS requirements
of applications.

5.5 Thermal-aware management of workloads and cooling systems

In DCs, IT resources such as servers dissipate an enormous amount of heat, rising CPU temperatures up to 100◦C.
This has a significant impact on the energy consumption of cooling systems. It also creates hot spots and triggers
CPU thermal throttling mechanisms decreasing CPU speed, causing performance degradation of applications, and
damage to silicon components of servers affecting the reliability of the system. These problems can be overcome by
thermal-aware workload management solutions, but they require accurate server temperature estimation under varied
workload conditions and managing the server load accordingly. Existing solutions rely on analytical or computa-
tional fluid dynamics-based techniques to estimate the ambient temperature of servers. As they are compute-intensive
and/or extremely sensitive to changes in the DC layout, they are not suitable for use in RMS making online/real-time
decisions.

In this context, we envision the deployment of heat and humidity IoT-sensors, and to enable system load and power
sensors on each server to monitor the environment and system activities. This data may be integrated with monitoring
systems and analysed to identify hotspots in the DC caused by uneven distribution of load across servers. We propose to
use the collected data and build data-driven ML models to predict server temperatures accurately. The runtime inference
of such models will be accurate and faster compared to the existing solutions. Our approach involves the development of
new thermal-management algorithms that monitor workloads and estimate the thermal state of physical nodes using ML
models and reallocate workload from the overheated nodes to others. We aim to leverage temperature variations between
different workloads and swap them at an appropriate time to control the temperature. Hardware level techniques, such
as DVFS, can lower the temperature when it surpasses the thermal threshold. They can be effectively used whenever the
QoS of hosted applications does not require processors to operate at full capacity. Along with workload management, we
propose algorithms and models to aid cooling-systems to configure the optimal parameters, including the selection of
suitable air temperature supply, and server fan speeds, for energy efficiency.
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5.6 Monitoring, analysis and actions for rebalancing the system

Integrated management of DCs require continuous monitoring of their resources, analysis of the monitored data, and
taking appropriate actions in runtime to increase efficiency. In this context our objective is to answer the question: How
the monitored data of various sensors can be used to better balancing of the data centre from an energy efficiency perspec-
tive? RMSs are highly dependent on infrastructure monitoring systems as they provide insights on how well resources
are delivering promised services. Moreover, learning-based algorithms such as ML techniques depend on the quality
and quantity of the data used to train the models. In DCs, getting access to such data are challenging due to (1) dif-
ferent resources (server, network elements), and cooling systems collect the data using different monitoring tools and
sensors, (2) lack of common semantics and standards between them and (3) the need for complex and tedious mecha-
nisms to unify these data in a meaningful manner. Hence, we envision a monitoring system leveraging existing platforms
that are agnostic to the underlying heterogeneity and combine different subsystems’ data with common semantics. This
integrated, monitored data will be fed to different RMS modules to analyse and take actions accordingly. For example,
in overload conditions, brownout-based algorithms will be used to deactivate the optional components of applications
for efficiency.

ML and RL algorithms face issues such as learning from limited data and cold-start problems. Specifically, RL algo-
rithms consume large amounts of time to learn efficient policies and face real-world challenges including: (1) safety
constraints that should never or at least rarely be violated, (2) the need for reward functions that are unspecified,
multi-objective, or risk-sensitive and (3) inferences that must happen in real-time at the control frequency of the system.21

To address these issues, we propose to create transfer learning and asynchronous multi-agent-based solutions and harness
the monitored data to train the RL agents in simulation to improve and perform better over time before real-world deploy-
ment. These algorithms will determine automated actions to rebalance the system. These include VM migration, load
balancing, and adjusting the setting of room cooling systems and the fan speed of servers interacting with RMS modules.

5.7 Harnessing multi-region edge and CDCs with varied energy sources

Cloud service providers have been deploying DCs in multiple regions to offer edge-oriented services especially targeting
IoT-based applications to support their low-latency requirements (see Figure 2). These edge DCs are often powered using
renewable energy at different times of a day depending on weather conditions. Hence, maximising renewable energy
usage is crucial to reduce their carbon footprint.22 However, renewable energy is intermittent and uncontrollable due
to dynamic weather conditions. This poses a significant challenge to Cloud workloads that run in the always-on mode.
Although energy storage system such as uninterrupted power supply (UPS) or dedicated battery storage systems can
deal with intermittent availability issue at a certain level,23 however such energy storage system can be expensive and
lead to energy leakage. Thus, it may not fully solve the intermittent availability issue of renewable energy. To address
this issue, we propose to explore workload offloading techniques across edge-cloud DCs to increase renewable energy
usage and maintain edge-affinity to users for their latency sensitive IoT workloads. This reduces the use of brown energy,
facilitates the widespread use of clean energy, and addresses the issue of intermittent availability. We aim to create pre-
diction models to forecast the availability of renewable energy at different DCs, workload level in DCs, and admit the
workloads into DCs accordingly. These policies may adopt job-delaying strategies in case of batch jobs, to the period
where renewable energy usage can be maximised. It is also essential to investigate how the choice of physical network
infrastructure and virtual network topology affect offloading costs (delay and energy) with the increased amount of
data transfer.

Edge-cloud data centres deployed at multiple regions provide an opportunity to reduce energy-related costs. The local
demand for electricity varies with time and weather conditions. This causes time-varying differences in the price of elec-
tricity24 at each location, along with different environmental costs (due to different sources of energy – coal, wind and
solar). This gives scope to adjust the load sent to each region to improve cost-efficiency. We envision algorithms for these
offloading decisions that consider the location of the user, the power efficiency of resources at each site, the energy mix,
taking advantage of renewable energy generation and managing energy storage according to its price variations,25 and the
number of servers currently powered-on in each region. This last factor is important to avoid excess switching of servers
on or off as loads shift. We also propose to investigate how this flexibility in electricity demand can allow Cloud operators
to become active participants in the smart power grid.
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6 CASE STUDY: ENERGY-EFFICIENT CLOUDS FOR BUSINESS- CRITICAL
APPLICATIONS

In this section, we present a use case of integrated resource management in the context of business-critical applica-
tions to demonstrate the impact of moving towards an energy-centric approach while maintaining the required QoS.
Business-critical applications are workloads that must necessarily be operational for the proper functioning of companies.
These applications involve front-end and back-end services and cover domains such as customer relationship manage-
ment, email, databases, and financial modelling and simulation. If the performance of these workloads (web servers,
mail servers, application servers, etc.) is compromised, then it can cause businesses to lose customers, productivity, and
revenue. Ensuring QoS for business-critical applications is therefore a major challenge in increasing the sustainability of
new-generation Clouds.

However, we are facing a scenario full of challenges for performance-centric approaches. The resource utilisation of
these applications is usually low but is very dynamic, with daily peaks exceeding the average CPU utilisation by up to 100
times.26 To reduce power consumption in these high variability scenarios, typical aggressive VM consolidation policies can
lead to two problems. On the one hand, VM oversubscription can lead to loss of QoS, which is unacceptable for this type of
workload. On the other hand, undesirable hot spots can be generated in the data centre, increasing cooling consumption,
and causing irreparable damage to equipment and service outages. From the above, we can note that energy-centric
approaches that are conscious of the integrated consumption and temperature of both IT and cooling systems are strategic
to provide reliable business-critical applications, while maximising the sustainability of the Clouds that execute them. In
this context, our case study illustrates some aspects of our vision, as the application-aware management of power states
of computing elements and the thermal-aware management of workloads and cooling systems.

6.1 Integrated thermal-aware resource management

Figure 6 shows the overview of the integrated resource management system in a Cloud DC. Integrated management
requires monitoring of both cooling and computing systems. In this scenario, we included the setpoint temperature of
the cooling system since its consumption and the thermal distribution of the data room depend on this parameter. The
inlet temperature of the servers is provided by a network of sensors. This temperature is relevant as it has an impact on
the temperature reached by the internal components of the servers such as CPUs. The monitoring system polls servers’
onboard sensors from the racks to obtain the necessary data to sense the thermal and power distribution of the data room,
and to train the models that should help us predict their behaviour. This monitoring system can feed both a digital twin,
to provide the current state of the DC, as well as the ML-based models. Thus, the models learn about the thermal and
power behaviour of the room to provide very accurate estimations.

The integrated resource management system uses the ML models to predict the impact of the energy and
temperature-aware optimisation on the digital twin. In this way, the system knows in advance the performance of the
VM allocation and consolidation approaches on the DVFS modes, the thermal distribution, the IT and cooling power
consumption, and the QoS. Once the optimisation algorithm finds the best configuration scenario in the digital twin, it
uses this setup to control the setpoint temperature of the cooling system, and both the mapping of VMs and the DVFS
configuration of the server racks.

6.2 Performance evaluation

We present the evaluation of the integrated resource management system of our energy-centric approach with the objec-
tive of improving the efficiency of the Cloud DC. To evaluate the performance of our approach, we use real traces from the
DCs of Bitbrains, a company that provides Cloud computing IT services to customers in the banking and insurance sec-
tor. The workload involves running business-critical applications serving users in financial institutions and engineering
firms.26

The VMs run management servers for the day-to-day operation of user environments, application servers such as
web and database servers, and compute nodes that perform intensive computing such as simulations. The traces include
dynamic CPU, memory, disk and network utilisation values. Bitbrains uses a high-performance policy on the servers
that keeps CPUs at their maximum frequency, so these utilisation values always have the same frequency reference. To
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F I G U R E 6 Overview of the energy-centric integrated resource management system.

achieve a controllable environment, we have chosen the CloudSim27 toolkit to simulate a Cloud computing DC. In this
work, we have extended the simulator to include the cooling infrastructure and both the thermal behaviour and DVFS
configuration of the servers. ML-based models have been used for modelling the cooling power consumption, internal
and inlet temperature of servers, power consumption of servers, and for dynamic control of the DVFS modes of servers.

Our experimental setup includes a total of 1127 VMs, where we carry the optimization with interval of 300 seconds,
that is, resource demand assessment and resource allocation. We use four VM types from general flavours. Configurations
of these VMs are: (a) 1 core, 4GB RAM, (b) 2 cores, 8GB RAM and (c) 4 cores, 16GB RAM. The simulation scenario
involves a Cloud DC consisting of 1200 hosts, specifically modelled as Fujitsu RX300 S6 servers equipped with an Intel
Xeon E5620 Quad Core processor running at a maximum clock speed of 2.4 GHz. These servers have 16 GB of RAM, 1 GB
of storage capacity, and run a 64-bit CentOS 6.4 operating system virtualised by the QEMU-KVM hypervisor. Individual
server operating frequencies can be set at 1.73, 1.86, 2.13, 2.26, 2.39, and 2.40 GHz. Throughout the simulations, the
active server count is notably decreased by enabling oversubscription. To avoid fan failures, the server inlet temperature
is limited to a maximum of 303 K. Additional information on the workload, simulation configuration and ML-based
thermal and power models can be found in our previous research works.28,29

Our energy and thermal-aware optimisation process is described as follows. This process supports energy efficient
VM allocation for incoming requests and for reallocating existing VMs due to consolidation. First, the integrated resource
management system detects overloaded and underloaded servers. Based on this, the system recommends the migration
of certain VMs to reduce performance degradation, hotspot emergence, and to maximise resource utilisation.

Then, the system uses the ML-based models to predict the impact of allocating each VM on each of the servers with
available resources, following a best fit decreasing approach iteratively. Given the outputs of the models (such as DVFS
modes for servers, their temperature and utilization) all the proposed mappings for each VM are sorted using an opti-
misation criterion. The proposed criterion maximises the utilisation of servers with the minimum increase in frequency
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since there is a quadratic dependence of the energy consumption with the frequency. The resource management system
updates the digital twin allocating each VM to the best server according to this criterion. It also uses the ML-based mod-
els to update the thermal and power status of the digital twin. The process is then repeated to assign the next VM until
all the VMs have been assigned.

At the end of this optimisation process, the system delivers: (i) the proposed mapping of the entire set of VMs on the
servers in the DC racks, (ii) the optimised DVFS configuration of each server to ensure performance and (iii) the setpoint
temperature of the cooling system to avoid equipment damage considering this mapping. Finally, the integrated resource
management system provides the actions to control the actual cooling and computing infrastructures knobs including
the optimal configuration of the frequency of each server, the air temperature supplied by the cooling system, and the
VM allocation policy according to the observed impact on the digital twin.

We compare the results of our work with two state-of-the-art algorithms. The first aims to minimise the increase in
server power consumption for the allocation of each VM with the objective of reducing IT consumption.20 The second aims
to maximise this power increment with the objective of increasing server rack utilisation.30 Neither of these approaches
considers temperature nor DVFS for decision-making so a fixed setpoint temperature of 291 K is chosen to ensure that
the servers are kept at a safe temperature.

The results show that our energy-centric approach that is aware of the impact of room temperature and DVFS can
reduce on average the total consumption of the Cloud DC by 14%, presenting a 58% reduction in cooling power consump-
tion. The PUE, compared to baselines, is reduced from 1.37 to a value of 1.16. Our strategy maintains the QoS with respect
to baselines, avoiding server overload and guaranteeing dynamic operating frequencies that preserve the performance of
high variability business-critical applications.

7 CONCLUSIONS AND FINAL REMARKS

In our digital world, Clouds have become the preferred computing platform for hosting business and government applica-
tions. Current Cloud computing services, however, offer execution of applications with little emphasis on making Clouds
more energy-efficient and sustainable. This issue is going to be even more critical as DCs world-wide are projected to
consume 20% of global electricity by 2025. We aim at solving this critical problem by achieving a quantum leap in energy
efficiency and sustainability for next generation Cloud computing, dealing with energy efficiency through integrated
management of all resources and QoS requirements of applications.

This article presents our vision towards energy-efficient new generation Cloud computing. Next generation Clouds
should be able to reduce their energy consumption and carbon footprint, by creating new learning-centric algorithms and
software systems for integrated management of all their related resources and applications. Our early experiments show
the potential of our energy-centric approach, incorporating the DVFS configuration, the thermal behaviour of the data
room, and their impact on the energy consumption, to optimise the integrated management of computing and cooling
systems.

Through close synthesis of theory and practice, the proposed approach will deliver timely innovations in fundamen-
tal science and translational outcomes with significant economic, environmental and societal benefits. This ambitious
research will address a critical energy challenge facing Cloud computing through systematic alignment of energy effi-
ciency and sustainability. To realise our proposed vision, we discussed various research issues (earlier in Sections 4 and
5) and approaches for addressing as future directions, which can be summarised as the following guidelines:

1. Create a novel architectural framework and principles for energy-efficient and sustainable Cloud computing.
2. Invent new algorithms for integrated management of all data centre infrastructure resources to minimise energy

consumption of both IT resources such as servers and non-IT resources such as cooling systems.
3. Invent learning-centric dynamic resource provisioning and scheduling algorithms for execution of applications in

Cloud environments in an energy-efficient manner while meeting users’ QoS requirements.
4. Proactively balance the state of the Cloud data centre environment for energy-efficient operation by inventing new

algorithms and building ML models using monitored data collected from the system.
5. Design innovative mechanisms and policies for thermal and hot spots management for system resiliency.
6. Minimise the carbon footprint of Cloud services with the invention of new algorithms for distribution of workloads

across geographically distributed, green-energy powered edge and Cloud data centre infrastructures.
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7. Develop software systems incorporating energy-efficient resource management algorithms and application demon-
strators for deployment in operational edge and CDCs.

The approaches proposed in this article will provide the vital quantum research leap and scientific foundation nec-
essary for energy efficiency in next generation Cloud computing. This research will create a paradigm shift by: (1)
transforming the resource management approaches from ‘performance-centric’ to ‘energy-centric’, ‘discrete’ to ‘inte-
grated’ and ‘control-centric’ to ‘learning-centric’; and (2) managing two different competing requirements, users QoS
expectations and service providers’ energy efficiency goals, to solve the global ‘energy’ challenge.

ACKNOWLEDGMENT
We thank our colleagues Renata Borovica-Gajic, Maria Rodriguez Read, Rami Bahsoon, Satish Srirama, Amanda
Jayanetti, Muhammed Tawfiqul, John Grundy, Vlado Stankovski, Rajeev Muralidhar, Adel Nadjaran Toosi, Rodrigo N.
Calheiros, Yogesh Sharma, Rao Kotagiri, San Murugesan, Jill Stjohn and Samodha Pallewatta for their contributions on
improving the article.

This work is partially supported by the University of Melbourne and the HiPEAC6 Network, supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme. Open access publishing facilitated by The University
of Melbourne, as part of the Wiley - The University of Melbourne agreement via the Council of Australian University
Librarians.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Rajkumar Buyya https://orcid.org/0000-0001-9754-6496

REFERENCES
1. Gubbi J, Buyya R, Marusic S. et al. Internet of Things (IoT): A Vision, Architectural Elements and Future Directions. FGCS.

2013;29(7):1645-1660.
2. Kaplan J, Forrest W, Kindler N. Revolutionizing data centre energy efficiency. McKinsey, July 2008.
3. Maybury S. How much energy does your data centre use? May 15, 2017. https://www.metronode.com.au/energy_usage/
4. Lima J. Data centres of the world will consume 1/5 of Earth’s power by 2025. DataEconomy.Com, London, December 12, 2017.
5. Andrae A, Edler T. On global electricity usage of communication technology: trends to 2030. Challenges. 2015;6(1):117-157.
6. Shehabi A, Smith S, Masanet E, Koomey J. Data center growth in the United States: decoupling the demand for services from electricity

use. Environ Res Lett. 2018;13(12):1-11.
7. Guitart J. Toward Sustainable Data Centers Computing. Springer; 2016.
8. Hu B, Cao Z, Zhou M. Scheduling real-time parallel applications in cloud to minimize energy consumption. In IEEE Trans Cloud Comput.

2022;10(1):662-674.
9. Gill S, Buyya R. A Taxonomy and Future Directions for Sustainable Cloud Computing. ACM Comput Surv. 2019;51(5):1-33.

10. Buyya R, Srirama S, Casale G. et al. A Manifesto for Future Generation Cloud Computing. ACM Comput Surv. 2019;51(5):1-38.
11. Beloglazov A, Buyya R. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of

service constraints. IEEE Trans Parallel Distrib Syst. 2013;24(7):1366-1379.
12. Pedram M. Energy-efficient data centers. IEEE Trans Comput-Aided Design ICs Syst. 2012;31(10):1465-1484.
13. Doidge F. A waste of energy: Dealing with idle servers in the Datacentre, March 2022. https://www.computerweekly.com/feature/A-

waste-of-energy-Dealing-with-idle-servers-in-the-datacentre
14. Gupta A, Faraboschi P, Gioachin F. et al. Evaluating and improving performance and scheduling of HPC applications in Cloud. IEEE TCC.

2016;4(3):307-321.
15. Stavrinides G, Karatza H. An energy-efficient, QoS-aware and cost-effective scheduling approach for real time workflow applications in

Cloud computing systems utilizing DVFS and approximate computations. FGCS. 2019;96:216-226.
16. Yuan H, Bi J, Zhang J, Zhou M. Energy consumption and performance optimized task scheduling in distributed data centers. IEEE Trans

Syst, Man, Cybernet: Syst. 2022;52(9):5506-5517.
17. Wang Y, Liu H, Zheng W. et al. Multi-objective workflow scheduling with deep-Q-network-based multi-agent reinforcement learning.

IEEE Access. 2019;39974-39982.
18. Calheiros R, Buyya R. Energy-efficient scheduling of urgent bag-of-tasks applications in clouds through DVFS. IEEE CloudCom. 2014.
19. Ilager S, Mralidhar R, Ramamohanarao K, Buyya R. A data driven frequency scaling approach for deadline-aware energy efficient schedul-

ing on graphics processing units (GPUs). Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud, and Internet
Computing (CCGrid 2020). 2020;579-588.

 1097024x, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3248 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://www.metronode.com.au/energy_usage/
https://www.computerweekly.com/feature/A-waste-of-energy-Dealing-with-idle-servers-in-the-datacentre
https://www.computerweekly.com/feature/A-waste-of-energy-Dealing-with-idle-servers-in-the-datacentre


38 BUYYA et al.

20. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers. Concurr Comput Pract Exp. 2012;24(13):1397-1420.

21. Dulac-Arnold G, Levine N, Mankowitz DJ. et al. An empirical investigation of the challenges of real world reinforcement learning. CoRR
abs/2003.11881, 2020.

22. Khosravi A, Andrew L, Buyya R. Dynamic VM Placement Method for Minimizing Energy and Carbon Cost in Geographically Distributed
Cloud Data Centers. IEEE Trans Sustain Comput. 2017;2(2):183-196.

23. Pantazoglou M, Tzortzakis G, Delis A. Decentralized and energy-efficient workload management in enterprise clouds. IEEE Trans Cloud
Comput. 2016;4(2):196-209. doi:10.1109/TCC.2015.2464817

24. Yuan H, Bi J, Zhou M. Energy-efficient and QoS-optimized adaptive task scheduling and management in clouds. IEEE Trans Autom Sci
Eng. 2022;19(2):1233-1244.

25. Islam M, Ren X, Ren S. et al. A spot capacity market to increase power infrastructure utilization in multi-tenant data centers. Proceedings
of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). 2018;776-788.

26. Shen S, van Beek SV, Iosup A. Statistical characterization of business-critical workloads hosted in cloud datacenters. Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 2015.

27. Calheiros R, Ranjan R, Beloglazov A, De Rose C, Buyya R. Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw: Pract Exp. 2011;41(1):23-50.

28. Arroba P, Moya M, Ayala J, Buyya R. Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines for energy
efficient cloud data centers. Concurr Comput: Pract Exp. 2017;29:e4067.

29. Arroba P, Risco-Martín J, Moya J, Ayala J. Heuristics and metaheuristics for dynamic management of computing and cooling energy in
cloud data centers. Softw: Pract Exp. 2018;48:1775-1804.

30. Chowdhury M, Mahmud M, Rahman R. Implementation and performance analysis of various VM placement strategies in CloudSim.
J Cloud Comput. 2015;4(1):20.

How to cite this article: Buyya R, Ilager S, Arroba P. Energy-efficiency and sustainability in new generation
cloud computing: A vision and directions for integrated management of data centre resources and workloads.
Softw: Pract Exper. 2024;54(1):24-38. doi: 10.1002/spe.3248

 1097024x, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3248 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://info:doi/10.1109/TCC.2015.2464817

	Energy-efficiency and sustainability in new generation cloud computing: A vision and directions for integrated management of data centre resources and workloads 
	1 INTRODUCTION
	2 SIGNIFICANCE AND INNOVATION OF THE PROPOSED VISION
	2.1 Delivering service quality guarantees
	2.2 Integrated resource management for energy efficiency
	2.3 New learning-based algorithms for Cloud resource management systems (RMS)

	3 DIMENSIONS AND RESEARCH CHALLENGES
	4 ARCHITECTURAL FRAMEWORK
	5 RESEARCH ISSUES AND ENVISIONED APPROACHES AS FUTURE DIRECTIONS
	5.1 Workload and power-aware dynamic resource provisioning and placement
	5.2 QoS-driven energy-efficient scheduling of applications
	5.3 Application-aware management of power states of computing elements
	5.4 Energy-aware dynamic consolidation
	5.5 Thermal-aware management of workloads and cooling systems
	5.6 Monitoring, analysis and actions for rebalancing the system
	5.7 Harnessing multi-region edge and CDCs with varied energy sources

	6 CASE STUDY: ENERGY-EFFICIENT CLOUDS FOR BUSINESS-CRITICAL APPLICATIONS
	6.1 Integrated thermal-aware resource management
	6.2 Performance evaluation

	7 CONCLUSIONS AND FINAL REMARKS

	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

