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Abstract—The transition from monolithic architecture to microservices
has enhanced flexibility in application design and its scalable execution.
This approach typically uses a computing cluster managed by a con-
tainer orchestration platform to deploy microservices. However, this shift
introduces significant challenges, particularly in the efficient scheduling
of containerized services. These challenges are compounded by unpre-
dictable scenarios such as dynamic incoming workloads with various ex-
ecution traffic and variable communication delays among cluster nodes.
Existing works often overlook the real-time traffic impacts of dynamic
requests on running microservices, as well as the varied communication
delays across cluster nodes. Consequently, even optimally deployed
microservices could suffer from significant performance degradation
over time. To address these issues, we propose a network and traffic-
aware adaptive scheduling framework, TraDE, which can adaptively
redeploy microservice instances to maintain desired performance amid
changing traffic and network conditions within the hosting cluster. We
have implemented TraDE as an extension to the Kubernetes platform.
Additionally, we deployed realistic microservice applications in a real
compute cluster and conducted extensive experiments to assess our
framework’s performance in various scenarios. The results demonstrate
the effectiveness of TraDE in rescheduling running microservices to en-
hance end-to-end performance while maintaining a high goodput ratio.
Compared with the existing method NetMARKS, TraDE outperforms it
by reducing the average response time of the application by up to 48.3%,
and improving the throughput by up to 1.2–1.5× across workloads while
maintaining a goodput ratio of 95.36%, and showing robust adaptive
capability to meet QoS targets under sustained workloads and dynamic
networking conditions.

Index Terms—Microservice, scheduling, performance optimization

1 INTRODUCTION

In the pervasive cloud computing domain, microservices
have emerged as a key architecture, revolutionizing how
cloud-based applications are designed and implemented.
Characterized by the modular and decentralized design,
microservices provide good flexibility and scalability, cater-
ing to the dynamic demands of modern cloud-deployed
applications [1]–[3]. However, this transition also introduces
significant challenges in microservice management and
performance optimization, particularly microservices with
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complex workflow and dependencies [4]–[7]. Uncertainty
in user requests, combined with varying execution paths
across microservices and differing communication delays
between nodes, significantly increases the difficulty of en-
suring Quality of Service (QoS) compliance for microser-
vices deployed on cluster nodes. In cloud environments,
numerous microservices are co-located, interact with each
other, and are often shared among various applications [8]
[9]. This can lead to worsened performance degradation due
to resource contention and cascading delays in the execution
paths of requests. These issues directly affect latency and
throughput, both critical for meeting QoS targets.

Although existing works have proposed different meth-
ods to improve the running performances of containerized
microservices, there are still some limitations to these meth-
ods. OptTraffic [10] optimizes the traffic transmission of con-
tainerized microservices across cluster nodes, which fails to
consider the cross-node delays under dynamic networking
traffic and also introduces complexity by calculating every
dependent container replica pair. NetMARKS [11] deter-
mines Kubernetes pod scheduling by the dynamic network
metrics collected by Istio Service Mesh [12] 1, which have
limitations on analyzing the bidirectional metrics between
dependent microservices and also may introduce imbal-
anced load distributions across the cluster nodes. Other
existing methods [13]–[16] also have similar limitations on
tackling dynamic workloads, the awareness of cross-node
delays, and imbalanced load distributions in the cluster.

To solve the aforementioned challenges, this paper pro-
poses TraDE, a novel framework that utilizes a traffic
and network-aware rescheduling approach. TraDE is de-
signed to adaptively redeploy containerized microservices
within the cluster by analyzing real-time traffic stress be-
tween dependent microservices along with the variations
of cross-node delays. By doing so, it seeks to mitigate
QoS target violations amid fluctuating user requests and
network variations. To implement and evaluate the pro-
posed TraDE framework, this paper seeks to address sev-
eral crucial challenges in dealing with network dynamics
for meeting application services’ QoS targets: (1) How to
quantitatively map dynamic bidirectional traffic patterns
into traffic stress between upstream and downstream mi-

1. Istio is an open source service mesh designed with injected sidecar
containers to provide features like secure communication, traffic man-
agement, and load balancing.
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croservices, including all the corresponding replicas?, (2)
What approach should be employed to build the traffic
stress graph under dynamic workloads within a specific
time interval?, (3) How to design a controllable network-
dynamics manager to thoroughly evaluate the proposed
method via efficiently injecting dynamic cross-node delays
and accurately measuring the node-delay matrix?, (4) With
the constructed traffic-stress graph and the measured cross-
node delay matrix, how to determine the service-to-node
mapping under minimal exploration time and a balanced
load goal?, (5) With the explored service-to-node mapping
result, what strategies should be adopted to ensure zero
downtime of the running services when migrating related
microservice containers?

The proposed TraDE framework resolves these chal-
lenges and could adapt to the changing traffic conditions
and redeploy the running microservice containers to server
nodes when QoS violation is detected. Specifically, TraDE
builds a traffic stress graph for dependent microservices,
a lightweight cross-node delay monitor, a low overhead
service-node mapper, and a microservice rescheduler with
guarantees of service availability when migrating contain-
ers. We demonstrate the effectiveness of our approach
through extensive evaluation using practical microservice
applications. The results of our experiments, conducted un-
der a variety of scenarios, demonstrate the ability of TraDE
to maintain the desired QoS target of deployed microservice
applications when QoS violations happen. In summary, our
main contributions can be summarized as follows.

• We propose a traffic analyzer that dynamically con-
structs a traffic stress graph. This graph not only
illustrates the latest microservice call graphs (depen-
dencies) but also identifies the microservice pairs
experiencing higher stress via bidirectional traffic
analysis.

• We design and implement a network-dynamics man-
ager which mainly consists of injecting customized
cross-node delays in a controllable way via packet-
level tagging and also accurately measuring the
node communication delays via cluster-level daemon
agents.

• We introduce a parallel algorithm for service-node
mapping to minimize the total traffic transmission
overhead with guaranteed balanced task chunks and
fast convergence.

• We design a microservice rescheduler to migrate mi-
croservice instances that experience QoS violations.
Specifically, when migrating the microservices, we
employ various scheduling schemes to guarantee
service availability and resource availability in the
cluster.

• We develop a prototype system of the TraDE frame-
work as an extension to the Kubernetes platform, and
demonstrate system performance in a real computing
cluster.

What is new vs. prior work. TraDE (i) models bidirectional
traffic to expose overloaded pairs as rescheduling targets;
(ii) introduces a controllable, destination-specific delay gener-
ator paired with a multi-agent measurer for accurate cross-
node latency under dynamics; and (iii) couples these with a

service-node mapper that embeds an overload penalty and
preserves availability during service migrations. Together,
these enable fast, practical, and repeatable QoS-target com-
pliance under changing traffic and network conditions.

The rest of the paper is structured as follows: Sec-
tion 2 discusses related work, providing a comprehen-
sive background on existing methods. The motivation and
problem statement are introduced in Section 3. Section 4
presents the proposed TraDE framework, explaining its
main components. Section 5 focuses on the design of
the traffic analyzer. Section 6 details the design of the
dynamics manager, which consists of the dynamic de-
lay generator and the cross-node delay measurer. Section
7 introduces the proposed PGA algorithm for microser-
vice placement, along with an overhead analysis. Section
8 offers a performance evaluation and analysis of the
proposed TraDE framework. Finally, Section 9 concludes
the paper and discusses future work. Open source code
for TraDE is available at https://github.com/MingCHEN-
Github/TraDE/tree/master

2 RELATED WORK

The scheduling of microservices in cluster environments
has been extensively studied from various perspectives.
This section reviews the existing literature, focusing on
microservice management, graph analysis, and network-
aware scheduling.

2.1 Microservice Management

FIRM [17] leverages online telemetry metrics data and ma-
chine learning-based models to manage microservices in
a fine-grained way by localizing the SLO violations, iden-
tifying resource contentions, and then taking reprovision
measures to mitigate the SLO violations. Erms [8] builds
resource scaling models to calculate the latency objectives
for shared microservices with large calling graphs. Grand-
SLAm [18] estimates the completion time of the requests
for individual microservice execution stages and leverages
the estimated time to batch and reorder the requests dy-
namically. However, these existing methods have limita-
tions in considering the dynamic impacts of cross-node
communication delays and the changing bidirectional traf-
fic between upstream and downstream microservices with
multiple replicas.

2.2 Graph Analysis

Sage [19] builds a graphical-based bayesian model to an-
alyze the root cause of cascading QoS violations for inter-
active microservices focusing on practicality and scalability.
Tian et al [20] develop a workload generator to synthesize
the DAG jobs with graph workflow by analyzing large-
scale cluster traces. Furtherly, Luo et al [21] characterize the
call graph of dependent microservices by analyzing Alibaba
cluster data and reveal three types of calling dependency
graphs for microservice applications. Parslo [22] introduces
a gradient descent-based method by breaking the end-to-
end SLO budget into smaller units to assign partial SLOs
among nodes in a microservice graph under an end-to-end

https://github.com/MingCHEN-Github/TraDE/tree/master
https://github.com/MingCHEN-Github/TraDE/tree/master
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latency SLO. However, these methods are generally time-
consuming with high overheads to build the graph and not
suitable for dynamic incoming user requests.

2.3 Network-aware Scheduling
NetMARKS [11] introduces a network-aware approach to
schedule the Kubernetes pods from different 5G edge appli-
cations by using the collected dynamic metrics from Istio
Service Mesh. Marchese et al [16] introduce a network-
aware scheduling extension for the default Kubernetes
scheduler by considering the infrastructure network condi-
tions and the interactions among microservices. OptTraffic
[10] develops a network-aware scheduling framework by
optimizing the cross-machine traffic scheduling for multi-
replica microservice containers by migrating the contain-
ers with dependent relations. However, these networking-
aware scheduling schemes designed for microservices still
have limitations on bidirectional traffic analysis for depen-
dent microservice replicas and the changing infrastructure-
level conditions, i.e. varied cross-node communication de-
lays.

3 MOTIVATION AND PROBLEM STATEMENT

3.1 Background
An increasing number of modern cloud applications have
evolved into microservice-based architectures, which man-
age applications through a collection of containerized,
loosely coupled, fine-grained services [21] [23]. As discussed
in previous work [23], transitioning from monolithic designs
to microservice designs for cloud applications leads to a
higher proportion of processing time being spent in the
networking stack compared to monolithic applications. The
processing time percentages of different cloud applications
are shown in Fig. 3a.

Fig. 1. An envisioned workflow of containerized microservice executions
and communications in a cluster with four nodes.

Deployed as a set of containerized microservice in-
stances, the application processes user requests through
dependent microservice replicas and returns the processed
results in the reverse direction. As shown in Figure 1, a
microservice-based application is decoupled into a collec-
tion of containerized microservices along with the bidirec-
tional traffic flows between dependent microservices. Every
microservice is supported by one or multiple corresponding
container instances to provide the application functionality.
These container instances launch from pre-defined container
images specified in the corresponding microservice deploy-
ment file.

3.2 Motivation

(a) QPS=3000. (b) QPS=5000.

Fig. 2. P99 response time of different QPS from an upstream microser-
vice client and a downstream microservice server under scenarios
where they are either colocated on the same node or running across
a node chain.

(a) Processing comparisons of
monolithic and microservice appli-
cations (data source [23]).

(b) Bidirectional traffic between
UM-DM pairs in Social Network in
one minute.

Fig. 3. (a) Comparison of processing time percentage between mono-
lithic and microservice applications. (b) Traffic of different UM-DM pairs
in one minute.

We deployed synthetic microservice applications in a
running cluster to motivate our design and tested them un-
der different scenarios. The deployed applications include
a server/client application and a benchmark application.
Figure 2 shows the performance of two dependent mi-
croservices: one functions as a client container sending PUT
requests with varying message sizes from 26 Bytes to 220

Bytes, and the other operates as the corresponding server
container to receive the requests. From Figure 2a and Figure
2b, we observe that colocating two dependent microservice
containers on the same node notably improves the p99 re-
sponse time. Additionally, the QPS (Queries Per Second) has
a significant impact on dependent microservice containers.
As shown in Figure 2, when QPS increases from 3000 to
5000, the p99 response times for each transferred message
size also increase, with a maximum 78.2% performance
degradation when the sent message size is 212 Bytes. This
implies that, for an upstream-downstream pair, the transferred
message size, QPS, and cross-node communications have
notable impacts on end-to-end performance.

Additionally, we deployed the Social Network bench-
mark released with DeathStarBench [23] to quantify the
transmitted traffic difference between dependent UM-DM
pairs. Under different request workloads, we observed no-
table traffic differences between different UM-DM pairs.

As shown in Figure 3b, there are significant differ-
ences between sent and received traffic for certain UM-
DM pairs, including N-C (Nginx→ Compose-post), P-P
(Post-storage-service→ Post-storage-MongoDB),
C-P (Compose-post→ Post-storage-service) and C-
T (Compose-post → Text-service) [23]. In our testing
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scenario, for example, the bidirectional traffic between the
C-P pair shows that the received traffic could be approxi-
mately 40x more than the sent traffic, implying that a slight
delay increase in transmission among the C-P (pair could
degrade the pair’s end-to-end performance by up to 40x.
Thus, it is significant to analyze the real-time bidirectional
traffic for dependent microservices.

From the above observations, we can conclude that: (1)
Unlike monolithic cloud applications, microservice-based
applications spend significantly more time on the network-
ing processing stack. (2) Cross-node communication can
impact the performance of microservice pairs, particularly
for pairs with high volumes of traffic transmission. (3)
For dependent upstream and downstream microservice pairs,
the transmitted bidirectional (sent and received) traffic can
exhibit significant differences, such as small requests but
large payloads.

3.3 Problem Definition

In dynamic networking and traffic environments, the de-
ployment of microservice instances across different server
nodes plays a critical role in determining the end-to-
end performance of distributed applications. In particular,
poor placement decisions may incur high communication
overhead due to inter-node delays and traffic volumes.
To address this, we formulate the optimization task as
a Service-Node Mapping Problem, where the objective
is to assign a set of microservices to a set of server
nodes in a manner that minimizes overall communication
cost—capturing both communication latency and traffic-
induced overhead—while satisfying server resource con-
straints.

Let M = {m1, . . . ,mk} be the set of microservices, N =
{n1, . . . , np} the set of server nodes, and P : M → N the
service–node mapping. Over a measurement window ∆t,
let Ti→j ≥ 0 and Tj→i ≥ 0 denote the forward and reverse
traffic (bytes or rate) between mi and mj . Let Da,b ≥ 0 be
the one-way (ping-like) delay from node a to node b (not
necessarily symmetric). We use direction weights wf , wb ∈
[0, 1] (default wf=wb=0.5).

The pairwise communication cost for (i, j) under a
placement P is{
Ci,j(P ) = wf Ti→j DP (mi), P (mj) + wb Tj→i DP (mj), P (mi),

(wf , wb) ∈ [0, 1]2.
(1)

and the total communication cost aggregates pairwise costs:

TotalCost(P ) =
k∑

i=1

k∑
j=1

Ci,j(P ). (2)

Each node n ∈ N has a capacity vector Cn (e.g., CPU,
memory, GPU), and each microservice i has a resource
demand vector Ri. A placement is feasible if, element-wise,∑

i:P (mi)=n

Ri ≤ Cn ∀n ∈ N. (3)

Penalty form used in our solver. We enforce (3) via a soft
penalty, consistent with our implementation. Let Φ(P ) =∑

n∈Nmax{0,
∑

i:P (i)=n Ri − Cn} denote the aggregated

overflow (applied element-wise and summed across re-
sources), and let λ > 0 be a large coefficient. The penalised
objective is

min
P

TotalCost(P ) + λΦ(P ), (4)

which is equivalent in practice to the constrained form for
sufficiently large λ.

Why bidirectional traffic? An RPC is typically a re-
quest–response round trip; even with one-way (ping-like)
delays, both directions (forward i→j, return j→i) con-
tribute to user-perceived time and to total network time over
∆t. Equation (1) therefore weights both directions. When
one-way delays are symmetric (Da,b=Db,a), (1) reduces to
(wfTi→j+wbTj→i)DP (mi), P (mj); setting (wf , wb)=(1, 0)
yields the one-direction variant.

Implementation in TraDE. In our prototype system, Ti→j

and Tj→i are computed from Istio byte counters over ∆t;
we take wf=wb=0.5 by default and optimise (4) using a
parallel greedy search.

The problem is thus to find a mapping P that minimizes
(2) (or equivalently (4)) subject to (3), promoting traffic
locality and reducing cross-node latency under dynamic
workloads and network conditions.

4 FRAMEWORK OF TRADE
Based on our observations, we were motivated to design
TraDE, a network and traffic-aware rescheduling frame-
work for containerized microservices when the deployed
service experiences QoS violations due to dynamic requests
and varying cross-node communication delays in dynamic
computing environments. As shown in Fig. 4, the figure il-
lustrates the main modules and how each module works to-
gether at different stages to complete the adaptive schedul-
ing process. The key modules of the proposed framework
are as follows:

Fig. 4. The proposed TraDE framework.

• Traffic Analyzer: This module consists of a service
mesh and a graph builder, which are designed for
analyzing the real-time bidirectional traffic flows be-
tween the dependent upstream microservice contain-
ers (including all corresponding replicas) and down-
stream microservice containers through the service
mesh and the proposed graph builder algorithm.
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• Dynamics Manager: This module consists of a gen-
erator and a measurer to manage the cross-node com-
munication delays in the computing environments.
The generator is designed to generate different prac-
tical delays to the computing nodes to validate the
proposed TraDE through packet-level manipulation.
The measurer is designed to measure the commu-
nication delays between different nodes across the
computing environments through multiple daemon
agents.

• PGA Mapper: This module is designed to tackle QoS
violations of the running applications. Specifically,
when there are violations to the predefined QoS tar-
gets, the PGA (Parallel Greedy Algorithm) mapper
computes the service placements on the computing
nodes to achieve the lowest overhead as defined in
Eq.2.

As shown in Fig. 4, at the beginning stage 1⃝, users
define the QoS targets and send different workloads (i.e.,
different types of requests and QPS) to the deployed mi-
croservice applications. At stages 2⃝ and 3⃝, the perfor-
mance metrics of the running microservices are collected by
Jaeger and Istio. Within a predefined monitoring time
interval, the traffic analyzer analyzes the bidirectional traffic
between dependent microservices and builds the traffic
graph, which is then sent to the PGA mapper. Meanwhile,
at stage 4⃝, the node dynamics manager measures the cross-
node communication delay graph, which is sent as another
graph to the PGA mapper. As the microservice application
runs, if there are any QoS violations (at stage 5⃝) to the
predefined QoS targets, TraDE is triggered to run the PGA
mapper. As shown at stage 6⃝, the PGA mapper finds the
service-node placement through a constructed traffic graph
and delay graph from the traffic analyzer and dynamics
manager, respectively. Designed to run in a parallel com-
puting manner to speed up the process, the PGA map-
per provides the searched placement result, specifying the
placement of each microservice to a node. Placement results
are filtered before being used as the scheduling decision,
as some microservices are already placed in the optimal
node, and some microservice instances, such as Jaeger agent
instances, are not supposed to be migrated. At the final stage
7⃝, the filtered placement results are taken as the adaptive

scheduling decision in response to the current dynamic
computing environments.

5 DESIGN OF TRAFFIC ANALYZER

5.1 Service Mesh

The key aspect of implementing the Traffic Analyzer for
TraDE lies in efficiently and minimally analyzing the bidi-
rectional traffic between dependent container pairs, i.e., the
upstream and downstream microservice containers. When
there is only one microservice instance for both upstream
and downstream services, it is straightforward to collect
and analyze bidirectional traffic metrics from the Linux proc
file system. However, when multiple replicas exist for either
the downstream or upstream microservices, analyzing the
bidirectional traffic between all upstream and downstream
microservice replicas becomes time-consuming. Thus, we

implemented the service mesh to better observe and manage
the complex traffic flows.

5.1.1 Istio Service Mesh Implementation
To obtain finer-grained metrics of bidirectional traffic be-
tween upstream microservices and their downstream coun-
terparts, along with their corresponding replicas, we im-
plemented Traffic Analyzer by analyzing traffic metrics with
Istio Service Mesh [12]. The service mesh is designed as
a dedicated infrastructure layer that can be added to con-
tainerized microservice applications. With the service mesh
deployed, the traffic for each microservice container is prox-
ied by an injected sidecar container.

In a Kubernetes-based cluster with the deployed Istio
service mesh, a microservice pod comprises both the appli-
cation and sidecar containers. As depicted in Figure 5a,
the dedicated service mesh structure proxies the ingress
and egress traffic among the microservice containers. The
orange rectangles represent the containerized microservices,
and the green rectangles represent the sidecar containers,
which function as a dedicated layer managing traffic among
various microservices. The green links illustrate the data
traffic connections and dependency relationships between
microservices. Specifically, as depicted in Figure 6, the
Envoy [24] containers (acting as sidecar containers) in Pod
A and Pod B proxy the bidirectional traffic between Con-
tainer A and Container B. Within each pod, the Envoy con-
tainer communicates with its corresponding microservice
containers.

(a) Service mesh graph. (b) p99 tail latency.

Fig. 5. (a) An overview of how service mesh with sidecar containers
(green) works with microservice containers (orange). (b) Overhead com-
parisons of p99 tail latency of different workloads to Social Network
applications with and without service mesh.

5.1.2 Overhead Analysis
We realize that adding an additional service mesh layer
to the microservice application may introduce extra delays
in the traffic flow. However, the introduced delay only
contributes a slight proportion to tail latency. Based on [25],
within the Istio 1.21.2 service mesh, utilizing telemetry v2,
each request is processed by both a client-side and server-
side Envoy proxy. These proxies collectively increase latency
at the 90th percentile by approximately 0.182 milliseconds
and at the 99th percentile by about 0.248 milliseconds,
compared to the baseline latency of the data plane. These
findings were conducted with a 1kB payload, a rate of 1000
requests per second, and varying client connections (2, 4, 8,
16, 32, 64) at the CNCF Community Infrastructure Lab [26].

Additionally, we evaluated and compared the perfor-
mance of the Social Network [23] with and without the
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Fig. 6. An architecture of how upstream microservice A interacts with
downstream microservice B with Istio service mesh enabled.

implemented service mesh. We separately deployed the
Social Network application in two different namespaces
to guarantee the requests and services would not interfere
with each other. Three types of requests (i.e., Compose-Post,
Read-homeTimeline, and Read-userTimeline) were sent as
the workloads to the deployed Social Network application,
each with a QPS of 200. As depicted in Figure 5b, it can
be observed that the service mesh introduces only minimal
delays. Therefore, the service mesh layer does not add sig-
nificant overhead to the network traffic of the microservice
application. As the tradeoff to better manage the complex
traffic flows, the introduced minimal delays are acceptable.

5.2 Traffic Stress Graph

One of the main goals of the proposed TraDE is to construct
real-time traffic flows along the triggered call graphs of the
deployed microservices. Multiple request types and varied
QPS would trigger different structures of call-graph with
different amounts of traffic flows, which complicates the
adaptive scheduling of microservices in response to QoS vi-
olations. In our work, we define the following terminology.

Stress Element: Stress Element (SE) defines the dependen-
cies between two dependent microservices, i.e., the UM (Up-
stream Microservice) and DM (the Downstream Microser-
vice), and the traffic stress between the two corresponding
microservices. The traffic stress of a SE is calculated by the
average traffic of sent and received in a given time interval,
as we believe that the traffic of sent and received between the
dependent microservices both contribute significant stress
to the end-to-end performance of the deployed application.
Written mathematically, the stress of a Stress Element can be
expressed by:

stressµσ(µ
UM , σDM ,∆t) =

Bi-direction traffic(µUM , σDM )

2∆t
(5)

In Eq. 5, µ and σ refer to the dependent up-
stream and downstream microservices. ∆t is to de-
fine the measurement time interval for microservices
µ and σ, and Bi-Direction traffic(µUM , σDM ) mea-
sures the bidirectional traffic transmitted between µ
and σ during time interval ∆t. Thus, a Stress El-
ement can be referred to as SE(µUM , σDM , stressµσ).
In our implementation, TraDE analyzes the metrics

Algorithm 1 Build Traffic Stress Graph
1: Input: List of Stress Elements with SE objects
2: Output: A traffic Graph with dependencies and stress
3: MS ← Stress Elements ▷ list of deployed

microservices
4: Initialize Graph← zeros(|MS| × |MS|)
5: for each µ in MS do ▷ upstream microservices
6: for each σ in MS do ▷ downstream microservices
7: if µ ̸= σ then
8: stress← BI TRAFFIC(µ, σ, ∆t)
9: Graph[µ][σ]← stress

10: end if
11: end for
12: end for
13: return Graph

data retrieved from istio_tcp_sent_bytes_total and
istio_tcp_received_bytes_total 2, which respec-
tively measures the size of total bytes sent during response
and the size of total bytes received during request.

Before analyzing the traffic flow patterns among mi-
croservices, it is essential to build a stress graph that rep-
resents the dependencies between microservices and the as-
sociated stress on those dependencies. Additionally, sorting
the microservice pairs from the constructed traffic graph is
important for efficient service-node mapping in subsequent
sections. Therefore, we propose algorithms for constructing
a traffic stress graph and sorting the microservice pairs
based on the constructed stress graph.

5.2.1 Building the Traffic Stress Graph

Algorithm 1 constructs the traffic stress graph, Graph, using
the stress elements defined by Eq. 5. The algorithm begins
by retrieving a list of deployed microservices at the current
monitoring time. It then initializes the Graph with zeros for
each row and column. In the next step, it iterates through all
deployed microservices and calculates the traffic stress be-
tween each pair of microservices over a given time interval.
Once the matrix iteration is complete, the traffic stress graph
is obtained.

5.2.2 Sorting Microservice Pairs by Stress Level

After constructing the traffic stress graph, the next step is
to identify the stress level among the microservice pairs in
the stress graph. Algorithm 2 is responsible for sorting all
the microservice pairs with traffic values from the stress
graph Graph in descending order to identify the microser-
vice pairs with the higher stress and also the pairs with
lower stress, which will be used for designing scheduling
policies in the proposed TraDE. The microservice pairs with
higher stress are the pairs that contribute more to the total
communication cost in Eq. 2. A quicker localization of the
microservice pairs under higher stress would be good for a
quicker convergence to find the satisfied microservices (M )
to nodes (N ) mapping (P : M → N ).

2. Different version of Istio service mesh may use different standard
metrics.
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Algorithm 2 Sort Microservice Pairs by Traffic Stress
1: Input: Traffic Stress Graph Graph (traffic stress matrix)
2: Output: Sorted list of microservice pairs by traffic stress
3: Initialize pairs← {} ▷ empty list of pairs
4: for each µ in Graph do
5: for each σ in Graph[µ] do ▷ corresponding DM
6: if Graph[µ][σ] > 0 then
7: Append (µ, σ,Graph[µ][σ]) to pairs
8: end if
9: end for

10: end for
11: SORTPAIRS(pairs) ▷ sorting in descending order
12: return Sorted pairs

6 DESIGN OF DYNAMICS MANAGER

6.1 Dynamic Delay Generator
Customized Delay Generation. Injecting different cross-
node delays to the cluster nodes is crucial for evaluating
the effectiveness of TraDE. However, implementing various
communication delays from one source node to multiple
destination nodes poses significant challenges. To the best
of our knowledge, no existing work has proposed a method
to inject customized communication delays in a controllable
manner. Some related works [17], [27]–[30] mention delay
injection to server nodes, but these works either use a
static delay matrix or implement uniform communication
delays for every egress traffic packet on the node’s network
interface. This approach leads to two main limitations in
evaluation experiments: (1) Uniform communication delays
from one source node to all destination nodes prevent dis-
tinguishing differences between node pairs, as delays from
one source node to all other nodes share the same settings;
(2) All other networking services not involving correlated
nodes are degraded because the injected delays affect all
egress traffic.

To address these limitations in current research, as
shown in Fig. 7a, we propose a customized delay injection
scheme that classifies packets using filters to differentiate
egress packets and distribute them based on their IP des-
tinations. Additionally, an extra channel is reserved for de-
fault packet transmission without injected delays, ensuring
that the performance of other services is not affected. We
implemented this scheme using the tc networking tool and
htb (Hierarchical Token Bucket).

(a) Traffic packets classifying disci-
plines.

(b) Packets egress with different
class disciplines.

Fig. 7. (a) Unclassified packets (not sent to certain destinations) are
transmitted through a reserved channel without injected delays, while
classified packets are assigned different delays for different destinations.
(b) Classified packets are sent to different destinations with varying
delays.

Fig. 8. The implementation of Cross-node Delay Measurer across clus-
ter nodes.

6.2 Cross-node Delay Measurer

In a large-scale computing cluster with high traffic, commu-
nication delays among infrastructure nodes are not negli-
gible, as microservice applications are decoupled and dis-
tributed across different connected computing nodes. When
significant delays occur among cluster nodes, the commu-
nication among microservice containers running on these
nodes will be negatively impacted. Consequently, some
microservices may experience QoS violations.

Design of Delay Measurer. To address this problem,
we designed a lightweight module called the Cross-node
Delay Measurer for our proposed TraDE framework. The
module consists of a centralized information processing unit
and multiple distributed measuring agents. To keep the
module lightweight, the processing unit maintains minimal
connections with all measuring agents and summarizes the
measured communication delays. The measuring agents run
as lightweight containers, maintaining only a simple com-
munication function for measuring delays. Additionally, to
enhance the module’s robustness during cluster-level up-
grades or downgrades, an auto-scaling mechanism for the
distributed measuring agents is implemented. Specifically,
when the cluster adds more nodes, a measuring agent is
automatically added to the new nodes to maintain the
consistency and accuracy of communication delay mea-
surements across the cluster. Similarly, when the cluster
removes nodes, the corresponding measuring agents are
automatically removed as well.

Implementation of Delay Measurer. We implemented
an efficient, lightweight, and auto-scalable cluster-level
measuring scheme that analyzes cross-communication de-
lays across infrastructure nodes. As shown in Fig. 8, we
introduced the design schemes of the Cross-node Delay Mea-
surer, consisting of an agent information processing unit and
a set of distributed measuring agents.

Specifically, we designed the agent information process-
ing unit to operate as a running plugin on the master
node, collecting measured cross-node delay information
from all active agents via TCP messages. Meanwhile, the
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TABLE 1
Injected delay versus measured cross-node communication delay (ms). In each cell, the first number represents the injected delay, and the second

number represents the measured actual delay. This table demonstrates the successful injection of different delays from one source node to
various destination nodes, as well as the reserved channel for destinations (i.e., Master node and google.com) without injected delays.

Source Node Destinations
Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Master Node google.com

Node1 - / - 3.00 / 3.21 8.00 / 8.51 10.00 / 11.01 14.00 / 14.21 6.00 / 6.73 27.00 / 28.98 13.00 / 13.89 21.00 / 22.31 - / 0.64 - / 14.10
Node2 8.00 / 8.22 - / - 4.00 / 4.52 13.00 / 14.02 14.00 / 15.21 18.00 / 19.02 38.00 / 38.22 31.00 / 32.13 29.00 / 1.02 - / 0.89 - / 14.20
Node3 4.00 / 4.03 12.00 / 12.37 - / - 8.00 / 9.05 18.00 / 18.66 11.00 / 11.89 4.00 / 5.75 12.00 / 13.41 15.00 / 16.89 - / 0.43 - / 14.20
Node4 17.00 / 17.04 15.00 / 15.11 7.00 / 7.21 - / - 5.00 / 5.87 6.00 / 6.79 22.00 / 23.15 13.00 / 13.76 25.00 / 26.82 - / 0.51 - / 14.30
Node5 20.00 / 21.02 12.00 / 12.23 11.00 / 11.68 10.00 / 11.27 - / - 9.00 / 9.73 7.00 / 7.13 4.00 / 4.11 9.00 / 9.23 - / 0.45 - / 14.10
Node6 17.00 / 17.12 26.00 / 26.06 18.00 / 18.87 16.00 / 17.08 6.00 / 6.11 - / - 5.00 / 5.71 10.00 / 10.19 5.00 / 5.86 - / 0.53 - / 14.20
Node7 20.00 / 20.96 10.00 / 10.52 10.00 / 10.91 9.00 / 9.86 11.00 / 12.92 5.00 / 5.67 - / - 5.00 / 5.71 9.00 / 9.39 - / 0.45 - / 14.10
Node8 21.00 / 21.11 25.00 / 25.72 4.00 / 4.53 10.00 / 10.71 12.00 / 12.73 15.00 / 16.02 10.00 / 10.13 - / - 6.00 / 7.08 - / 0.34 - / 14.10
Node9 36.00 / 36.93 22.00 / 22.70 40.00 / 40.39 9.00 / 10.08 25.00 / 25.69 8.00 / 8.16 7.00 / 7.23 6.00 / 6.18 - / - - / 0.30 - / 14.30

distributed measuring agents are implemented as a group of
interconnected running pods, managed by a DaemonSet de-
ployment with a lightweight pre-configured image. In this
way, the measuring agents on worker nodes continuously
measure cross-node delays with each other and send the
measured information to the information processing unit
plugin on the master node. Additionally, when the number
of cluster nodes changes, the agents are automatically added
when a new node joins or deleted when a node drains
from the existing cluster through the DaemonSet deploy-
ment mechanism. With this mechanism, the Cross-node Delay
Measurer ensures that each node will have a dedicated pod
for delay measurement, regardless of changes in the number
of cluster nodes.

Fig. 8 shows how the distributed measuring agents com-
municate with each other and how the agent information
processing unit interacts with each measuring agent con-
tainer.

Overhead analysis of Delay Measurer. Regarding the
overhead of delay measurement in a real system, we op-
timized the measurement using parallel processing. The
latency measurement tasks are designed to run concurrently,
and the results are aggregated into a latency results dictio-
nary, completing the process in just a few seconds. Addi-
tionally, the distributed measuring agents are lightweight
(about 0.2 MiB) and stable (running over 6 months without
any failure). Each node runs a measuring agent developed
from the curlimages/curl image, consuming around 0.2
MiB of memory per node. Thus, the cluster-level delay
measurement consumes minimal memory and completes
within a few seconds.

6.3 Effectiveness of Dynamics Manager

Injecting different communication delays from one source
node to various destination nodes and accurately measuring
these delays is challenging. By adopting the proposed injec-
tion scheme shown in Fig. 7, we injected different delays
to various destination worker nodes and measured the
actual communication delays from the source node to these
destinations. As shown in Table 1, the measured delays in
each cell exhibit high accuracy, with only around a 1 ms dif-
ference, which can be attributed to the randomness of data
packet transfers in cloud networking stacks. Additionally,
to demonstrate that other traffic is not influenced, we tested
the communication delays from all worker nodes to other
destinations. One destination is the master node in the same

cluster, and the other is the Google host (google.com), show-
ing average delays of 0.50 ms and 14.20 ms, respectively.

From these measured data, we can confirm the effec-
tiveness of the proposed schemes and implementation for
the Dynamics Manager in TraDE. It should be noted that
the delay injection scheme is optional and can be switched
off when TraDE is deployed in actual computing environ-
ments. The primary design aim of the customized delay
injection scheme is to generate various dynamics to validate
and evaluate our proposed adaptive scheduling framework
TraDE. Additionally, the proposed delay injection mech-
anism with customized delays can be easily adopted to
evaluate systems in different computing environments, such
as cloud-edge continuum and pervasive computing.

7 PGA MAPPER FOR MICROSERVICE PLACEMENT

To solve the defined problem in Section 3.3, we proposed
the following PGA (Parallel Greedy Algorithm) parallel
algorithm to address the problem. We propose a Parallel
Greedy Algorithm to optimize microservice placement by
leveraging parallel computing to minimize communication
costs. This method ensures efficient and effective placement
of microservices, reducing inter-node communication over-
head and improving system performance.

ParallelPlace(T, D, P, res, cap, workers)
|-- Sorted_MS_pairs(T)
|-- for each chunk task:
| |-- PlaceWorker(T, D, P, res, cap, tasks)
| | |-- CalcCost(T, P, D, res, cap)
| | |-- CalcCost(T, new_P, D, res, cap)
|-- Choose best result from all workers

Fig. 9. Function call hierarchy of the PGA placement Algorithm 3.

7.1 PGA Algorithm Explanation
The algorithm aims to iteratively refine the placement of
microservices to minimize the total communication cost,
as defined in Equation 2. It leverages parallel processing
to handle multiple microservices concurrently, improving
the efficiency of the optimization process. The algorithm
integrates three core functions: calculating communication
costs, optimizing placements for chunks of microservices,
and iteratively refining the overall placement until no fur-
ther improvement is achievable. As shown in Figure 9, the
ParallelPlace function coordinates the execution by calling
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Algorithm 3 PGA Algorithm for Microservice Placement
under Dynamic Traffics and Cross-node Delays.

1: Input: Matrix T for microservice traffic stress graph,
Matrix D for cross-node delay graph, Placement P for
service to node mapping list.

2: Output: Microservice-node placement, Lowest cost
3: Define res list← {cpu, memory, gpu, . . . }
4: res← GET MS DEMANDS(res list, T )
5: cap← GET NODE CAPACITIES(res list)
6: // Cost and Overloads Penalty.
7: function CALCCOST(T, P,D, res, cap)
8: cost← 0
9: for all (u, v) in T do

10: cost← cost+ T [u][v]×D[P [u]][P [v]]
11: end for
12: Initialize penalty factor pf ▷ pf can be adaptive
13: loads← [0]× len(cap)
14: for each u in P do ▷ Calculate server resource load
15: loads[P [u]]← loads[P [u]] + res[u]
16: end for
17: penalty ← 0
18: for each server j in loads do ▷ Check for overloads
19: if loads[j] > cap[j] then
20: penalty ← penalty+ (loads[j]− cap[j])× pf
21: end if
22: end for
23: return cost+ penalty
24: end function
25: // Microservice Placement Worker.
26: function PLACEWORKER(T,D, P, res, cap, tasks)
27: current cost← CALCCOST(T, P,D, res, cap)
28: nodes num← |D| ▷ number of server nodes
29: for each (u, v, stress) in tasks do
30: new P ← other nodes for u and v
31: cost← CALCCOST(T, new P,D, res, cap)
32: if cost < current cost then
33: Update P and current cost
34: end if
35: end for
36: return P, current cost
37: end function
38: // Parallel Placement Computing.
39: function PARALLELPLACE(T,D, P, res, cap, workers)
40: pairs← SORTED MS PAIRS(T ) ▷ Algorithm 2
41: num pairs← |pairs| ▷ Get the number of pairs
42: num workers← |workers|
43: size← ⌈num pairs+num workers−1

num workers ⌉
44: /* Distribute tasks to workers */
45: Initialize tasks← [] ▷ Initialize chunk tasks
46: for i = 0 to num workers− 1 do
47: tasks← pairs[i× size : (i+ 1)× size]
48: end for
49: results← PLACEWORKER(T,D, P, res, cap, tasks)
50: Choose the best {P, cost} from results
51: return best P, best cost
52: end function

PlaceWorker on distributed microservice pairs, which in turn
invokes CalcCost to evaluate each candidate placement.

The key steps of the proposed method for microservice
placement are as follows:

1) Initialization: The algorithm begins with an initial
placement of microservices across server nodes, alongside
the input of a traffic stress graph and a cross-node commu-
nication delay graph.

2) Resource List Definition: As outlined in Eq. 3, re-
source constraints such as CPU, memory, and GPU avail-
ability are critical when migrating microservices. A resource
list res_list is defined at the start, specifying the re-
sources to be considered throughout the placement process.

3) Cost Calculation: The total communication cost for
the initial placement is computed using the CalcCost (T, P,
D, res, cap) function. This function also accounts for server
overloads by introducing a penalty factor, which adds to the
communication cost if any server’s capacity is exceeded.

4) Parallel Processing: The set of microservices is di-
vided into chunks, and the PlaceWorker function is applied
to each chunk in parallel via ParallelPlace function.

• In the PlaceWorker function, for each microservice
pair (u, v), the algorithm attempts to reassign u and
v to every possible pair of server nodes (excluding
their current assignments) across the cluster. This is
done exhaustively over all node pairs (i, j), ensuring
that all candidate placements are evaluated. The new
placement is only accepted if it results in a strictly
lower total cost (including penalty for resource vio-
lations) compared to the current placement.

• In the ParallelPlace function, the full set of sorted
microservice communication pairs is first partitioned
into disjoint chunks, where each chunk is assigned
to a separate worker (e.g., CPU thread). Each worker
executes its own instance of the PlaceWorker func-
tion independently. These workers operate in par-
allel, concurrently exploring local placement refine-
ments for their assigned microservice pairs. Af-
ter all workers (CPU threads) complete, their out-
puts—each representing a locally optimized place-
ment and cost—are gathered, and the best result (i.e.,
the one with the lowest overall cost) is selected as the
final placement. This design improves scalability by
enabling simultaneous local search across multiple
parts of the system.

5) Iterative Refinement: The results from all parallel
workers (i.e., CPU cores) are gathered, and the overall place-
ment is updated if a better solution is found. This process
continues until no further improvement can be made in the
placement.

6) Output: The algorithm concludes by returning the
satisfied microservice placement across the server nodes,
along with the minimized communication cost.

This approach leverages parallel processing to efficiently
handle large-scale microservice deployments, ensuring effi-
cient placement with reduced communication overhead.

7.2 Balanced Chunks and Fast Convergence
Balanced Task Chunks: To balance the computation tasks at
each parallel worker, we adopted the chunk size calculated



XXXX, OCTOBER 2024 10

(a) PGA Overhead Heatmap. (b) PGA Overhead Distributions.

Fig. 10. Processing time overheads for exploring satisfied placements
via the PGA algorithm under different numbers of server nodes and
microservices.

by size = ⌈num pairs+num workers−1
num workers ⌉ to ensure a more

accurate and even distribution of tasks among workers, es-
pecially when the number of tasks is not perfectly divisible
by the number of workers. This approach correctly handles
the remainder and avoids overestimating the chunk size,
ensuring a more balanced task load distribution for the
parallel computing process.

Fast Convergence: Not all microservices contribute
equally to the total communication cost. Some pairs of
microservices may have significantly higher traffic between
them compared to others. As shown in line 40 of the Algo-
rithm 3, high-traffic microservice pairs will be prioritized.
By focusing on these high-traffic pairs first, the algorithm
addresses the microservice placements that contribute the
most to the total cost. Thus, improvements in these place-
ments will have a disproportionately large impact on re-
ducing the overall cost compared to optimizing low-traffic
pairs.

7.3 Overhead Analysis

Exploring the satisfied placement result is time-consuming.
To address this, we designed and implemented the pro-
posed algorithm as a parallel algorithm and quantified the
overheads in our cluster. When high-impact microservice
pairs are grouped and processed in parallel, it reduces the
overhead of synchronization between parallel tasks, thus re-
ducing the need for frequent inter-worker communications.
As shown in Fig. 10a, the running time of the proposed
PGA algorithm is able to complete the matching process in
less than 1 second. In Fig. 10b, it can be observed that the
majority of the graph matching time is approximately 0.3
seconds, which indicates a promising scheduling decision
time with a quick response to dynamic changes.

7.4 Adaptive Scheduler

Adaptive Scheduler is responsible for rescheduling the de-
ployed microservices containers based on the satisfied
placement results from PGA mapper. When there are traffic
stresses on the running application or notable communi-
cation delays among certain server nodes, the pre-defined
QoS targets might be violated in practical computing envi-
ronments. Thus, designing adaptive scheduling schemes to
tackle QoS violations is significant.

The rescheduling process involves microservice instance
migration and eviction across different server nodes in the
cluster. However, this will lead to the following problems:

(1) how to guarantee the performance of microservice in-
stances that are not affected during the rescheduling pro-
cess?, (2) when service consistency is guaranteed, how to
avoid the overloads on certain server loads?

Asynchronous launching: At the beginning of microser-
vice migration, it is crucial to ensure the service availability
of the affected microservices. We initially launch new mi-
croservice containers on the target cluster node, and once
these new containers are in ready states, the old contain-
ers are evicted from the previous nodes. This approach
guarantees zero downtime for specific microservices, whose
backend-supported microservice instances require migra-
tion.

Fig. 11. The process of asynchronous launching for container migration
(evicting old while launching new containers) between two nodes to
guarantee service high availability.

Constraints-based scheduling: The proposed reschedul-
ing scheme computes a service–node placement based on
microservice dependencies and the cross-node delay matrix,
and also enforces server-node resource constraints (e.g.,
CPU, memory, GPU), as mathematically summarized in Eq.
3. In line 2 of the Algorithm 3, a resource constraints list
is defined for consideration during the whole reschedul-
ing process. Additionally, the microservice demands (e.g.,
requests and limits in deployment yaml file) and server
node resource capacities are considered as conditions at
Algorithm 3.

8 PERFORMANCE EVALUATION

8.1 Testbed Setup
Cluster Setup: We validated our design by implementing
TraDE using the de facto standard container orchestration
platform, Kubernetes [31]. We deployed TraDE on 10 server
nodes without any preset anti-colocation rules, such as
taints for server nodes and affinity for pods. The Kubernetes
cluster configuration includes one master node and nine
worker nodes. The master node features 32 CPU cores
with x86 64 AMD EPYC 7763 series processors, 32GiB of
RAM, and a network bandwidth of 16 Gbps. Each of the
nine worker nodes is equipped with 4 CPU cores from the
same AMD series as the master node, 32 GiB of RAM,
and a network bandwidth of 16Gbps. Regarding software
versions, the cluster runs Kubernetes v1.27.4, the Container
Network Interface (CNI) plugin Calico v3.26.1, the service
mesh Istio v1.20.3, and uses CRI-O v1.27.1 as the container
runtime. All server nodes operate on Ubuntu 22.04.2 LTS
with the Linux kernel 5.15.0.

Besides, each of the cluster nodes is running on a Virtual
Machine instance at the dedicated research cloud platform
from the University, thus the typical communication delay
among each of the nodes is ultra-low, usually ranging from
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(a) compose-post. (b) read-user-timeline. (c) read-home-timeline. (d) Durations for execution time.

Fig. 12. In (a)(b)(c), different response time comparisons under varying QPS and request types. In (d), the cumulative distribution function (CDF)
figures of all triggered microservices execution time by mixed workload requests (with 6:2:2 ratio of compose-post, read-user-timeline, and
read-home-timeline requests), showing TraDE has an overall reduced execution time, thereby leading to better end-to-end performance.

(a) compose-post. (b) read-user-timeline. (c) read-home-timeline. (d) Mixed requests (6:2:2).

Fig. 13. In (a)(b)(c), the evaluation comparisons of average throughput are shown under varying QPS and different request call-graphs. In
(d), the throughput under mixed workload requests is displayed with the proportion of 6:2:2 for compose-post, read-user-timeline, and
read-home-timeline, respectively.

0.2 to 1 milliseconds (ms), tested by sending ICMP messages
between nodes. To make our evaluations more realistic and
emulate the changing cluster networking environment, the
cross-node delay matrix can be automatically updated every
t (i.e., t = 5) minutes. In Table 1, we demonstrated the
customized cross-node communication delays to the worker
node destinations and also avoided injecting delays to other
destinations like the master node and external sites.

Benchmark Application: We adopted Social
Network from DeathStarBench [23] as the microservice
application to evaluate our proposed scheduling
framework. Social Network benchmark emulates a
simplified social media platform similar to popular social
networking services. It is structured to replicate the intricate
interactions and communication patterns in such type
of applications. The benchmark comprises 27 different
microservices that collectively offer functionalities such as
composing a post, writing a user timeline, and writing a
home timeline.

8.2 Workload Generator

We adopted wrk2 [32] as the workload generator. As a
modern HTTP benchmarking tool, wrk2 is capable of gener-
ating different types and proportions of workload requests
for performance testing and measuring how well the cloud
applications can handle varied traffic. Its ability to maintain
a constant request rate makes it particularly useful for un-
derstanding the end-to-end performance of a server under
controlled workload conditions.

8.3 QoS Targets and Compared Methods

8.3.1 QoS Target Determination (Trigger-Oriented)

In our experiments, we use a fixed latency QoS target
as the control-plane trigger for TraDE: every τ = 30 s
the scheduler queries Prometheus over a sliding window
W (default W = 1min) for Istio metrics in the target
namespace with response_code=200—specifically
istio_request_duration_milliseconds_sum and
istio_request_duration_milliseconds_count
(via rate and custom_query_range functions)—and
computes the windowed average response time
L̄ =

∑
sum_values∑

count_values (ms); if L̄ > T with T = 300ms
(we also test T ∈ {250, 300, 350}ms in Fig. 15), TraDE sets
Trigger=True and executes the rescheduling pipeline
implemented in TraDE (traffic-graph construction,
current placement extraction, and PGA-based
remapping/migration); if the window has no data or
the traffic count is zero, no trigger is raised.

8.3.2 Compared Methods

To evaluate our proposed TraDE framework, we compared
it with the default Kubernetes scheduling policy and the
recent traffic-aware NetMARKS [11] which also targets
network-aware scheduling for microservice applications.

K8s default policy: In Kubernetes, the default schedul-
ing and Quality of Service (QoS) policies are designed
to evenly distribute workloads across the cluster with-
out further rescheduling policies even when microservice
performance is violated. QoS policies in the k8s cluster
classify pods into three classes: Guaranteed, Burstable, and
BestEffort. Guaranteed provides the highest priority ensuring
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(a) delay matrix1 zero. (b) delay matrix2 light. (c) delay matrix3 heavy. (d) delay matrix4 medium.

Fig. 14. In (a)(b)(c)(d), dynamic delays are injected to the nine worker nodes.

(a) QoS Target < 250 ms (b) QoS Target < 300 ms (c) QoS Target < 350 ms

Fig. 15. Under three different QoS targets and varying cross-node delays, the adaptive response of k8s-burstable, NetMARKS, and TraDE. In 20
minutes of the test time, 0 ∼ 5 mins, there are no injected cross-node delays; 5∼10 mins, light cross-node delays are injected; 10∼15 mins, heavy
cross-node delays are injected; 15∼20 mins, medium cross-node delays are injected.

pods always get the requested resources, Burstable offers
a flexible middle ground where pods have guaranteed
minimum resources but can consume more if available,
while BestEffort has the lowest priority, where pods have
no resource guarantees and can be preempted first during
resource contention. In the evaluation experiments, we will
use the default scheduling policy with Burstable QoS class.

NetMARKS: The recent work NetMARKS [11] intro-
duces a microservice pod scheduling scheme that leverages
dynamic network metrics collected from the Istio Service
Mesh. The main idea of NetMARKS is the proposed node
scoring algorithm, which calculates node scores for a target
pod by iteratively analyzing all pods running on each node
and identifying those with traffic connections to the target
pod. Each node’s score is calculated based on the sum of
traffic flows between the target pod and the selected pods
on that node. The node with the highest score is then chosen
to host the target pod.

With the implemented modules of Traffic Analyzer in
Section V, Dynamics Manager in Section VI and PGA Mapper
in Section VII, we evaluated the proposed TraDE with
benchmark microservice application and compared the end-
to-end performance with default k8s QoS policy [31] and
NetMARKS [11]. In the evaluation experiments, we imple-
mented the K8s QoS policy with Burstable and the pod
scheduling policy without any pre-set rules like affinity
and taints. For NetMARKS [11], we implemented the node
scoring algorithm proposed by NetMARKS and adopted it
for rescheduling the predefined target microservice pods
experiencing QoS violations.

To ensure fair evaluations, three separate namespaces are
created for three identical social network applications
from [23], each managed by a different method (i.e., K8s
default, NetMARKS, and TraDE). Additionally, sustained

workloads are sent concurrently to each of the three identi-
cal social network applications. This setup isolates the
workloads for each method while maintaining the same
cross-node delay settings for the three applications at the
cluster level.

We generated multiple workloads with different requests
and varying QPS to evaluate the end-to-end performance of
our proposed TraDE and existing methods.

Fig. 16. In each service mesh, HTTP response percentage distributions
show the overall microservice application performance under different
deployment methods. The higher the percentages of ’OK’ responses,
the higher the goodput ratio.

Response Time and Durations. For the social
network benchmark application, we used the wrk2
tool to generate three request types: compose-post,
read-user-timeline, and read-home-timeline.
Each type shows distinct call graphs and traffic patterns
across the application’s dependency graph. Fig. 12
compares the average response times under various
workloads, including changes in QPS and user requests.
For these request types, TraDE consistently outperforms



XXXX, OCTOBER 2024 13

existing methods, meeting QoS targets across scenarios.
Compared to NetMARKS [11], TraDE achieves up
to 12.3% lower response times for compose-post,
48.3% for read-user-timeline, and 25.8% for
read-home-timeline requests. Notably, TraDE adapts
effectively under varied workloads, where K8s-burstable
and NetMARKS do not always meet QoS.

Fig. 12d illustrates the CDF of execution times for all
triggered microservices under a mixed workload (6:2:2
ratio of compose-post, read-user-timeline, and
read-home-timeline requests). Here, TraDE demon-
strates reduced microservice execution time, leading to
lower response times and higher throughput.

8.4 End-to-end Performance
Throughput and Goodput. Throughput and goodput are
key metrics for assessing end-to-end performance in dy-
namic environments. Throughput represents total data
transmitted, including overhead, while goodput measures
only the useful data successfully received at the application
layer.

In terms of throughput, we conducted experiments
to measure the average throughput (requests/second)
across different QPS and mixed workloads. As shown
in Fig. 13, TraDE achieves higher throughput than Net-
MARKS [11]—up to 1.5x for compose-post, 1.2x for
read-user-timeline, 1.4x for read-home-timeline,
and 1.2x for mixed requests, indicating superior throughput
in various scenarios.

For goodput, we analyzed response types using Istio
Service Mesh across separate deployments (K8s-burstable,
NetMARKS, and TraDE) for isolation. Fig. 16 shows TraDE
achieves a 95.36% success rate, outperforming NetMARKS
(71.99%) and K8s-burstable (65.43%). These results show
that TraDE surpasses existing methods in both throughput
and goodput across dynamic workloads.

8.5 Adaptive Performance Under Changing Delays
To assess the adaptive capability of the proposed TraDE
framework, we evaluated its performance under fluctuat-
ing cross-node communication delays. Specifically, in Fig.
14, four different cross-node delays were injected to the
cluster nodes every five minutes. As shown in Fig. 15,
TraDE effectively responds to these changing delays by
adaptively redeploying microservice instances to meet QoS
targets once detecting QoS violations. Comparing with the
existing two methods, it is clear to observe that TraDE can
consistently maintain response times within the QoS targets
(i.e., < 250ms, 300ms,< 350ms) throughout the remaining
runtime, while the other two methods (K8s-burstable and
NetMARKS) failed to meet these QoS targets.

9 CONCLUSIONS AND FUTURE WORK

In this work, we designed a traffic and network-aware
framework, TraDE, to address the challenges of QoS vio-
lations in containerized microservices running in dynamic
computing environments. Our framework primarily con-
sists of three components: a traffic stress analyzer, a network
dynamics manager, and an efficient service node mapper.

We evaluated our proposed TraDE against existing so-
lutions and demonstrated that our framework effectively
meets the QoS targets under various dynamic conditions,
outperforming the existing method NetMARKS by reducing
response time by up to 48.3%, improving throughput by up
to 1.4x and showing robust adaptiveness under sustained
workloads.

As part of future work, we plan to enhance our frame-
work to support resource auto-scaling for microservice-
based GPT (Generative Pre-trained Transformer) applica-
tions at the cloud-edge continuum, which demands stricter
end-to-end performance, and they are sensitive to dynamics
like cross-node delays.
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