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Summary

Large amount of data that is generated by Internet and enterprize applications
are stored in the form of graphs. Graph processing systems are broadly used in
enterprizes to process such data. With the rapid growth in mobile and social
applications and complicated connections of Internet websites, massive concur-
rent operations need to be handled. On the other hand, the intrinsic structure
and the size of real-world graphs make distributed processing of graphs more
challenging. Low balanced communication and computation, low preprocessing
overhead, low memory footprint, and scalability should be offered by distributed
graph analytics frameworks. Moreover, the effects of network factors such as
bandwidth and traffic as well as monetary cost of processing such large-scale
graphs and the mutual impact of these elements have been less studied. To
address these issues, we proposed two dynamic repartitioning algorithms that
consider network factors, affecting public cloud environments to decrease the
monetary cost of processing. A new classification of graph algorithms and pro-
cessing is also introduced, which will be used to choose the best strategy for
processing at any operation. We plugged these algorithms to our extended graph
processing system (iGiraph) and compared them with those supported in other
graph processing systems such as Giraph and Surfer on Australian National
Cloud Infrastructure. We observed that up to 30% faster execution time, up to
50% network traffic decline, and more than 50% cost reduction are achieved by
our algorithms compared to a framework such as the popular Giraph.
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1 INTRODUCTION

Today, many applications in domains such as the Internet, astronomy, social networks, information retrieval, and particle
physics are experiencing data flood and they have already reached peta-scale volume of data.1 The growth in the volume
of data needs large computing power to turn the original data into worthwhile insights. Nevertheless, massive amount of
data is saved and modeled in the form of graphs. These graphs provide valuable sources of information for several appli-
cations. For instance, by studying social networks and the way that relationships are shaped between users, psychologists
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and sociologists can investigate their assumptions and hypothesis about people and communities. Analyzing web graphs
can make search engines more accurate and effective.1 By detecting social circles and their influential members in social
networks, politicians can spread their thoughts in these communities.2 Therefore, processing large-scale graphs and
unveiling attributes of those graphs have become critical requirements.

Traditional approaches of processing Big Data such as MapReduce3 are not suitable for graph processing because of
the intrinsic behavior of graph algorithms. For example, MapReduce has a two-phase computation model, ie, Map and
Reduce, which is not exactly appropriate for the iterative nature of graph algorithms. It also does not retain the input
graph and its states in the main memory across these two phases and is very inefficient because of requiring repetitive
disk I/O.

Many research works on large-scale graph processing frameworks concentrate on the platforms based on commodity
clusters. However, not many studies have been done on cloud platforms, particularly public clouds.4 Cloud comput-
ing is a model of computing that has modified hardware, software, and datacenters implementation and design.5 It
has brought novel technologies and economical solutions such as elasticity and pay-as-you-go models by which service
providers do not need to worry about previous obstacles of delivering services to their clients. Public cloud services are
getting more popular than other cloud services such as private, hybrid, and community clouds especially among small
and medium size businesses. It is because they do not have sufficient funding to have their own private cloud or it
is not efficient for their business models. Thus, public cloud is a true response to their needs. Another important fea-
ture of public clouds is the monetary modeling that different service providers offer to their customers. Amazon, for
example, has three cost models, ie, spot, on-demand, and reserved provisioning models, for providing resources. Using
these commercial services, the client might select to pay more to get higher performance or better reliability. There-
fore, the challenge with using public clouds is making the right decision between utilizing the number of resources
that the user needs and the amount of money he/she can pay for the service. In this research, we only consider the
reserved model.

Another less studied aspect of graph processing systems is the impact of the network environment on the performance
of the whole system. Some systems such as Surfer6 and Pregel.Net7 are implemented to support graph processing on pub-
lic clouds. Although they consider some network features, none of these systems have explored the effects of provisioning
and processing on monetary cost. For instance, Surfer proposes a graph partitioning approach based on the network band-
width and claims that it could improve the performance. On the other hand, to the best of our knowledge, all existing
graph processing frameworks, except iGiraph,4 concentrate on decreasing the processing runtime, memory utilization,
and so on to degrade the cost of operation. They only take an unchanged pool of resources with known size into consider-
ation. It means that all existing systems start and finish their computation with the same number of resources (machines).
Therefore, in many cases, idle machines have to wait for other busy machines to finish their jobs and all machines be
released together, which is a waste of money and time. Even systems such as GraphP8 and GraphR9 that are reducing
the number of messages passing between partitions and introducing new memory access techniques, respectively, do not
discuss the monetary costs of the processing. These limitations can be overcome by dynamic management of resources
in an elastic manner.

The aim of this paper is to develop scheduling algorithms that consider characteristics of application workloads and
resources along with network factors to improve the performance and reduce the monetary cost of the whole computation.
We propose a novel dynamic repartitioning method that utilizes different factors including (1) the type of the graph
application that is going to be used, (2) some intrinsic features of natural graphs such as high-degree vertices, and (3)
the network features of the cloud environment that the system is running on. Our algorithms were plugged in to our
extended version of graph processing framework (iGiraph) and we compared them with those supported in other graph
processing systems such as Giraph and Surfer on Australian National Cloud Infrastructure. We observed that up to 30%
faster execution time, up to 50% network traffic decline, and more than 50% cost reduction is achieved by our algorithms
in comparison with a framework such as popular Giraph.

Our work makes the following contributions.

• A new classification of graph applications and processing is introduced in this paper, which affects the policy that will
be chosen to process the input graph. We have studied the impacts of combinations of different situations from this
classification together on processing large-scale graphs on public clouds for the first time and reduced the monetary
costs in each situation.

• A novel mapping strategy is designed to facilitate assigning partitions to the workers based on different features that
each partition and worker has.
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• A new bandwidth-and-traffic-aware dynamic repartitioning algorithm and a new computation-aware repartitioning
algorithm have been proposed in this paper. These algorithms remarkably reduce the monetary cost of processing,
which is a vital factor in the procedures of selecting services for any customer on a public cloud.

The rest of the paper is organized as follows. Section 2 explains the related work. Section 3 presents our background
work, ie, iGiraph, which is a graph processing framework based on Giraph. A new classification of graph algorithms is
explained in Section 4. Sections 5 and 6 introduce our new proposed bandwidth-and-traffic-aware and computation-aware
dynamic repartitioning algorithms of large-scale graphs, respectively, with their implementation on iGiraph. We explain
the architecture and details of our system (iGiraph-network-aware) in Section 7, followed by a discussion on the evaluation
of our works in Section 8. Finally, Section 9 concludes the paper and proposes future works.

2 RELATED WORK

To overcome the issues on traditional processing approaches, considerable endeavors are made to process large graphs.
Some proposed systems try to process the entire graph on a single server, whereas the main problem of this method is
scalability.10 However, the utmost size of graph to be processed is restricted by the single host's memory in which the
input graph has to be fully loaded. In addition, this method cannot use the strength of other hosts in terms of distribution
and parallelization to reduce the processing time. Another method is to utilize libraries that allow graph algorithms to
be executed in parallel in the shared memory approach.11 This method tries to solve the issue of the previous method.
However, it still has problems with fault tolerance and scalability.12 Another way of processing graphs is to adopt graphic
processing units to accelerate different graph processing tasks. In the sampling method, the input graph will be divided
into several subgraphs by the system and then the attribute of the main graph will be estimated based on the attributes of
the smaller subgraphs. The major issue in this method is that there is a big distinction between the actual and estimated
solutions.

Unlike the aforementioned methods, a distributed method utilizes a commodity of servers as a generic solution to per-
formance, scalability, and availability issues.13 This can be specifically utilized for solving large graph problems. Pregel,14

which was proposed by Google in 2010, is a computational model dedicated for processing large-scale graphs. The main
inspiration for Pregel is the bulk synchronous parallel (BSP) model,15 which streamlines the implementation of distributed
graph algorithms. A program in Pregel contains sequences of iterations called superstep. Within a superstep, a user-defined
function called Compute() is invoked by Pregel for each vertex that specifies the conduct of the node in the superstep.
The Compute() reads messages that have been sent to the related node during the prior iteration, applies some process-
ing, and dispatches messages to other nodes, which will be collected at the next superstep. This function can also change
the states of vertices and their outgoing edges. Pregel uses supersteps to accomplish fault tolerance and high scalability
in a cluster of machines. Nevertheless, this might be an impasse for performance when the amount of communications
grows in a graph with vertices in millions scale. Many distributed graph processing frameworks have been introduced
after Pregel. Systems such as Giraph,16 Apache Hama,17 ExPregel,18 GPS,19 GraphLab,20 and iGiraph,4 which have been
developed based on Pregel, are called Pregel-like systems. There are also other frameworks that are not developed based
on Pregel.

Pregel-like frameworks are developed based on a distributed architecture in which one machine will act as the mas-
ter, whereas other machines will be workers (slaves) and do the computation. In this approach, the input graph is split
into partitions and partitions are assigned to workers by the master to be processed. Therefore, partitioning a graph is a
critical job and, because it has a direct influence on the performance of the system, various methods have been proposed
for achieving better outcomes. A vast majority of graph processing systems propose some determined improvements on
high performance computing clusters with fast interconnects. However, their behavior on cloud computing that provides
virtualized commodity hardware and is available to a broader crowd of users is less investigated.4

Despite introducing various partitioning methods by different frameworks, the impact of network factors on the sys-
tem's performance and the way that they can be used to optimize or improve the processing is not sufficiently studied.
Surfer6 is the closest framework to our proposed system. However, according to the earlier discussion, it has many short-
comings and does not cover many aspects of network bandwidth; particularly, its mapping strategy is not quite efficient.
Another system that considers network traffic is Pregel.Net. Pregel.Net7 is implemented based on Pregel but over the .Net
framework. It has used Microsoft Azure to analyze the impact of BSP graph processing model on public clouds. However,
it does not investigate if its changes will affect the monetary cost of the operation.
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TABLE 1 Comparison of the most related work in the literature

System Architecture Partitioning Traffic- Bandwidth- Computation- Resource
Method aware aware aware Scheduling

Pregel14 Distributed Static × × × Static
Giraph16 Distributed Static × × × Static
GPS19 Distributed Dynamic

√
× × Static

GraphX22 Distributed Static × × × Static
Surfer6 Distributed Dynamic ×

√
× Static

iGiraph4 Distributed Dynamic
√

× × Dynamic
Our work - iGiraph- Distributed Dynamic

√ √ √
Dynamic

network-aware

In another research,21 authors have shown that the network does not have a significant impact on the processing and the
highest impact that any optimization solution can bring to graph processing system's performance would be something
between 2% and 10%. GraphX22 and Spark* were used in that experiment and some network factors such as the speed of
the network was studied in different situations. However, McSherry23 showed that this assumption is completely wrong
and many other factors have been missed from the study. He showed that using a dataflow framework can achieve much
better results to 2X-3X compared to GraphX. This study and ours in this paper imply that there are still many features
that can be taken into consideration and be mixed with novel solutions to leverage the impact of network to reach better
performance. Table 1 demonstrates the features of some of the most related works in the literature.

3 BACKGROUND – IGIRAPH

iGiraph4 is a Pregel-like graph processing system that has been developed based on Giraph. Giraph itself is an open-source
version of Pregel and is broadly used by big companies such as Facebook24 for processing their large graph data. iGiraph
has a distributed architecture, which is implemented on top of Hadoop25 and utilizes its distributed file system (HDFS) for
data input/output. It employs a vertex-centric programming model similar to Giraph in which every vertex of the graph
is identified by an exclusive allocated ID. It can also carry on more information such as a set of edges with an edge value
for each edge, a vertex value, and a set of messages sent to it.

iGiraph uses the BSP computation model. In this model, each vertex might have either active or inactive state. When
the processing starts, all the vertices of the graph are in their active mode and as the process continues, they might change
their state to inactive. In each superstep during the computation using BSP model, each vertex that is involved in the
processing, ie, (1) obtains its neighbors' new values from previous superstep, (2) updates its own value using the received
values, and (3) sends its updated value to its neighbors that will be accessible to them at the beginning of the next superstep
and modifies its mode to inactive. A global synchronization barrier determines the end of each superstep. At any time,
a vertex can be deactivated by calling VoteToHalt() function if it does not receive any messages during an iteration. If
a deactivated vertex receives a message from any of its neighbors, it will be activated again. The computation will be
completed when there is not any active vertex left.

There is s difference between iGiraph and other existing graph processing frameworks including Giraph. In addition to
proposing approaches to execute the processing faster and enhance the performance of the system, iGiraph also proposes
solutions for the less studied part of such systems on cloud environments, which is monetary costs of resource utilization.
Nonetheless, cost is a pivotal element for every business that aims to utilize public cloud infrastructure. As cloud providers
are using pay-as-you-go models for their services, considering the elements that influence the cost of the services is very
important for clients to select the right services. The whole idea in iGiraph is that, while other systems are using the same
amount of resources during the processing period, it is also possible to reduce the number of resources that are idle or are
not necessary to be kept for future computations (as illustrated in Figure 1).

The method that is used by iGiraph is a dynamic repartitioning method, which will be applied to the computation
at every superstep based on the type of the graph algorithm that is used. It classifies graph algorithms into two cate-
gories, ie, (1) convergent algorithms such as the shortest path or connected components algorithms that will converge

*http://spark.apache.org/

http://spark.apache.org
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FIGURE 1 Steps in iGiraph system reduces resource requirements [Colour figure can be viewed at wileyonlinelibrary.com]

as the computation progresses and (2) nonconvergent algorithms such as PageRank. When the system is processing
the data using a convergent algorithm, the vertices that are processed and have changed their state to inactive will be
removed from the memory at the end of each iteration. Hence, the graph is getting smaller during the processing. This
means that the remaining graph may be fitted in less number of machines and we can terminate the machines that
are not needed anymore. In nonconvergent algorithms, vertices are always in their active mode so we cannot terminate
machines. Instead, using the concept of high-degree vertices helps the computation to be executed faster and with less
communication cost.

In a natural graph, a high-degree vertex is a vertex that has bigger degree (more links) than other vertices in the graph.
For instance, in a social network, each member of the network is represented by a vertex and the relationship between
two members is represented by an edge in the graph. In this graph, a celebrity or a president of a country is a high-degree
vertex because they are usually followed by many other vertices (members) on social networks. When high-degree vertices
are located at the border of a graph partition, it means they have adjacent vertices on other partitions, this causes a
very high communication cost by sending and receiving messages to/from its neighbors. This is due to the number of
adjacent vertices that it has that is more than many other vertices in the graph. iGiraph utilizes the high-degree vertices
concept in both vertex and partition levels. It brings these types of vertices closer to their neighbors so that it reduces the
communication cost by decreasing the number of messages that need to be passed through the network (Figure 2). In
other words, it reduces the cost by reducing the network traffic.

In this paper, we extend iGiraph to support more network factors for its dynamic repartitioning approach by providing
a novel priority mapping solution to customize each machine for each partition. According to this solution, we provide a
ranking method for this mapping. To distinguish between the basic iGiraph and our proposed network-aware system in
this paper, we refer to the new system as “iGiraph-network-aware” for the rest of this paper.

(B)(A)

FIGURE 2 High-degree border vertices in both (A) vertex level and (B) partition level [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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4 PROCESSING ENVIRONMENT CATEGORIZATION AND
GRAPH APPLICATIONS

Different works use different categorizations for graph applications. For example, GBASE26 and TurboGraph27 catego-
rize the queries to global queries and targeted queries. Algorithms such as diameter estimation that need to traverse the
entire graph are identified as global queries, whereas other algorithms such as single source shortest are put in the tar-
geted queries category. A framework such as Giraph++28 uses three categories including graph traversal, random walk,
and graph aggregation for graph algorithms, whereas iGiraph4 utilizes a one-dimension categorization for all graph
applications, which divides them into convergent and nonconvergent.

In this work, we extend the iGiraph's categorization into two dimensions by adding an extra layer. Figure 3 shows the
new categorization for all sorts of processing, where any kind of application can be either computationally intensive,
communicationally intensive, or a combination of them.

• Computationally-intensive processing. This type of processing often has a large impact on CPU utilization because it
spends more time on computing than communicating and the memory side. Sometimes, the graph processing appli-
cation itself is computationally intensive and sometimes other applications keep the CPU busy in virtual machines
(VMs) and the graph application has to find a way to be processed faster. This situation happens mostly in a public
cloud environment.

• Communication-intensive processing. This type of processing usually has a big impact on network and memory
especially when an application needs to keep the intermediate states of a computation.

In this paper, we utilize two typical algorithms (convergent and nonconvergent) to show the impacts of each algorithm
on both types of processing. Here, we give a brief description of sample algorithms that we are going to use for our
experiments.

1. PageRank. PageRank algorithm was proposed to weigh the importance of web pages and websites by calculating the
number of links connected to them. The more hyperlinks the page gets from other websites, the more significant the
page is. PageRank assesses every page individually and will not weigh the whole website as a unit. In this algorithm,
the importance of a typical web page will not be affected by the PageRank of other pages because each page has
its own exclusive approximated weight. According to the categorization we presented in this section, PageRank is a
nonconvergent algorithm due to generating a constant number of messages in each iteration during the processing.

2. Single source shortest path. The aim of solving the shortest path problem is to find a route between two nodes in a
graph, whereas the sum of the weights of its edges is minimized. The shortest path is a famous problem in the graph
theory and various approaches have been suggested to solve it. Single-source-shortest-path (SSSP) problem is a special
case of the original shortest path problem. The SSSP is about discovering the shortest route between a typical source
vertex and all other nodes in the graph. Before SSSP starts, the values (distance) of all vertices are set to INF (∞)
except the source vertex, which is set to 0. Any possible route from the source vertex in the graph will be shorter
than INF. During each superstep, vertices receive messages from their adjacent nodes, update their value using the
minimum value received from their neighbors, and send any recently found minimum value to all neighbors. In the
initial iteration, only the adjacent vertices of the source node will be updated. In each superstep, the updated nodes
will send their new values to their neighbors until the computation ends. The processing finishes when the status
of all nodes in the graph is changed to inactive and no more updating happens. According to this definition, SSSP is
categorized as a convergent algorithm.

FIGURE 3 Graph applications and processing environment categorization [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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The total cost of processing in a graph system is depending on two major factors (considering equal size for the messages
in the network), ie, (1) the number of machines and (2) the time in which a specific type of machine is being used, as
shown in the following:

CostTotal =
m∑

𝑗=0

n∑

i=1
(C (𝑉𝑀 i) × T (𝑉𝑀 i)) . (1)

In the aforementioned equation, C (VMi) is the price of each machine and T (VMi) is the time within the machine is
used. To reduce the total cost of the operation, either less costly machines must be used or the total time that each machine
is being used should be reduced. In order to achieve this in a graph processing system, partitioning plays an important
role. For instance, there is no need to keep all the initial machines in the system for convergent algorithms if there is a way
to repartition the graph and place the remaining of the graph on less number of machines and reschedule the resources.
In this paper, we show that, to provide an effective dynamic repartitioning mechanism, considering factors such as traffic,
bandwidth, and computation burden in the network can help to reduce the monetary cost and improve the performance.

5 BANDWIDTH-AND-TRAFFIC-AWARE GRAPH SCHEDULING
ALGORITHM WITH DYNAMIC REPARTITIONING

Assume that the average amount of network traffic sent along each cross-partition is NM (Pi, Pj), the networks bandwidth
between the machines stored Pi and Pj to be Bi, j, and C (Pi, Pj) to be the number of cross-partition edges from partition Pi
to Pj. Because network bandwidth is a scarce resource in the cloud environment, it is considered as the major index for
network performance. Therefore, the approximate data transfer time (DTT) from Pi to Pj will be as follows:

DTT
(
i, j
)
=

C
(

Pi,P𝑗

)
× NM

(
Pi,P𝑗

)

Bi,𝑗
. (2)

This estimation is adequate for large-scale graph processing in both public and private cloud environments. Suppose we
have stored P graph partitions on P disparate machines; the overall DTT (DTTTotal) in the network caused in all partition
pairs is as follows:

DTTTotal =
P−1∑

i=0

P−1∑

𝑗=0
DTT (i, 𝑗) . (3)

Obviously, if network bandwidth among different machine pairs is constant, the total network DTT will be minimized
when the total number of cross-partition edges is minimized. Nevertheless, the network bandwidth among different
machine pairs can change remarkably in the cloud. Cloud providers have noticed such network bandwidth unevenness.
The network bandwidth of every machine pair among 64 and 128 small Amazon EC2 instances is shown in Figure 4.
On the other hand, research shows that, in public cloud, the network bandwidth between two instances is provisionally
steady. This allows us to perform our mapping calculation before each superstep.

Because of the network bandwidth unevenness, an important factor for an efficient graph processing is the mechanism
of partitioning the graph and storing its partitions on the VMs. According to the work of Valiant,15 because there might be
a large number of partitions and workers for processing the graph, there is P! possible ways to store partitions on workers,
which is a huge solution space. Another issue is finding a solution by which both graph processing and graph partitioning
algorithms can be aware of the bandwidth variability for networking efficiency.

To address these issues in a public cloud environment, a new dynamic repartitioning method is proposed in this paper.
The idea is to place the partitions with larger number of high-degree border vertices, which means they have larger
number of cross-partition edges, on workers with higher network bandwidth. This is because those graph partitions need
more network traffic. It also helps the partitions to be processed faster.

To achieve performance improvement, we implemented a mapping strategy (illustrated in Figure 5) in iGiraph. The
processing starts with a random partitioning approach as we use this method for all our experiments to start with. This
is because random partitioning is shown to have the worst performance among most of the existing well-managed parti-
tioning approaches. Therefore, we aim to improve this situation as the cheapest implementing strategy, which is not good
performance wise. According to this strategy, the first iteration (superstep 0) starts with a random partitioning method,
the processing of the iteration completes, and the global synchronization barrier occurs. Before going to the next super-
step, we use the information we collected from the first iteration to plan a new partitioning (repartitioning) for the next
iteration.
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(B)(A)

FIGURE 4 Network bandwidth unevenness in Amazon EC2 small instances with (A) 64 instances and (B) 128 instances6 [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 5 Mapping strategy for 5 partitions and 5 workers. Partitions with higher priorities are assigned to the machines with higher
bandwidth

After the completion of the first superstep, each partition is assigned a factor called partition priority (PP). The partition
with PP = 0 is the one that receives the larger number of messages over the network when compared to other partitions.
In other words, this partition contains more high-degree border vertices than other partitions. It is also a candidate for
being merged with other partitions or its vertices being migrated to other partitions. All other partitions also get their
own PP, which shows their importance based on the amount of network traffic they generate. On the other hand, each
worker also will be assigned a factor called worker priority (WP). The worker with WP = 0 is the one with the highest
bandwidth among all workers (machines). All other workers also will be given their own WP based on their bandwidth
rating in the network. In case in which two or more partitions have the same priority after calculation, one of them
will get the higher PP randomly. The same logic also applies to workers. After assigning PPs and WPs to partitions and
workers, respectively, the partitions with specific PPs will be assigned to the workers with the same WPs (Figure 5). The
calculations and assignments are done after each superstep i and before each superstep i + 1.

http://wileyonlinelibrary.com
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Another issue that should be considered is the time when the priority setting should be done. Due to the possibility of
merging or removing the partitions after each superstep, the priority setting is done after these operations immediately
before the next iteration starts. Therefore, the partitions that have received migrated vertices will be given the highest
priorities. This is because the reason for vertex migration is to bring high-degree vertices closer to their neighbors. If there
is more than one partition receiving migrated vertices, the one that has got more migrated vertices will get the highest
priority and so on. Furthermore, for the partitions that get merged, the priority of the final partition (combined partition)
will be set as the priority of the partition with the highest priority (its priority from the previous iteration). At the beginning
of the processing (superstep 0), all partitions' priorities will be set to 0 (highest priority).

In a nutshell, according to Algorithm 1, after each superstep, initial priorities for the partitions and workers will be
calculated based on the measurement of various network factors (traffic and bandwidth here) that have been completed
during the iteration. Then, if needed, partition merges and vertex migrations might happen based on the aforementioned
mechanism. Eventually, final priorities will be set for partitions and workers and they will be mapped accordingly.

According to our experiment results (Section 8.2), using a mapping strategy that assigns partitions to workers based
on the traffic in the network and the bandwidth capacity of workers combined with iGiraph's repartitioning method
(for both convergent and nonconvergent types of algorithms) gives much better results compared to previous solutions.
These results would be in regard to reducing the monetary cost of the processing by reducing the cost of resource
utilization, reducing network traffic, and accelerating the execution time of the whole process.

6 COMPUTATION-AWARE GRAPH SCHEDULING ALGORITHM WITH
DYNAMIC REPARTITIONING

Although many graph algorithms are communication intensive, computation unit can still affect the execution of appli-
cations. In a public cloud, each VM can host different applications at the same time. Some applications might be
computation intensive and keep the CPU busy, whereas other applications are not very CPU dependent but still can be
affected by the former. Computation-intensive algorithms or applications can delay the computation and execution time
of others.

Various approaches can be applied to deal with such situations. For example, each job can have a different prior-
ity by which the host can schedule the computation time for that. There are many prioritization strategies such as
first-in–first-out, first-in–last-out, and assigning priority numbers to tasks. Another approach for when there is no priority
or preference for job execution can be using equal time-slots for computing jobs in an intertwined way.

We propose a similar mapping strategy as we discussed for traffic and bandwidth-aware repartitioning, but we consider
CPU utilization instead of bandwidth in the algorithm and repartition the graph differently. We have implemented this
strategy on iGiraph. As in the last section, the computation starts with a random partitioning for superstep 0. At the end
of superstep 0 when the global barrier happens, before superstep 1, we use the information we have got so far to initiate
the repartitioning.

At this stage, on one side, based on the number of messages that has been passed between workers through the network,
we define PP again by which the partitions with high-degree vertices can be recognized. On the other side, a scalable
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FIGURE 6 Percentage of CPU idle time in a system with 15 workers

monitoring tool called Ganglia† is used to monitor the CPU utilization on each worker. Therefore, the information regard-
ing the computational conditions of all machines will be written and saved on a separate file on the master machine.
The information include the percentages of CPU idle times at the end of each supestep so that it can be possible to find
which machines are still busy, or how busy they are, and which one is free and ready to use. The reason for choosing
the CPU idle time to use in the algorithm instead of CPU working time is that the former is more reliable. There might
be situations that a very small task can use most of computation resources for a short time and increase the utilization
percentage remarkably but the reality is that the CPU will be idle the rest of the time. From this information, a map of
available computation resources can be depicted, which will be used for dynamic repartitioning during the rest of com-
putation. Figure 6 shows the computation map of a system with 15 workers, where some random computation-intensive
applications are running on some machines.

According to the aforementioned strategy, there will be four types of machines in the environment after the first
superstep, ie, (1) a machine with both a computation-intensive application and high-degree vertices of graph dataset
on it, (2) a machine with computation-intensive application running on it but the graph partition that have been
assigned to that does not have high-degree vertices, (3) a machine with a partition containing high-degree vertices but no
computation-intensive application on it, and (4) a machine that has neither computation-intensive application running
on it nor the partition that have been assigned to it has any high-degree vertices.

The idea is to move high-degree vertices with their neighbors to the machines that have higher CPU idle time. This
is because more computation is needed to be done on these vertices in terms of the number of messages they receive.
Therefore, the algorithm would be like the following: partitions in machine type 1 need to be migrated to or merged with
partitions on machines types 4 or 2, respectively. Partitions on machine type 2 can be merged with the one on types 3 and 4.
Partitions on machine type 3 can be migrated to type 4 or be merged by partitions on machine type 2. Based on this
algorithm, at the start of the processing, all workers have their type set as 0, which will change after the first superstep.
Then, at the end of each superstep, this algorithm will repartition the graph and assign the proper partitions to their best
worker. iGiraph-network-aware also considers the available memory on the destination before moving the vertices.

To summarize, similar to Section 5, after each superstep, initial priorities for the partitions and workers will be cal-
culated based on the measurement of various network factors, which, in this case, are the traffic and the computation
capacity of each machine. After that, some partitions might get merged and some vertices might get migrated using the
dynamic repartitioning mechanism. Finally, priorities will be set for partitions and workers and they will be mapped
accordingly (Algorithm 2).

As will be shown in Section 8.2, our experiments prove that, under the equal situation, the computation-aware reparti-
tioning on iGiraph-network-aware significantly reduces the execution time of the entire processing compared to Giraph.
It is also shown that this approach can reduce the monetary cost of the processing for both convergent and nonconvergent
types of applications.

7 SYSTEM DESIGN AND IMPLEMENTATION

Figure 7 shows the design of our proposed software system and the components that we have added to iGiraph. The
architecture and placement of different components of our system is shown in Figure 8.

†http://ganglia.sourceforge.net/

http://ganglia.sourceforge.net
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FIGURE 7 The components that we added to original iGiraph are shown in dotted rectangles
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FIGURE 8 System architecture

7.1 Bandwidth measurement
Bandwidth measurement component is implemented on all machines in the system to be able to calculate the bandwidth
between workers by an end-to-end calculation mechanism, which is used in the work of Zhong et al.29

7.2 Traffic measurement
To calculate the network traffic between each pair of machines, the traffic measurement module is implemented and
installed on all workers. It basically works based on the number of messages transferring between machines. Using this
information, the system ranks the most congested paths and uses that for partitioning purposes.

7.3 CPU measurement
As part of a network characteristic, CPU workload shows the amount of computations occurring on each machine and
in the whole network. In a public cloud, there may be different jobs running on each machine at the same time and
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some of these jobs might be computation-intensive. By knowing how busy each worker in the network is, we can avoid
overloading occupied workers by assigning more tasks to them. This module uses the information that it receives from
Ganglia, a tool by which we can measure many specifications of a network, to calculate the CPU idle times per worker.

7.4 Policy selector
Policy selector is a component of iGiraph, which we have expanded to cover our network-aware scheduling algorithms.
Using this component, users specify their workloads and, based on that, they define what algorithm (bandwidth-aware
or computation-aware) they want to be used to process their workload.

7.5 Network KPI aggregator
The network KPI aggregator is implemented on the master to aggregate the information from all workers and pass them
to the next component for partitioning decision making. Having this component as an independent module that gathers
all information in one place helps to reduce the burden of workers and make the execution faster.

7.6 Repartitioner
The repartitioning component partitions the graph again based on the information that has been gathered from other
parts of the system. Since the system utilizes a synchronous approach for execution, repartitioning happens after each
superstep and before the next superstep begins. We will show that, using these components and the new repartitioning
strategy, the performance of the system will increase significantly compared to similar frameworks such as Giraph and
Surfer.

8 PERFORMANCE EVALUATION

8.1 Experimental setup
We use m1.medium NECTAR VM instances for all partition workers and the master role. NECTAR30 is the Australian
national cloud infrastructure facilities. Medium instances have two-cores with 8GB RAM and 70GB disk including 10GB
root dis'k and 60GB ephemeral disk. All the instances are in the same zone and use the same security policies. Since
NECTAR does not correlate any price to its infrastructure for research use cases, the prices for VMs are put propor-
tionally based on Amazon Web Service (AWS) on-demand instance costs in Sydney region according to the closest VM
configurations as an assumption for this work. Hence, NECTAR m1.medium price is put based on AWS m5.large Linux
instance, which costs $0.12 per hour. However, because our experiments are in second scale (instead of hour scale), the
prices are being calculated for the entire operation in second scale. Therefore, we charge the machines only based on the
number of seconds they were used and do not charge them for one hour because they were used only for few seconds.
We also installed NECTAR Ubuntu 14.04 (Trusty) amd64 on each instance. We plugged in our algorithms to iGiraph4

(our extended version of Giraph system) with its checkpointing characteristic turned off. To distinguish between the orig-
inal iGiraph and the current work, we refer to the new system as “iGiraph-network-aware” in this paper. We also use
Apache Hadoop version 0.20.203.0. All experiments run using 16 instances, where one takes the master role and others
are set up as workers.

We chose the shortest path and PageRank for communication-bound convergent and nonconvergent algorithms,
respectively. Moreover, to show the effectiveness of the distributed processing on large-scale graphs by using our proposed
solution, we utilize three real datasets of different sizes, ie, Amazon, YouTube, and Pokec.31 Properties of these datasets
are shown in Table 2.

8.2 Results
To evaluate the proposed algorithm, we chose Giraph as a popular graph processing framework to compare the perfor-
mance of our system with. We also implemented the bandwidth-aware graph processing method proposed by Surfer on
Giraph to use it as another baseline. Although Giraph has been improved since Surfer was developed, the implemented
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TABLE 2 Datasets' properties

Graph Vertices Edges

Amazon (TWEB) 403 394 3 387 388
YouTube Links 1 138 499 4 942 297
Pokec 1 632 803 30 622 564

algorithm still shows Surfer's behavior on the network. We have also compared the results with the original iGiraph paper.
In addition, the size of messages in all experiments is the same. Therefore, the communication cost is independent from
message size and is calculated based on the number of messages that are transferred through the network.

The first group of experiments is carried out for communication-intensive scenarios. Most graph processing applications
are classified in this category. As the results show, iGiraph-network-aware could achieve better performance compared
to Giraph, original iGiraph, and Surfer on both convergent and nonconvergent applications. Both Giraph and Surfer start
computing with a constant number of machines and finish the computation with the same number of machines, no matter
if the graph is shrinking or not during the execution. On the other hand, for convergent algorithms, as the processing
continues, the number of active vertices decreases. Therefore, iGiraph and iGiraph-network-aware remove deactivated
vertices from the memory, which means the graph is shrinking during the processing. Our experiments (Figures 9-11)
show that the number of messages in the network is reduced even more significantly compared to the original iGiraph by
using dynamic bandwidth-and-traffic-aware repartitioning and mapping approach on iGiraph-network-aware. This leads
to reducing the number of active workers during the processing (Figure 12). As a result, when the number of machines
declines, the cost of processing will also drop significantly. The results even show that the number of workers tends to
be reduced faster compared to the original iGiraph paper because, using the new algorithms in this paper, the number of
messages in the network is decreasing too.4 This also affects the total execution time, as illustrated in Figure 13.

It is also shown that the new mechanism works well on nonconvergent algorithms such as PageRank. According
to Figures 14 and 15, not only the average number of messages in the network is reduced in iGiraph-network-aware
compared to Giraph, original iGiraph, and Surfer but also the processing has been completed faster using our
bandwidth-and-traffic-aware dynamic repartitioning algorithm. Tables 2 and 3 show the cost comparison for different
datasets for the shortest path and PageRank algorithms, respectively, on each framework. Tables 3 and Table 4 show the
dollar cost of the operations is much less with the proposed techniques in this paper.

The second group of experiments is carried out for computation-intensive scenarios. It is shown that, using
computation-aware repartitioning that considers CPU idle time on each worker for mapping, the system performs better
compared to Giraph (Figures 16 and 17). For this experiment, we have created two 500 × 500 matrices with random inte-
ger numbers and multiply them to keep the CPU busy on a random number of machines. The results of the multiplication
will not be saved because we do not want to decrease the memory of workers during the experiment. The results of the
experiments have only been compared to the original Giraph under the same conditions. It means that, for example, we
have done the experiments on both iGiraph-network-aware with computation-aware dynamic repartitioning algorithm

FIGURE 9 Number of network messages transferred between partitions across supersteps for Amazon graph using shortest path
algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 10 Number of network messages transferred between partitions across supersteps for YouTube graph using shortest path
algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Number of network messages transferred between partitions across supersteps for Pokec graph using shortest path algorithm
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Number of machines varying during supersteps while running shortest path algorithm on different datasets [Colour figure
can be viewed at wileyonlinelibrary.com]

and Giraph when matrices multiplication is running on six workers and the same workers every time. The results have
not been compared with Surfer because it does not have such capability to process the graph using the computation
information on the network.

As shown in Figure 18, again, the number of machines has noticeably decreased in iGiraph-network-aware using the
computation-aware dynamic repartitioning approach for a convergent algorithm such as the shortest path algorithm.
Therefore, processing the graph on iGiraph-network-aware is much cheaper than doing so on Giraph (Table 5). The
same results have been obtained for the nonconvergent algorithm PageRank. It shows that our proposed mechanism has

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 13 Total time taken to perform shortest path algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 The average number of network messages in each superstep [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Total time taken to perform the PageRank algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

reduced the average number of messages in the network while completing the computation faster (Figure 19). Table 5
and Table 6 show that the dollar cost of the operations is much less with the proposed techniques in this paper.

8.3 Complexity analysis
We analyzed the time complexity of the two proposed algorithms (traffic-and-bandwidth-aware and computation-aware
algorithms), which are very similar in terms of the structure. Both algorithms are dependent to the number of supersteps
(N), which N varies based on the application and the number of vertices in the graph. In addition, prioritizing partitions (P)
and worker machines (W) affect the algorithms as they need to be calculated in each iteration. Therefore, the complexity
of these algorithms is O (N (P + W)). Since both P and W are dependent to the number of machines (m) (one partition per
worker), the complexity also can be written as O (N (log m)).

On the other side, the complexity of partitioning algorithm for Surfer is O (m2) + O [P + log2 P (n + log P)], where P
is the number of partitions and random partitioning is used instead of METIS. For Giraph the complexity is O (N (n))
(n = number of nodes). As can be seen, algorithms are dependent to the applications' complexities as well. According to
the work of Han et al,27 for instance, the complexity of SSSP and CC algorithms are O (ne) and O((e + n) log n)), respectively,
where n is the number of nodes and e is the number of edges in the graph. In Surfer, the user should define the number
of partitions for the processing, hence the complexity of the algorithm is dependent to the number of partitions (P).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 3 Processing cost for single-source-shortest-path on different
frameworks

Dataset Giraph Surfer iGiraph iGiraph-network-aware

Amazon $0.0140 $0.0130 $0.0096 $0.0079
YouTube $0.0125 $0.0120 $0.0082 $0.0067
Pokec $0.0145 $0.0140 $0.0099 $0.0071

TABLE 4 Processing cost for PageRank on different frameworks

Dataset Giraph Surfer iGiraph iGiraph-network-aware

Amazon $0.0250 $0.0210 $0.0140 $0.0110
YouTube $0.0430 $0.0370 $0.0380 $0.0295
Pokec $0.0760 $0.0640 $0.0630 $0.0525

FIGURE 16 Total time taken to perform shortest path algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 Total time taken to perform PageRank algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 18 Number of machines varying during supesteps while running shortest path algorithms on different datasets [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 5 Processing cost for
single-source-shortest-path on different frameworks

Dataset Giraph iGiraph-network-aware

Amazon $0.0115 $0.0055
YouTube $0.0110 $0.0042
Pokec $0.0140 $0.0068

FIGURE 19 The average number of network messages in each experiment [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Processing cost for PageRank on
different frameworks

Dataset Giraph iGiraph-network-aware

Amazon $0.0195 $0.0130
Pokec $0.0600 $0.0545

8.4 Discussion
We compared our algorithm with Surfer's algorithm6 due to its relevance to our work. Both approaches use mapping
strategy to map partitions and worker machines for computation. They both consider bandwidth as an important factor
that affects the performance of processing, which shows the role of network to make the processing costly. Both methods
try to reduce the number of cross-partition edges to reduce the number of messages transferred between machines so that
they can decrease the communication cost.

Apart from the similarities, there are significant differences between Surfer and our work. First, Surfer partitions the
graph before the processing starts and never repartitions data during computation. It creates the partition map at the
beginning of the operation along with the workers map, but it only changes the workers map during the processing.
The problem is that, after each iteration, a new map is generated for workers and partitions have to be moved to a dif-
ferent worker every time. It is specifically very costly when all active and inactive vertices are meant to be transferred
together. This is the reason that iGiraph-network-aware distinguishes between convergent and nonconvergent algorithms
and is using a repartitioning algorithm to make a new partition map and workers map after each superstep. Second,
the Surfer authors evaluate their approach using METIS and ParMETIS to initiate the partitioning the graph, whereas
iGiraph-network-aware uses a random approach. METIS and ParMETIS have been shown to give better partitioning
results than random partitioning. Therefore, we believe that this is the reason that Surfer's approach does not work well
by being initiated with random partitioning. However, initiating iGiraph-network-aware by either METIS or ParMETIS
will still give better results compared to Surfer because of different strategies that they are using. Third, all experiments
on Surfer have been done on random graph datasets, which is generated by a graph generator and not real-world datasets.
Therefore, the impact of high-degree vertices has not been investigated by Surfer, although it is an important feature of
real-world graphs. Fourth, Surfer has not investigated the monetary cost of the processing. This is the unique feature of
iGiraph-network-aware as it reduces the number of using machines as the operation progresses, whereas both Surfer and
Giraph maintain the same higher number of machines during the entire operation.

Overall, there are many factors that need to be considered for scheduling resources in cloud environments.28 However,
factors such as monetary cost and networks aspects of clouds have not been investigated much in graph processing context.

http://wileyonlinelibrary.com
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Our work is one of the first works that combines all those factors to not only improve the performance but also to minimize
the cost of using public clouds.

9 CONCLUSIONS AND FUTURE WORK

As the amount of data is growing every day, processing and analyzing them in a cost-efficient way is a challenge. Dis-
tributed graph processing frameworks have emerged in the past few years to facilitate the processing of large-scale graphs
that are made and stored by applications such as social networks and mobile applications. On the other hand, cloud
computing has brought new facilities to streamline large-scale computing and storage. It has brought different models of
computing with new paradigms such as pay-as-you-go model, scalability, and elasticity. In this paper, a new graph pro-
cessing framework was proposed to analyze large-scale graph data. To achieve this, a new two-dimension classification of
graph applications was used for the processing strategy. A novel dynamic repartitioning was also introduced, which con-
siders network factors such as bandwidth and network traffic to process the graph by reducing network, communication,
and monetary costs. According to our experiments, this model could significantly outperform other frameworks such as
the famous Giraph.

As future work, we plan to consider other different scenarios such as processing graphs using different types of machine
configurations (eg large, medium, small instances) that are available on cloud platforms. We will investigate the impact
of other partitioning methods such as METIS instead of a simple random partitioning on our framework and identify the
factors having an effect on the quality of graph processing services.
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