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Abstract—BCube is a well-known recursively defined network structure. It provides multiple low-diameter paths and good fault-

tolerance for data center networks (DCNs). Its distributed routing algorithm, BCube Source Routing (BSR), can be deployed rapidly

and conveniently to build multiple parallel path sets. But in the worst case, BSR may suffer from flow collisions and waste 50% of the

capacity of each BCube link. In this paper, to decrease collisions and improve bandwidth utilization, we supplement the BCube topology

with a central master computer and design two centralized dynamic parallel flow scheduling algorithms: CDPFS and CDPFSMP, for

single-path and multi-path respectively. We focus on finding the least congested path for each flow by analyzing the information about

the state of the global network. Furthermore, we allocate those paths to each flow in parallel. The simulation result shows that our

proposed algorithms take advantage of BCube structure and deliver high-performance solutions for load balancing problems, which

have improved 44.1% of the throughput in random bijective traffic pattern and 36.2% of throughput in data shuffle compared with BSR

algorithm.

Index Terms—Algorithms, performance, design, cloud data center networks, server-centric networks, software-defined networks
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1 INTRODUCTION

THE dawn of the twenty-first century has witnessed the
development of popular Internet services and major

trends in information technology, such as Cloud Computing
[1], Web Search, and Big Data [2]. These pivotal technolo-
gies all require resilient networks of wide-ranging data cen-
ters containing hundreds of thousands of servers and
switches. These data centers also provide structure-based
services such as distributed file systems [3], structured stor-
age [4]. The networking infrastructure inside a data center
is called a data center network (DCN). The prevalent trends

of the twenty-first century are motivating scholars to pro-
pose new DCN architectures. Numerous scholars are pub-
lishing novel designs for flexible, scalable data center
interconnection. A favorable DCN architecture should have
high scalability, efficient switch and server utilization, and
high fault tolerance.

In terms of the reconfigurability of network topology
after the deployment of a DCN, the existing popular DCNs
are mainly divided into two types: fixed architectures and
flexible architectures. The category of fixed architectures
can be further classified into two categories: multi-rooted
tree-based (switch-centric) networks and recursively-
defined (server-centric) networks. In a typical multi-rooted
tree-based network, such as Fat-tree [5] and VL2 [6], servers
act as endpoint hosts that send and receive data, and
switches are responsible for packet forwarding operations,
including routing and addressing. In a recursively-defined
network, such as BCube [7] and MDCube [8], servers with
multiple network ports (NICs) connect to multiple layers of
mini-switches that only behave like crossbars. The servers
are also responsible for computing-intensive operations like
routing; the core task of routing is choosing the next for-
warder. That is, servers not only act as end hosts but also
act as relays for other servers. Unlike fixed architectures,
flexible architectures such as c-Through [9] and Helios [10]
enable reconfigurability of their network topology. Every
network architecture is characterized by its own unique
topology, construction, routing, fault tolerance, and fault
recovery.

In this paper, we choose BCube [7], which is a recur-
sively-defined topology and a server-centric network struc-
ture, as our network model. BCube has good properties that
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can provide multiple parallel low-diameter paths. In partic-
ular, BCube features graceful degradation; that is to say,
when numerous links or switches have failed, the aggregate
bandwidth reduces slowly and there are no significant
throughput falls. Numerous scholars have proposed cen-
tralized algorithms for tree-based network structures such
as Fat trees, VL2s, and Clos networks, but few have dis-
cussed central management for recursively defined net-
works. They usually execute a distributed routing
algorithm by executing that algorithms on each server in a
server-centric network because it is fast and easy. In a
server-centric network, each source server has already
determined its routing path, which is included in the spe-
cific packet header of each packet sent from that server.
When the intermediate server receives its packet, it will get
the next hop from the specific packet header, forwarding
the packet until the destination server has received the
packet. If global network status is ignored, it is likely to
cause flow collision in the DCN. For example, two source
servers may seek to minimize delay time with probe pack-
ets; these two servers may choose the same server as an
intermediate node, and thus two flows might collide with
predefined routing path. To reduce those unnecessary flow
collision and improve load balancing of all flows in BCube,
we design two variants of a heuristic centralized dynamic
parallel flow scheduling algorithm: CDPFS and CDPFSMP,
to reduce computation time by parallel methods. The simu-
lation results show that our proposed algorithms can effec-
tively mitigate most flow collisions and improve overall
performance.

The main contributions of this paper are as follows. First,
to concurrently compute the appropriate paths for each
flow that contains a source server paired with a destination
server, we propose a fast algorithm to construct two disjoint
graphs: SP and NSP, which are subgraphs of BCube. We
use those graphs to build a global view interface table with
the congestion value of each server network port in BCube.
Second, we propose two efficient heuristic centralized flow
scheduling algorithms in parallel. The first algorithm finds
a single path for each flow, and uses a greedy strategy to
have each flow choosing the least congested path in its SP
and NSP graphs, so each flow can always find the lowest
congestion value on each iteration. When the algorithm
decides an appropriate path, we remove this corresponding
path from its SP and NSP graphs and update the congestion
value of the global view interface table until we allocate all
flows to its available path. Furthermore, we know that using
Multipath TCP (MPTCP) [11] can use available bandwidth
with each link effectively and optimally, giving improved
throughput and better fairness on BCube. So we propose a
second algorithm to find multiple node disjoint paths for
each flow, which is better than finding edge disjoint paths
when server or switch failures occurred; it also takes the bal-
ance of each server network port used into account. We use
a probability model to obtain an approximate solution by
the greedy strategy of CDPFS, and our simulation results
show that it does not decrease too much throughput com-
pared with the best solution, but it can significantly reduce
the calculation overhead for each flow.

The rest of this paper is organized as follows. Section 2
briefly describes BCube structure and discusses the flow

scheduling problem. Section 3 presents the building algo-
rithm of the disjoint SP and NSP graphs. Section 4 presents
our proposed algorithms: CDPFS with single-path and
CDPFSMP with multi-path. Section 5 presents our simula-
tion environment and architecture, the implementation of
dynamic flow scheduling and our simulation results. Sec-
tion 6 concludes this paper.

2 RELATED WORK

2.1 Routing Algorithm

Along with the rapid growth of large-scale data computing,
DCNs transport larger traffic and handle longer routing
path. As a result of this increased flow bandwidth, the net-
work experiences more network flow collision, which
causes throughput reduction. It is challenging to balance
the load on such advanced networks with conventional
static routing. Scholars have published adaptive routing sol-
utions to this load-balancing problem [12], [13]. In this
approach, each switch can make its own routing decisions.
However, self-routing causes out-of-order packet forward-
ing, which degrades reliability [14]. To address this prob-
lem, more and more research papers [15], [16], [17] have
advocated central management and scheduling with a
global view of network-wide communication, which can
improve load balancing in data center traffic more effec-
tively than other methods. Scholars designed a centralized
routing algorithm using flow-based switches enabled by the
OpenFlow [18] framework; their system combined central
management and a controller. Several publications have
described the software-defined networks (SDN) [19], [20],
[21], in which the controller allows for feedback control
with information exchange between different switch layers
in a DCN architecture, supporting global flow-level control
of ethernet switching. The controller has the visibility over
all network flows, allowing for near optimal flow schedul-
ing of network traffic flows. A study [22] reported that cen-
tralized heuristic approaches with parallel computing can
determine routing paths rapidly, manage numerous flows,
and apply big-data techniques to large-scale DCNs.

2.2 BCube Network Structure

To make this paper self-contained and easy to understand,
we briefly describe the network structure, construction, and
distributed routing algorithm: BCube Source Routing (BSR)
of BCube in this section.

BCubeðn; kÞ is a recursively defined structure ðk � 1Þ,
which is constructed from n BCubeðn; k� 1Þ and nk n-port
switches. Each server has kþ 1 network ports in
BCubeðn; kÞ, which are connected to switches from 0 to k
level. The total number of servers in BCubeðn; kÞ is nkþ1,
and the total number of switches is ðkþ 1Þ � nk, which hav-
ing nk n-port switches in each level. The example
BCubeð4; 1Þ can be seen in Fig. 1, a BCubeð4; 0Þ has 4 servers
with 2-port connecting to 4-port switch, and BCubeð4; 1Þ is
constructed from 4 BCubeð4; 0Þ and 4 4-port switches.

Each server uses an address array akak�1 . . . a0 from the
highest level bit k to the lowest level bit 0 where the ai value
belonging ½0; n� 1� and length (digits) is kþ 1. Each switch
uses another format hlevelnumber; sk�1sk�2 . . . s0i where
levelnumber is the level of the switch and si value belonging
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½0; n� 1�. From Fig. 1, we can see the level 0 switches,
h0; 0i; h0; 1i; h0; 2i; h0; 3i, connecting to the level bit 0 server
with the different values of a0 from 0 to 3, and the level 1 of
switches: h1; 0i; h1; 1i; h1; 2i; h1; 3i connecting to the level bit
1 server with the different values of a1 from 0 to 3. More
generically, the connecting rule is the k level port of the jth
servers ajaj�1 . . . a0 connects to the level j switch <
j; sj�1sj�2 . . . s0 > where j is from 0 to k. More details can
be found in [7].

Given source server A ¼ akak�1 . . . a0 and destination
server B ¼ bkbk�1 . . . b0, BSR generates kþ 1 parallel paths in
a BCubeðn; kÞ; the intermediate servers and switches on one
path do not appear any other path. The method uses a per-
mutation set that starts from a different level bit of the A
address array (the highest level bit k to the lowest level bit
0), and then shifts right one digit sequentially and modifies
the value of its location to the value of B address array
when ai 6¼ bi. If the value of starting level bit is ai ¼ bi, it
will choose an available neighbor at level i where ci 6¼ ai,
and set the value ai to ci, and correct this level i value to the
original value bi at last iteration. The example can be seen in
Fig. 2.

In BSR, the source server decides which path a packet
should traverse with its parallel path set by probing the net-
work and encodes the path in the specific packet header.
When a new flow comes, the source server sends probe
packets over its multiple parallel paths. Those probe packet
will collect the network information such as the minimum
available bandwidth values of its input/output network
ports, or delay time from the intermediate servers of those
paths. After the source server receives the probe responses

from the destination servers, the path selection completes
and the source server chooses a better path from its parallel
path set. Since servers need to probe all parallel paths at first
and then select the most appropriate path, such as a path
with the least end-to-end delay, leading to an increase in the
latency of flows.

3 THE PATH SET OF SP, NSP, AND ALTSP

In this section, we present how to build the the graph and
path set of SP, NSP, and AltSP. Description of the notations
of Section 3 is shown in Table 1.

3.1 The SP and NSP Categories

To improve the load balancing in the data traffic flows, we
consider the total data traffic flows in DCN. Under the
premise of the same link capacities and server computing
capabilities, when a flow passes through fewer intermedi-
ate servers and fewer links, we can have more link spaces
to put other flows in the DCN. In our centralized schedul-
ing strategy, we measure all of the data traffic flows and
find the shortest path to put those appropriate flows into
the DCN. In general, there must be remaining flows that
cannot be put into the DCN when many other servers’
communications require data transfer. Thus the system
uses alternate and longer paths to put those flows into the
DCN.

In BCubeðn; kÞ [7], the source server S uses an BCube
address array sksk�1 . . . s0 (si 2 ½0; n� 1�; i 2 ½0; k�Þ) and the
destination server D uses an BCube address array
dkdk�1 . . . d0 (di 2 ½0; n� 1�; i 2 ½0; k�Þ). We designate two cat-
egories: the Shortest Path (SP) level bit with the digits si 6¼
di and Non-Shortest Path (NSP) level bit with the digits si ¼
di. In SP category, hðS;DÞ denotes the Hamming distance of
two servers, S and D, which is the number of different dig-
its of their address array. It is equal to the number of SP
level bits and also equal to the shortest path lengths
between the the server S and the server D. We know that
the server S and server D have kþ 1 digits of address array
in BCubeðn; kÞ, so there are hðS;DÞ level bits in the SP cate-
gory and kþ 1� hðS;DÞ level bits in the NSP category. We
first focus on the SP level bit category.

3.2 The Path Set and Graph of SP

The SP Path Set contains all of the shortest paths between
the source server S and the destination server D. According
to each flow with the pair ðS;DÞ in traffic flow patterns, we
use this as input to create the SP Path Set by Algorithm 1.

Fig. 1. BCubeðn; kÞ where k ¼ 1 and switch port n ¼ 4, each server has
kþ 1 ¼ 2 ports.

Fig. 2. BSR generates a parallel path set with A and B.

TABLE 1
Notation Table of Section 3

Notation Description

hðS;DÞ Hamming distance of two servers, S andD
spcount Number of different digits of S andD
spbit Record the address value of SP level bit
permutations All permutations of 0 to ðspcount � 1Þ
p One permutation in permutations
pathp A path generated by p
SPset Contains all shortest paths between S andD
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Algorithm 1. CREATE SP PATH SET

Input: Source Server S ¼ sksk�1 . . . s0 and Destination Server
D ¼ dkdk�1 . . . d0; S½i� ¼ si;D½i� ¼ di

Output: spcount, the number of SP level bits; SPset which con-
tains all shortest paths between S andD

1: Initialization: SPset ¼ ;; spcount ¼ 0 and spbit ¼ ½�;
2: for each i 2 ½0; k� do
3: if si 6¼ di then
4: spcount þþ;
5: spbitappendðiÞ;
6: permutations =

Heaps_Algorithm(list(range[0..ðspcount � 1Þ]));
7: for each p 2 permutations do
8: pathp ¼ ½S�;
9: N ¼ S; =� The next hop BCube server �=
10: for each dig 2 p do
11: N ½spbit½dig�� ¼ D½spbit½dig��;
12: pathpappendðNÞ;
13: SPsetappendðpathpÞ;
14: return SPset

In Algorithm 1: CREATE SP PATH SET, spcount denotes the
number of SP level bits, that is, the number of different dig-
its of S and D. We record the address value of SP level bit
in the spbit array. We use a list array that ranges from 0 to
spcount � 1 as input to run Heap’s Algorithm. Heap’s Algo-
rithm is an effective algorithm for generating permutations
by computer. It was first proposed by B. R. Heap in 1963
[23]. In the second for loop, we use permutations to create
the shortest paths between the S and D. We sequentially
create the next serverN by modifying one digit of the previ-
ous server with p in permutations, and then append this
path pathp to the SPset.

After we get the SPset in Algorithm 1: CREATE SP PATH SET,
which means we find out all the shortest paths between the
source server S and the destination server D. We can build
the SP graph by all the shortest paths in the SPset. Then we
use the n-bit binary address to transfer the server’s address
array in the SP graph (n ¼ spcount). We call this binary
address a node address. The node address is constructed by
the digits from SP level bits from high level bit to low level
bit. It can also be viewed as, the n-dimensional hypercube
graph Qn with 2n nodes (servers). We show an example in
Fig. 3a, if the n ¼ spcount ¼ 3, the node address of the source
server S is (000) and node address of the destination server
D is (111). The other node address are one digit different
from the previous node which start from S. Fig. 3b shows
n ¼ spcount ¼ 4 in BCubeð4; 3Þ, it is same as the 4-dimen-
sional hypercube graph Q4 with 24 nodes. We will use the
SP graph to select appropriate path to improve the load bal-
ancing with this flow pattern ðS;DÞ in BCubeðn; kÞ.

3.3 The First, Intermediate and Last Forwarders

With a flow pair ðS;DÞ in traffic flow patterns, the neighbors
of the source server S are the first forwarders, the neighbors
of the destination server D are the last forwarders and the
other servers in the flow path are intermediate forwarders.
There must be one digit that is different from the first for-
warder to source S in the SP level bit, and there must be one
digit that is different from the last forwarder to destination
D in the SP level bit as well. We can see Fig. 3a as an

example, The first forwarders 1122ð001Þ, 1221ð010Þ and
3121ð100Þ are the neighbors of S. The last forwarders
1222ð011Þ, 3122ð101Þ and 3221ð110Þ are the neighbors of D.
In the SP graph where spcount ¼ n, We have Cn

1 first forward-
ers , Cn

2 þ � � � þ Cn
n�2 intermediate forwarders and Cn

n�1 last
forwarders. If we want to find the spcount node-disjoint par-
allel paths for the flow traffic between the server S and D in
the SP graph, we must choose all of the first forwarders and
last forwarders in the spcount multi-paths. For spcount � 4, we
have more intermediate forwarders to select appropriate
ones in the multi-paths. With numerous traffic flows, we
concern about how to select those intermediate forwarders
to reduce flow collision as possible.

3.4 The Path Set and Graph of NSP and AltSP

In [7], a system had kþ 1multi-paths between any two serv-
ers in a BCubeðn; kÞ, and these kþ 1 multi-paths would be
node-disjoint parallel paths. In the Section 3.1, we recognize
both the SP category and the NSP category. With a flow pair
ðS;DÞ in traffic flow patterns, if spcount < ðkþ 1Þ, we have
to create the NSP path set to maintain the kþ 1 multi-paths.
To make the NSP paths and the SP paths being disjoint in
the kþ 1 parallel paths, our method is choosing all appro-
priate neighbor pairs ðS0; D0Þ that S0½j� ¼ D0½j� where j ¼ the
NSP level bit between the server S andD. We use the neigh-
bor pair ðS0; D0Þ as the input to execute Algorithm 1, and the
output would be ðS0; D0Þ SP path set. As a result, the NSP
paths is S to S0, SP graph of ðS0; D0Þ, andD0 toD.

We show that why NSP path set and SP path set are dis-
joint. Choose a neighbor pair ðS0; D0Þ that S0½j� ¼ D0½j�where
j ¼ the NSP level bit of ðS;DÞ. We use Algorithm 1 to mod-
ify one digit to find the next server on each iteration and put
those servers into the NSP path set. It is obvious that we
must not modify the digit which located at j level bit. That
is, the NSP path set and SP path set of ðS;DÞ are disjoint
because there are different servers in the paths. The neigh-
bor pairs ðS0; D0Þ are shifting neighbors in the same level
switch as ðS;DÞ, which means the shortest path length

Fig. 3. SP Graph with BCube Address and node address between the
server S andD in BCubeðn; kÞ where k ¼ 3 and n ¼ 4.
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between S and D is equal to the shortest path length
between S0 and D0. That is why the NSP path lengths are
spcount þ 2.

We use NSP path set to create NSP Graph which can be
seen in Fig. 4. If spcount ¼ kþ 1, the system has no NSP level
bits between the address of source server S and destination
server D. If the spcount < kþ 1, the system has ðkþ 1Þ �
spcount NSP level bits. For every NSP level bit j, the system
has neighbor pairs ðS0; D0Þ where S0½j� ¼ D0½j�. The NSP
graph is built by all the SP graph of those ðS0; D0Þ pairs with
different NSP level bit. We can see Fig. 5 as an example of
NSP graph, with spcount ¼ 3, the system has ðkþ 1Þ �
spcount ¼ 1NSP level bits, and the index of NSP level bit j ¼ 1
in BCubeðn; kÞ where k ¼ 3 and n ¼ 4. The server address
value set are f0; 1; 2; 3g since n ¼ 4, and the original value
f2g need to be changed, so we have three candidate neighbor
pairs ðS0

1; D
0
1Þ ¼ ð1101; 3202Þ, ðS0

2; D
0
2Þ ¼ ð1111; 3212Þ, ðS0

3;
D0

3Þ ¼ ð1131; 3232Þ. For our method in next section, we will
see the global interface table to determine available neighbor
pairs. For this example case, assuming that the neighbor pair
ðS0

2;D
0
2Þ ¼ ð1111; 3212Þ is not available due to the failure or

congestion links, we choose the other two neighbor pairs.
The NSP graph in Fig. 5 is built by those two neighbor pairs
and its SP graph obtained by Algorithm 1.

We consider other alternating paths on SP level bits,
which would be AltSP path set. The building method of
AltSP graph on the SP level bit is the same as NSP graph.
That is, we create AltSP path set which are built by those
two neighbor pairs on the SP level bit. They are also disjoint
with the NSP path set by the same proof that the address
digit j ¼ SP level bit is locked where S0

alt½j� ¼ D0
alt½j� and

different position on the NSP level bit in the previous para-
graph. Notably, SP and AltSP have paths of different
lengths: hðS;DÞ and hðS;DÞ þ 1, because we choose a SP
level bit to find its available neighbor pairs. The AltSP graph
has spcount � 1 nodes between the neighbor pair S0

alt½j� ¼
D0

alt½j� of the source and destination ðS;DÞ.

4 THE PROPOSED ALGORITHMS

In this section, we present how to use CDPFS and
CDPFSMP to find appropriate paths for each flow for load
balancing. Description of the notations of Section 4 is shown
in Table 2.

4.1 The Centralized Dynamic Parallel Flow
Scheduling Algorithm with Single-Path

In this section, we propose Centralized Dynamic Parallel
Flow Scheduling Algorithm (CDPFS) to improve load bal-
ancing of single-path traffic flows in BCube. We consider
all of the traffic flows and choose an appropriate path,
which is a disjoint path with fewer collisions for each of
them. We know that each source server have kþ 1 NICs
which can pass through kþ 1 different level bit to the first
forwarder, and we say that source server has kþ 1 inter-
faces in BCubeðn; kÞ. In the data traffic patterns, each
server may be a source, a forwarder and a destination
server in the same time, so we concern about how to allo-
cate these kþ 1 interfaces to different flows with different
paths. To reduce the computing time in CDPFS, we use
the m multi-thread to deal with m flows in the data traffic
patterns.

Fig. 4. NSP Graph of BCubeðn; kÞ when spcount < ðkþ 1Þ.

Fig. 5. NSP graph of BCubeðn; kÞ where k ¼ 3, n ¼ 4, spcount ¼ 3 and
NSP level bit j ¼ 1. Bit value 1 is not available, and bit value 0 and 3 are
chose.

TABLE 2
Notation Table of Section 4

Notation Description

Gd A bipartite graph with two partite set UFP and
VInterf

FP A vertex in UFP , designated as ðfi; pjÞ
Interf A vertex in VInterf , designated as

ðlevelbit; BCubeaddrÞ
Interfcapa Capacity of each server’s interfaces
Demand The number of FP vertex’s neighbors which

Interf vertex’s degree > Interfcapa
FPchose The FP vertex with minimumDemand in UFP

Gchose A subgraph of Gd which contains all of the FPchose

vertex in UFP and FPchose’s neighbors when
Interfcapa ¼ 1 in VInterf

Pathsingle Containm paths for each flow in the data traffic
patterns

Actual A BCube topology contains capacityWactual of
each server’s interfaces

Congestion A BCube topology contains weight valuesWconge

of each server’s interfaces
PathMP Containm � ðkþ 1Þ paths where each flow has

kþ 1 node disjoint paths
MPathSeti Contain SPset½i� andNSPset½i�
SumInterf Sum ofWactual of each interfaces in Actual
Wbound Minimum ofWconge in Congestion
PRchose A probability to choose the interfaces where

Wconge > Wbound

Weighted A BCube topology with weight values on each
server interfaces
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Algorithm 2. CDPFS FOR SINGLE PATH

Input: All of them data traffic flows
Output: Pathsingle which have m paths for each flow in the

data traffic patterns
1: Global graph : A bipartite graph Gd, with two partite set

UFP and VInterf .
2: for each i 2 ½0;m� 1� do
3: Each threadi uses ðSi;DiÞ of fi to create SPset½i� by Algo-

rithm 1 and FP vertices in UFP .
4: Each threadi uses SPset½i� to add the edges connected by

FP vertices and Interf vertices.
5: threadflow:joinðÞ;
6: while UFP is not empty do
7: FPchose ¼ the FP vertex with minDemand.
8: Create Gchose subgraph;
9: Gd ¼ Gd �Gchose;
10: for each FPcompetitor in UFP do
11: Remove FPcompetitor vertices and corresponding path in

their path set;
12: if SPset½i� ¼ ; then
13: FlowSetRe:appendðfiÞ;
14: Remove all FP vertices with fi in UFP ;
15: for each fi in FlowSetRe do
16: Each threadi will build the NSP and AltSP path set by

Algorithm 1 with available neighbor pairs in the
remaining Gd and append to SPset½i�.

17: Each threadi uses SPset½i� to asynchronously add edges
connected to the new FP vertices and Interf vertices.

18: threadflow:joinðÞ;
19: for each i 2 ½0;m� do
20: Pathsingle½i� ¼ FPchose with fi;
21: if Pathsingle½i� ¼ ; then
22: Pathsingle½i� ¼ Algorithm 5 ðfi;Weighted;WmaxÞ.
23: =� Using Algorithm 5 to deal with those remaining

flows.�=
24: return Pathsingle

In Algorithm 2, our key idea is using a greedy strategy,
the Least Demand First (LDF) method. We build a global
bipartite graph BCubeInterfaceglobal DemandGraphGd

which contains two partite set UFP and VInterf . Assume the
network has total m flows in the data traffic patterns, each
flow has its own path set with several paths. Each path is a
FP vertex in UFP designated as ðfi; pjÞ, which means the jth
path in the path set of ith flow. The network has nkþ1 servers
in BCubeðn; kÞ and each server has kþ 1 interfaces, each
interface is a Interf vertex in VInterf , and designated as
Interf ¼ ðlevelbit; BCubeaddrÞ.

At line 2–4, we first use m threads to create SP path set of
m flows in parallel to reduce the building time. Each threadi
has the input ðSi;DiÞ to create the SPset½i� by Algorithm 1,
and creating the FP vertices in UFP . A path has source, des-
tination and many intermediate nodes, and every edges rep-
resent a flow pass a switch with two endpoints which has
two different interfaces. For example, there are two paths
path0 ¼ ð00; 01; 11Þ and path1 ¼ ð00; 10; 11Þ in SPset½i� with
ðS;DÞ ¼ ð00; 11Þ of fi. In path0, two edges are e0 ¼ (00 to 01)
and e1 ¼ (01 to 11), e0 is a flow passing switchh0; 0i from
interface=0 at 0 level bit on 00 server to interface=0 at 0 level
bit on 01 server, and e1 is a flow passing switchh1; 1i from
interface=1 at 1 level bit on 01 server to interface=1 at 1 level
bit on 11 server, and so on. We use Interf to represent every

node in path1 which are vertices ð1; 00Þ; ð1; 10Þ; ð0; 10Þ; ð0; 11Þ
in VInterf and passing switchh1; 0i; switchh0; 1i. So each
threadi uses the SPset½i� to add edges which connected by
the FP vertices and Interf vertices in each pathx with those
path nodes where x 2 ½0::ðspcount!� 1Þ�.

At line 5, joinðÞ is a synchronous function and we have to
wait all threadi finishing their work. The computer experi-
ences a small time gap with each computation of threadi in
general. We continually find m appropriate paths to each fi
with the candidate paths in UFP until it is empty. The LDF
method is at line 7–8, which can be seen in Fig. 6. Interfcapa
denotes capacity of each server’s interfaces, and we first set
the value of Interfcapa as dPiðdfnum½i� � spcount½i�Þ=ððkþ
1Þðnkþ1Þ=2Þe. The dfnum½i� is the number of ith different ðS;DÞ
pair flows and spcount½i� is the spcount of ith different ðS;DÞ
pair when the same ðS;DÞ pair is smaller than kþ 1. Many
flows with same ðS;DÞ pair are limited on their interfaces,
so these flows have notably small bandwidth values; this is
necessary because a limited total quantity of bandwidth
must be allocated to an excessive number of flows. We also
call these flows has local property. Demand is the number
of FP vertex’s neighbors which the neighbor vertex’s degree
> Interfcapa, and each iteration we choose the FP vertex
with minimumDemand in UFP as FPchose. Gchose is subgraph
of Gd which contains all of the FPchose vertex in UFP and
FPchose’s neighbors when Interfcapa ¼ 1 in VInterf , otherwise
Interfcapa of FPchose’s neighbors reduce those capacity by 1.

In Fig. 6, we have three flows f1; f2; f3 and PathSetf1 ¼
fp1; p2g, PathSetf2 ¼ fp1; p2g, PathSetf3 ¼ fp1g. We create
FP vertices in UFP and Interf vertices in VInterf which can
be seen in Fig. 6 ðaÞ. Assume we set all of Interfcapa of
Interf vertices as 1, and each demand value of FP vertices
would be as it can be seen in Fig. 6 ðaÞ. FPchose would be
ðf1; p1Þ, which is the vertex having the minimum demand
value Demand ¼ 0, since the degree and Interfcapa of its
neighbor ðI1; B00Þ are both one. We allocate Interf vertex
ðI1; B00Þ to FPchose vertex ðf1; p1Þ, representing that f1 selects
p1 in PathSetf1 as its data transfer path, so we remove other
vertices of PathSetf1 in UFP and remove the Interf vertices
when Interfcapa ¼ 1. In the case of a vertex with Interfcapa >

Fig. 6. Least Demand First (LDF) method.
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1, we reduce those capacity by 1, and releasing those resour-
ces of FPchose. As a result, the demand value of FP vertices
would be updated as it can be seen in Fig. 6 ðbÞ. For example,
the demand value of ðf2; p1Þ would be updated from 1 to 0,
since the degree of its neighbor ðI0; B10Þ reduces from 2 to 1
and it is no longer bigger than the Interfcapa ¼ 1 of ðI0; B10Þ.
Now we find ðf2; p1Þ as FPchose which has the minimum
Demand and we allocate Interf vertex ðI0; B10Þ to f2 which
selects p1 path, and so on. Fig. 6 ðdÞ shows three flows with
those selected paths and used interfaces in VInterf . These
used interfaces, which are Interf vertices in VInterf are called
Interfchose, have no capacity to allocate other flows.

Another example can be seen in Fig. 7. We set all of
Interfcapa of Interf vertices in VInterf as 1 and each demand
value of FP vertices would be as it can be seen in Fig. 7 ðaÞ.
The FPchose vertex ðf1; p1Þ has the minimum demand value
Demand ¼ 1 and we allocate Interf vertices ðI0; B10Þ; ðI0;
B11Þ to FPchose in UFP . When we remove those Interf verti-
ces, it affects FP vertex ðf2; p0Þ which called FPcompetitor.
Because the p0 of f2 has no capacity on ðI0; B10Þ vertex in
VInterf , we also remove those FPcompetitor vertices and release
the Interf vertices as their neighbors. The result can be seen
in Fig. 7 ðbÞ which shows the scenario of choosing FPchose

with the same minimum demand value of FP vertices. In
our method, we will choose FP vertex with higher priority.
We maintain a priority table with all active flows and set
the initial priority value as 1 where the key is FP vertex and
delete flow entry when the flow is left or removed. The
lower value of FP vertex has a higher priority to be selected.
When we select this FP vertex as FPchose, we will add 1 to its
priority value. At next timeout for running Algorithm 2, this
method has more fairness to choose other FP vertices with
higher priority.

At line 10–14, we remove FPcompetitor vertices and corre-
sponding path in their PathSet, which may result in
PathSet ¼ ;. If the PathSet of those flows are SPset, which
means that we first create SP path set for those flows but no
interfaces are available for assignment to these paths. So we
put those flows to FlowSetRe, and create their NSP and
AltSP path set. At line 15–18, we use multi-threads to create
NSP and AltSP path set which is built by available neighbor
pairs on NSP and SP level bits. Because we have removed
the subgraph Gchose which contains FPchose and Interfchose
in Gd, each thread creates those path set with the remaining
Gd which including the existing Interf vertices with left
capacity of interfaces in VInterf . After the while loop at line
6, we can find our Pathsingle with m paths for each flow in
the data traffic patterns.

Algorithm 3. CDPFSMP FOR MULTI PATH

Input: All of them data traffic flows
Output: PathMP which have m � ðkþ 1Þ paths where each

flow has kþ 1 node disjoint paths in the data traffic
patterns

1: global : Two BCubeðn; kÞ topology Actual and Congestion.
2: for each i 2 ½0;m� do
3: Each threadi creates SPset½i� and NSPset½i�, which appends

toMPathSeti.
4: Each threadi uses theMPathSeti to addWconge value.
5: threadflow:joinðÞ;
6: SumInterf = the sum ofWactual of each interfaces in Actual;
7: Wbound ¼minimum ofWconge in Congestion;
8: whileWbound � (maximum ofWconge) do
9: Pre SumInterf ¼ SumInterf ;
10: for each i 2 ½0;m� do
11: PathMP =Algorithm 4 ðfi;WboundÞ;
12: =� Each thread executes Algorithm 4 to find the multi-

ple node disjoint paths. �=
13: threadflow:joinðÞ;
14: Update SumInterf ;
15: if Pre SumInterf 6¼ SumInterf then
16: Wbound ¼minWconge in Congestion;
17: else
18: Wbound ¼ Wbound � 2;
19: for each i 2 ½0;m� do
20: if (the number of PathMP ½i� paths) < ðkþ 1Þ then
21: PathMP ½i� =Algorithm 5 ðfi;Weighted;WmaxÞ;
22: =� Using Algorithm 5 to find disjoint paths with remain-

ing flows. �=
23: return PathMP

Although we create the first category of SP and the sec-
ond category of NSP and AltSP path set to choose appropri-
ate path for flows by running the LDF method, there is still
a chance to have fi with Pathsingle½i� ¼ ;. One possibility is
those flows have local property that there are many same
source or destination servers with each other, and we don’t
allocate more capacity of Interfcapa given our previous com-
puting of dfnum. Some of the flows have no available path
because we choose those paths by the LDF method when
selecting the same minimum demand value of FP vertex
with its priority value, it may also have to randomly choose
due to the same priority value because those flows are new
data traffic patterns or the duration of data communications
are short. We deal with all of those remaining flows by
using Algorithm 5 and obtain the Pathsingle to balance all of
our data traffic patterns in BCubeðn; kÞ.

4.2 The Centralized Dynamic Parallel Flow
Scheduling Algorithm with Multi-Path

In this section, we propose the Centralized Dynamic Parallel
Flow Scheduling Algorithm for Multi-Path (CDPFSMP) in
Algorithm 3, it is different from CDPFS for single-path
which is dedicated to finding a path having less collision to
each flow. If we determine a flow using its appropriate path
between its source and destination server to data communi-
cation, the flow will fill this path with high bandwidth
when no other flows share this path, which can be termed a
large flow. We can imagine that many large flows exist on
some specific links; this situation may leave many broken

Fig. 7. ðaÞ Flow collision and removing FPcompetitor of other flows by the
neighbors of FPchose in Interfchose. ðbÞ The scenarios for choosing FPchose

with the same minimum demand value of FP vertices.

1056 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:20:32 UTC from IEEE Xplore.  Restrictions apply. 



links adjacent to those links because many interfaces must
be occupied by some large flows and the remaining interfa-
ces cannot find a path to those remaining large flows. We
know that each server has kþ 1 interfaces (NICs) in
BCubeðn; kÞ and we can find kþ 1 node disjoint paths to
each server because numerous vacant edges are present in
BCubeðn; kÞ topology. So if we divide a large flow by kþ 1
sub flows, meaning that it only uses section of capacity
(bandwidth) of each link in BCubeðn; kÞ, those kþ 1 sub
flows will use kþ 1 disjoint paths from source to destination
with 1=ðkþ 1Þ bandwidth, and it can also achieve the origi-
nal bandwidth ð1=ðkþ 1ÞÞ � ðkþ 1Þ ¼ 1 of flow with single
path. The system has numerous link spaces to share among
other flows using same interfaces with the remaining k=ðkþ
1Þ capacity of links. It can reduce the number of broken links
and improve the load balancing with all of the data traffic
patterns in BCubeðn; kÞ. Therefore, we focus on how to
select those node disjoint paths for each ðSi;DiÞ pair. We
will determine how many sub flows should share the band-
width of bounded interface of links. Under the best condi-
tions, we can speed up kþ 1 times of bandwidth for each
ðSi;DiÞ pair with kþ 1 disjoint paths when no other flows
share those paths.

In Algorithm 3, the system constructs two BCubeðn; kÞ
topology Actual and Congestion. Actual contains all of the
capacity Wactual of each server’s interfaces. Because each
ðSi;DiÞ pair has ðkþ 1Þ paths, we determine Wactual ¼
ðdPiðdfnum½i� � spcount½i�Þ=ðkþ 1Þðnkþ1=2ÞÞeÞ � ðkþ 1Þ ¼ ðdPi

ðdfnum½i� � spcount½i�Þ=ðnkþ1=2ÞeÞ for each interface. Congestion
initially contains all of the weight values Wconge ¼ 0 of each
server’s interfaces. Wconge denotes the sum of the interface
used by all paths of fi. If many ðS;DÞ pairs struggle to use
an interface, the Wconge of this interface will become large.
Our goal is to improve load balancing with each ðS;DÞ pair
of all data traffic patterns. By LDF method, if we first allo-
cate some of the ðS;DÞ pairs to interfaces with lower Wconge,
we can release other non-used paths in those remaining
path set. In next iteration, we will update Wconge of each
interface, and we continually find appropriate paths for
other ðS;DÞ pairs. Finally, we can find our PathMP , which
allocates nearly maximum interfaces to all ðS;DÞ pairs with
appropriate paths.

We count Wconge value in each threadi at Algorithm 3 line
2–4. Each threadi uses ðSi;DiÞ as input to create the SPset½i�
and NSPset½i� by Algorithm 1 and append to MPathSeti.
Each threadi uses the MPathSeti to add the Wconge value by
exclusive accessing to the Congestion topology which has
all of the weight value Wconge counted by interfaces in
SPset½i� and NSPset½i�. We use SumInterf to record the sum of
Wactual which are counted by all of currently selecting inter-
faces of paths in PathMP path set on each interfaces in
Actual, and Pre SumInterf represents the previous SumInterf

value on last executing iteration. SumInterf value of each
iteration will be higher because we find more available
paths in PathMP and release more interfaces of unselected
candidate paths.Wbound denotes the threshold value of inter-
face, which initially equals to minimum of Wconge in
Congestion.

When we use LDF method to find multiple paths for each
flow, time is likely to bewasted because toomany flowsmust
be considered. Therefore, we reduce the number of iterations

by a sequential method at Algorithm 3 line 8–18, using Algo-
rithm 4 executed by each threadi to find those kþ 1 node dis-
joint paths for each ðSi;DiÞ pair. Once we have the same
value of SumInterf and Pre SumInterf on an iteration, repre-
senting that we do not find any suitable paths in threadi for
ðSi;DiÞ pair on this iteration, then we might waste execution
time for Algorithm 4 because we choose a bad Wbound for
higher Wconge. We multiple it twice to expand search space
and accelerate each threadi to find themaximumnumber dis-
joint paths. It can reduce much time and this solution is not
far from the best solution by LDFmethod releasingminimum
Wconge of interfaces sequentially. At Algorithm 3 line 19–22,
when the number of PathMP ½i� paths is less than ðkþ 1Þ, we
obtain PathMP by Algorithm 5, which sequentially removes
current existing paths and do next iteration to find disjoint
pathswith those remaining flows.

Algorithm 4. FIND MAX NODE DISJOINT PATHS

Input:MPathSeti andWbound

Output: PathSetmax, the currently maximum node disjoint
paths of fi

1: local : Flow network is built by all of the vertices in SP and
NSP graph withMPathSeti.

2: for each edgef in SP and NSP graph do
3: Wce ¼maximumWconge of endpoint of interface on edge;
4: ifWce � Wbound then
5: Add edgef to flow network and remove it from SP or

NSP graph;
6: else
7: PRchose ¼ ðHTp �WActualÞ=Wce;
8: if PRandom½0::1� � PRchose then
9: Add edgef to flow network and remove it from SP or

NSP graph;
10: Using non-node-split max flow method to find node dis-

joint paths with ðSi;DiÞ and append to Settemp.
11: for each pj 2 Settemp do
12: ifWactual > 0 in pj then
13: thread:acquireðÞ;
14: Wactual reduced by 1 in Actual;
15: thread:releaseðÞ;
16: PathSetmax:appendðpjÞ;
17: if category = ’SP’ then
18: spnow þþ;
19: if spnow ¼¼ spcount then
20: Removing pj from the flow network;
21: thread:acquireðÞ;
22: Release all interfaces with SPset½i� and Wconge

reduced by 1 in Congestion;
23: thread:releaseðÞ;
24: else
25: Removing NSP graph on j NSP level bit from the

flow network;
26: thread:acquireðÞ;
27: Release all interfaces with NSPset½i� and Wconge

reduced by 1 in Congestion;
28: thread:releaseðÞ;
29: else
30: RemovingWactual ¼ 0 from the flow network;
31: return PathSetmax

In Algorithm 4, each threadi has its local flow network
which is initially built by all of the vertices in SP and NSP
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graph. At line 2–9, we give each ðSi;DiÞ pair in flow net-
work a probability PRchose to choose the interfaces where
Wconge > Wbound. Edges are added with higher Wconge in
advance to reduce execution time. PRchose ¼ ðHTp �
WactualÞ=Wce where HTp ¼ 1 if the edge is connected to
source and first forwarder or the edge is connected to desti-
nation and last forwarder, otherwise HTp ¼ 0:5. Wce is the
currently maximum Wconge of endpoint of interface on edge.
If Wce is high, PRchose would be low. Because we only have
kþ 1 interfaces of source or destination server, and we have
many intermediate servers to choose a suitable path in the
flow network, a higher PRchose is needed to select those
edges. The probability model would add less edge to find
path in threadi but fast to avoid unnecessary executing iter-
ation. The result of this method is similar with the method
of adding edges sequentially by Wbound. To find node dis-
joint paths in the flow network, we first set the capacity of
each edge and adding S; T nodes which can be seen in
Fig. 8. We use the non-node split method in Algorithm 4 to
find the maximum number of independent paths from S to
T and append to Settemp. It is good for us since we would
not need additional time to combine those intermediate
nodes when we find paths.

At line 11–30 in Algorithm 4, when we find the maxi-
mum number of disjoint paths in Settemp, each threadi will
check Wactual of available interfaces in Actual by every pj.
We allocate available interfaces to those paths and each
Wactual value of available interface decreased by one by
mutually exclusive access. We use thread:acquireðÞ and
thread:releaseðÞ to access global values exclusively. We deal
with the first ’SP’ category and the second ’NSP’ category
by different methods. We find the maximum number of dis-
joint SP paths which is equal to spcount in ’SP’ category. If we
just find spnow < spcount disjoint SP paths, where spnow is the
maximum number of disjoint paths in currently SP graph of
flow network when some of essential edges with high value
Wbound are not added, we will select recent pj and remove
this path from the flow network to guarantee that we can
find other existing disjoint paths in next iteration. We find
the NSP path in the current NSP graph of the flow network
and we know that the SP and NSP graphs are disjoint. If we
have ðkþ 1Þ � spcount > 1 NSP level bits, the system has
numerous NSP graphs and all NSP graphs are disjoint
because we lock the NSP level bit with different neighbor
pairs. The number of maximum flow has only one in each
NSP graph with those j NSP level bit. When we find path
starting from j NSP level bit in its NSP graph, we have an
available neighbor pair on j NSP level bit of ðSi;DiÞ pair,

and we remove NSP graph on j NSP level bit from the flow
network. We append each selected pj to PathSetmax. In ’SP’
category, we release all of interfaces in SPset½i�, so those
Wconge value in Congestion will be decreased by one when
spnow ¼ spcount. In ’NSP’ category, we release all of interfaces
in NSPset½i� and those Wconge value will be decreased by one
in Congestion. So we can reduce some of the Wconge value of
interfaces to unselected paths of ðSi;DiÞ pair, meaning that
we can add more edges to other ðSi;DiÞ pairs of the flow
network in next iterations and find those available paths.

Algorithm 5. FIND PATH IN TWO ITERATIONS

Input: ðSi;DiÞ;Weighted topology;Wmax

Output: Pathselected, the founded path of fi
1: initial :Wmin ¼ 0, iteration ¼ 0, Pathselected ¼ ;;
2: Weightedcopy ¼ Weighted removes the edges whose weight

value � Wmax;
3: Pathselected ¼ Random BFSðWeightedcopy; Si;DiÞ;
4: if Pathselected ¼¼ ; then
5: Pathselected ¼ Random BFSðBCubek; Si;DiÞ;
6: else
7: while iteration < 2 do
8: Wmid ¼ ðWmin þWmaxÞ=2;
9: Weightedcopy ¼ Weighted removes the edges whose

weight value � Wmid;
10: if Random BFSðWeightedcopy; Si;DiÞ 6¼ ; then
11: Update Pathselected;
12: Wmax ¼ Wmid

13: else
14: Wmin ¼ Wmid

15: iterationþþ;
16: return Pathselected

In Algorithm 5, we first define the weight value of serv-
ers which is the total flows passing through its paths built
by currently path set Pathsingle and PathMP on each interfa-
ces, and we call this BCubeðn; kÞ topology with weight val-
ues on each server interfaces is Weighted topology. Wmax is
the maximum weight value when fi uses its path in
Pathsingle½i� and passes through each interface of servers
with those weight value. For example, a ðSi;DiÞ ¼ ð00; 11Þ
pair is using its path (00,10,11) in Pathsingle½i�; we use Interf
to represent every interface which are ð1; 00Þ; ð1; 10Þ;
ð0; 10Þ; ð0; 11Þ in Pathsingle½i� and every weight value of inter-
faces are 3; 2; 4; 1, so Wmax value of fi is 4, which means fi
will occur flow collision with other four flows on the Interf
vertex (0,10). According to the principle of fairness, fi can
be allocated to the available bandwidth which is the total of
bandwidth divided by ð4þ 1Þ. If the total of bandwidth is
10Mbps, fi can be allocated 2Mbps because the path of fi is
bounded on the Interf vertex (0,10). Our target is to
improve load balancing with the total flows and speed up
the total traffic in BCubeðn; kÞ. The definition of this prob-
lem is to find the minimum Wmax value for the remaining
flows on Weighted topology. If we want to find the optimal
solution on this problem, the system may require excessive
execution time. So we propose Algorithm 5 which is effec-
tive to find the approximate optimal solution because the
weight value is a small number.

We initialize the lower bound Wmin ¼ 0 and upper
bound Wmax is the maximum weight value in Weighted

Fig. 8. Flow network with all vertices in SP and NSP graph with
MPathSeti of ðSi;DiÞ ¼ ð1121; 3222Þ.
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topology. At Algorithm 5 line 2, each threadi removes the
edges whose weight value � Wmax. For example, if theWmax

is 4 in theWeighted topology where n ¼ 2, we will remove its
edgewhich connectedwith switchh1; 0i and the Interf vertex
(0,10) of BCubeðn; kÞ server. We use the remaining Weighted
topology as input to find Pathselected by Random BFSðÞ.
Random BFSðÞ function is randomly chooses vertex which
is a neighbor of the current vertex and put into queue in each
iteration. For example in Fig. 3a, if we sequentially choose
vertices by using for loop and put into queue, the path of
flow (1121,3222) must be (1121,1122,1222,3222) according to
First-in First-out principle. Owing to the fact that we have to
deal with some of flows which has local property, we can
assume that there are many same source or destination serv-
ers with fi. The calculation considers each flow in one thread
with a random probability distribution; it equally disperses
those flowswith different paths.

If Pathselected is empty which indicates that fi may be one
of flows with local property, we deal with those flows by
using original BCubeðn; kÞ topology as input by
Random BFSðÞ to find paths. In another case, when we use
SP, NSP and AltSP path sets to allocate most of flow’s paths,
the Weighted topology exists many irregular alternating
paths in some interface area with lower weight value. At
line 7–15, our key idea is very similar to the Binary Search
[24], we first get Pathselected which is found in Weighted
topology. We set the middle of weight value Wmid ¼
ðWmin þWmaxÞ=2, continuing to find the more appropriate
path in Weighted topology which removes the edges with
weight value � Wmid. If this path is found, we update
Pathselected and continue to reduce the search space by
replacing Wmax to Wmid, that is, Wmax ¼ Wmid. If no path is
found, this Weighted topology has higher Wmax value for
this fi, and we have to increase Wmid value to be close to
boundary value by replacing Wmin to Wmid, that is,
Wmin ¼ Wmid.

Two cases can be seen in Fig. 9, the white block repre-
sents the range of weight value which can find the path of
fi. In Fig. 9 (a), we find a path in Weightedcopy topology so
we reduce the search space by replacing Wmax to Wmid.
Then we get Pathselected in the second iteration. In Fig. 9 (b),
there is no path in Weightedcopy topology so we increase
Wmid value by replacing Wmin to Wmid. Then we get
Pathselected in the second iteration. Because the weight value
is a small number, we use two iterations. This choice causes

the system to find the path rapidly and saves a great deal of
run time. Algorithm 3 deals with multiple flows sequen-
tially on each iteration which removing the previous path to
maintain the disjoint property.

We will analyze the worst-case time complexity of the
proposed algorithms briefly. We start with Algorithms 1, 4,
and 5, since they are the subfunctions of Algorithm 2-
CDPFS and Algorithm 3-CDPFSMP. In a BCubeðn; kÞ, the
complexity of Algorithm 1, 4, and 5 is Oðk � k!Þ, Oðk � k!Þ,
and Oðk � nkÞ. Hence, with m data traffic flows, Algorithm
2-CDPFS and Algorithm 3-CDPFSMP have the same time
complexity Oðm � k � ðk!þ nkÞÞ.

5 SIMULATION ON MININET

In this section, the performance of CDPFS and CDPFSMP is
evaluated using Mininet [25], an open-source network sim-
ulator. First, we illustrate our simulation environment and
architecture of BCube with Master and Monitor. Second, we
use a particular method that enables the packet forwarding
of each server (host) as router [26] to send packets instead of
BSR protocol, and we use network socket which is an end-
point of an inter-process communication across from each
server in BCube to Master acquiring global information.
Third, we compare the performance of our proposed algo-
rithms to the algorithm of the baseline paper with different
traffic patterns.

5.1 Simulation Environment and Architecture

We use a virtual Linux system that installs Mininet and Ryu
controller [27] to simulate DCN environment. Our VM
equipment is VMWare 5.1 version which has four CPUs
and 50GB memory. Mininet is a network emulator which
creates a network topology of virtual hosts, switches, con-
trollers, and links. Mininet hosts run standard Linux net-
work software so we can write applications to communicate
with each server, and its switches support OpenFlow for
highly flexible custom routing and Software-Defined Net-
working (SDN).

Fig. 10 shows three components in our centralized archi-
tecture: BCube, Master and Monitor. BCubeðn; kÞ is a
server-centric network structure with servers connecting to
k layers of switches. We add the Master which is a central-
ized large-scale parallel computing computer. The Master
has eight CPUs, 64 GB memory and connects to the lowest
layer switches which are 0-level switches. The Master

Fig. 9. Two cases of Algorithm 5 which is effective to find the approxi-
mate optimal solution.

Fig. 10. The Architecture of BCubeðn; kÞ with Master (Large Parallel
Computing Computer) and Monitor (sFlow).
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maintains a global view of the BCube network topology. We
add Monitor to measure the real-time flow status and com-
municate with the Master to compute the best flow schedul-
ing by CDPFS and CDPFSMP. For our simulation, we use
sFlow [28] which is the leading, multi-vendor, standard for
monitoring high-speed switched and routed networks. The
sFlow uses sampling of ways to remove the summary infor-
mation, and we can customize their sample size and sam-
pling period. By customization, we can optimize network
traffic flows and sFlow sampled data to streamline the
required information. By doing so we can maintain correct
information and ensure that the back-end processing can
analyze all of the traffic flows correctly.

We use a Ryu controller as our Master, and each server
communicates with controller by using a non-standard pro-
tocol, which is called a Packet� in event function. When a
flow starts, the packet stream has 10-tuple of packet’s
header, and controller will capture the header to maintain a
global view with all of the flows in BCube. Our proposed
algorithms are computed for flow scheduling on a controller
by using network socket. The network socket is an endpoint
of an inter-process communication across from each server
in a BCube. Each server sets the routing rules with available
paths which are computed by controller. But for our experi-
ment results, Mininet which uses controller would not
simultaneously deal with numerous active flows in large-
scale DCN topology. It may be our future work to solve this
problem. So we have additional costs using the centralized
large-scale parallel computing computer as our Master and
links which are connected to the lowest layer switches.

5.2 Dynamic Flow Scheduling

Our central Master periodically (which means every 10 sec-
onds) executes our proposed algorithms to find appropriate
paths for each flow. In this duration time (until timeout), if
a source server wants to send data to another destination
server, the source server will first send the flow information
like ðS;DÞ pair to the Master. The Master deals with this
new flow by Algorithm 3, and sends the routing rules to the
intermediate servers of its path. Finally, the Master notify
this source server to start sending its data. We acquire the
information from flows sent by the source servers, and we
maintain the lifetime of those flows by Monitor. The timeout
of TCP connection between source and destination server is
3 seconds when they are not in communication with each
other. Our central Master periodically (which means every
3 seconds) acquires all currently flow information from the
Monitor, when the Master finds that 30% of the bandwidth
of flows is lower than target value (the link band-
width=Interfcapa) in the global interface table, which means
that numerous new flows occur during this time. The Mas-
ter will trigger the timeout and immediately execute our
proposed algorithm. For all kinds of network conditions
and failures, we perform dynamic path selection to adapt to
them. During the lifetime of flows, the paths may occur
flow collision or break due to various network failures. We
deal with the link (switch) failures by Neighbor Mainte-
nance Protocol in the baseline paper, that each server main-
tains the Neighbor Status Table to record the unreachable
neighbors of server. We initialize routing rule and each

server communicates with the Master by the lowest level
switches and we choose the leftmost server as a manager in
each lowest level pod of BCubeðn; 0Þ. The Master will peri-
odically poll each manager to acquire the information from
Neighbor Status Table. If some of the servers fail or access
unreachable due to link failures, we will set a new available
path which can communicate with the Master. If the man-
ager fails in some pod on the lowest level of BCubeðn; 0Þ,
the Master will choose another server as the new manager,
and this manager must have information from Neighbor
Status Table which records the previous failed manager. For
example, if we choose the server 00 as manager in the first
pod BCubeðn; 0Þwhich is f00; 01; 02; 03g, when the server 00
fails to reach its lowest level switch h0; 0i, the Master choo-
ses another server 01 and acquires the failure information of
server 00, and we find the available path 00; h1; 0i; 10; h0; 1i
to server 00 and using another lowest level switch h0; 1i to
communicate with Master.

In this paragraph, we illustrate a different way which can
let each server (host) as router do the packet forwarding by
routing rules to send packets instead of BSR protocol. In the
baseline method, BSR uses BCube packet header which
stores paths in next hop index (NHI) of every packet. NHI
is divided into two parts: DP and DV. DP indicates which
digit of the next hop is different from the current relay
server, and DV is the value of that digit for single-path, one-
to-one traffic such as TCP. The method we use does not
modify the BCube header that we can also create the Permu-
tation Set which transfers each server of paths to the same
with NHI format by CDPFS. For example, a path 00,01,11 is
transferred to ðDP0 ¼ 0; DV0 ¼ 1Þ; ðDP1 ¼ 1; DV1 ¼ 1Þ and
the Master send to source server 00. But for one-to-one traf-
fic using multi-path, BSR first divides sending data by m
equal chunks formmulti-paths, and each interface of source
server sends 1=m of the sending data to its destination
server with its path by TCP. This method might be undesir-
able, because each path has a different transmission rate
due to various network statuses. So we use MPTCP which
allows a TCP connection to use multiple paths and different
current congestion control algorithms to adjust the trans-
mission rate until timeout, then we execute new suitable m
multi-paths by CDPFSMP. Each server sets and updates the
routing rules of those paths which is received from the Mas-
ter in the period time. The experiment results show that this
method is efficient and it can reduce the packet header
length, since BCube header is not required.

5.3 Simulation Results

In Fig. 11, we compare the average bandwidth (Mbps) of
each flow in BSR, CDPFS with single path and CDPFSMP
with multi-path on BCubeðn; kÞ where k ¼ 3 by different
network topology size: 81, 256, 625, 1296 hosts correspond-
ing to switch port n ¼ f3; 4; 5; 6g. The maximum bandwidth
of each link was 10Mbps in our simulation. Random bijec-
tive traffic pattern is applied, which randomly divides serv-
ers into equal number of servers by two set A and B, and
randomly selects one-to-one mappings which means a host
in A sends to any another host in B with uniform probabil-
ity. This traffic patterns is a good benchmark for us to com-
pare our proposed algorithm with BSR because each host
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will use at least one interface (NICs), acting as source or des-
tination server in BCube. We know that each path of ðS;DÞ
pair must use other servers as the intermediate servers,
which means these traffic patterns have high risk of flow
collisions. We use different flow size: 40,128,312,648 by ran-
dom bijective traffic patterns. These flows are sent continu-
ously and the average bandwidth of each flow during 600
seconds is measured which can be seen in Fig. 11 ðaÞ � ðdÞ.
We can see that CDPFSMP has the highest average band-
width of each flow. CDPFS is also better than BSR because
Master provides a global view, from which we can select an
appropriate path with minimal flow collision, instead of
using a greedy distributed algorithm to select a path with
less delay time by each server. We observed that smaller
gaps (smooth line of CDPFSMP in Fig. 11 ðdÞ) of the average
bandwidth of each flow when the number of switch port n
becomes bigger, because we have more available neighbor
pairs to build our NSP graph and have more candidate path
set to find the appropriate (less used) paths. We set period
time to 10 seconds for our proposed algorithm and for the
BSR. Master performs path selection by LDF method of
each S;D pair with fairness and selects the same value
Wconge of interfaces in some of iterations when we choose
those higher priority value of interfaces in our proposed
algorithms. So some ðS;DÞ pairs have high bandwidth in
their paths at start, but their priority value will become
lower because counting value increases as time goes. Some
ðS;DÞ pairs that fail to compete in previous iteration will be
able to select those interfaces currently and achieve higher
bandwidth. The result shows that our proposed algorithm
is good for load balancing and average bandwidth of all
flows achieves 6.2 Mbps with CDPFSMP and 5.8 Mbps with
CDPFS, which is higher than 4.3 Mbps with BSR. We have
improved 44:1% of the throughput in data traffic patterns
because it notably reduces flow collision by our centralized
algorithms compared with BSR.

We tested data shuffle operations with various cluster
sizes on BCubeðn; kÞ where k ¼ 4 and n ¼ 4 in our simula-
tion. We know that in some cloud computing like MapRe-
duce/Hadoop, the time between the end of the Map phase
and the beginning of the Reduce phase is known as Data
Shuffle process, meaning that data from the mapper tasks is
prepared to transfer to the reducer and the tasks of reducer
will be run. When the mapper task completes, the format of
results are (key, value) which is sorted according to key. If
there are multiple reducers, the results of data will be parti-
tioned, and will be written to those disk. For our simulation,
we randomly choose 10 servers as a cluster which contains
of mappers and reducers and if each server acts as both
mapper and reducer, so every server transfers 50MB to
every other server in the data shuffle (a 500MB shuffle in a
cluster). We simulate this scenario with numerous users
using different servers of cluster with cloud computing dur-
ing data shuffling in Bubek. So the number of cluster size is
the number of users using different 10 servers in the same
time.

In Fig. 12a, we simulate the 100 of clusters which contains
10 different servers doing data shuffling with 500 MB shuf-
fle in BCubeð4; 4Þ. The results show the highest aggregate
bandwidth is 5 Gbps by CDPFSMP, aggregate bandwidth
of CDPFS is 4 Gbps and the aggregate bandwidth of BSR is

Fig. 11. Average Bandwidth (Mbps) and each Flow (Flow#Id) with Ran-
dom Bijective Traffic Patterns in BCubeðn; kÞ where k ¼ 3 and different
switch port n ¼ 3; 4; 5; 6.
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3.5 Gbps at time 0� 50. Because we select suitable paths for
each server of cluster with global view in Master, and BSR
has many flow collisions due to the high local property in
data shuffle. After time 50, the performance of aggregate
bandwidth suddenly drops because some of clusters stop
transferring transfer data in data shuffle, which means those
clusters has higher bandwidth with less used paths in
BCube by our proposed algorithms. It may lead to some
unfairness for some ðS;DÞ pairs when we first allocate avail-
able interfaces to them, but the lifetime of flows are short. So
some flows that need high bandwidth to transfer amount of
data are allocated insufficient bandwidth. The bottleneck
convergence time is that the flow has the smallest through-
put and the long convergence time in data shuffle. We can
see the bottleneck flows with BSR due to many flow colli-
sion in those lifetime of flows at time 200� 280when cluster
size ¼ 100. Fig. 12b shows the bottlenecks convergence time
with different cluster size in data shuffle. We can see that
the convergence time of CDPFSMP is 183 seconds, and
CDPFS is 252 seconds, and BSR is 287 seconds when the
data shuffle cluster size is 100. We improve 36:2% of
throughput in data shuffle, which can reduce the conver-
gence time by our proposed algorithms compared with
BSR. We also observe a big gap of convergence time with
cluster size is 75 and 100, because there are numerous non-
active servers (which are not chosen in clusters) with cluster
size ¼ 75 (750 servers) in BCubeð4; 4Þ, and we can find

many available neighbor pairs in NSP graph (more paths
with N) and many available intermediate servers in SP
graph (more paths with k). But when cluster size grows, we
have many same source or destination servers, meaning
that the value of Interfcapa is not bigger. We deal with those
flows with local property by Algorithm 3; the result shows
it also better than BSR and efficiently approximates a solu-
tion in a short time.

It was convenient to simulate the aggregate bandwidth
throughput in BCubeð4; 4Þwith failure of switches and links
in our Mininet simulator. We used the command:
LinkUp=Down to connect/disconnect servers and switches
and we disconnected all switch links as switch failures in
BCubeð4; 4Þ topology. In Figs. 13a and 13b, random data
traffic patterns with 1000 flows (which can be chosen repeat-
edly rather than bijectively) measure the aggregate band-
width. The results show that the aggregate bandwidth
values of our proposed algorithms were better than those of
the BSR in spite of numerous switch failures and link fail-
ures. When there were no failures, CDPFS, CDPFSMP and
BSR provided high aggregate bandwidth throughput,
namely 4.1Gbps, 3.7Gbps and 3.2Gbps. However, in situa-
tions with numerous failures of switches and links, aggre-
gate bandwidth decreased. We know that the BCube
topology is highly fault tolerant because it demonstrates
graceful degradation. Because it has numerous NICs for
servers and many vacant links, it is highly fault tolerant. So
under random switch or link failures, the aggregate band-
width throughput does not fall drastically. We can see the
aggregate bandwidth sharply declining when switch failure
ratio changes from 10% up to 15%. It may be unfortunately
selection of switches because we randomly chose some of

Fig. 12. Data Shuffle traffic patterns with 500MB shuffle for our proposed
algorithms CDPFS and CDPFSMP, which compared with BSR in
BCubeð4; 4Þ.

Fig. 13. Aggregate bandwidth throughput in BCubeð4; 4Þ with failure of
switches and links.
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crucial switches as failures with our traffic patterns, and
some ðS;DÞ pairs may be allocated to other alive paths. Var-
ious flows take small portions of the total bandwidth; using
the same paths can reduce the aggregate bandwidth
throughput. The aggregate bandwidth values of our pro-
posed algorithms are close to those of the BSR when the
switch failure ratio ¼ 25%, because our algorithms reduce
numerous available neighbor pairs for some flows in SP or
NSP graph. Many ðS;DÞ pairs find available paths by Algo-
rithm 3 with approximate solutions. Because our algorithms
have numerous vacant links that can be used to find avail-
able paths, they do not suffer from drastic declines in per-
formance when the link failure ratio increases.

6 CONCLUSION

In this paper, we propose two variants of centralized
dynamic parallel flow scheduling algorithms, CDPFS and
CDPFSMP. We use the good properties of BCube topology
to divide the appropriate BCube into disjoint subgraphs for
each flow computing in parallel. By considering the global
network status, we allocate each flow to appropriate paths
on BCube. With low-cost, low-level switches, we connect a
Master computer to the BCube. The simulation results show
that our proposed algorithms can effectively mitigate most
flow collisions. Our algorithms improve the load balancing
of all data traffic flows and have better overall performance
compared to BSR method.

One direction for future research is to use a cluster of
physical machines to run large-scale simulations of DCNs
with central controllers. Another direction is to use multiple
controllers to manage servers in groups of each level within
a single DCN. We also propose to analyze recursive defined
structures such as DCell and MDCube; ultimately, we pro-
pose to extend our algorithms to manage those different
data center topologies.
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foundation editor-in-chief of IEEE Transactions on Cloud Computing. He
is currently the co-editor-in-chief of Journal of Software: Practice and
Experience, which was established more than 40 years ago. Microsoft
Academic Search Index ranked him as the world’s top author in distrib-
uted and parallel computing between 2007 and 2015. “A Scientometric
Analysis of Cloud Computing Literature” by German scientists ranked
Dr. Buyya as the World’s Top-Cited Author and the World’s Most-Produc-
tive Author in Cloud Computing. Software technologies for Grid and
Cloud computing developed under Dr. Buyya’s leadership have gained
rapid acceptance and are in use at several academic institutions and
commercial enterprises in 40 countries around the world.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.
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