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Abstract—Effective task scheduling in stream computing sys-
tems can reduce the latency by minimizing inter-node communi-
cation. However, this approach often requires restarting tasks to
change their deployment locations, resulting in significant system
overhead and making it inadequate especially in dynamically
changing data stream environments. To address this issue, we pro-
pose Ns-Stream, a hierarchical data scheduler that dynamically
adjusts data distribution weights between near-source and off-
source tasks. Our solution is discussed as follows: (1) We observe
that communication overhead from off-source data processing
significantly impacts system latency when tasks’ resources are
ample. However, as the resources become limited, the compu-
tational power required by tasks becomes the key constraint
on system performance. (2) During initialization scheduling, we
deploy tasks with potential communication to the same node
using the graph convolutional network, thus avoiding the need
for runtime task scheduling. (3) We dynamically adjust data
distribution weights between near-source and off-source tasks
based on their computing capabilities, prioritizing local process-
ing of data tuples (within the same worker and node) to optimize
resource utilization and reduce data transmission overhead. (4)
Experimental results demonstrate significant improvements made
by Ns-Stream: reducing maximum system latency by 40% and
increasing maximum throughput by 55% compared to existing
state-of-the-art works.

Index Terms—Stream computing systems, Data grouping, Task
deployment, Initialization scheduling, Weight assignment

I. INTRODUCTION

PROCESSING continuous data streams with low latency
has become crucial for applications such as Internet

of Things (IoT), traffic monitoring, telecommunications, and
health care [1], [2]. In these scenarios, users rely on imme-
diate data feedback for swift decision-making. If the system
latency is too high, stream computing may lose its advantage
compared to batch processing and disappoint users expect-
ing real-time performance [3]. Furthermore, minimizing data
processing latency in stream computing systems accelerates
task completion, frees up system resources, and consequently
reduces the demand on computing, storage, network, and other
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resources [4]. Therefore, operating costs can be effectively
cut down while resource utilization and energy efficiency are
enhanced.

Minimizing inter-node communication within modern
stream computing systems has been demonstrated as a highly
effective means of enhancing system performance [5], [6].
The underlying principle of this optimization lies in the
dynamic monitoring of communication volumes between
tasks during runtime, allowing for the strategic placement of
communication-intensive tasks on the same worker or com-
pute node. This approach significantly reduces communication
overhead, leading to improved system throughput and overall
efficiency.

However, when a rescheduling event is triggered to improve
communication speed within a stream computing system, some
schedulers choose to first terminate the entire topology and
then restart it [7], [8]. This might not be the best solution
because it can lead to the lose of important information that
was being processed. Until it fully restarts and recovers this
information, the topology cannot continue processing data,
which can significantly slow down its operations. To solve this
problem, some schedulers [6], [9]–[11] make small changes to
the deployment location of tasks while the topologies are still
running. Although this can solve the problem of short-term
processing interruptions caused by global scheduling, making
these small changes also requires restarting some tasks in the
topology, which consumes time and resources. Furthermore,
the constant need to trigger rescheduling strategies due to
fluctuating data streams can negatively impact the system’s
performance.

To address the challenges posed by frequent rescheduling
and the associated costs of task restarts, data grouping strate-
gies for stream computing systems have been refined by evenly
distributing workloads and enhancing computational efficiency
among tasks at runtime [12]–[15]. Two commonly used group-
ing strategies are random grouping and key grouping. Random
grouping evenly distributes data stream among tasks using a
round-robin approach to balance the workload. Key grouping,
on the other hand, emits data based on specific key values,
ensuring that related data is processed by the same task. Some
studies [16], [17] explore a hybrid approach that combines
both strategies to further optimize workload balancing. This
hybrid method assigns data with frequently occurring keys (hot
keys) and infrequently occurring keys (rare keys) to different
tasks using random and key grouping techniques. The goal is
to quickly and accurately identify the most frequent keys so
that the grouping process can be faster and more effective.

In a distributed stream computing system, tasks are in-
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stantiated by operators (basic functional units of a streaming
application) to process allocated workloads. These tasks of
operators are deployed to workers in compute nodes, where
each worker executes a portion of data processing logic defined
in the streaming application. Balancing workload among tasks
in operators through effective data grouping can enhance
system performance [13], but the communication cost between
tasks is often overlooked. Through experiments, we have
observed that, when workers’ resources are abundant, the
communication cost between tasks tends to be the primary
factor affecting system latency. However, in scenarios where
the workers’ resources are limited, the computational cost of
data streams becomes the dominant factor. Therefore, blindly
pursuing an even data distribution among tasks is not always
the best solution. Instead, if tasks have sufficient computational
resources, skewing the workload towards near-source tasks
(located closer to the data emitting tasks) can often reduce
system latency.

Motivated by the above observations, we have designed a
hierarchical near-source grouping strategy, named Ns-Stream.
Ns-Stream dynamically reschedules data tuples at runtime
based on the relative location between emitting and receiving
tasks. It prioritizes dispatching data tuples to near-source tasks
to maximize intra-node communication load when worker
resources are ample. Otherwise, Ns-Stream sequentially sched-
ules the overloading data tuples to other workers on the
same node and then on different nodes. This hierarchical data
grouping strategy results in different data distribution sizes at
different deployment locations. To achieve this, we construct
a resource constraint model to ensure sufficient resource
allocation for near-source tasks processing data streams. Fur-
thermore, we develop a graph convolutional network model
to continuously aggregate information about tasks to optimize
the deployment during the initial scheduling phase, pre-placing
tasks with potential communication on the same worker and
compute node.

Our contributions are summarized as follows:
(1) We observed that when tasks have ample resources, the

communication overhead from off-source data process-
ing is the main factor impacting system latency. How-
ever, when the resources are limited, the computational
resources of tasks become the key constraint on system
performance.

(2) Leveraging a graph convolutional network during the
initialization scheduling phase, tasks with potential com-
munication demands are strategically placed to the same
worker and node where possible, eliminating the need
for runtime task scheduling.

(3) Data distribution weights between near-source and off-
source tasks are dynamically adjusted based on their
computational resource requirements, prioritizing local
tuple processing within the same worker and node to
optimize resource usage and minimize data transmission
overhead.

(4) The proposed Ns-Stream is integrated into the Apache
Storm platform and evaluated on metrics such as system
throughput and latency. Experimental results show that
Ns-Stream provides notable advancements compared to

existing state-of-the-art works.
The rest of this paper is organized as follows. Section III

discusses the impact of communication overhead on system
latency and our motivation. Section IV introduces the relevant
stream computing system models, including the application
model, communication model, and data grouping model.
Section V formalizes the problems related to initialization
scheduling and data stream redirection. Section VI introduces
the Ns-Stream strategy and its main algorithms. Section VII
evaluates the performance of Ns-Stream. Section II presents
related work, and Section VIII concludes our work along with
future directions.

II. RELATED WORK

In this section, we present a review of cutting-edge research
in two relevant fields: task scheduling for stream processing
and data stream grouping. A comparison between our work
and the relevant research is summarized in Table I.

A. Task scheduling for stream processing

When tasks of a streaming application require data exchange
or communication, deploying them on different compute nodes
incurs network communication overhead. This not only in-
creases the latency of data transmission but also consumes
valuable network resources. By placing communication-
intensive tasks on the same node during task scheduling, data
transmission between nodes can be effectively reduced.

Communication overhead. P-Schedule [8] models the
streaming application as a DAG topology during runtime and
partitions the DAG into subgraphs, deploying communication-
intensive tasks on the same compute nodes. SP-Ant [6] identi-
fies the most effective operator assignment plan by collocating
operators with high communication overhead on the same
worker using a bin-packing algorithm, and reschedules only
the less communicative operators through an evolutionary ant
colony optimization algorithm. However, both methods fail to
consider the trade-off between communication cost and com-
putational load, which can result in overloaded nodes when
compute-intensive tasks are deployed to the same worker.

Resource efficiency. D-Storm [21] dynamically aligns the
resource requirements of streaming applications with the avail-
able resources of compute nodes. It formulates the scheduling
problem as a bin-packing variant, and introduces a heuristic-
driven algorithm to minimize inter-node communication. CE-
Storm [18] prioritizes nodes within the cluster based on the
associated costs of resource usage, energy consumption, and
communication. Tasks are assigned to higher-priority nodes to
improve the cost-effectiveness of the Storm cluster. However,
both approaches lack the ability for tasks to dynamically
adjust the number of tuples they process based on their own
processing capabilities, which may lead to inefficiencies under
varying workloads.

Migration overhead. CAOM [19] employs a bottleneck
operator detection mechanism to identify maximum operator
capacities of operators. It avoids repeated migration operations
to reduce interruptions and considers varying data generation
rates to select optimal migration times. While this approach
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TABLE I
RELATED WORK COMPARISON

Aspect Related Work
SP-ant [6] P-scheduler [8] Hone [14] Pstream [16] CE-Storm [18] CAOM [19] FlexD [20] Our work

Topology redeployment " " % % " " % %

Task restart " " % % " " % %

Communication awareness " " % % " % % "

Data grouping % % " " % % " "

Inter-task load balancing % % " " % % " %

effectively reduces migration overhead by selecting optimal
timings, the costs associated with task redeployment remain
unavoidable.

These aforementioned solutions offer valuable insights into
the scheduling problem. However, in distributed stream com-
puting systems, adjusting task deployment locations at runtime
typically leads to unavoidable interruptions in data processing.
In contrast, Ns-Stream maintains continuous and stable data
stream processing by regulating inter-node and inter-worker
data flow, thereby enabling dynamic resource allocation within
the cluster.

B. Data stream grouping

Data stream grouping serves as a key technique for parallel
stream computing. By partitioning data streams into disjoint
sub-streams based on grouping keys, messages with the same
key are directed to the same sub-stream. This facilitates the
concurrent processing of these sub-streams across multiple
compute nodes, enabling distributed resource utilization and
improved scalability.

Workload balancing. MIXED [13] combine hash-based
routing with explicit key-based routing, designating destination
worker threads for certain keys while hashing others. Hone
[14] effectively schedules tuples to minimize queue back-
logs and balance backlog across tasks, mitigating stragglers
when workloads exhibit variance. Ms-Stream [22] adopts a
hierarchical strategy with lightweight two-level grouping to
mitigate stragglers and balance workloads. It also considers
cross-node task placement, ensuring that communication- and
computation-intensive tasks are appropriately deployed. How-
ever, workload balancing strategies such as MIXED [13], Hone
[14], and Ms-Stream [22] may introduce unnecessary com-
munication overhead by redistributing tuples to remote tasks,
even when local tasks are sufficiently capable of processing
the upstream workload.

Hot key identification. Pstream [16] introduces a
popularity-aware differentiated stream computing system. This
system employs shuffle grouping to allocate hot keys identified
by a lightweight probabilistic counting scheme, while using
key grouping for rare keys. Dalton [23] provides rewards
for hot keys based on reinforcement learning that captures
load variations for load balancing among operator tasks, and
optimizes the learned model through experience gained by
assigning tuples. FlexD [20] utilizes hash grouping to partition
low-frequency tuples and uses a progressive splitting method
to dynamically update the partitioner based on changes in

key frequency for high-frequency tuples. Despite their adap-
tiveness, these approaches can similarly result in excessive
communication overhead by redistributing data solely for
the purpose of load balancing, even when local processing
capacity is not fully utilized.

In summary, effective data grouping can enhance system
performance by evenly distributing task workloads. However,
inter-task communication overhead incurred by data transfers
is often overlooked. When computational resources are abun-
dant, this communication overhead becomes the primary factor
affecting system latency rather than the workload distribution.
Consequently, blindly pursuing even data distribution among
tasks without considering the communication overhead may
not always be an optimal strategy.

III. MOTIVATION

A series of experiments have been conducted on the popular
stream computing platform Storm [24] to investigate the im-
pact of inter-task communication overhead on system latency,
thus motivating this research. The experimental cluster consists
of 3 machines, each equipped with an Intel(R) Xeon(R) X5650
CPU (dual-core, 2.4 GHz), 2 GB of RAM, and a 100 Mbps
Ethernet network interface card. Word Count (WCount) is a
fundamental and widely-used benchmark for stream comput-
ing system performance evaluation and analysis. We employ
its common rhombus topology (Fig. 1) as our test case.

To simulate the impact of varying inter-task (i.e., inter-
node and intra-node (inter-worker)) communication volumes
on system latency, we generate synthetic datasets following
the Zipf distribution, similar to [25], [26]. Specifically, we
set the Zipf coefficient to -2, -1, -0.5, 0, 0.5, 1, and 2,
denoted as Zipf-2, Zipf-1, Zipf-0.5, Zipf0, Zipf0.5, Zipf1, and
Zipf2, respectively. The Zipf coefficient governs the skewness

Fig. 1. Instance topology of WCount.
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Fig. 2. System latency with different numbers of
nodes.

Fig. 3. System latency with workers on the same
node and varying skewness degrees.

Fig. 4. System latency with workers on different
nodes and varying skewness degrees.

degree of these synthetic datasets, wherein a larger coefficient
value corresponds to a higher degree of skewness in the data
distribution.

A. Observations

By adjusting the number of deployed nodes and the skew-
ness level of data stream, we examine the impact of inter- and
intra-node communication on system latency. The following
experiments are conducted when the streaming application
has relatively ample resources and a stable input stream
rate of 100 tuples/s: (1) latency with different numbers of
nodes, (2) latency with workers on the same node and vary-
ing skewness degrees, (3) latency with workers on different
nodes and varying skewness degrees. Moreover, we deploy
the streaming application to a single worker to observe the
impact of worker’s input load on system latency under varying
input rates and constrained resources, which is addressed in
experiment (4) latency with the same worker and different
input rates.

(1) Latency with different numbers of nodes. As depicted
in Fig. 2, a positive correlation can be observed between
the system latency and the number of nodes. With the node
count increasing from 1 to 4, the system latency exhibits
a gradual rise, escalating from 15.7 ms to 21.3 ms. This
trend suggests that as the number of used nodes scales up,
the augmented inter-node communication overhead contributes
to the elevated system latency. This finding underscores the
importance of minimizing inter-node data transfer to optimize
system performance.

(2) Latency with workers on the same node and varying
skewness degrees. We deploy the streaming application on
a single compute node, with osplit1 and osplit2 hosted by
different workers. The degree of data skewness is adjusted to
modulate the inter-worker communication volume. As shown
in Fig. 3, a gradual escalation in system latency can be
observed, rising from 19.9 ms for Zipf-2 to 21.1 ms for
Zipf2, as the datasets become increasingly skewed (or the
inter-worker communication volume increases). This trend
illustrates that on the same node, an increase in inter-worker
communication incurs a higher overall system latency. The
findings underscore the considerable impact of inter-worker
communication overhead on the aggregated system latency,

particularly when the communication volume (as indicated by
skewness degree) is substantial, thereby increasing the latency
penalty. Proper control and optimization of inter-worker com-
munication can potentially enhance system performance.

(3) Latency with workers on different nodes and varying
skewness degrees. We deploy the streaming application across
two compute nodes, with osplit1 and osplit2 hosted by workers
on different nodes. The degree of data skewness is adjusted
to modulate the inter-worker communication volume across
nodes. As shown in Fig. 4, a similar rising trend in system
latency can be observed, increasing from 18.6 ms for Zipf-
2 to 20.3 ms for Zipf2, as the datasets become increasingly
skewed. This trend, similar to the impact of communication
overhead among workers on the same node, highlights that
the increased inter-node communication overhead contributes
to higher overall system latency. These findings emphasize
the importance of proper control and optimization of inter-
node communication as a key approach to further improve the
performance of distributed systems.

(4) Latency with the same worker and different input
rates. To simulate the impact of resource load on system
latency, we deploy the streaming application to a single
worker. The Zipf coefficient is set to 0 to maintain a balanced
data stream. As shown in Fig. 5, an obvious upward trend
in system latency can be observed as the input rate escalates
from 100 tuples/s to 400 tuples/s, surging from 16.1 ms to
46.6 ms. Notably, at the high input rate of 400 tuples/s, the

Fig. 5. System latency with the same worker and different data input rates.
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latency has reached to 46.6 ms. It suggests that once the input
rate exceeds a certain threshold, the single worker’s resources
become inadequate to meet the data processing demands. The
accumulation of substantial input data in the worker leads to a
drastic increase in processing latency. These findings highlight
the importance of proper input rate control in stream comput-
ing systems to ensure low-latency operation. Any input load
exceeding the processing capacity of the allocated resources
can potentially trigger severe latency degradation.

The above experimental results reveal that when an appli-
cation’s allocated resources are abundant, the overall system
latency exhibits a gradual increase as the volumes of inter-
node communication and intra-node communication among
workers escalate. However, in scenarios where the applica-
tion’s resources are constrained, its resource load becomes the
primary factor limiting the system performance.

B. Motivations

Based on the aforementioned observations and analysis, it
can be seen that system latency can be affected by several
factors, including the volume of intra-node communication
(i.e., inter-worker communication within nodes), inter-node
communication overhead, and the utilization of worker re-
sources by incoming data streams. It is wise to consider
changing the task deployment locations at runtime to minimize
these communication costs. However, as discussed earlier,
both global and incremental online task scheduling methods
incur expensive costs and struggle to maintain the execution
information of tasks. To achieve low overhead and latency,
a hierarchical near-source data grouping approach may help.
Our motivations can be summarized as follows:

(1) Given the statistical information on task processing data,
how can we control data distribution weights to minimize the
communication overhead between compute nodes?

(2) How can we achieve a trade-off between near-source
and off-source data processing to efficiently utilize worker and
node resources?

(3) Given the maximum data processing threshold, how can
we adjust the input data rates for near-source tasks to enhance
the system’s low-latency processing capability?

IV. SYSTEM MODEL

Before discussing the Ns-Stream strategy and its related
algorithms, we first introduce the relevant models, including
the streaming application model, the communication model,
and the data grouping model.

A. Streaming application model

Each user-submitted streaming application can be repre-
sented as a directed acyclic graph (DAG) [27], denoted as
G = (O(G), E(G)), consisting of an operator set O(G) and
a directed edge set E(G). The operator set O(G) = {oi|i ∈
{1, . . . , n}} comprises a finite number of n operators, where
each operator oi represents an operation with a special func-
tion. The edge set E(G) = {cou,v|u, v ∈ {1, . . . , n}, u ̸= v}
is a finite set of directed edges, with weights assigned to

represent the communication costs between operators. Once
the user constructs the DAG and submits it to the data center,
multiple tasks are instantiated for each operator oi, and all
these tasks execute the same functional logic defined by
operator oi.

Both the DAG and its instantiated tasks compose the stream-
ing application model, which represents the logical structure
of a streaming application. Fig. 1 shows a sample logical
topology with 3 operators: oreader, osplit and ocount. Each of
oreader and ocount has 1 tasks, and osplit has 2 task, including
osplit1 and osplit2. Tasks of the same operator conduct the
same data processing logic. For example, tasks osplit1 and
osplit2 execute the same function.

B. Communication model

We store the tasks of a streaming application DAG into a
set T = {o1,1, o1,2, ..., oi,k, ..., on,j}, and construct a matrix
E to represent the communication costs among the tasks in
the set. This matrix can be described by (1).

E = [ei,k] =


e1,1 e1,2 · · · e1,s
e2,1 e2,2 · · · e2,s

...
...

. . .
...

es,1 es,1 · · · es,s

 , (1)

where s denotes the number of all tasks in the streaming ap-
plication DAG. ei,k denotes the communication cost between
the i-th task and the k-th task in the task set T .

As the data stream rate may experience transient fluctua-
tions, to effectively mitigate their impact, ei,k represents the
average communication cost over the time interval [td, tu]. It
can be calculated by Eq. (2).

ei,k =

∫ tu
td

eti,kdt

tu − td
, (2)

where eti,k denotes the communication cost between the i-th
task and the k-th task in the task set T at time t, t ∈ [td, tu].

Communication demand is primarily generated by tasks
deployed in different locations, including both intra-node
and inter-node communication. For example, if two tasks are
deployed on the same node, only intra-node communication
will occur. If two tasks are deployed on different nodes, only
inter-node communication will occur. In distributed stream
computing systems, the key to data processing efficiency
lies in how to manage and optimize communication between
nodes. To better understand this, we introduce an important
theoretical foundation, as described in Theorem 1.

Theorem 1. In a distributed stream computing system, if
the data input rate of a DAG remains stable, its intra-node
communication exhibits an inverse relationship with its
inter-node communication: maximizing the former minimizes
the latter.

Proof. Under a stable data input rate, a consistent task
communication cost matrix E can be obtained. The total
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communication volume TCT among all tasks in the DAG
can be calculated by Eq. (3).

TCT =

s∑
i=1

s∑
k=1

ei,k. (3)

We represent the task deployment on a compute node cnm

with vector qm of length s, m ∈ {1, . . . ,M}, where M
represents the total number of compute nodes. In qm, the i-th
element is set to 1 if the i-th task in set T is deployed onto this
m-th node, to 0 otherwise. For example, Eq. (4) represents a
few adjacent tasks in T running on node cnm.

qm = (0, ..., 0,

cnm︷ ︸︸ ︷
1, ..., 1, 0, ..., 0︸ ︷︷ ︸

s

)T (4)

The communication cost c(cnm, cnm) among tasks within
node cnm can be calculated by Eq. (5).

c(cnm, cnm) = qm
T · E · qm, (5)

The total communication cost TCN between nodes (or
inter-node communication cost) can be obtained by subtracting
all the intra-node communication costs from the total commu-
nication cost among all tasks of the streaming application,
which can be calculated by Eq. (6).

TCN = TCT −
M∑

m=1

c(cnm, cnm). (6)

In the scenario where the input rate is stable, the total tuple
transmission within the system remains stable, i.e., TCT can
be considered as a constant, Eq. (6) reveals an inverse re-
lationship between intra-node and inter-node communication.
Specifically, an increase in local tuple processing boosts intra-
node communication, and lead to a decrease in inter-node
communication.

C. Data grouping model

Data grouping is the process of partitioning data tuples from
a data stream ds according to a specific logic or condition
[28]. We define this specific logic or condition as a grouping
function GF (ds). This grouping function determines how the
data tuples are divided or clustered into distinct subsets or
groups within the overall data stream ds. In a streaming
application DAG , it is important to dynamically dispatch data
tuples to appropriate tasks of each operator for performance
purposes.

As shown in Fig. 6, an upstream task emits data tuples to
task set {oi,1, oi,2, oi,3, oi,4, oi,5} of operator oi. Depending
on the grouping strategy used, varying numbers of tuples are
received by the tasks in {oi,1, oi,2, oi,3, oi,4, oi,5}. The tasks
incur different communication overheads and resource con-
sumption when processing the tuples. These communication
overheads and the resource consumption considerably impact
the system latency and should not be overlooked.

To better optimize the overheads and resource consumption,
we introduce two concepts: near-source data processing and
off-source data processing.

Fig. 6. Data stream grouping among tasks of operator oi.

Definition 1. Near-source data processing. If two commu-
nicating tasks are deployed to the same compute node, data
tuples transmitted between tasks (in the same worker or
different workers) are considered to be processed near-source.

For example, in Fig. (6), the data grouping between the
Upstream task and tasks Oi,1, Oi,2 and Oi,3 is near-source.
The latency between the Upstream task and Oi,3 will be
lower than those of Oi,1 and Oi,2, as the deployment location
of Oi,3 is closer to the Upstream task (in the same worker).
This near-source processing can significantly reduce the
transmission latency of data tuples.

Definition 2. Off-source data processing. If two communicat-
ing tasks are deployed to different different nodes, data tuples
transmitted between the tasks are considered to be processed
off-source.

For example, in Fig. (6), the data grouping between the
Upstream task and tasks Oi,4 and Oi,5 is off-source. This off-
source processing can significantly increase the transmission
latency due to cross-node communication.

V. PROBLEM STATEMENT

Drawing from the above models, we formalize the schedul-
ing problems for distributed stream computing, which involve
DAG initialization scheduling and data stream grouping.

A. DAG initialization scheduling

When deploying a streaming application DAG across M
compute nodes in a cluster, we lack the access to the communi-
cation data within the application during the initial scheduling
phase. However, we derive data dependency relationships from
the DAG, and treat tasks with operator-level dependencies
as having potential communication demands. Therefore, we
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initialize each element in the communication cost matrix E,
which can be calculated by Eq. (7).

∀ei,k ∈ E, ei,k =


1, if communication exists between
i-th and k-th tasks in T,

0, otherwise.
(7)

Let matrix Q be the task deployment solution. qm is the
task deployment vector of compute node m with length s . Q
can be described as Eq. (8).

Q = (q1, q2, ..., qm, ..., qM ), (8)

subject to

M∑
m=1

qm,i = 1, i = 1, 2, ..., s,

s∑
i=1

qm,i ≈
s∑

i=1

qm,j , i ̸= j,m = 1, 2, ...,M.

(9)

In Eq. (9), qm,i denotes the i-th element (task) in vector qm.
The first constraint ensures that each task (i) can only be
deployed on one compute node. The second constraint ensures
that the number of tasks deployed on each node should be
balanced as much as possible.

Based on the above descriptions, our objective function Z
for initial task deployment aims to minimize data dependencies
between nodes, i.e., the total communication cost minus the
intra-node communication cost, as represented by Eq. (10).

Z = min(

s∑
i=1

s∑
k=1

ei,k −QT · E ·Q). (10)

B. Data stream grouping
Given an upstream operator oi and its direct downstream op-

erator oj , data tuples {dt1, dt2, ...} from data stream ds can be
redirected from operator oi to the k tasks {oj,1, oj,2, ..., oj,k}
of operator oj using grouping function GF . The group-
ing function is a mapping: GF (ds) = {dt1, dt2, ...} →
{oj,1, oj,2, ..., oj,k}.

According to Theorem 1, when the input rate is stable,
maximizing intra-node communication minimizes inter-node
communication. Therefore, data streams should be redirected
to the near-source tasks as much as possible. This means
that during the initial scheduling phase, tasks with potential
communication demands are deployed on the same node.

At runtime, the communication load between tasks can be
collected through a monitoring module. This communication
load information is constructed into a matrix E. Then, our
objective function J for data stream grouping is to maximize
intra-node communication (i.e., processing data tuples locally)
at runtime, which can be generalized as Eq. (11).

J = max(QT · E ·Q). (11)

VI. NS-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the above discussion, we present Ns-Stream, a
lightweight scheduler specifically designed for efficient group-
ing of data streams. In this section, we first introduce Ns-
Stream’s architecture, followed by the algorithms for DAG
initialization scheduling and near-source grouping.

Fig. 7. Ns-Stream architecture.

A. System architecture

Ns-Stream is implemented on the Storm platform. Once a
streaming application is submitted, the platform initializes the
application’s logical topology and deploys it onto compute
nodes in the cluster. The topology DAG, deployed across
compute nodes, continues running unless manually termi-
nated. Two steps are involved in implementing Ns-Stream:
(1) During the topology initialization phase, we strategically
deploy tasks with potential communication demands to the
same compute node by implementing the IScheduler in-
terface in Storm. (2) At runtime, our hierarchical near-source
grouping strategy steps in to optimize system latency by
routing data tuples to tasks deployed on the same worker or
node. This specific grouping strategy is implemented by the
CustomStreamGrouping interface.

As shown in Fig. 7, a logical topology is first constructed
to define internal logic and data dependencies within the
streaming application. During the topology construction pro-
cess, users need to specifically define the Spout components
(generating data streams), configure the Bolt components
(processing the data streams), establish the connection rela-
tionships between these components, and determine the data
transmission methods to ensure that the entire topology runs
efficiently according to the expected logic. The constructed
topologies are submitted to Nimbus by users.

Nimbus deploys the topologies (DAGs) to the compute
nodes within the cluster. Ns-Stream prioritizes deploying tasks
with data dependencies in one topology on the same com-
pute node. Furthermore, the allocation of these tasks on the
same compute node can be fine-grained to minimize the data
communication between workers on the same compute node,
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enhancing the overall efficiency and performance. The method
for task deployment is detailed in Section VI-B.

The Supervisors retrieve task deployment information from
Zookeeper and initiate the corresponding Worker processes
on the local nodes. The grouping functions for each DAG
running on Supervisors are dynamically adjusted to minimize
inter-node communication overhead. Subject to resource con-
straints, data tuples are routed to tasks for processing with
the following priority: first to tasks within the same worker,
second to tasks on the same compute node, and last to tasks
on other nodes. Extensive local processing of data tuples
therefore reduces the communication latency between workers
and compute nodes. The method for near-source grouping is
detailed in Section VI-C.

B. DAG initialization scheduling

At the initial stage, tasks of a DAG are deployed to workers
on nodes in the cluster. If task deployment remains unopti-
mized during this DAG initialization process, communicating
tasks might have to be migrated to the same worker or node
at runtime, which can be costly. An unoptimized deployment
often occurs when the default task deployment uses a round-
robin strategy, which tends to place communicating tasks on
different nodes. The more tasks that require migration during
runtime scheduling, the higher the associated cost. Therefore,
during this initialization process, we use graph partitioning
to deploy communicating tasks to the same worker or node,
eliminating the need for costly runtime scheduling later on.

Deep learning techniques have been applied to address
graph partitioning problems [29], [30]. Our proposed solution
is implemented using the Generalized Approximate Partition-
ing (GAP) framework [31]. This GAP framework consists of
graph encoding modules and feed-forward neural networks.
By iteratively feeding topological structure information into
the GAP model and employing the steepest descent method
from nonlinear programming, the graph partitioning model’s
parameters are adjusted along the negative gradient direction
of the loss function. Our loss function Lf for graph partition-
ing is determined by the inter-node communication cost and
the balance of the number of tasks deployed on each node. It
can be described as (12).

Lf =
∑

reduce−sum

(Y ⊘ Γ) (1− Y )⊙ E

+
∑

reduce−sum

(
1TY − s

M

)2

,
(12)

where Y denotes the probability for each task being deployed
to one compute node from set {cn1, cn2, ..., cnM}. M and s
denote the number of compute nodes in the cluster and the
number of tasks of the streaming application, respectively.
1 is an s × 1 column vector, with each element being “1”.
Operator ⊘ represents the elements of matrix Y divided by
the corresponding elements of matrix Γ. Operator ⊙ represents
the Hadamard product. The first term of Eq. (12) represents
the communication cost between nodes. The second term

represents the similarity in the number of tasks deployed on
each node. Γ can be calculated by Eq. (13).

Γ = Y TX, (13)

where X is the vector that represents the number of edges
connected to each task.

We use graph convolutional networks to learn the topolog-
ical information of streaming applications, and then input the
learned information into fully connected networks. Our graph
partitioning algorithm is described in Algorithm 1.

Algorithm 1: Subgraph partitioning algorithm.
Input: communication cost matrix E, number of

subgraphs m;
Output: probability matrix Ys×m;

1 Initialize the user-defined maximum iteration count as
iter count;

2 while iter count > 0 do
3 Initialize the graph encoding depth as ed;
4 for l = 1 to ed do
5 for each ei,k in E do
6 Get the neighboring task set ϑ of edge ei,k ;
7 Get the edge set εi of each task ϑi in ϑ ;
8 Calculate the embedding e of edge ei,k

based on εi information ;
/* Aggregate edge information.

*/
9 ei,k =

∑
e∈εi

e ;

10 end
11 end

/* Feed the encoded matrix E into
a neural network consisting of 3
fully-connected layers. */

12 E(2) ←Linear( Linear( Linear(E) ) );
13 Ys×m ←softmax( E(2) ) ;
14 Calculate the loss function by Eq. (12) and

backpropagate the gradient;
15 iter count = iter count− 1;
16 end
17 return Ys×m

The input of Algorithm 1 includes the communication cost
matrix E between tasks and the number of desired subgraphs
m. The output is a probability matrix Ys×m, where its element
Yi,j represents the probability of the i-th task belonging to
the j-th subgraph. Step 1 and Step 3 initialize the parameters
required for the algorithm to run. Steps 4 through 11 encode
the graph structure via Graph Convolutional Networks (GCNs)
[32]. Steps 12 and 13 compute the probability matrix Ys×m

for the encoded graph. Step 14 updates the model parameters
based on the loss function (Eq.(12)). The time complexity of
Algorithm 1 is O(iter count · s2 · ed), where s is the number
of tasks in the streaming application.

During the initialization phase, the initial task deployment
can be fine-grained by following two key steps: (1) the
topological information of DAG is fed into Algorithm 1 to
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obtain multiple subgraphs. Tasks within each subgraph are
deployed to the same node. (2) To minimize intra-node com-
munication, each subgraph is further processed by Algorithm 1
to determine which tasks can be deployed to the same worker
on the node.

C. Near-Source grouping

As discussed previously, we have observed that
communication overheads between nodes and between
workers within nodes can impact system performance. To
minimize these overheads, we propose a hierarchical, near-
source data grouping strategy to optimize system latency.
This strategy prioritizes the deployment of data tuples to
tasks deployed on the same worker and compute node. Each
near-source task processes these data tuples based on its
processing capability PC.

Definition 3. Task processing capability. A task’s processing
capability PC assesses whether the task’s processing
capability has reached saturation.

PC has a value range of [0, 1]. If its value is closer to 1, it
indicates that the task is continuously invoking the execute()
function, and its processing capacity is nearly saturated. If its
value is closer to 0, it indicates that the task is completely idle
and has no data tuples being processed.

A task’s PC can be calculated by Eq. (14).

PC =

ρk∑
i=1

eti

tu − td
, (14)

where td and tu respectively denote the start and end time of
a time interval [td, tu]. ρk denotes the total number of tuples
processed by the k-th task during this time interval. eti denotes
the processing time of the tuple dti.

In addition, to ensure efficient utilization of worker re-
sources, when the workload of near-source tasks becomes
excessive and their processing capacities are approaching
saturation, excess data from the data source is redirected to
off-source tasks. This redistribution relieves the computational
pressure on local resources. We define the threshold for task
processing capacity as α. If α is too high, it may overload near-
source tasks. Conversely, if α is set too low, it may increase
communication cost between nodes. The setting of α value is
discussed in Section VII-C.

To calculate the tuple distribution probability, we assume
there exists an upstream operator task oi−1,1 that emits data
tuples to λ tasks {oi,1, ..., oi,λ} of downstream operator oi.
To demonstrate the near- and off-source processing, we sim-
ulate different grouping scenarios by splitting the λ tasks
into 3 task sets: {oi,1, ..., oi,p1

}, {oi,p1+1, ..., oi,p1+p2
}, and

{oi,p1+p2+1, ..., oi,λ}. These sets are deployed with the up-
stream source task oi−1,1 to the same worker, different workers
on the same node, and different nodes, respectively. We define
the tuple output rate of task oi−1,1 as ro, and the input rates of
tasks {oi,1, oi,2, ..., oi,λ} as {io1, io2, ..., ioλ}, respectively.

Fig. 8. Near-source grouping workflow.

If a task’s PC does not exceed threshold α, the maximum
average processing rate ρk of task oi,k, k ∈ {1, ..., λ} can be
calculated by Eq. (15).

ρ̄k =
α · (tu − td) · ρk

ρk∑
i=1

eti

. (15)

Based on the above information, the tuple distribution
weights {w1, w2, ..., wk, ..., wλ} for the data tuples emitted
by task oi−1,1 to tasks {oi,1, oi,2, ..., oi,λ} can be calculated
by Eq.(16).

In Eq.(16), the first condition indicates that near-source
tasks in the same worker can fully process all tuples emitted
by the upstream task. The second condition indicates that
that near-source tasks in different workers on the same node
can process the tuples remaining from near-source tasks in
the same worker. The third condition indicates that off-source
tasks can process the tuples remaining from the near-source
tasks.

The tuple distribution probability P = {pi,1, pi,2, ..., pi,k,
..., pi,λ} for the data tuples emitted by task oi−1,1 to tasks
{oi,1, oi,2, ...,oi,λ} can be calculated based on the distribution
weights of these tuples. Specifically, the probability pi,k (for
emitting tuples to task oi,k) can be calculated by Eq. (17).
Then, the probability range for emitting tuples to task oi,k is
[pi,k−1, pi,k]. A wider probability range means more tuples
can be distributed to the corresponding task, while a narrower
range results in fewer tuples being distributed.

pi,k =

k∑
j=1

wj (17)

As shown in Fig. 8, the monitor component collects load
data from downstream tasks and calculates their maximum
processing rates using Eq. (15). Based on task deployment
locations, it computes tuple distribution weights and updates
the probabilities P using Eq. (17). These new probabilities P
are sent to upstream tasks to adjust their partitioners. A higher
probability pi,k means a downstream task oi,k receives more
tuples. When grouping each data tuple, the partitioner inputs
the updated distribution probabilities into Algorithm 2.

The input of Algorithm 2 includes the distribution probabil-
ity {pi,1, pi,2 , ..., pi,λ} for data tuples emitted by task oi−1,1 to
tasks {oi,1, oi,2, ..., oi,λ}. The output is the target task to which
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wk =



ρk
ro

, if k ∈ [1, p1],

p1∑
j=1

ρj ⩾ ro,1−
p1∑
j=1

ρj
ro

 · max (0, ρk − iok)

ro
, if k ∈ [p1 + 1, p2],

p1∑
j=1

ρj < ro,

1−

p1∑
j=1

ρj +
p2∑

g=p1+1
max

(
0, ρg − iog

)
ro

 · max (0, ρk − iok)

ro
, if k ∈ [p2 + 1, p3],

p1∑
j=1

ρj +

p2∑
g=p1+1

max
(
0, ρg − iog

)
< ro,

0, otherwise.
(16)

Algorithm 2: Data stream grouping.
Input: distribution probability P = {pi,1, pi,2 , ...,

pi,λ};
Output: TargetTask

1 Get the target task set {oi,1, oi,2, ..., oi,λ} ;
2 Generate a random number r, r ∈ [0, 1] ;
3 for k = 1 to λ do
4 if r < pi,k then
5 TargetTask ← oi,k;

/* Found the target task to
receive and process the
tuple. Quit. */

6 Break;
7 end
8 end
9 return TargetTask

the data tuples will be distributed. Step 1 gets the downstream
operator tasks that have data dependencies with the emitting
data source oi−1,1. Step 2 generates a random number for
selecting a target task based on its distribution probabilities.
Steps 3 to 8 determine which task’s probability range that the
random number falls into, and emit the data tuple to that task
for processing. The time complexity of Algorithm 2 is O(λ),
where λ is the number of tasks in operator oi.

VII. PERFORMANCE EVALUATION

The experimental cluster consists of 16 machines: 3 ma-
chines are designated as master nodes running Nimbus, while
the remaining 13 machines serve as worker nodes hosting
Supervisor processes. Furthermore, a Zookeeper cluster is
deployed across 3 machines, which are multiplexed with the
Nimbus master nodes. Each Nimbus node is equipped with a
GAP model, which consists of two graph encoding modules
and a feedforward neural network. Each graph encoder uses a
hidden layer size of 64.

We use the public dataset [33] from Alibaba to simulate
a real-world workload for evaluating the performance of the
proposed stream computing system. The real-world dataset en-
compasses the activities of approximately one million random

Taobao users over the period from November 25th to De-
cember 3rd, 2017. These activities include clicks, purchases,
additions to cart, and likes. Each row in the dataset represents
a user activity, consisting of a user ID, product ID, product
category ID, activity type, and timestamp. This dataset’s time-
driven, event-intensive, and behaviorally diverse characteristics
make it well-suited to benchmark stream computing systems
like Ns-Stream. To align the dataset with the data source of
the streaming application, we partition the dataset into equally
sized subsets by timestamps. The number of sub-datasets
corresponds to the number of tasks in the Read operator, and
each task only reads its assigned subset.

In addition, we use COMMCount, a widely used bench-
mark application, as the test streaming application. This
COMMCount application creates a more complex scenario
by counting the number of commodities browsed by users.
Two COMMCount DAGs are designed to simulate different
loads between operators and tasks: Topology 1 has fewer
tasks (6) for data emitting (Read tuples) and more tasks (16)
for data processing (Split tuples); Topology 2 has more tasks
(8) for data emitting and fewer tasks (8) for data processing.
Their logic graphs are shown in Fig. 9. The two topologies
reflect typical structural patterns in real-world applications,
such as lightweight upstream vs. heavyweight downstream,
and balanced processing pipelines.

We compare the performance of Ns-Stream with state-of-
the-art (SOTA) methods, including the R-Storm [34], TOP-
Storm [35], SP-ant [6], and the commonly used Shuffle group-
ing (SG). Among these works, R-Storm, TOP-Storm and Sp-
ant are the most representative in communications awareness
and resource management. We collect system latency and
bottlenecks through the built-in ACK mechanism in the Storm
platform.

A. System latency

System latency is a key performance metric in stream
processing that directly impacts the user experience of real-
time applications. We define system latency as the time taken
for a data stream to enter the topology, be fully processed, and
produce the final output. We evaluate system latency under
stable, increasing, and fluctuating input rates. The fluctuating
stream simulates real-time dynamics, following the approach
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(a) Instance topology 1 of COMMCount.

(b) Instance topology 2 of COMMCount

Fig. 9. Two instance topologies of COMMCount.

in RIoTBench [36], where the input load is emulated based
on user activity patterns on the platform. For instance, the
number of orders on the Taobao platform typically peaks
around midday and in the evening, while it declines during
standard working hours.

Given a stable input rate of 2,000 tuples/s, Ns-Stream sig-
nificantly reduces the system latency across the test streaming
applications compared to the SOTA methods.

As shown in Fig. 10, for instance topology 1, the average
system latencies are 25.4 ms, 23.3 ms, 20.4 ms, 19.6 ms,
and 15.5 ms for SG, R-Storm, TOP-Storm, SP-ant and Ns-
Stream, respectively, when the system stabilizes. Similarly,
as shown in Fig. 11, for instance topology 2, the average
system latencies are 22.3 ms, 19.5 ms, 15.6 ms, 16.2 ms,
and 13.9 ms for SG, R-Storm, TOP-Storm, SP-ant and Ns-
Stream, respectively. Compared to the SOTA methods, Ns-
Stream reduces the maximum system latency by 38.9% and
the minimum by 10.8%.

Given an increasing rate and an increment of 1,000 tu-
ples/s, Ns-Stream also significantly reduces the system latency
across the test streaming applications compared to the SOTA
methods.

As shown in Fig. 12, Ns-Stream consistently shows the
lowest latency across all the input rates, followed by SG, R-
Storm, TOP-Storm, and finally SP-ant for instance topology 1.

This indicates that Ns-Stream achieves higher efficiency and
lower latency when processing increasing data streams. As the
input rate increases from 1000 tuples/s to 6000 tuples/s, Ns-
Stream’s latency increases by approximately 49% (from 16.2
ms to 24.2 ms), SG’s latency increases by approximately 76%
(from 20. 6 ms to 36.4 ms), R-Storm’s latency increases by
approximately 65% (from 19.6 ms to 32.4 ms), TOP-Storm’s
latency increases by approximately 63% (from 18.1 ms to 29.5
ms), and SP-ant’s latency increases by approximately 52%
(from 18.7 ms to 28.5 ms). This suggests that Ns-Stream is
relatively more stable in terms of latency growth.

Similarly, Ns-Stream exhibits the lowest latency across all
the data stream rates for instance topology 2. As shown in
Fig. 13, from an input rate of 1000 tuples/s to 6000 tuples/s,
Ns-Stream’s latency increases by approximately 56%, SG’s by
approximately 85%, R-Storm’s by approximately 74%, TOP-
Storm’s by approximately 74%, and SP-ant’s by approximately
70%. Compared to the results for topology 1, Ns-Stream’s
latency growth is more rapid in topology 2.

Given a fluctuating input rate (peak: 7697 tuples/s), Ns-
Stream also significantly improves system stability and reduces
latency across the test streaming applications compared to the
SOTA methods.

As shown in Figs. 14 and 15, system latency exhibits sig-
nificant fluctuations under real input load conditions. SG and
R-Storm show noticeable latency spikes, with peaks exceeding
25 ms and frequent oscillations, indicating high sensitivity to
changes in data rate. SP-ant and TOP-Storm show moderate
variability, performing better than SG and R-Storm, but still
exhibiting clear latency fluctuations. In contrast, Ns-Stream
consistently maintains low latency with minimal variation,
staying around 11 ms even under substantial changes in input
rate. This stability highlights Ns-Stream’s robustness to input
variation.

Experiments on both topologies indicate that Ns-Stream
achieves lower latency and maintains relatively stable perfor-
mance compared to the SOTA methods. This advantage can
be attributed to Ns-Stream’s dynamic data adjustment to near-
source tasks. Although SP-ant and TOP-Storm also optimize
system latency to some extent, its approach of minimizing
inter-node communication through task scheduling is less
effective in optimizing overall system performance due to the
stable communication load between tasks.

B. System bottleneck
A system bottleneck occurs when the system’s data process-

ing rate reaches its peak given the topology’s configuration and
available resources. In our tests, we gradually increase the data
input rate until it causes downtime in the tasks. This approach
allows us to identify the input rate at which the system’s
performance degrades significantly, leading to failures, and
thus pinpoint the bottleneck.

Given an increasing rate and an increment of 500 tuples/s,
Ns-Stream exhibits significant improvements in system bottle-
neck compared to the SOTA methods across the test streaming
applications.

As shown in Fig. 16, for instance topology 1, the system
bottlenecks are 12,500 tuples/s, 8,500 tuples/s, 9,000 tuples/s,
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Fig. 10. System latency of topology 1 under
stable data rate of 2000 tuples/s.

Fig. 11. System latency of topology 2 under
stable data rate of 2000 tuples/s.

Fig. 12. System latency of topology 1 under
increasing data rates.

Fig. 13. System latency of topology 2 under
increasing data rate.

Fig. 14. System latency of topology 1 under
fluctuating data rates.

Fig. 15. System latency of topology 2 under
fluctuating data rates.

Fig. 16. System bottleneck of topologies 1 and
2.

Fig. 17. System latency of topology 1 with
different α.

Fig. 18. System latency of topology 2 with
different α.

10,000 tuples/s, and 10,500 tuples/s for Ns-Stream, SG, R-
Storm, TOP-Storm, and SP-ant, respectively, when the system
stabilizes. Similarly, for instance topology 2, the system bot-
tlenecks are 14,000 tuples/s for Ns-Stream, 9,000 tuples/s for
SG, 10,500 tuples/s for R-Storm, 12,500 tuples/s for TOP-
Storm, and 12,000 tuples/s for SP-ant. Compared to the most
advanced SP-ant, Ns-Stream enhances the average system
bottleneck by 15.1%. It is evident that the average bottleneck
of Ns-Stream surpasses those of SG and SP-ant when the input
rate increases steadily.

Ns-Stream has a higher system bottleneck compared to the
other two SOTA methods. This is because, when the resource
load of a task is insufficient, Ns-Stream can dispatch some data

to other tasks for processing, thereby enhancing the system’s
resource utilization efficiency.

C. System parameter settings

Proper system parameter settings enable streaming appli-
cations to process data at their best, which is crucial for
enhancing the performance of distributed stream computing
systems. In Ns-Stream, threshold α is important as it de-
termines the prioritization of near-source or off-source tasks
for data processing. We conduct experiments to evaluate its
impact on system performance (both latency and bottleneck)
by setting different α values.
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Fig. 19. System bottleneck of topology 1 with different α.

Fig. 20. System bottleneck of topology 2 with different α.

Given a stable input rate of 3,000 tuples/s, we compare the
system latency under different α values for the two topologies.

As shown in Fig. 17, for instance topology 1, the system
latency gradually decreases as the value of α increases up
to 0.35. However, beyond 0.35, the system latency stabilizes.
Similarly, in Fig. 18, for instance topology 2, the system
latency steadily decreases with the increase of α up to 0.30.
Beyond this point, the latency remains consistent.

A smaller value of α can affect the system latency by
prioritizing off-source tasks for data processing, leading to
increased communication overhead between nodes. However,
when α reaches a certain threshold, near-source tasks become
fully capable of handling the data tuples emitted by upstream
tasks, thereby maintaining a stable latency.

Given an increasing input rate and an increment of 500
tuples/s, we compare the system bottleneck under different α
values.

As shown in Fig. 19, for instance topology 1, the system
bottleneck gradually increases as the value of α approaches
0.6. However, beyond 0.6, the system bottleneck begins to
gradually decrease. Similarly, in Fig. 20, for instance topology
2, the system bottleneck progressively rises with the increase
of α up to 0.7. Beyond that point, the system bottleneck starts
to gradually decline.

The parameter α governs the trade-off between near-source
and off-source task processing. A very low α can result in
excessive inter-node communication, while a very high α may
risk overloading local resources. As shown in Figs. 19 and
20, setting α within the range of 0.5 to 0.7 yields favorable

bottleneck performance by balancing data transmission over-
head and local resource utilization. This trade-off is generally
applicable across a broad range of DAGs, as it supports both
local efficiency and overall system flexibility.

VIII. CONCLUSIONS AND FUTURE WORK

In this study, we observe that when resources are abun-
dant, communication overhead between compute nodes is
the primary factor affecting system latency. However, in
resource-constrained scenarios, the computational demands of
tasks become the critical factor limiting system performance.
To overcome these limitations, we introduce Ns-Stream, a
data tuple scheduler designed to dynamically adjust weight
assignments between near-source and off-source tasks. Ns-
Stream prioritizes local processing of data tuples based on
the computing capabilities of near-source tasks, aiming to
optimize resource utilization and reduce data transmission
overhead. To achieve this, a graph convolutional network is
employed to deploy tasks with potential communication to
the same compute node in advance during the initialization
scheduling. Ns-Stream has been implemented on the Apache
Storm platform. Experimental results demonstrate its advan-
tage over existing solutions, exhibiting notable improvements
in both system throughput and latency.

In our future work, we aim to integrate an auto-scaling oper-
ator parallelism mechanism into Ns-Stream. This integration
will enable Ns-Stream to dynamically adjust the number of
tasks in operators, further boosting the overall performance of
systems.
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