
1

Automatic Provisioning of Intercloud Resources driven by

Nonfunctional Requirements of Applications

Jungmin Son, Diana Barreto, Rodrigo N. Calheiros, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

{jungmins,dianaba}@student.unimelb.edu.au, {rnc,rbuyya}@unimelb.edu.au

Summary

Cloud computing, especially the Infrastructure-as-a-Service (IaaS), allows system administrators

to obtain computing and storage resources instantly and easily without up-front cost. As a result,

their job to purchase new hardware and install them in server room is replaced by simply

browsing the websites of cloud providers and choosing the right option. However, it is complex

and challenging task for system administrators to decide the appropriate type of virtual machine

(VM) offering sufficient resource for the application. Also, finding the best provider among

explosively increasing cloud providers is demanding hard labor to compare vast options. In this

work, we propose an automatic system that performs provisioning on public clouds based on the

non-functional requirements of applications. It translates the high level non-functional

requirements from administrators into VM resource parameters, selects the most adequate type

of VM and the provider, and allocates actual VMs from the selected provider. The prototype

shows that the system is effective in receiving non-functional requirements and provisioning

resources on different cloud providers based on such requirements.

Keywords

cloud provisioning

cloud resource selection

non-functional requirements

cloud monitoring services

Inter-clouds

I. INTRODUCTION

Cloud computing has emerged as a new computing paradigm offering subscription-oriented

services in place of traditional in-house computing infrastructure. Through its utility computing

concept with pay-as-you-go model, enterprises can avoid upfront investment for establishing

2

infrastructures to provide computation power to uncertain or fluctuating demand. For system

administrators in an enterprise, instead of installing new servers and network equipment, they

can easily acquire computing resources from one or more cloud providers with a few clicks on a

web page and pay only for the actual usage. They only need to select one or more cloud

providers and services that fit for their applications from Inter-cloud environment (Buyya,

Ranjan & Calheiros 2010).

Throughout the context, “cloud provider” or “provider” refers a company or an organization that

provides public cloud computing services. “Customer” refers a company, an organization or a

person who uses the cloud computing service offered by cloud providers to deploy their

application and serve to “end-users”. Furthermore, “System administrator” is a person who is in

charge of managing computer resources and configuring infrastructures such as servers and

network. In short, an enterprise will become a customer of the cloud provider when the system

administrator in the enterprise decides to use the cloud service of the provider.

Cloud computing delivers its service to customers in three models: Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS provides a complete

stack of application from the cloud provider, while PaaS provides software platforms that can be

used by the customer’s application. In both cases, the provider is in charge of managing and

controlling the underlying environment of the services. In contrast, IaaS provides low-level

computer resources, i.e. VMs, on which applications are deployed. Thus, the customer must

configure and control computing resources of VMs, whereas only the underlying physical

infrastructures are managed by the provider.

When deploying SaaS or PaaS services from multiple cloud providers, system administrators are

less demanded regarding infrastructural decisions, because services are limited to specific

applications or platforms that have fewer options to be chosen, and cloud providers offer

automatic features for their services such as automatic scaling.

On IaaS, however, system administrators are expected to make more decisions, since VMs

parameters can be selected, which incurs several challenges. First of all, there are a vast number

of options of VM resource amounts from several possible providers. In most providers, the VM

size is defined by the number and power of CPU cores, the amount of RAM, and the size of

storage space, which comes with either a predefined amount set by the provider or flexibly

configurable by the customer. As each provider has its own set of resource types with different

pricing policies, there is no common rule for definition of VM types. For example, Amazon

EC2
1
 offers 17 predefined types of VMs depending on the sizes of resources, while Microsoft

Azure
2
 has 8 different VM types. Moreover, providers such as CloudSigma

3
 provide more

flexible configuration where a resource set is freely selectable by the customer without any fixed

size. In addition to the size of VM, several factors affect the decision on how the price for VM

usage is determined, such as choice of operating system, location of the data center, contract

durations, etc. In summary, system administrators are in charge of deciding the best option

among various resource types, pricing schemes, and cloud providers.

1
 Amazon. 2013. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/ (accessed November 25, 2013).

2
 Microsoft. 2013. Microsoft Windows Azure Infrastructure Services. http://www.windowsazure.com/en-

us/solutions/infrastructure/ (accessed November 25, 2013).
3
 CloudSigma. 2013. CloudSigma Features. http://www.cloudsigma.com/#features (accessed November 25, 2013).

3

Secondly, estimating the right amount of resources is important in order to determine the optimal

size of VMs. Although cloud computing provides elastic scaling that allows changes in the

number and types of VMs after setup, determining the initial resource set is vital as it reduces the

need to reconfiguration, which demands time to be completed as it requires booting new VMs

with the new configuration. Meanwhile, non-functional requirements, such as the expected

number of end-users, usage patterns and acceptable response time, are obtainable from

accumulated statistics for existing application, or can be predicted from the application

specification. Nonetheless, converting non-functional requirements to low-level VM resource

requirements, such as number and computing power of CPU cores and amount of RAM, is

difficult without comprehensive knowledge about the underlying infrastructure. By estimating

proper resource sizes, an enterprise can avoid over-provision leading to spending funds with

unnecessary resources or under-provision causing performance loss or failure of the application

that results in end-user unsatisfaction and consequent loss of revenue.

Finally, VMs must be allocated from the chosen provider with the preferred resource type within

the set amount of time. As customers do not have control over the cloud infrastructure, there are

no guarantees that resources will be allocated to the customer unless some type of reservation is

made beforehand. When no reservation is in place, resource unavailability in one provider forces

system administrators to find another provider that meets all the determined requirements and

that is able to fulfill the resources request. It requires extra effort and cost to the system

administrator, and in worst case, it may cause the failure of service if it takes too long time to be

accomplished.

In this work, we propose an architecture to address the challenges emerging from the system

administrators’ perspective. Using our architecture, administrators can acquire the desired

number of VMs from the best provider with proper resource size that covers their non-functional

requirements. This will help system administrators to migrate their applications to the cloud by

setting up the required IT infrastructure without much concern of calculating amount of

resources. Furthermore, enterprises can reduce the cost of cloud usage by selecting the optimal

set of resources for their applications based on the supplied applications' non-functional

requirements.

The rest of this chapter is organized as follows. We look into related works further in Section 2

and explain backgrounds and motivates of this work in Section 3. The architecture is described in

Section 4, with details of each component and their implementation. In Section 5, we present the

performance evaluation of a system prototype based on the proposed architecture. Finally,

Section 6 concludes the chapter and proposes future works.

II. STATE OF THE ART

Several studies have been conducted by different groups in cloud provisioning, monitoring

services and resource selection area. As our proposal integrates each of these features into one

single framework, individual works are reviewed for each of these areas.

A. Cloud Provisioning

Resource provisioning in cloud computing refers to the decision about number, types, and

location of resources to be deployed for a specific purpose. Definition of resources for

provisioning may also include details on required processor, amount of storage, network

bandwidth, and other relative resources from the cloud provider. The large number of variables

4

related to resources definition makes it a complex problem for being solved in an optimal way.

Nevertheless, when simultaneous utilization of multiple cloud providers is sought, the problem

becomes even more challenging.

Several approaches have been proposed for resource provisioning on multiple cloud providers.

Grozev and Buyya reviewed and compared the architectures and brokering mechanisms of those

Inter-cloud systems (Grozev, Buyya 2012). The authors proposed taxonomies for Inter-cloud

architectures and presented detailed surveys of each project.

In centralized federation architectures for Inter-clouds, there exists a central component that

aggregates status of cloud providers and finds available resources from participating data centers.

For example, if one provider receives a request to provision resources from its client but cannot

provide them, the request is redirected to another provider that can offer the desired resources.

The peer-to-peer federation architecture is similar to centralized federation approach except for

the absence of central component. In this architecture, cloud providers communicate and

negotiate with each other directly without a centralized server.

Independent Inter-cloud approaches enable resource provisioning from multiple clouds without

direct exchange between providers as in the previous approach. This is achieved with an

independent service or library that supports multiple cloud providers. For example, in the

industry RightScale
4
 gives a single Dashboard and APIs to manage multiple clouds. They

provide a configuration framework with templates to set up the VMs easily. Also, they provide

an easy management tool on multiple cloud providers, but do not perform the provider selection.

Independent approaches also include providing APIs for cloud application development and

support deployment on multiple clouds, what allows developers to regard the heterogeneous

clouds as a single platform with transparent access. Instead of developing an application using

different APIs provided by each provider, these libraries include homogeneous controlling and

provisioning functions supporting multiple providers. Apache Jclouds
5
, for example, is a Java

library for Java-based interaction with various providers, which provides a provider-independent

API for execution of operations regarding provisioning of computing resources and storages.

While these libraries are helpful to develop an application able to execute on various providers,

they just provide an alternative to provider-specific APIs, and therefore they do not offer cloud

provider selection or automatic resource provisioning, which is still a task of system

administrators’ using such libraries.

B. Cloud Monitoring Services

Cloud monitoring is an important service to check the health of each data center and compare

different type of VMs in different cloud providers. IaaS cloud providers offer the computing

resources in terms of VM, which is composed of the unit of CPU cores, the amount of memory

and the size of disk spaces. These terms are defined by the provider itself, thus it is not

straightforward to compare different types of VMs in different providers by just comparing the

number of computing units they advertize. Also, periodical check is necessary to determine the

reliability and the availability of the provider. These metrics can be obtained by measuring up-

time percentage of the provider.

4
 RightScale. 2013. RightScale Cloud Portfolio Management. http://www.rightscale.com/products/cloud-portfolio-

management.php (accessed November 25, 2013).
5
 Apache Software Foundation. 2013. Apache jclouds. http://jclouds.apache.org/ (accessed November 25, 2013).

5

The importance of knowing the performance of different public cloud providers has encouraged

the development of monitoring services that report metrics to a better picture of real behavior of

the different services.

CloudHarmony
6
 reports results of benchmarks in regard to performance, network, and uptime for

a wide set of public cloud providers. To collect these metrics, monitoring services are located

inside and outside of the cloud provider and additionally some benchmark applications are

executed on behalf of CloudHarmony.

CloudSleuth
7
 provides a tool called Cloud Provider View, which displays the perceived response

time and the percentage of availability of various providers in different locations. It operates by

deploying a test application on each data center, and continuously monitoring its performance

and availability. By analyzing the collected data from applications running in each data center,

they provide the status of each data center, which can help others to compare different data

centers and providers.

CloudStatus
8
 collects, in real-time, observations of infrastructure metrics such as availability,

response time, latency, and throughput from Amazon and Google cloud services. These metrics

are aggregated by the server from sources inside and outside of the provider, and calculated to

diagnose the health of the cloud. With the diagnosed result, they provide an overall status of the

cloud in real-time that can affect the performance of the applications running in the cloud.

Instead of monitoring specific instances of the cloud, the results cover overall availability and

normalized metrics across the cloud.

C. Cloud Providers Ranking and Selection

Before starting the provisioning process, a provider and the type of resources which will satisfy

all the requirements should be chosen by the administrator. The selection criteria can be various

depending on the requirements. Constraints are the requirements that must be fulfilled by the

cloud provider. For example, some governmental applications may be restricted to be running

within their national territory due to the legislation. In such case, geographical constraints should

be applied to choose the provider, so that providers who have no data center in such nation will

be excluded from the choice. Preferences are the criteria to make ordering of the providers. Up-

time percentage of the data center can be one of the preferences when an application needs

higher reliability. Price of the service can be another preference if the system administrator

concerns more about the cost, resulting in selection of the most economic provider.

In this area, a number of researches have been already conducted by several scholars. Some of

them are introduced on the following paragraphs.

Li et al. developed CloudCmp (Li et al. 2010), which compares different cloud providers by

using a tool to perform systematic benchmarking. It evaluates the performance of elastic

computing, persistent storage and intra-cloud and wide-area networking in each provider, and

compares providers using unified metrics in each service. Authors also proposed CloudProphet

(Li et al. 2011), which estimates applications resources and performance in the cloud. This uses

6
 CloudHarmony. 2013. CloudHarmony. http://cloudharmony.com/ (accessed November 25, 2013).

7
 CloudSleuth. 2013. CloudSleuth – global provider preview. http://cloudsleuth.net/ (accessed November 25, 2013).

8
 Hyperic. 2013. CloudStatus. http://www.hyperic.com/products/cloud-status-monitoring/ (accessed November 25,

2013).

6

the trace-and-replay method that records the workload of an application from a traditional

infrastructure, and measures the performance when the recorded workload is replayed in a cloud

environment.

SMICloud (Garg, Versteeg & Buyya 2011) is a framework to rank cloud providers for a given

application considering the Service Measure Indexes (SMI): accountability, agility, assurance of

services, cost, performance, security and privacy, and usability. It operates by assigning different

Key Performance Indicators (KPI) to evaluate these indexes in different cloud providers.

Zhang et al. proposed a declarative recommender system to select a cloud provider (Zhang et al.

2012). The system receives as input requirement parameters from system administrators and

determines the best provider that satisfies the requirements. However, the types of input

parameters are resource sizes that should be transformed from non-functional high level

requirements.

Recently, Rak et al. presented a cost/performance evaluation tool (Rak, Cuomo & Villano 2013)

on top of the mOSAIC
9

 platform. Evaluation is performed by simulating and estimating

resources, cost and response time of an application. The authors propose the use of non-

functional requirements to create a system that suggests the best option among a set of cloud

providers.

III. RESOURCE PROVISIONING DRIVEN BY NON FUNCTIONAL

REQUIREMENTS

Resource provisioning inside of an organization is usually performed by system administrators.

They are in charge of the IT infrastructure and make decisions about where to deploy the

applications. The system administrators also fix problems related to failures on the hardware and

software that support this infrastructure. Although the more to the cloud frees system

administrators from managing underlying IT infrastructure and the resulting hardware and

software issues, it also bring new challenges.

Before deploying an application in the cloud, system administrators need to consider how much

resource this application will consume in terms of resource capacity as defined by different cloud

providers. It is a challenging task because this estimation may differ from the one for an in house

IT infrastructure, and from one cloud provider to the other. Additionally, the constraints for

cloud selection have to be considered as the selected provider should fulfill every requirement.

After determining resources and other requirements that application needs to execute

satisfactorily in the cloud, the next task to be performed by system administrators is to decide

which cloud providers can supply the estimated resources and which of them are more

appropriated to host the application. This selection of candidate cloud providers is a laborious

task as there are a large number of available providers, each of which offering varieties of

services, which cannot be directly compared with the services provided for others.

More than 65 public clouds providers are registered by the monitoring service CloudHarmony.

Additionally, each of them offers diverse range of services. For example, GoGrid
10

 offers just

one type of machine x-Large, that is configured with 8 cores of CPU and 8GB of memory, while

Amazon offer configurations m1.xlarge, m2.xlarge, m3.xlarge, and c1.xlarge, all of them with

9
 mOSAIC. 2013. mOSAIC Cloud. http://www.mosaic-cloud.eu/ (accessed November 25, 2013).

10
 GoGrid. 2013. GoGrid. http://www.gogrid.com/ (accessed November 25, 2013).

7

different amount of resources. Moreover, other clouds providers, such as CloudSigma, do not

have default configuration but allow flexible configuration of resources.

After selecting the candidate providers that can supply the services to deploy the application, the

next concern of system administrators is to obtain the required resources from cloud providers.

This is a challenging task because APIs and interfaces to communicate with cloud providers are

diverse and non-standardized. Furthermore, latency in communication, provider’s outage, and

eventually lack of resources can impede the administrator’s demand to be fulfilled. In this case,

another provider would need to be contacted for obtaining resources.

As was discussed previously, these activities of estimating resources, selecting cloud providers,

and allocating resources shows that the work performed by system administrators is still complex.

Therefore, solutions should be developed in order of support system administrators to reduce this

complexity and to motivate organizations to move their applications to the cloud.

A. Non-functional requirements

Currently, when system administrators want to acquire resources from IaaS cloud providers, they

need to know the details of the resources they need. For example, consider a situation where the

local infrastructure has extra resources to execute applications successfully. In this environment,

administrators may have knowledge about the expected behavior and performance of their

applications and this knowledge can be represented using non-functional requirements.

Non-functional requirements, according to the definition provided by (Glinz 2007), are attributes

and constraints of an application created to achieve some level of quality and performance.

Therefore they are not related with functions that the system should do, but with properties how

the systems should be, including availability, reliability, portability, cost, efficiency, usability,

and testability. For example in a shopping application, non-functional requirements can include

the number of on-line transactions it can support, however shipment tracking functionality is not

included in the non-functional requirements.

One non-functional requirement can be described with the number of features associated with it.

For example, to describe the cost of the local IT infrastructure, the related features are the

maximum price to spend in the new hardware acquisition and the price for maintenance of the

infrastructure. In the specific context of clouds, the related feature could be the maximum price

for using the resources during a time period.

Some of non-functional requirements which can be used to evaluate cloud providers are

described below;

 Portability is related with the easiness of an application to be executed in various

platforms. It includes a type of operating system or image running on VMs.

 Reliability includes Mean Time To Repair (MMTR) and Mean Time To Fail (MMTF) of

cloud providers which affect the probability of system failure. The type of environment,

either on development, on test or in production, will decide the level of reliability. It also

8

relates whether an application is acceptable to use Spot Price model
11

 of Amazon, since

the Spot Model sacrifices the reliability while low cost could be achieved.

 Availability corresponds to the system ability to respond user requests, including uptime

percentage of the cloud provider and locations of end-users. When multiple machines are

required to balance the overload, load balancing is crucial feature for achieving high

availability.

 Efficiency is a requirement related with the application performance such as expected

throughput and response time of an application. Also, it is important to know the type and

the amount of workload that applications should support, since optimal scheduling or

provisioning techniques that maximize the performance can be chosen based on that

information.

 Cost is related with how much the customer is willing to pay for a service that satisfies

all the other non-functional requirements.

Associated features to each non-functional requirement are presented in the Table 1. These non-

functional requirements are considered to design the architecture for resource provisioning

described in the following section.

Table 1 Initial non-functional requirements to consider in the system.

Non-functional

requirement

Relevant Features

Portability VM’s operating system or image

64 or 32 bits architecture of the H/W and O/S

Reliability Mean Time To Repair (MMTF)

Mean Time To Fail (MMTR)

Requires application backup

Type of environment(development, test, or production)

Allows spot price model

Availability Uptime percentage

End-user locations

Requires load balancing for high availability

Efficiency Expected throughput

Response time

Type of workload, Amount of workload

Cost Maximum price to pay for a window of time

IV. SYSTEM ARCHITECTURE

The architecture is composed of three independent modules: High Level NFR (Non-Functional

Requirements) Translator, Cloud Service Selector and Resource Allocator. Figure 1 shows the

general view of the system. Each of its components is detailed next.

11

 Using this model, users can bid for resources that will be delivered only if the bid exceeds the market price of the

service, but once the bid becomes less than the market price, the computing service can be removed without any

notice.

9

Automated Resource Provisioner

Cloud
Information

Database

Cloud Provider
1

Cloud Provider
2

Cloud Service
Selector

Resource
Allocator

Cloud Provider
N

Provider
Credential
Database

Application
Profile

Database

Application +
Non-functional
Requirements

High Level
NFR

Translator

Estimated
Resources +
Constraints

Recommended
Providers List

...

Figure 1 System architecture.

 The High Level NFR Translator translates the non-functional requirements provided by the

system administrator into the technical specification for a cloud infrastructure. It receives non-

functional requirements, such as efficiency, availability, and reliability of a specific application

and estimates the amount of resources, such as number of CPU cores, memory, and storage

requirements. The output also includes specific constraints that cloud providers should fulfill,

such as locations or contract periods, which is evaluated from the given non-functional

requirements. When it calculates the estimated resources, it interacts with the Application Profile

Database to store and retrieve the profile for the application. Furthermore, this module also

interacts with the Cloud Information Database to generate the selectable input options, such as

available data center locations and contract periods.

The Cloud Service Selector is responsible for recommending the cloud providers that are more

adequate to host an application. For this purpose, it receives the estimated size of resources and

other parameters such as the constraints and the prioritization of the non-functional requirements,

and then builds a list of suggested cloud configurations, including the recommended provider. It

interacts with the Cloud Information Database, which contains all information about various

resource types in each provider and their pricing information, to apply the constraints and

calculate the total cost incurred by the recommended configuration.

The Resource Allocator searches for available resources based on the recommended providers

and acquire resources directly from cloud providers. For this task, it uses the output list given by

the Cloud Service Selector and tries to get VMs from the most suitable provider. If the requested

resources are not available from the top-listed provider, it tries to allocate the resource from the

second best provider. The process continues until either all resources are allocated or no more

providers are left in the list. It interacts with the Provider Credential Database in order to obtain

login credential information for each provider.

As each component is designed to work independently, one component can be substituted by

another program or module with better performance. For example, the Declarative

Recommender System (Zhang et al. 2012) can be used to produce the recommended providers

10

list that is fed into Resource Allocator. Since their system includes blob storage and network

usage costs, it might produce better results for those services, while our Cloud Service Selector

focuses more on computing services. In such case, the Resource Allocator could read the output

of the Declarative Recommender System and try to allocate resources.

A. System Components

1) High Level NFR Translator

The High Level NFR Translator evaluates the non-functional requirements and translates them

into the technical parameters for cloud providers. The architecture proposed for the Cloud

Resources Estimator follows a client-server model of three tiers composed of database, business,

and presentation tier.

The presentation tier corresponds to the graphic interface in order to access the application

functionality. It allows system administrators to select requirements, change their orders and

enter the detailed parameters of each requirement.

The business tier, containing the main logic, retrieves data from the database, creates a workflow

to evaluate non-functional requirements and performs estimating the amount of resources and

determining the constraints. Figure2 presents the class diagram of the business tier.

+getNFRequirements()

+evaluateNFRequirements()

CloudEstimator

+evaluateNFRequirements()

WorkflowEstimator
DatabaseManager

EvaluatorFactory

CloudRequest

-coresCPU

-sizeRAM

-sizeDisk

-hardwareOS

-contractPeriod

-spotPrice

-expectedHours

-numberMachines

-isMultiProvider

-imageOS

-minUptime

CloudTotalRequest

+evaluateNFRequirement()

NFEvaluator

NFEvaluatorPortability

NFEvaluatorAvailability

NFEvaluatorReliability

NFEvaluatorEfficiency

1

*

*

Fin1Fin2

-Fin4
-Fin5

Figure 2 Class diagram of High Level NFR Translator.

When the CloudEstimator receives the application and non-functional requirements from the

presentation tier, it begins the non-functional requirements evaluation process using the

WorkflowEvaluator and builds up the CloudTotalRequest object that holds information of

required resources. The order of evaluation for each requirement is determined according to its

priority given by system administrators. Also, for each non-functional requirement, the

associated evaluator class is used to update CloudTotalRequest. For example,

11

NFEvaluatorAvailability is used to evaluate availability requirement and change value in

CloudTotalRequest that adds a constraint to meet the availability requirement.

Among various evaluators, the efficiency of the evaluator is a key to estimate the size of

resources. In order to evaluate the efficiency and estimate resources, we propose the use of an

application profile technique that runs the application components with a given workload. This

technique has been widely adopted in several literatures (Li et al. 2010, Li et al. 2011, Shimizu et

al. 2009). The results of the execution, containing information about resources consumed and

performance achieved, are stored in the application profile database. When the component can be

profiled in different infrastructures, better estimations can be achieved (Shimizu et al. 2009).

Once the profile is obtained, the information is fed into an estimator model. The new data

obtained using the model should also be stored in the database and possibly updated with the

values obtained after the application is in production in the cloud infrastructure. Also, the data

can be used to update the model itself in order to increase its accuracy. After profiling and

modeling the application and estimating the required resources, the output is generated by

updating the existent CloudTotalRequest with the result of the estimation. Figure 3 summarizes

the process.

Figure 3 Steps executed by the efficiency evaluator in High Level NFR Translator.

In the database tier, details of the components that compose the applications are stored along

with their profiles when executing on different infrastructures. An application is constituted of

several components, and the throughput of the entire application can be predicted based on the

performance of individual components and the cost of communication among them, as discussed

by (Stewart, Shen 2005). This approach has the advantage of allowing the estimation of the

application performance with components deployed in different infrastructures and possibly in

different cloud providers. Also, it retrieves entries from the Cloud Information Database to show

a list of requirement options for input parameters when the initial view is available.

12

2) Cloud Service Selector

The Cloud Service Selector lists the recommended providers and their services by analyzing the

estimated resources and constraints. The components are designed following the Model-View-

Controller model, as it can easily separate each component by reducing dependencies to other

components. Figure 4 shows the architecture of the Cloud Service Selector.

Cloud
Information

Database

View:
 Index
 Find

Model:
 Provider
 Resource
 Service
 Location
 Uptime
 Rate

...

Controller:
 Decision

Controller

Estimated Resources
+ Constraints:

 CPU, RAM, Disk
 Operating System
 Up-time %
 Location
 Contract Period
 Usage Period
...

Recommended
Providers List:

 Provider
 Service Type
 Contract Period
 Price
...

Input
Output

Query

Figure 4 Component architecture of Cloud Service Selector.

The component receives the estimated resources and constraints as input from the High Level

NFR Translator through its View subsystem. Once the information is provided to the Controller,

it retrieves records satisfying the requirements from the model through a query to Cloud

Information Database. The database stores information about providers and their services

including resource configurations, geographical locations, operating systems, uptime percentages,

contract periods, prices, and other parameters to evaluate the constraints and the cost.

 The requirements are used as constraints for the model, e.g. the retrieved records should have

more resources than the requirements, matched location and operating system, and shorter

contract period. When three months contract is specified, for example, a service with one month

contract can be retrieved but a service with six months contract cannot.

Once it gets all candidate providers and their service types, the model calculates the expected

price based on the usage period. For some providers, such as GoGrid, only the contract period

affects the total price. However, in other cases, such as Amazon’s Reserved instances, the actual

running time of the instance influences to charges, in addition to the upfront fee for the contract

establishment. Hence, the actual usage period should be included to calculate the correct price.

Once the contract and the actual usage period are input by the system administrator, total cost

can be simply calculated using pricing information stored in the Cloud Information Database.

After applying constraints and calculating actual price for each provider, a list of providers is

generated and prioritized according to the order. If the system administrator selected price as the

most concerning aspect, the cheapest provider will be the first entry of the output list. In other

13

case, the provider with higher up-time percentage will be the first if the administrator weights

more on availability rather than the cost.

3) Resource Allocator

The Resource Allocator interacts with providers and requests allocation of the resources defined

in the list of specifications. The component requires a Cloud Configuration list as its input,

which is the output from the Selector. Each row in the list contains information about the

provider, resource set, location, image information, and the number of machines to be allocated.

Recommended
Providers List

Parse next
element in

the List

Provider
Credential
Database

Connect to the
Provider

Connection
Succeeded?

Create Virtual
Machines

Creation
Succeeded?

Allow partial
allocation?

Yes

No

No

Allocation Done

Yes

Delete partially
created

machines

No

Yes

Add failed
machines to

the next
element

Figure 5 Flowchart of Resource Allocator.

Figure 5 describes the flow of the Resource Allocator. It starts parsing the input configuration list

and building a collection of Cloud Configuration objects storing the parsed information. Once all

elements are parsed, it tries to create VMs to the provider using that object. When the system

connects to the provider, it authenticates the identity using credentials stored in Provider

Credential Database. If the connection is successfully established, it requests the number of VMs

with the specific information of resource, location, and image to the cloud provider with a

14

timeout. Once either the allocation succeeds or the timeout exceeds, the Allocator analyses the

results and proceeds to the next option.

Additionally, partial allocation on different providers is supported by the Resource Allocator.

Depending on the selection of whether the allocation needs to occur on a single provider or can

be split among multiple providers, there is an additional process to be carried out. If the partial

allocation to several providers is allowed, the remaining number of VMs is added to the next

option in the list. If the input specifies that only one provider can be used, it does not proceed

with the allocation and repeats the process for the next entry.

B. Implementation

In order to illustrate and evaluate the functionality of the proposed architecture, we implemented

a prototype for High Level NFR Translator, Cloud Service Selector, and Resource Allocator.

Each component is developed separately in order to ensure the independency of the component.

The High Level NFR Translator is implemented using JavaEE, JavaEE GlassFish and MySQL,

and is developed on three tiers basis including Application Profile Database. The component’s

prototype is configured with four non-functional requirements: portability, availability, reliability,

and efficiency. The requirements are selected with the sub-features described in Table 1, which

are necessary to create a resource estimation request.

The Cloud Service Selector is implemented with conventional Model-View-Controller

architecture using Ruby on Rails. The Cloud Information Database is also included to store

different resource types, pricing policies, and data center locations of each provider. By enabling

the input of resource requirements, it displays the prioritized providers’ list as an output.

The Resource Allocator is implemented with Java on console interface. In order to cover various

providers in a single program, we use Jclouds, multi-cloud supporting library written in Java.

Jclouds allows developers to use homogeneous APIs to connect to different clouds, thus,

developers do not need to use different APIs for different providers. Instead, Jclouds provides a

single interface to connect, create, and destroy VMs. Also in the prototype, the Provider

Credential Database is implemented as a list of provider name, user name, and password and

parsed by the Resource Allocator.

V. PERFORMANCE EVALUATION

Evaluation is performed independently for each module of the system, as they are designed and

developed independently. We evaluate the High Level NFR Translator in order to have its

performance measure. The Cloud Service Selector is assessed in order to evaluate the

functionality of selecting the cloud provider candidates that meet requirements, and to evaluate

the benefits of prioritizing the candidate providers according to non-functional requirements.

Finally, the performance of the Resource Allocator is also evaluated.

A. High Level NFR Translator

The goal of this experiment is to evaluate if the proposed architecture is able to scale

dynamically when the number of requirements and requirement’s features increase.

15

The platform used to test the application is the Australia Research Cloud NeCTAR
12

. This

experiment utilizes an instance of type m1.small. Instances of this type have 4GB of RAM, 1

CPU core and 10 GB of Disk. The Operating System used in the VM is Ubuntu 13.04.

Requests with varying number of requirements and number of features per requirement are

generated. Number of non-functional requirements varies from 10 to 300, in steps at 10. The

same has been performed for the number of features. For each increment of requirements and

their features, we measure the time taken to evaluate non-functional requirements and to

transform them into technical parameters. The result shown in Figure 6 demonstrates that the

prototype scales satisfactorily when the number of requirements increases. It takes less than four

seconds with 300 requirements and 300 features input, which is an acceptable time to process

such amount of requirements.

Figure 6 High Level NFR Translator Performance.

B. Cloud Service Selector

The Cloud Service Selector should be able to select a valid service and calculate the precise price

based on the given requirements. It also should prioritize the provider candidates according to

the priority of the non-functional requirements as defined by the system administrator.

For the evaluation of the Selector, the contents in Cloud Information Database are crucial to the

result, as the quality of the result depends on the database information. For the purpose of this

this experiment, we create a static database with synthetic data that allows us to test the

functionality. Table 2 shows a part of the database elements used for the experiment, with

various instance types and pricing schemes of different providers. In order to validate the system,

12

 NeCTAR. 2013. NeCTAR Research Cloud. http://www.nectar.org.au/research-cloud (accessed November 25,

2013).

16

we input the parameters of the user case described in Table 3 into the Cloud Service Selector,

and obtain the result of the ordered list.

Table 2 Database information used for Cloud Service Selector experiment.

Provider Resource

type

CPU

(cores)

RAM

(MB)

Disk

(GB)

OS Datacenter

Location

Contract

period

Resp.

Time

(msec)

Provider1 m1.small 1 1,700 160 Windows Oceania None 10.39

Provider1 m1.small 1 1,700 160 Windows Oceania 12 month 10.39

…

Provider2 small 1 1,000 50 Linux Europe 1 month 25.40

…

Provider3 custom (Max)

20

(Max)

32,000

(Max)

1,024

Linux Europe 1 month 31.60

Provider3 custom (Max)

20

(Max)

32,000

(Max)

1,024

Linux N. America 1 month 18.02

Provider3 custom (Max)

20

(Max)

32,000

(Max)

1,024

Linux N. America 3 month 18.02

…

Table 3 User case for Cloud Service Selector validation.

Field Value

Resource CPU= 1

RAM= 512 MB

Disk= 20 GB

Operating System Any

Location Any

Contract Period 3 months

Allow Unreliable Services? No

Usage Period 3 months

Order By Cost

Table 3 Results from Cloud Service Selector.

Ran

k

Provider Resource

type

OS Datacenter

Location

Contract

period

Resp.

Time

Price

1 Provider3 custom Linux N. America 3 month 18.02 81.11

2 Provider3 custom Linux N. America 1 month 18.02 83.57

3 Provider3 custom Linux Europe 1 month 31.60 91.80

4 Provider2 small Linux Europe 1 month 25.40 108.75

…

7 Provider1 m1.small Linux Oceania None 10.39 172.80

…

Results (Table 4) show that the system suggests only services whose resources are larger than the

requirements, with any operating systems, in any locations and for any contract periods less than

three months. For example, the service from Provider1 with 12 months contract is excluded, and

the lowest cost service from Provider3 is placed in the first rank. In addition, we evaluate the

benefits of prioritizing by another non-functional requirement, response time. When an

17

enterprise can make more profit with faster response time by providing better user-experience,

they will be willing to pay more for it. The system works precisely as it prioritizes the provider

with fastest response time to the top of the list although its price is higher than others. As a result,

the service of the Provider1, previously ranked number 7 in order of price, become the most

suitable service with the fastest response time.

C. Resource Allocator

The Resource Allocator is tested using the list of cloud configurations that is obtained from the

Selector. Although the system supports every provider supported by Jclouds, we evaluate it with

‘t1.micro’ instances, cost-free VMs provided by Amazon EC2 service.

We build a cloud configurations list with two candidate configurations with Amazon-EC2, two

t1.micro instances, Ubuntu 12.04 and Australia (ap-southeast-2) location, and another with USA

East (us-east-1) location. The Allocator firstly tries to acquire VMs described on the first element,

the Australia one. If the first request fails due to lack of resources in Australian data center, the

Allocator attempts to the next candidate. When the system was executed, it succeeded to allocate

two machines in Sydney, and we can find the successfully created machines on the control panel

of Amazon’s website.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Cloud computing enables a major paradigm shift in the way that computing resources are

acquired. Without any hardware acquisition, system administrators are able to obtain computing

power to deploy their services within minutes using cloud computing. It also gives a possibility

of paying only for consumed resources with no minimum contract and upfront cost.

However, deploying applications in the cloud is still a complex task for system administrators.

They are expected to estimate resources required by their applications, which may be difficult

because they frequently do not exactly know how much resources are actually necessary.

Furthermore, administrators have to select the best cloud service amongst various providers and

different types of services, and acquire them for applications to deliver expected performance.

In this chapter, we propose an architecture supporting system administrators in the arduous task

of deploying applications on the clouds in three ways. Firstly, it translates non-functional

requirements from administrators into actual Cloud resource parameters. Secondly, it selects the

most convenient provider among different candidates that satisfies every requirement. Finally,

the actual VMs are allocated automatically from the selected provider.

The proposed architecture is also verified through evaluation and validation. Each component is

validated in performance and scalability for various sets of non-functional requirements. Also,

we show that the number of VMs with adequate resources is actually allocated from the selected

cloud provider at the end of the process.

For future directions, the proposed architecture can be applied to measure the performance of

various techniques in each module. Several resource estimation techniques can be applied to the

estimator in the architecture, which can lead to find the most accurate methodology to estimate

resources in the clouds. Similarly, different approaches to select the best provider can be used for

the selector module. In addition, Cloud Information Database can be improved by applying

dynamic updates, thus it will keep the consistency between the system and the providers, and

will provide more accurate selection by including real-time metrics measured by monitoring

18

services. Finally, dynamic resource provisioning can be applied to the system, which can

dynamically perform the whole provisioning process depending on the real-time workload

measured from the running application.

References

Buyya, R., Ranjan, R. & Calheiros, R.N. 2010, "InterCloud: utility-oriented federation of cloud

computing environments for scaling of application services", Proceedings of the 10th

international conference on Algorithms and Architectures for Parallel Processing, Springer-

Verlag, Berlin, Heidelberg, pp. 13.

Garg, S.K., Versteeg, S. & Buyya, R. 2011, "SMICloud: A Framework for Comparing and

Ranking Cloud Services", Proceedings of the 4th IEEE/ACM International Conference on

Utility and Cloud Computing (UCC'11), pp. 210-218.

Glinz, M. 2007, "On Non-Functional Requirements", Proceedings of 15th IEEE

International Requirements Engineering Conference (RE '07), pp. 21-26.

Grozev, N. & Buyya, R. 2014, "Inter-Cloud architectures and application brokering: taxonomy

and survey", Software: Practice and Experience, vol. 44, no. 3, pp. 369–390

Li, A., Yang, X., Kandula, S. & Zhang, M. 2010, "CloudCmp: comparing public cloud

providers", Proceedings of the 10th ACM SIGCOMM conference on Internet measurement

(IMC '10), ACM, New York, NY, USA, pp. 1-14.

Li, A., Zong, X., Kandula, S., Yang, X. & Zhang, M. 2011, "CloudProphet: towards application

performance prediction in cloud", Proceedings of the ACM SIGCOMM 2011 conference

(SIGCOMM '11), ACM, New York, NY, USA, pp. 426.

Rak, M., Cuomo, A. & Villano, U. 2013, "Cost/Performance Evaluation for Cloud Applications

Using Simulation", Proceedings of 2013 IEEE 22nd International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE 2013), pp. 152-157.

Shimizu, S., Rangaswami, R., Duran-Limon, H.A. & Corona-Perez, M. 2009, "Platform-

independent modeling and prediction of application resource usage characteristics", Journal

of Systems and Software, vol. 82, no. 12, pp. 2117-2127.

Stewart, C. & Shen, K. 2005, "Performance Modeling and System Management for Multi-

component Online Services", Proceedings of the 2nd Conference on Symposium on

Networked Systems Design & Implementation, Berkeley, CA, USA, pp. 71.

Zhang, M., Ranjan, R., Nepal, S., Menzel, M. & Haller, A. 2012, "A Declarative Recommender

System for Cloud Infrastructure Services Selection", Proceedings of the 9th International

Conference on Economics of Grids, Clouds, Systems, and Services (GECON 2012), eds. K.

Vanmechelen, J. Altmann & O. Rana, Springer-Verlag, Berlin, Heidelberg, pp. 102-113.

