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Abstract—Water quality forecasting is a time series analysis
task involving estimating future water conditions, vital in envi-
ronmental management and pollution control. However, existing
time series analysis methods focus only on historical observational
data, neglecting information from other modalities, leading to
incomplete feature extraction and affecting forecasting accuracy
and robustness. In addition, the complex spatial dependencies
between water quality monitoring stations and the nonlinear
fluctuations in water quality indicators caused by meteorological
factors present additional challenges. This work proposes a
Spatio-Temporal Multimodal Fusion architecture for long-term
water quality forecasting, named STMF, to address these issues. It
first captures spatio-temporal dependencies by integrating tem-
poral features with upstream-downstream relationships among
monitoring stations. Then, STMF further designs a Low-rank
Cross-modal Interaction Fusion (LRCIF) method, which fuses
spatio-temporal features with precipitation features from the
remote sensing image, as an additional modality, effectively lever-
aging complementary information from multiple data sources to
enhance the accuracy and stability of water quality forecasting.
Experimental results on real-world water quality datasets demon-
strate that the proposed STMF significantly outperforms existing
state-of-the-art methods in prediction accuracy. In particular, for
long-term forecasting tasks with a 192-step horizon, STMF im-
proves MSE and MAE by 14% and 12%, respectively, compared
to unimodal models. It further validates the effectiveness of the
multimodal fusion strategy. Overall, STMF offers an effective
solution for water quality monitoring and management.

Index Terms—Water quality forecasting, multimodal fusion,
spatio-temporal modeling, deep learning, smart cities.
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I. INTRODUCTION

Water quality forecasting is a time series analysis problem
that predicts future trends based on historical water quality
indicators. Accurate water quality forecasting can reveal the
future changes in water quality over a given period, pro-
viding essential decision-making support for water resource
management, pollution control, and the protection of aquatic
ecosystems, aiding timely responses to environmental changes.
However, water quality forecasting relies on historical mon-
itoring data and is influenced by various factors. Fig. 1
illustrates the scenarios of water quality forecasting. Firstly,
due to the spatial layout of monitoring stations, water quality
observations often exhibit strong spatial dependencies. For
instance, the monitoring values at the downstream station five
may be influenced by the upstream stations two, three, and
four. Secondly, meteorological factors such as precipitation
can cause abrupt changes in water quality indicators, leading
to nonlinear [1] variations. Therefore, effectively integrating
spatio-temporal features and addressing sudden meteorological
changes is a key challenge in improving the adaptability of
water quality forecasting models.

Conventional statistical models, such as multiple linear
regression (MLR) [2], prioritize linear relationships among
variables and are inadequate in capturing correlations or non-
linear dynamics among water quality indicators. These models
exhibit limited adaptability to the fluid nature of the aquatic
environment, thereby constraining their accuracy and effec-
tiveness in forecasting water quality. Additionally, mechanical
models necessitate extensive theoretical knowledge in biology
and environmental science, which renders them impractical for
real-time water quality forecasting. Similarly, while random
forest (RF) [3] can capture certain nonlinear relationships, it
struggles to adapt to highly variable environmental conditions.

In contrast, deep learning methodologies have emerged
as robust alternatives to traditional statistical and machine
learning models, adeptly capturing the complex, nonlinear,
and dynamic patterns in water quality data. Techniques, e.g.,
Convolutional Neural Networks (CNNs) [4], Long Short-
Term Memory (LSTM) networks [5], and Transformer [6]
models demonstrate excellence in time series forecasting by
elucidating intricate relationships and exhibiting strong gen-
eralization capabilities. These techniques display significant
potential in water quality forecasting [7]–[9], yielding results
surpassing conventional models. Despite their success, deep
learning approaches face limitations as they rely only on time
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series data, neglecting other modalities such as meteorological
and pollutant emissions, leading to incomplete environmental
context and constrained forecasting accuracy.

Fig. 1. Real-world water quality forecasting scenarios.

Based on the above analysis, to predict future water quality
changes more accurately, it is essential to incorporate the
spatio-temporal dependencies and meteorological factors. This
work proposes a novel water quality forecasting architecture,
named Spatio-Temporal Multimodal Fusion (STMF). It incor-
porates two key components: a spatio-temporal modeling mod-
ule that captures upstream-downstream dependencies among
monitoring stations, and a Low-rank Cross-modal Interaction
Fusion (LRCIF) module that fuses spatio-temporal features
with precipitation data from remote sensing images. These
components jointly enhance the ability of the model to capture
dynamic variations in water quality and improve forecasting
accuracy. Main contributions of this work are summarized as:

1) STMF is a novel spatio-temporal multimodal architec-
ture for water quality forecasting. It captures spatio-
temporal dependencies by extracting temporal dynamics
and spatial correlations from hydrological time series.
Unlike conventional spatio-temporal forecasting models
that rely solely on time series data, STMF incorporates
precipitation information from remote sensing images as
an additional modality. This multimodal design allows the
model to capture complex environmental influences more
effectively, improving forecasting accuracy.

2) STMF incorporates LRCIF, which is designed to integrate
spatio-temporal features with precipitation features from
remote sensing image modality. This fusion method en-
ables effective interaction between the two modalities by
capturing both intra-modal and cross-modal dependen-
cies. As a result, the complementary information from
time series and remote sensing data is fully leveraged.

3) STMF is compared with six typical models across three
real-world water quality datasets, and the experimental
results demonstrate its superiority in long-term water
quality forecasting. The average prediction accuracy of
STMF improves by 22% compared to models relying
solely on time series data and by 21% compared to spatio-
temporal forecasting models.

The remaining sections of this work are organized as
follows. Section II reviews the related work on time series
forecasting, spatio-temporal modeling, and multimodal fusion.
Section III describes the STMF components and the overall
architecture. Section IV introduces experimental datasets and
discusses comparative experiments. Finally, Section V con-
cludes the work and outlines future research directions.

II. RELATED WORK

A. Time Series Forecasting
Time series forecasting methods [10]–[12] have become a

prominent research area in deep learning. Studies have ex-
plored statistical, machine learning, and deep learning methods
for time series forecasting. Traditional statistical methods,
such as autoregressive integrated moving averages (ARIMA)
[13], are widely applied due to their ability to model linear
trends and seasonal patterns. However, the focus of ARIMA
on linear relationships limits its ability to address complex
and nonlinear dynamics often encountered in water quality
forecasting. Machine learning techniques, such as support
vector regression (SVR) [14], extend prediction capabilities
by handling certain nonlinear relationships through kernel
functions. However, SVR often struggles with the adaptability
required for highly dynamic environmental conditions, limiting
its suitability for real-time water quality applications. Deep
learning models are better equipped to capture complex non-
linear relationships and long-term dependencies than statistical
and traditional machine learning methods. Transformer-based
models, in particular, have become mainstream in time series
forecasting. For instance, Gao et al. [15] propose Di-Informer,
an enhanced Informer-based GAN for missing-data imputation
in mechanical bearing signals, leveraging ProbSparse self-
attention and a binary mask to improve accuracy and fault di-
agnosis under varying missing data rates. Similarly, Assidiqie
et al. [16] employ iTransformer for sea level forecasting in
Bali, demonstrating its effectiveness over TCN and Trans-
former models in handling univariate time series data.

Despite their strengths, they rely solely on historical time
series data. This work introduces an innovative approach by
incorporating multimodal fusion into time series prediction.
Precipitation remote sensing image features are utilized to
supplement time series data, enabling a more comprehensive
understanding of potential factors influencing water quality
changes. This multimodal approach facilitates multidimen-
sional analysis and significantly enhances the accuracy of wa-
ter quality forecasting. It effectively addresses the limitations
of single time series models in managing complex environ-
mental factors, ultimately improving prediction reliability.

B. Spatio-Temporal Forecasting
Spatio-temporal modeling is crucial in capturing spatial and

temporal dependencies, making it indispensable for dynamic
applications, e.g., traffic flow forecasting [17], air quality mon-
itoring, and water quality forecasting. Spatio-temporal models
enhance adaptability and prediction accuracy in complex real-
world scenarios by integrating spatial relationships with tem-
poral trends. For instance, Zheng et al. [18] propose a Spatio-
Temporal Joint Graph Convolutional Network (STJGCN) for
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traffic forecasting, which utilizes both predefined and adaptive
spatio-temporal joint graphs to model dynamic correlations,
thereby improving prediction accuracy in complex road net-
works. Likewise, Wu et al. [19] introduce a Hierarchical
Spatio-Temporal Attention (HSTA) model, combining graph
attention networks for spatial interactions and multi-head
attention for temporal dependencies, achieving state-of-the-art
results in trajectory prediction tasks. Li et al. [20] propose
a Bayesian Spatio-Temporal Graph Convolutional Network
(DB-STGCN) for railway train delay prediction, integrating
a dynamic Bayesian network with an attention-based spatio-
temporal graph convolutional network. It identifies delay pat-
terns, constructs dynamic causality graphs, and models spatio-
temporal dependencies to enhance prediction accuracy. Du et
al. [21] propose a hybrid spatio-temporal response prediction
model that combines CNNs for spatial feature extraction and
Bi-LSTMs for temporal modeling, enabling accurate predic-
tion of structural responses from excitations at multiple points.

Unlike the aforementioned models, this work builds upon
upstream and downstream monitoring stations’ dependencies
and spatial distribution characteristics. In addition to tradi-
tional spatio-temporal forecasting, STMF also incorporates the
influence of precipitation meteorological factors on water qual-
ity changes, further integrating spatio-temporal information
with remote sensing precipitation data, thereby providing a
more comprehensive understanding of spatio-temporal dynam-
ics. This innovation enables the model to significantly improve
the accuracy and adaptability of water quality predictions
under complex environmental conditions.

C. Multimodal Fusion

Multimodal fusion methods have received significant at-
tention in various fields due to their ability to integrate
complementary data from different modalities. These methods
are widely applied in areas that include the integration of
vision languages, sentiment analysis, and forecasting tasks.
Specifically, in forecasting, multimodal approaches are ef-
fective in improving prediction accuracy by combining data
from multiple sources. Yang et al. [22] propose the Multi-
scale Inverted Transform Network for online oil monitoring.
It integrates multimodal sensor data and uses a multiscale
module for enhanced feature extraction. It outperforms tra-
ditional models in forecasting accuracy, especially in handling
unknown variables. Jiang et al. [23] propose a multimodal
CNN-GNN hybrid framework for mobile traffic prediction,
integrating SMS, call, and internet data. Using ConvLSTM and
Adaptive GCN, the model captures spatio-temporal dependen-
cies and outperforms several baseline methods in real-world
experiments. Lv et al. [24] propose a learning autoencoder dif-
fusion model for multimodal pedestrian trajectory prediction,
combining pedestrian-group relationships with variational au-
toencoders and diffusion models. It outperforms several state-
of-the-art models, enhancing prediction accuracy and real-time
performance on public datasets. Guan et al. [25] propose
a multimodal Transformer-based model for egocentric early
action prediction, which integrates visual data with sensor data
and motion data. The model employs a two-stage optimization

process to enhance the correlation between observed and
unobserved video segments, improving prediction accuracy.

Unlike the above studies, this work introduces the Low-
rank Cross-modal Interaction Fusion (LRCIF) method in the
multimodal fusion module of STMF, which integrates spatio-
temporal dependencies with precipitation remote sensing im-
ages. It first captures the cross-modal interactions between the
two modalities, effectively combining their information. The
interacted features are then decomposed using low-rank de-
composition, which reduces computational complexity. LRCIF
effectively combines multiple data sources, enabling the model
to capture both the temporal evolution of water quality and the
influence of precipitation environmental factors. This unique
fusion strategy significantly enhances the accuracy and adapt-
ability of long-term water quality forecasting by providing a
more comprehensive understanding of water quality dynamics.

III. PROPOSED METHODOLOGY

This section presents the overall framework of the proposed
STMF, highlighting its core components and their interactions.
The modal feature extraction module is explained, which
independently processes the time series and remote sensing
images to extract relevant features from each modality. The
spatio-temporal modeling module is then discussed. It focuses
on how it captures complex spatial relationships among water
quality monitoring stations, thereby enhancing the model’s
ability to understand spatio-temporal dependencies of water
quality changes. Finally, the multimodal fusion module intro-
duces LRCIF, which integrates spatio-temporal features with
the precipitation features from remote sensing images.

A. Overall Framework

Fig. 2 shows the overall architecture of STMF. STMF re-
ceives parallel inputs from the remote sensing image modality
Xr and the hydrological time series modality Xt. In the feature
extraction module, the hydrological time series undergoes
batch normalization [26] and embedding [27] before being
input into TimesNet to extract temporal features Ft. The
remote sensing image is processed with ResNet101 to extract
image features Fr. In the spatio-temporal modeling module,
GCNs take the temporal features Ft, and the adjacency matrix
representing spatial information from water quality monitoring
stations as inputs, producing spatio-temporal features Fst,
that capture spatial relationships. Then, in the multimodal
fusion module, LRCIF is applied to perform deep cross-modal
interaction between the spatio-temporal features Fst and the
precipitation features Fr, resulting in the fused representation
Fstr. Finally, in the prediction module, the model generates
the final forecasting results based on Fstr through projection
and de-normalization.

B. Feature Extraction Module

1) Temporal Feature Extraction: Hydrological time series
exhibit overlapping periodicities (e.g., daily, monthly, annual),
influenced by short-term intraperiod variations and long-term
interperiod trends. To better capture these complexities, the 1D
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Fig. 2. Overall framework of STMF.

time series is transformed into a 2D representation, integrating
both variations and overcoming the limitations of the original
1D space.

The original 1D arrangement for time series data is de-
noted as XlD∈RT×C , where T represents the length and C
represents recorded variables. The time series is analyzed in
the frequency domain using the Fast Fourier Transform (FFT)
[28] to identify trends and patterns in the inter-period variation.
This process is given as:

A=Avg (Amp (FFT(XlD))) (1)

{f1, · · · , fk}=N(A), f∗∈{1, · · · , [
T

2
]} (2)

pi=

⌈
T

fi

⌉
, i∈{1, · · · , k} (3)

where FFT(·) and Amp(·) represent the FFT and the calcu-
lation of amplitude values, respectively. A∈RT denotes the
amplitude calculated at each frequency, which is obtained by
the average value Avg(·) from C dimensions. N(·) indicates
the process of selecting k periods. In addition, due to the spar-
sity of the frequency domain and to reduce noise introduced
by insignificant high frequencies, where the top k frequencies
are chosen to minimize the noise impact.

Based on the selected top k frequencies {f1, · · · , fk} and
their corresponding period lengths {p1, · · · , pk}, the 1D time
series XlD∈RT×C can be transformed into multiple 2D ten-
sors, i.e.,

Xi
2D=Spi,fi (P(XlD)) , i∈{1, · · · , k} (4)

where P represents padding, and P(·) expands the time series
along the temporal dimension by padding with zeros, ensuring
uniformity and compatibility with Spi,fi . S represents the
reshape operation that fills time series data into a 2D tensor.
pi and fi represent the numbers of rows and columns of the
2D tensor, respectively.

Finally, by leveraging the selected frequencies and estimated
periods, a set of tensors X1

2D, · · ·,Xk
2Dare obtained through the

fusion of remote sensing images and hydrological time series.

These tensors represent k distinct temporal 2D variations
generated across different periods.

Fig. 3 shows the structure of TimesBlock. It is constructed
as a residual connection [29]. For layer l of TimesNet [30]
with the input Xl−1

1D , the connection process is represented as:

Xl
lD=O

(
Xl−1

lD

)
+Xl−1

lD (5)

where O(·) denotes the TimesBlock module.

Fig. 3. Structure of TimesBlock.

After passing through all TimesBlock layers, the resulting
2D representations are aggregated back into a 1D representa-
tion. This is achieved by amplitude-based weights:

X1D=

k∑
i=1

Ŷfi×X̂i
1D (6)

where Ŷfi represents the normalized importance of each
frequency, computed through Softmax based on the amplitude
values, and X̂i

1D is the 1D representation derived from the
corresponding 2D tensor.

2) Precipitation Feature Extraction: This work adopts
ResNet101 [31] to extract features from remote sensing
precipitation images. Compared to other shallow networks,
ResNet101 is both deeper and more computationally efficient.
In particular, the bottleneck structure of ResNet101 reduces the
computational complexity by reducing the number of channels
while maintaining the feature expression capability. In addi-
tion, the hierarchical feature extraction capability of ResNet
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101 can comprehensively capture complex characteristics of
remote sensing precipitation images from the low-level edge
information to the high-level semantic information, and it is
especially good at handling multi-scale and multi-level data.
Therefore, ResNet 101 is chosen as the backbone network for
feature extraction to fully use its deep and highly robust feature
representation capability, thus providing a feature base with
diversity and discriminative properties for subsequent tasks.

C. Spatio-Temporal Modeling Module

Many studies formulate traffic forecasting and other tasks as
spatio-temporal graph modeling problems. The basic assump-
tion is that the state of each node is influenced by information
from its neighboring nodes. This work applies the spatio-
temporal modeling method to the water environment domain
to explore the spatio-temporal characteristics of water quality
monitoring data. Firstly, since the water quality measurement
of each monitoring station is affected by other upstream
and downstream monitoring stations, this work constructs an
adjacency matrix based on spatial geographic relationships of
water quality monitoring stations to represent spatial corre-
lations among monitoring stations. The adjacency matrix is
calculated as:

Ai,j=exp
(
−dist(si, sj)2

σ2

)
(7)

where dist(si, sj) represents the geographic distance between
station si and sj , σ is the standard deviation of distances, and
Ai,j denotes the spatial edge weight between stations. This
adjacency matrix, based on a Gaussian kernel function [32],
effectively captures spatial interactions between water quality
monitoring stations.

Fig. 4. Spatio-temporal modeling.

To further leverage information from temporal neighboring
nodes, this work connects each node with its state in adjacent
time steps through temporal edges, thereby constructing a
spatio-temporal graph. As shown in Fig. 4, taking three water
quality monitoring stations as an example, the constructed
spatio-temporal relationship diagram visually demonstrates the
combination of spatial and temporal edges. In the spatio-
temporal graph, the spatial dependencies of water quality mon-
itoring stations are reflected, and the temporal dependencies
across different time steps are reflected.

After constructing the spatio-temporal graph, a GCN [33]
is adopted to model the spatio-temporal graph, achieving a
compelling fusion of spatial and temporal features. Through

the feature propagation process of multiple GCN layers, the
model can capture spatial correlations among stations and
learn the dynamic variations of stations by incorporating tem-
poral features. This spatio-temporal fusion mechanism enables
the model better to capture the complex characteristics of
hydrological time series, providing more robust support for
water quality forecasting.

D. Multimodal Alignment and Fusion

1) Multimodal Alignment: Temporal and spatial alignment
is essential for effective multimodal data fusion. Temporal
alignment is achieved by synchronizing the timestamps of
remote sensing precipitation images and water quality time
series, enabling pointwise comparability. Spatial alignment
involves mapping both datasets to a unified geographic coordi-
nate system, ensuring that precipitation data accurately corre-
spond to water quality observations. During feature fusion, the
proposed LRCIF module dynamically adjusts fusion weights
based on inter-modal interactions, promoting alignment in the
shared feature space and enhancing the integration of features
from different modalities.

2) Low-rank Cross-modal Interaction Fusion: Single-
modality data often provides limited and context-specific infor-
mation representations. Therefore, multimodal data fusion has
become essential for achieving more comprehensive and reli-
able representations in environmental monitoring and analysis.
In this context, LRCIF is introduced to capture water quality
variations by fusing spatio-temporal features from hydrologi-
cal time series (Xst) with precipitation features from remote
sensing images (Xr). Fig. 5 demonstrates the process of
fusing two modalities through LRCIF. Specifically, the module
first captures cross-modal dependencies between the spatio-
temporal and precipitation features, and then applies a low-
rank decomposition to obtain the final fused representation.
This strategy improves forecasting accuracy and offers a solid
foundation for real-world water environment management.

Previous studies employ the Cross-Attention (CA) mecha-
nism to model cross-modal dependencies. However, directly
computing pairwise similarities in a shared feature space
may introduce instability due to inherent differences be-
tween modalities. To address this, the Cross-Diffusion At-
tention (CDA) mechanism [34] is proposed to better capture
inter-modal dependencies and enable bidirectional information
propagation. By integrating complementary information from
both modalities, CDA enhances fusion stability and facilitates
the construction of more robust multimodal representations.
Building on this idea, LRCIF first calculates intra-modal sim-
ilarity matrices Sr and Sst through self-attention mechanisms
[35], which are then normalized as:

Ŝr=D
− 1

2
r SrD

− 1
2

r (8)

Ŝst=D
− 1

2
st SstD

− 1
2

st (9)

where Dr and Dst are degree matrices. Cross-modal similarity
matrices Sr→st is defined as:

Sr→st=ϵ·ŜrŜ
T
st+(1− ϵ)·L (10)
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Fig. 5. Process of fusing two modalities through LRCIF

Ur→st=Sr→stVst (11)

where L=Sr+Sst, and ϵ∈(0, 1) represent the balancing hy-
perparameter. Vst denotes the value matrix from the QKV
decomposition of the spatio-temporal modality Xst and Ur→st

is the resulting cross-modal representation of modality Xr.
Similarly, Sst→r and Ust→r can be obtained. By performing

bidirectional interactions between Xst and Xr, we obtain
the sets of representations Ur, Ur→st for modality Xr and
Ust, Ust→r for modality Xst. These representations capture
the mutual influence and dependencies between the spatio-
temporal features and precipitation features. By combining
these representations, more robust features denoted as Mr and
Mst are obtained, e.g.

Mr=fr(Ur∥Ur→st) (12)

Mst=fst(Ust∥Ust→r) (13)

where ∥ represents the concatenation along the channel dimen-
sion, while fr(·) and fst(·) are two distinct 1×1 convolutional
layers with separate parameters.

After obtaining the refined features Mr and Mst, these
features are restructured into a high-dimensional tensor Z
to integrate complementary information from both modalities
while preserving their individual characteristics. The process
is illustrated by the following formula:

Z=Mr

⊗
Mst (14)

where
⊗

represents the tensor outer product. This tensor
forms the foundation for efficient modality fusion. The input
tensor Z is then passed through a linear layer g(·) to produce
a vector representaion:

h=g(Z;W, b)=W·Z+b (15)

where W is the weight of the layer and b is the bias.
To avoid the high computational cost of directly generating

Z , the original tensor W is decomposed into m rank decom-
position factors {w(i)

r }mi=1 and {w(i)
st }mi=1. The decomposition

for these two input modalities is expressed as:

W=

m∑
i=1

(w(i)
r

⊗
w

(i)
st ) (16)

Then, by substituting (16) into (15), the fused representation
is computed as:

h=

(
m∑
i=1

w(i)
r

⊗
w

(i)
st

)
·Z

=

(
m∑
i=1

w(i)
r ·Mr

)
◦

(
m∑
i=1

w
(i)
st ·Mst

) (17)

where ◦ represents the element-wise product. As shown in
(14), Z is constructed from Mr and Mst, following the same
structural pattern as the low-rank decomposition of W in (16),
and thus can also be decomposed in parallel. This operation
integrates features from both modalities to produce the output
vector h.

E. Training Process

Algorithm 1 shows the training process of STMF. Specif-
ically, Lines 2-4 extract multi-source features from the input
data, generating the spatio-temporal feature Fst and the precip-
itation feature Fr. Lines 5-9 perform cross-modal interaction
between Fst and Fr, capturing both intra-modal and cross-
modal dependencies to enrich the feature representations. Line
10 fuses the interacted features Mst and Mr with low-rank
decomposition to obtain the unified feature representation
Fstr. Lines 11-14 complete the forward computation and
parameter optimization of STMF, obtaining the final prediction
result Y .

IV. PERFORMANCE EVALUATION

A. Dataset Description and Preprocessing

1) Dataset Description: Three real-world water quality
datasets are selected to verify the effectiveness of STMF, i.e.,
Beijing-Tianjin-Hebei (BTH), Beijing, and Alabama. Table I
provides an overview of these datasets. The dataset is split
into training, validation, and testing sets with a ratio of
7:1:2. Specifically, the BTH and Beijing datasets are derived
from publicly available data released by China’s National
Automatic Surface Water Quality Monitoring Stations, cov-
ering the period from Jan. 1, 2019, to Dec. 31, 2022. Each
dataset consists of 8,766 samples collected at 4-hour intervals.
The BTH dataset contains Total Nitrogen (TN) data from
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Algorithm 1 Training process of STMF
Input: Water quality time series (Xt), remote sensing precipitation
images (Xr), Adjacency Matrix (A)
Output: Prediction result Y

1: for each epoch do
2: Generate temporal feature Ft via 2D-time variations.
3: Generate spatio-temporal feature Fst by feeding Ft and A into

GCN.
4: Generate precipitation feature Fr from remote sensing images

with ResNet101.
5: Feed Fst and Fr into the multimodal fusion module LRCIF.
6: Compute normalized intra-modal similarity matrices Ŝr and

Ŝst using self-attention mechanism in (8) and (9).
7: Compute cross-modal similarity matrices Sr→st and Sst→r in

(10).
8: Generate cross-modal representations Ur→st and Ust→r with

Sr→st and Sst→r in (11).
9: Generate precipitation interaction Feature Mr and spatio-

temporal interaction feature Mst by concatenation and con-
volutional layer in (12) and (13), respectively.

10: Generate the final fused feature Fstr by combining Mr and
Mst with low-rank factor decomposition in (14)-(17).

11: Generate the final prediction result Y with projection and de-
normalize

12: Compute MSE loss.
13: Apply BPTT to backpropagate gradient.
14: Train STMF for minimizing the loss with the Adam optimizer.
15: end for

24 monitoring stations, while the Beijing dataset includes
Dissolved Oxygen (DO) data from 6 stations. Fig. 6 illustrates
the spatial distribution of water quality monitoring stations in
the BTH region. The Alabama water quality dataset consists
of 19,863 samples collected from 5 stations in Alabama, USA,
from Jan. 1, 2021, to Dec. 31, 2022, with data recorded
hourly. Additionally, we introduce two additional precipi-
tation remote-sensing image datasets to capture the spatial
and temporal dynamics of water quality. The first dataset
covers the BTH region and corresponds to both the BTH
and Beijing datasets. The second dataset covers the Alabama
region and corresponds to the Alabama water quality dataset.
The precipitation remote sensing images are obtained from
the Goddard Center for Earth Science Data and Information
Services (NASA). These images have 30-minute temporal
and 0.1 × 0.1° spatial resolution, providing high-resolution
global precipitation data. Fig. 7 shows the precipitation remote
sensing images in the BTH region.

TABLE I
DATASET PARAMETERS

Parameter Datasets
BTH Beijing Alabama

Station number 24 6 5
Sampling frequency 4 hours 4 hours 1 hour

Data length 8,766 8,766 17,520
Water indicator TN DO DO

2) Dataset Preprocessing: The raw data from water quality
monitoring stations often contains missing values, which may
arise due to unpredictable weather or equipment malfunctions.
To handle these missing values, linear interpolation [36] is
applied by estimating the missing values based on a linear

Fig. 6. The spatial distribution of
water quality monitoring stations in
the BTH region.

Fig. 7. Precipitation remote sens-
ing images in the BTH region.

relationship between adjacent known data points. Since the
occurrence of missing values is rare and sparsely distributed
across the dataset, this simple yet efficient method is suf-
ficient for accurate imputation without causing significant
computational overhead. In addition, the precipitation remote
sensing images undergo several preprocessing steps to ensure
their suitability for subsequent analysis. First, the images
are denoised with the median filtering, which removes noise
while preserving important details. Then, the pixel values are
normalized to the range of [0, 1] for consistency. To meet
model input requirements, all images are resized to 224 ×
224 pixels. Finally, the spatial coordinates of the images are
aligned with those of the water quality data to maintain spatial
consistency.

B. Evaluation Metrics

To comprehensively evaluate the performance of the pro-
posed STMF, Mean Squared Error (MSE) and Mean Absolute
Error (MAE) are adopted as evaluation metrics. MSE is more
sensitive to large errors, which makes it effective in captur-
ing significant deviations between predicted and true values,
while emphasizing larger prediction errors. In contrast, MAE
provides a straightforward interpretation of the average error
magnitude by measuring the absolute differences between
predicted and true values. By combining these two metrics,
the evaluation offers a thorough understanding of the model’s
accuracy and robustness.

C. Hyperparameter Settings

The performance of STMF is influenced by several key hy-
perparameters, including batch size, input sequence length (S),
the number of GCN layers (G), the number of attention heads
(H), and the low-rank decomposition factor (R) in LRCIF.
These parameters are tuned through systematic experiments.
STMF is trained using the Adam optimizer with an initial
learning rate of 0.0001 for a total of ten epochs, with early
stopping applied using a patience of seven epochs.

The input sequence length S plays a critical role in capturing
temporal dependencies. Short sequences may overlook long-
term patterns, while overly long sequences may introduce
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noise or lead to overfitting. Table II presents the prediction
results under different input lengths, and the results show that
S=48 yields the best performance.

The batch size also affects both convergence behavior and
generalization. Smaller batch sizes tend to provide faster up-
dates and potentially better generalization but may slow down
convergence. Larger batch sizes offer more stable gradients
and faster training but consume more memory. Table III shows
that a batch size of 32 strikes an effective balance between
efficiency and stability.

The number of attention heads (H), low-rank decomposition
factor (R) in the LRCIF module, and the number of GCN
layers (G) are tuned jointly to balance model expressive-
ness and computational efficiency. Specifically, increasing the
number of attention heads H allows the model to attend
to interactions from multiple subspaces, thereby capturing
more diverse cross-modal relationships. However, an excessive
number of heads can lead to redundant computation and higher
resource demands. Likewise, the low-rank factor R controls
the expressiveness of the fusion tensor. A larger R enables
modeling more complex inter-modal dependencies but comes
at the cost of increased computation. The number of GCN
layers G influences the receptive field for spatial relationships.
While deeper GCNs help capture broader spatial dependencies
across monitoring stations, too many layers may cause over-
smoothing and degrade performance. The optimal values of
H , R, and G are selected based on experimental evaluations
over multiple candidate settings, specifically H∈{2, 4, 8},
R∈{4, 8, 16}, and G∈{1, 2, 3}. Table IV shows that STMF
achieves the best prediction accuracy when H , R, and G are
set to 4, 4, and 2, respectively.

TABLE II
MSE WITH DIFFERENT INPUT SEQUENCE LENGTH

Input sequence length (S) Datasets
BTH Beijing Alabama

24 0.415 0.617 0.156
32 0.414 0.613 0.152
48 0.412 0.610 0.150
96 0.418 0.621 0.160

TABLE III
MSE WITH DIFFERENT BATCH SIZE

Batch size Datasets
BTH Beijing Alabama

16 0.417 0.626 0.155
32 0.412 0.610 0.150
64 0.413 0.612 0.156
128 0.414 0.625 0.153

D. Benchmark Models

To verify the effectiveness of STMF, six baseline models are
selected for comparison, which include PatchTST, Autoformer,
and FEDforme representing Transformer-basedmodels, Dlin-
ear representing MLP-based approaches, STSGCN and AST-
GCN representing spatio-temporal forecasting models. The
benchmark methods are listed as follows.

TABLE IV
PREDICTION RESULTS OF STMF WITH DIFFERENT H, R AND G

(H , R, G) MSE MAE
(2, 4, 1) 0.435 0.391
(2, 8, 2) 0.426 0.375
(2, 16, 3) 0.420 0.367
(4, 4, 1) 0.428 0.382
(4, 4, 2) 0.412 0.363
(4, 4, 3) 0.419 0.365
(4, 8, 1) 0.424 0.373
(4, 8, 2) 0.418 0.365
(4, 16, 3) 0.422 0.372
(8, 4, 1) 0.430 0.384
(8, 8, 2) 0.421 0.370
(8, 16, 3) 0.423 0.367

1) PatchTST [37]. It utilizes patches to capture local patterns
in the time series data.

2) Autoformer [38]. It introduces a decomposition-based
transformer architecture to capture long-term dependen-
cies and seasonal trends.

3) FEDformer [39]. It adopts frequency-enhanced block
wise decomposition to jointly model global and local
temporal dynamics.

4) DLinear [40]. It uses a simple linear model to forecast
long-term trends with high computational efficiency.

5) STSGCN [41]. It models both spatial and temporal depen-
dencies synchronously instead of treating them separately.

6) ASTGCN [42]. It combines spatio-temporal graph convo-
lution with attention mechanisms to dynamically capture
spatial and temporal dependencies.

E. Comparative Experiments

The comparison experiment is conducted on a server
equipped with an Intel Xeon 6248R processor and a GTX3090
GPU, ensuring the necessary computational resources for
efficient model training and evaluation. STMF and other
benchmark models are implemented using PyTorch.

Table V compares the average prediction performance of
STMF and other baseline models. In the BTH dataset, com-
pared to Transformer-based models that utilize only time series
as the input, including PatchTST, Autoformer, and FEDformer,
STMF reduces the average MSE and MAE by 23% and 19%,
respectively. Compared to the MLP-based time series model
DLinear, the reductions in MSE and MAE are 20% and 17%,
respectively. This performance advantage is mainly attributed
to STMF’s ability to incorporate spatial information and key
environmental factors, enabling it better to capture nonlinear
variations and complex water quality patterns. Furthermore,
compared to spatio-temporal forecasting models such as STS-
GCN and ASTGCN, STMF achieves reductions of 21% and
19% in MSE and MAE, respectively. Unlike these models,
which primarily rely on graph structures or static spatial
relationships, STMF integrates spatio-temporal dependencies
with remote sensing precipitation images, enabling a broader
understanding of dynamic environmental influences and en-
hancing accuracy and robustness.

Table VI presents the prediction performance of STMF and
six baseline models across different forecasting horizons in
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TABLE V
COMPARISON OF AVERAGE PREDICTION PERFORMANCE OF DIFFERENT MODELS ON VARIOUS DATASETS.

Models
STMF PatchTST Autoformer FEDformer DLinear STSGCN ASTGCN
(Ours) (2023) (2021) (2022) (2023) (2020) (2019)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

BTH 0.386 0.331 0.447 0.362 0.519 0.416 0.560 0.458 0.463 0.388 0.511 0.407 0.517 0.411

Beijing 0.575 0.484 0.640 0.521 0.734 0.587 0.736 0.588 0.781 0.678 0.727 0.583 0.731 0.586

Alabama 0.138 0.180 0.192 0.216 0.245 0.325 0.243 0.311 0.162 0.214 0.234 0.316 0.236 0.318

TABLE VI
COMPARISON OF PREDICTION PERFORMANCE OF STMF AND OTHER BASELINE MODELS ON VARIOUS DATASETS

Models STMF PatchTST Autoformer FEDformer DLinear STSGCN ASTGCN

Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

BTH

24 0.196 0.219 0.217 0.235 0.312 0.309 0.337 0.358 0.242 0.270 0.295 0.292 0.304 0.306

48 0.279 0.264 0.307 0.296 0.385 0.361 0.421 0.402 0.332 0.328 0.368 0.344 0.377 0.358

72 0.334 0.313 0.388 0.341 0.458 0.396 0.500 0.440 0.409 0.371 0.440 0.378 0.452 0.391

96 0.412 0.363 0.466 0.383 0.531 0.428 0.573 0.468 0.485 0.407 0.512 0.408 0.524 0.426

120 0.468 0.380 0.541 0.414 0.605 0.458 0.654 0.502 0.559 0.440 0.588 0.440 0.597 0.453

192 0.659 0.448 0.763 0.502 0.824 0.535 0.874 0.576 0.753 0.514 0.815 0.518 0.818 0.530

BeiJing

24 0.468 0.403 0.516 0.441 0.684 0.553 0.677 0.551 0.611 0.583 0.661 0.535 0.670 0.548

48 0.557 0.462 0.611 0.496 0.720 0.572 0.723 0.578 0.737 0.656 0.705 0.560 0.714 0.569

72 0.603 0.497 0.661 0.535 0.742 0.590 0.741 0.590 0.796 0.688 0.723 0.573 0.732 0.581

96 0.610 0.505 0.671 0.540 0.757 0.600 0.759 0.602 0.843 0.712 0.738 0.587 0.748 0.599

120 0.616 0.526 0.696 0.557 0.756 0.601 0.772 0.614 0.868 0.724 0.741 0.590 0.752 0.597

192 0.597 0.513 0.686 0.558 0.745 0.603 0.757 0.606 0.833 0.707 0.731 0.592 0.739 0.594

Alabama

24 0.069 0.117 0.074 0.126 0.192 0.278 0.148 0.247 0.088 0.151 0.135 0.234 0.142 0.241

48 0.093 0.149 0.106 0.161 0.207 0.296 0.206 0.291 0.120 0.184 0.193 0.277 0.200 0.287

72 0.124 0.174 0.134 0.187 0.225 0.309 0.236 0.312 0.147 0.206 0.223 0.298 0.224 0.304

96 0.150 0.192 0.161 0.207 0.251 0.332 0.255 0.323 0.170 0.224 0.235 0.316 0.243 0.324

120 0.166 0.205 0.179 0.220 0.268 0.351 0.275 0.332 0.191 0.239 0.255 0.338 0.261 0.344

192 0.228 0.243 0.245 0.261 0.326 0.384 0.336 0.362 0.256 0.280 0.312 0.368 0.319 0.377

the set of {24, 48, 72, 96, 120, 192}. The bold texts show the
best prediction results. Across all datasets, STMF consistently
demonstrates superior performance, achieving lower MSE and
MAE values compared to other models. In the BTH dataset,
compared with the best-performing benchmark model, STMF
improves MSE and MAE by 14% and 12%, respectively,
in the 192-step prediction. In the 24-step prediction, STMF
improves MSE and MAE by 10% and 7%, respectively. These
results highlight that STMF’s advantages are more evident in
long-term forecasting. Its ability to integrate spatio-temporal
dependencies and precipitation information enables it to cap-
ture extended trends, account for accumulated environmental
effects, and enhance long-term forecasting performance. Figs.
8-13 show the MSE and MAE values of different models under
forecasting horizons in the set of {24, 48, 72, 96, 120, 192}.

Moreover, to assess the statistical significance of the ex-
perimental results, a non-parametric Wilcoxon signed-rank
test [43] is performed to compare the performance of STMF
with other baseline models across all prediction horizons and

datasets. The test is conducted with a significance level of
0.05 (α=0.05), assuming the one-sided hypothesis that STMF
yields lower MSE and MAE. The results indicate that STMF
significantly outperforms the other models in both MSE and
MAE, with p-values less than 0.05 for all comparisons.

Fig. 15 compares the predicted and actual values of the TN
indicator at the Huairou Reservoir Station. The line represents
the ground truth, while the red line denotes the predictions by
STMF. It is evident that STMF’s predictions closely follow the
true values, maintaining trend consistency and exhibiting lower
error magnitudes than other models, thereby demonstrating its
superior predictive performance.

To evaluate the fusion capability of LRCIF within STMF, a
comparison is conducted against three widely used multimodal
feature-level fusion methods: Concatenation, Tensor Fusion
Network (TFN) [44], and Multimodal Bottleneck Transformer
(MBT) [45]. Concatenation directly combines multimodal
features along a specific dimension to create a unified, simple
and efficient representation while retaining the information
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Fig. 8. MSE of multi-step prediction on Beijing dataset.

Fig. 9. MSE of multi-step prediction on Beijing dataset.

Fig. 10. MSE of multi-step prediction on Alabama dataset.

from each modality. TFN employs a tensor fusion strategy
to process multimodal data, enabling end-to-end learning of
both intra- and inter-modal information. MBT utilizes a self-
attention mechanism and bilinear tensor structure to cap-
ture dependencies between different modalities flexibly. By
comparing these models, the advantages and effectiveness of
LRCIF in multimodal data fusion are better demonstrated. The
comparative prediction performance of varying fusion models
is shown in Table VII. Table VIII shows the computational
complexity comparison between STMF and other baseline

Fig. 11. MAE of multi-step prediction on BTH dataset.

Fig. 12. MAE of multi-step prediction on Beijing dataset.

Fig. 13. MAE of multi-step prediction on Alabama dataset.

models. STMF has a moderate number of parameters and float-
ing point operations (FLOPs) among the models evaluated.

F. Ablation Studies

The ablation study aims to evaluate the contribution of
each core component in the STMF model. Specifically, we
compare STMF with three variant models: STMF-noGCN,
removing the spatio-temporal modeling module while keeping
all other components unchanged; STMF-noLRCIF, replacing
the proposed LRCIF fusion mechanism with a simple concate-
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Fig. 14. Ablation studies on three real-world datasets.

Fig. 15. Comparison between predicted and true values across all models.

TABLE VII
COMPARISON OF PREDICTION PERFORMANCE OF DIFFERENT FUSION

MODULES ON VARIOUS DATASETS.

Models LRCIF MBT TFN Concatenation

Metric MSE MAE MSE MAE MSE MAE MSE MAE

BTH 0.412 0.363 0.423 0.358 0.437 0.362 0.441 0.367

Beijing 0.610 0.505 0.628 0.513 0.636 0.520 0.653 0.527

Alabama 0.150 0.192 0.152 0.176 0.153 0.182 0.156 0.189

TABLE VIII
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN STGFT AND

OTHER BASELINE MODELS

Models Number of parameters FLOPs
PatchTST 3.31× 106 3.67× 109

Autoformer 1.05× 107 1.90× 1010

FEDformer 1.47× 107 2.83× 1010

DLinear 4.70× 103 8.94× 105

STSGCN 7.15× 107 5.83× 1010

ASTGCN 6.19× 105 1.53× 109

STMF 5.91× 105 1.11× 1010

nation strategy; and STMF-noImages, removing the remote
sensing image input and relying solely on hydrological time
series data. This last variant can be regarded as a traditional
spatio-temporal forecasting model without multimodal input.
Fig. 14 presents the ablation results on the BTH, Beijing,
and Alabama datasets, with the prediction horizon of 96. The
results show that STMF consistently outperforms all ablated

variants in terms of MSE, indicating that multimodal input,
fusion strategy, and spatio-temporal modeling each play a
critical role in enhancing prediction accuracy.

Among the three variants, STMF-noImages exhibits a rela-
tively severe performance decline, highlighting the critical role
of remote sensing images in capturing external environmental
factors like precipitation. In real-world scenarios, the uneven
spatial distribution of precipitation often causes abrupt changes
in water quality indicators across regions. For instance, a
sudden rainfall event in an upstream area may rapidly alter
local water conditions. In contrast, a downstream site without
rainfall may still exhibit significant changes due to river
flow and other hydrological processes. Such nonlinear and
nonstationary patterns are intricate to capture using time series
data alone. Remote sensing images provide large-scale spatial
coverage, allowing the model to capture abrupt variations and
compensate for the sparse spatio-temporal distribution of water
quality monitoring stations. As a result, the model gains an
improved understanding of external environmental drivers.

STMF-noGCN also shows a notable decline in performance.
Without the GCN module, the model fails to capture spatial
dependencies among monitoring stations, weakening its ability
to learn spatial correlations in water quality across regions. In
real-world river systems, stations are typically arranged along
upstream-downstream paths, where water quality changes in
one region may directly or indirectly affect downstream areas.
In addition, STMF-noLRCIF leads to a moderate performance
drop. Although feature fusion is still performed via a concate-
nation strategy, this simple approach fails to capture the deeper
interactions between modalities. By contrast, the proposed
LRCIF method enables the extraction of more relevant and
complementary features from remote sensing images and time
series data, thereby improving cross-modal synergy, enhancing
the model’s representational capacity, and increasing predic-
tion robustness.

V. CONCLUSIONS AND FUTURE WORK

Water quality forecasting is critical in water environment
management and is essential in preventing and controlling
water pollution. With the increasing deployment of monitoring
devices, water environment data has become more diverse
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and multimodal. Several factors, including the spatial rela-
tionships between monitoring stations, pollutant emissions,
and precipitation, influence water quality prediction outcomes.
However, most existing water quality forecasting models rely
solely on a single time series as input, failing to fully exploit
and leverage the interrelationships among multimodal data.
This work proposes a Spatio-Temporal Multimodal Fusion
model for long-term water quality forecasting, named STMF.
It captures the dynamic correlations of water quality variations
between spatially adjacent monitoring stations through spatio-
temporal modeling. Additionally, STMF introduces Low-rank
Cross-modal Interaction Fusion (LRCIF) method, which facil-
itates deep interaction and fusion of spatio-temporal features
with precipitation features from remote sensing images. This
multimodal integration of time series data with spatial loca-
tion information and precipitation as a meteorological factor
significantly improves the accuracy of long-term water quality
forecasting. Experimental results demonstrate that STMF sub-
stantially outperforms existing state-of-the-art models on three
real-world water quality datasets, validating its effectiveness
and superiority. Specifically, for the long-term forecasting task
with a 192-step horizon, STMF improves MSE and MAE by
14% and 12%, respectively, compared to unimodal models.

In future work, we intend to employ intelligent optimiza-
tion algorithms [46]–[48] to fine-tune model parameters to
enhance prediction accuracy further. Moreover, we also plan
to introduce a dynamic mechanism into the fusion module
to adjust feature weights for each modality adaptively. This
enhancement will improve the adaptability and robustness
of the model and enable a more flexible integration of the
modality under varying environmental conditions.
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