
Multi-Tenant Cloud Service Composition using
Evolutionary Optimization

Satish Kumar
School of Computer Science

University of Birmingham
Birmingham, U.K.

s.kumar.8@cs.bham.ac.uk

Rami Bahsoon
School of Computer Science

University of Birmingham
Birmingham, U.K.

r.bahsoon@cs.bham.ac.uk

Tao Chen
Department of Computing and Technology

Nottingham Trend University
Nottingham, U.K.
tao.chen@ntu.ac.uk

Ke Li
Department of Computer Science

University of Exeter
Exeter, U.K.

k.li@exeter.ac.uk

Rajkumar Buyya
School of Computing and Information System

The University of Melbourne
Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract—In Software as a Service (SaaS) cloud marketplace,
several functionally equivalent services tend to be available with
different Quality of Service (QoS) values. For processing end-
users multi-dimensional QoS and functional requirements, the
application engineers are required to choose suitable services
and optimize the service composition plans for each category
of users. However, existing approaches for dynamic services
composition tend to support execution plans that search for
service provisions of equivalent functionalities with varying QoS
or cost constraints to meet the tenants’ QoS requirements or
to dynamically respond to changes in QoS. These approaches
tend to ignore the fact that multi-tenant execution plans need
to provide variant execution plans, each offering a customized
plan for a given tenant with its functionality, QoS and cost
requirements. Henceforth, the dynamic selection and composition
of multi-tenant service composition is a NP-hard dynamic multi-
objective optimization problem. To address these challenges, we
propose a novel multi-tenant middleware for dynamic service
composition in the SaaS cloud. In particular, we present new
encoding representation and fitness functions that model the
service selection and composition as an evolutionary search. We
incorporate our approach with two Multi-Objective Evolution-
ary Algorithms (MOEA), i.e., MOEA/D-STM and NSGA-II, to
perform a comparative study. The experiment results show that
the MOEA/D-STM outperforms NSGA-II in terms of quality of
solutions and computation time.

Index Terms—Multi-Tenant SaaS, Service Composition, Qual-
ity of Service, Evolutionary Optimization.

I. INTRODUCTION

The growing popularity and the utilization of SaaS (Soft-
ware as a Service) model has lead to the deployment of
more services in cloud service market [1] [4] [7]. Gartner
Inc. predicted that the SaaS model will be the largest public
cloud service model and the cloud-based service market will
be shifting up to 45% towards the SaaS model by 2021 [2]. The

nature of elasticity, on-demand self-service and resource pool-
ing in cloud environment brings significant benefits to SaaS
service providers for building a service-oriented application
by composing several existing services. In multi-tenant cloud,
tenants can be differentiated based on their Service Level
Agreement (SLA) which contains services information (such
as service type, QoS, and cost constraints etc.). In order to sat-
isfy tenants’ SLA, application engineers are required to select
suitable services from the SaaS cloud and optimize the service
composition plans for each category of the tenant. In SaaS
Cloud, several functionally equivalent services are available
with different QoS values. The selection of candidate service
from the SaaS cloud is a NP-hard multi-objective optimization
problem [3] which takes a significant amount of time and
cost to find the optimal service composition plans from the
huge search space. This can be particularly challenging in real-
time deployment scenarios, that characterized by scale, large
number of multi-tenants, functionalities and varying QoS.

With the increasing interest in non-functional requirements
in service composition, many research articles have focused
on SLA- or QoS-aware cloud service composition problem
[4] [5] [6] [7] [8]. Existing approaches for services composi-
tion tends to support execution plans that search for service
provisions of equivalent functionalities but with varying QoS
and cost constraints to meet the tenants’ QoS requirements or
to dynamically respond to changes in QoS. However, these
approaches tend to ignore the fact that multi-tenant execution
plans need to provide variant service execution plans, each
offering a customized plan for a given tenant with its function-
ality, QoS and cost constraints. Furthermore, during composite
service execution, run-time QoS is determined by the dynamic
execution environment so that the expected QoS is not always

ensured in the SaaS cloud. In addition, the unpredictable ten-
ant’ requests, partner service failure or environmental changes
can affect the performance or unavailability of service during
the execution. Dynamic service re-composition is required for
managing these issues. The goal of service re-composition is
to find a new service composition plans that satisfy the multi-
tenants’ SLA requirements and optimize the service instances
in SaaS Cloud.

To address these challenges, this paper introduces a novel
Multi-Tenant Middleware for Dynamic Service Composition
in the SaaS cloud. The service composition is integrated into a
MOEA (Multi-Objective Evolutionary Algorithm) using novel
encoding representation and fitness evaluation strategy, which
explicitly considers the multi-tenant and QoS requirements.
We conduct a comparative study using MOEAD-STM (Sta-
ble Matching-based Selection in Multiobjective Evolution-
ary Algorithm based on Decomposition) [15] and NSGA-
II (Non-dominated Sorting Genetic Algorithm II) [19], two
state-of-the-art MOEAs, to evaluate the effectiveness of our
proposed approach. Our dynamic multi-tenant middleware
goes beyond the state-of-art to envision scenarios, where
variants of functionalities can be supported, offering rooms
for customized services plans for tenants as requested or once
they become available. This can be useful in applications
with SaaS product-line offerings, where tenants may request
functionally variant services customized to their need or given
context. In addition, our middleware monitors and predicts
the likely behavior of future requests for composite service
so it can proactively re-compose execution plans. To achieve
this objective, we introduced a time series forecasting based
approach for predicting the future requests.

The remaining parts of this paper are organized as follows.
Section II describes the multi-tenant middleware architecture.
Section III introduces the motivating example. Section IV
presents our service composition approach in multi-tenant
SaaS environment. Section V presents experimental results and
comparison with existing optimization approaches. Section VI
discusses related works. Section VII concludes.

II. MULTI-TENANT MIDDLEWARE ARCHITECTURE

This section describes the proposed middleware architecture
for implementing multi-tenant service composition in SaaS
cloud. There are three different components in the middle-
ware architecture namely Service Broker, Service Composition
Engine and Request Predictor as shown in Figure 1. REST
architecture style is used for implementing RESTful web
services. A tenant can access these web service using Uniform
Resource Identifier (URI) over the HTTP protocol. SaaS cloud
provider publishes web services with functional and non-
functional properties in the service pool.

Service Broker: In the SaaS cloud environment, tenants
request for a service which is available in different packages
(professional and enterprise service plan). Requests coming
through HTTP protocol are processed by Request Processor.
It calls the service composition engine to generate service
execution plans for the tenant of each category. Furthermore,

Service Broker maintains a log of each and every request. The
maintained service request log is used by the request predictor
for forecasting future request workload.

Request Predictor:This component analyzes the past pattern
of requests generated by the tenants over the composite service
and forecasts the future request workload. It continuously
sends the future request workload information to the service
execution planner for taking a proactive re-composition deci-
sion.

Service Composition Engine: Service composition engine
manages the composition and execution of a service plan.
Service plan composer receives the service broker call and
identifies the type of service requested by the tenant. It
searches the available web services published by the service
provider and generates the set of optimal composite service
execution plans according to the tenants functional and QoS
requirements. The service execution planner chooses an ap-
propriate composite service execution plan and informs the
service broker to select the suitable combination of the web
services from the SaaS cloud for composing a service-oriented
application.

Fig. 1: Multi-Tenant Middleware for Dynamic Service Com-
position

In addition, service execution planner monitors the behavior
of composite service execution. It reacts to changes occurring
during the execution of a composite service (e.g., partner ser-
vice failure and environmental changes etc.) and re-compose
the service execution plan that ensures the QoS required by the
tenant. Furthermore, It continuously monitors the behavior of
the incoming requests generated by the tenants over the current
execution plan and gets the predicted future request demand
from the request predictor. If the future request demand is
higher than the capacity of the current service execution plan
then the service execution planner takes a proactive decision
by re-planing the service execution plan for maintaining SLA
violation.

III. MOTIVATING SCENARIO

We take Sales CRM (Customer Relationship Management)
service as our motivating scenario that illustrates the chal-
lenges of multi-objective optimization of multi-tenant service
composition in SaaS cloud. Let us consider, different type of
users request for the Sales CRM service which is available
in different service packages. For example, Salesforce [9]
provides Sales CRM service in different packages namely
professional, enterprise, and unlimited. These service packages
are differentiated based on the number of functionalities in
the service. In multi-tenant SaaS cloud, end-users request for
a different sales CRM service package based on their SLA
requirements. The SaaS cloud facilitates Sales CRM service to
multiple users according to their SLA requirements. Suppose,
multiple-users submit their request to the SaaS cloud; in re-
sponse to the requests, SaaS cloud returns Sales CRM service
package as per user's SLA requirements. However, users may
have multi-dimensional QoS and functional requirements, one
user may request for the high throughput despite the cost
of professional service while another user is interested in
getting enterprise service with lower response time and cost. In
these scenarios, each user has diverse requirements, a service
execution plan needs to be created for the user of each category
by selecting suitable concrete service from the service class.
Figure 2 depicts two different application instances (appli-

Fig. 2: Motivation Example

cation workflow) of Sales CRM service namely professional
and enterprise. These application workflows contain a different
number of tasks (abstract services). In the SaaS cloud envi-
ronment, several functionally equivalent services are available
with the different QoS (such as throughput and latency) values
for attaining each task in the application workflow. Therefore,
the selection of suitable candidate services from the SaaS
cloud is a combinatorial optimization problem and become
highly challenging when application engineer needs dynamic
optimization of composing/re-composing the service execution
plan for each category of user.

IV. MODELLING OF MULTI-TENANT SERVICE
COMPOSITION

This section gives basic definition of service composition
in multi-tenant SaaS environment.

Defintion 1: (Service composition) In multi-tenant service
composition, suppose n Composite Services (S) consist t
tasks in the application workflows are represented by Snt
=(S1t, S2t, ..Snt). Suppose there are p service classes Ci,
i = (1, 2, 3, ..p) and each service class contains q candidate
services for attaining an abstract service in the application
workflow, Cij , j = (1, 2, ..q). Let Sn=(C1j , C2j , ..Ctj) be an
application workflow, where a candidate service from each
service classs is selected to finish t tasks.

QoS attributes are the non-functional properties of a web
service and these QoS need to consider for differentiating
the service composition plan during the selection. Usually,
multiple QoS attributes are considered in service composition.

Definition 2: (QoS attributes) Suppose there are l QoS
attributes in a service composition, Qr, r = (Q1, Q2, ..Ql)
and Qr attribute indicates the rth non-functional property of
the composite service.

QoS attributes can be exhibited in positive and negative
criteria. Service composition process should optimize the
higher value for the positive QoS attribute (e.g., throughput,
and availability and reliability) and lower the values for the
negative QoS criteria (response time, latency and cost etc.)
[10]. These QoS attributes have numerical values in different
scale of units. For example, response time is expressed in
milliseconds while reliability is expressed in percentage. The
opposite direction and the different scale units create the
inconsistency in estimating the QoS of a composite service. To
give the equal preference of all QoS attributes for computing
the utility of a composite service, we calculate the normalized
value of each QoS attributes in the range of (0,1). Equation (1)
is used to normalize the negative QoS attributes and positive
QoS attributes are normalized using equation (2) [10] [11].

N(Q−) =

{
Qmax

i −P
Qmax

i −Qmin
i

ifQmaxi 6= Qmini

1 ifQmaxi = Qmini

(1)

N(Q+) =

{
P−Qmin

i

Qmax
i −Qmin

i
ifQmaxi 6= Qmini

1 ifQmaxi = Qmini

(2)

Where Qmaxi and Qmini indicate the maximum and min-
imum values of the Qthi attributes of all candidate services
involved in service composition and P is the current attribute
value of a candidate service.

A. QoS Model for Service Composition

In this research, we consider three QoS parameters for the
service composition namely throughput, response time, and
cost.

-Throughput: Throughput of SaaS application is defined as
the number of request the application is able to process per
second.

TABLE I: QoS aggregation functions for sequence and parallel
patterns

QoS Attributes Sequence Parallel
Cost (C) Σt

i=1C(si) Σt
i=1C(si)

Throughput (T) mint
i=1T (si) mint

i=1 T (si)
Response Time (RT) Σt

i=1RT (si) maxt
i=1 RT (si)

-Response Time: Response time of SaaS application is
defined as the time required to send a request and receive
the response from the service.

-Cost: The execution cost of a SaaS application is the fee
that a tenant need to pay for invoking operations.

We use Sales CRM service as our testing environment of
the service composition as shown in Figure 2. Table-I shows
the QoS aggregation functions [5] [12] [13] [14], which are
used to compute the aggregate value of each QoS attribute
involved in the process of service composition.

B. MULTIOBJECTIVE OPTIMIZATION OF MULTI-
TENANT SERVICE COMPOSITION USING MOEA/D-STM

MOEA/D-STM is an Evolutionary Algorithm (EA) for solv-
ing optimization problems based on the principle of decompos-
ing a Multiobjective Optimization Problem (MOP) into a set
of scalar optimization subproblems [15] [16]. MOEA/D-STM
has several advantages over other EA in terms of objective
scalability, computational efficiency and better performance on
combinatorial optimization problems [10] [17].

Fig. 3: Chromosome encoding

Fig. 4: Solution representation in chromosome encoding

1) Genome Encoding and Optimization Process in
MOEA/D-STM: The important aspects of an evolutionary
algorithms are its chromosomes and their representation
because a chromosome capture all the relevant information
required for a solution to the problem being considered.
A genome (chromosome) is represented by a vector of t
genes where t is the number of tasks in composite service

(application workflow). The formulation of a genome
represents the composite service solution; in which a gene
encodes the concrete service for each task in composite
service that could be a possible candidate solution as
shown in Figure 3. In addition, Figure 4 shows the solution
representation encoded by the chromosome, the value of each
gene represents which concrete service (its index value) has
been seleected for the corresponding abstract service such as
abstract service t1 selects the concrete service CS12, abstract
service t2 selects the concrete service CS21 and abstract
service t3 selects the concrete service CS34 and so on.

We consider two type of application workflows (profes-
sional and enterprise) in our multi-tenant service composition
model that are represented by a chromosome as shown in
Figure 5. In optimization process, the chromosome is split
into two sub-chromosomes. The first chromosome processes
four genes (e.g., t1 to t4) for optimizing professional service
composition plan, while the second chromosome processes
all genes for optimizing enterprise service composition plan.
Currently, MOEA/D-STM supports the independent execution
of two application workflows and optimize them in each
generation by applying genetic or problem specific operators
such as selection, crossover, mutation, and reproduction.

Fig. 5: Chromosome encoding for the professional and enter-
prise application workflow

In optimization process, MOEA/D-STM maintains the pop-
ulation of the individuals that represent a candidate Composite
Service (CS). It uses Tchebycheff approach for decomposing
MOP into N subproblems and each subproblem has one
solution in current population [9]. Each subproblem is char-
acterized by a uniform spread N weight vectors (λ). The
Tchebycheff approach finds closest feasible solution CS to
an ideal point (commonly known as reference point) using
measure the distance between feasible solution CS and ideal
point as defined follows

Dλ(cs, q) = min
1≤i≤m

{λi|qi(cs)− q∗i } (3)

Where qi and λi are the QoS value and weight of the ith

dimension of nth feasible solution CS (subproblem) respec-
tively. For the ith dimension, qi indicates the good solution
value from the set of all neighbour possible solutions of the
nth subproblem.

Algorithm 1 describes the process of optimizing N subprob-
lems and corresponding individuals in the set of population.
We compute the Euclidean distance between two weight
vectors (subproblems) and then form a group B(i) of T
closest weight vectors. At each generation, randomly select

Algorithm 1: MOEA/D-STM

1 Initialize the population µ← {x1, x2, .., xN} , a set of
weight vectors λ← {λ1, λ2, .., λN}, the ideal and
nadir objective vectors z∗, znad.
/* Compute neighbour group B of T

closest weight vector */
2 for i← 1 to N do
3 B(i)← {i1, i2, .., iT }, whereλi1, λi2, .., λiT are the

T closest weight vector to λi
4 end
5 while Stopping criterion is not satisfied do
6 p← ∅
7 for i← 1 to N do

/* Random selection of solution
set between B(i) and µ */

8 if (rnd < neighbourSelectionProbability) then
9 S ← B(i)

10 else
11 S ← µ
12 end

/* Randomly select two solution
from S */

13 xa, xb ← parentSelection(S)
/* Reproduction operations */

14 y ← crossoverOperation(xa, xb)
15 y′ ← mutationOperation(y)
16 evaluate the F-Function value of y'
17 p← y′

18 update the current z∗andznad objective vectors

19 end
20 e← µ ∪ p
21 µ← STM(e, λ, z∗, znad)
22 end
23 return µ

two solutions (parent) from the B(i) or current population. The
crossover operation is applied on the selected parents with the
crossover probability of 0.9 for producing a new offspring, the
new offspring genes are mutated then with the probability of
mutation rate 1/n using polynomial mutation operator, where
n indicates the number of genes in the individuals. Using
Tchebycheff approach, we evaluate the fitness of new offspring
against the individual in B(i) or current population. If new
offspring indicates improved solution quality then replace
it with unfeasible solution in the current population. After
generating the new offspring population, STM maintains the
diversity in search space by allocating most preferable parent
solution to each subproblem in the current population. This
reproduction process is repeated with all genetic and STM
operations until reaching the number of generation defined in
the algorithm.

TABLE II: Algorithms Parameters

Parameter Name Value and operators
Population size 100
Crossover
Operator

SBXCrossover
with crossover probability 0.9

Mutation
Operator

Polynomial Mutation
with mutation probability 1/n

Parent
selection

Binary Tournament selection
and Random selection for
NSGA-II and MOEA/D-STM
respectively

Maximum Generation 200
Neighborhood Size 20
Neighborhood selection,
probability 0.9

Max. no.of replaced solutions 2
Function type Tchebycheff (TCH)

V. PERFORMANCE EVALUATION AND RESULTS

We report on the implementation of the approach and its
evaluation against alternative optimization techniques using
real world QoS dataset [18]. We present the experimental
results and evaluation of our approach using two MOEA
(MOEA/D-STM and NSGA-II). The comparisons are esti-
mated based on the solution quality and computational time.

All experiments are conducted on the same machine with
Intel Core i7 2.60 GHz. Processor, 8GB RAM and Windows
10.

A. Experimental Setup and Results

We performed several experiments to evaluate the solution
quality and performance of our proposed service composition
approach. We used the Sales CRM service as our testing
environment (shown in Figure 2) which helps in setting up
the experimental parameters. We consider three dimensions
of QoS attributes including positive quality properties such
as throughput and negative quality properties like response
time and cost. The Sales CRM service consists of 4 and
6 different tasks for professional and enterprise application
workflow respectively. Randomly, we partitioned the QWS
dataset into 6 groups, which shows 6 different service classes
corresponding to 6 different tasks in application workflow. We
randomly generate cost as an additional attribute added with
each candidate service. We also compare MOEA/D-STM to
NSGA-II [19] based on the performance and solution quality.
We used the same parameter setting for both algorithms as
shown in Table II.

Execution Time Comparisons

For the fair assessment of our evaluation study, all experi-
ments were executed 30 times independently on the specified
setup for each case and the average measure is used for the
evaluation study.

1) Execution Time Vs Number of Generations: We examine
the variations in execution times of both algorithms under the
number of generations are increased constantly. We used the
same Sales CRM testing environment and concrete services
for every test case. In our testing environment, we used 6

Fig. 6: Execution Time Vs Number of Generations

abstract services and 20 concrete services for attaining each
abstract service in the application workflow. Figure 6 shows
the execution time of MOEA/D-STM is lower than NSGA-II
at each generation. Note that, MOEA/D-STM has consistently
better performance at increased generation time than NSGA-II.

2) Execution Time vs. Number of Concrete Services: We
analyze the variations in execution time based on the number
of concrete service in each execution. For measuring execution
time, we deployed 10, 20, 30, and 40 concrete services for
attaining an abstract service in the same application workflow
respectively. As shown in Figure 7, the number of increased
concrete services couldn't make any significant effect on the
execution time. However, the execution time of both algo-
rithms increases as the number of concrete services in the
execution grow. Overall, MOEA/D-STM takes lower execution
time than NSGA-II at every execution.

Fig. 7: Execution Time Vs Number of Concrete Services

Evaluation of Solution Quality

1) Solution comparision based on quality indicator : To
asses the solution quality of MOEA/D-STM and NSGA-II
algorithms, we choose two widely used performance indica-
tors, namely Hypervolume (HV) and Inverted Generational
Distance (IGD). These indicators are used to evaluate the
convergence and diversity of Pareto solution set [20]. HV
calculates the volume of the dominated portion of the objective
space. IGD determines the convergence by computing the
average distance of the obtained solutions points from the
Pareto Front (PF). Algorithms with a smaller value of IGD

TABLE III: Mean and Std. Deviation of HV and IGD

Quality Indicator MOEA/D-STM NSGA-II

HV Mean 9.52954 6.77102
Standard Deviation 1.32796 1.97753

IGD Mean 0.00352 0.00511
Standard Deviation 1.12979 E-05 1.73 E-06

and a large value of HV are more desirable to find the better
approximation to the Pareto Front. Figure 8 and Figure 9
show the standard statistic boxplot about the normalized HV
and IGD values obtained from the 30 independent runs of
MOEA/D-STM and NSGA-II. Furthermore, the mean and
standard deviation of HV and IGD are presented in Table III.
The higher mean value of HV and the lower mean value of
IGD shows that the algorithm finds a good approximation to
the PF. As the result, MOEA/D-STM outperforms NSGA-II
as shown in Figure 8 & 9 and Table III. We have a statistically
sound conclusion, from the Wilcoxon's rank sum test at the
significant level of 5%, the P-value is less than 0.05 which
strongly suggests that there is the difference in mean of HV
and IGD; between the MOEA/D-STM and NSGA-II.

Fig. 8: Hypervolume based solution comparison

Fig. 9: IGD based solution comparison

2) Graphical representation of the solutions: We analyze
the quality of solutions obtained from the MOEA/D-STM
and NSGA-II. We use the same execution plans consist of
6 abstract services and 20 concrete services for each abstract
service along with three QoS objectives namely throughput,
response time and cost. In our service composition scenario,
a good solution has high throughput with lower response
time and cost. Figure 10 shows good diversity in solutions
obtained from the MOEA/D-STM than NSGA-II. MOEA/D-

STM yields solution with higher throughput than the solutions
obtained from the NSGA-II. Even few MOEA/D-STM solu-
tions dominate the solutions generated by NSGA-II.

Fig. 10: Solutions obtained by MOEA/D-STM and NSGA-II

VI. RELATED WORK

Service composition is an enabling technique for developing
distributed applications by composing existing services. In
past, many research efforts have been done towards QoS/SLA-
aware service composition [4] [5] [6] [7] [14] [24] and
researchers addressed service composition problem from dif-
ferent viewpoints such as QoS dependency [21], service de-
pendency [23], and internal complementarity of services [24].
For considering the multi-dimensional QoS requirements of
an end-user, the service composition problem is modeled as
a multiobjective optimization problem and many optimization
approaches (e.g., exact, heuristic or metaheuristic algorithms)
have been proposed for producing Pareto optimal solutions
[22]. Chen et.al. [14] proposed e-dominance multi-objective
evolutionary algorithm (EDMOEA) for QoS-aware web ser-
vice composition. The algorithm is used to find the Pareto
optimal services and it facilitates the users to select the best
service with the tradeoff of QoS risk and performance. Liu
et.at., [6] considered long-term values in service composition
model. They presented three meta-heuristic approaches named
Simulated Annealing, Genetic Algorithm and Tabu Search for
solving long-term based cloud service composition problems.
Chen et. al. [25] presented the effects of seeding strategies
for improving the overall QoS of service composition. They
proposed four seeding strategies, which provides knowledge
of the problem to consolidate the MEOA for optimizing
service composition . Mostafa et al. [26] proposed two meta-
heuristic approaches to solve the problem of QoS-aware multi-
objective service composition with conflicting objective. In the
first approach, they applied reinforcement learning algorithm
that deals with the uncertain and dynamic environment in
solving multi-objective QoS problem while in the second ap-
proach, they presented single and multiple policy-based multi-
objective service compositions. This approach usages a self-
organization mechanism that exploits the problem structure,

to derive the weights of different QoS objectives and find a
set of Pareto optimal solutions, that satisfy the multiple QoS
factors in the uncertain environment. Chen et al. [21] focused
on QoS-dependency in service composition. They adopted a
pruning algorithm for removing unpromising candidate ser-
vices from the search space and then, they applied Vector
Ordinal Optimization techniques for finding Pareto optimal
solutions.

In recent years, researchers proposed few approaches on the
selection and composition of services in multi-tenant SaaS. To
name of few, He et al. [4] proposed MSSOtimizser (Multi-
tenant SaaS Optimizer) that provides effective and efficient
service selection in multi-tenant SaaS environment. They con-
sidered SaaS provider's optimization goals and applied Integer
Programming (IP) approach for finding optimal services that
meet different users QoS requirements including SaaS opti-
mization goals. Wada et al. [5] presented optimization frame-
work named E3 for solving SLA-aware cloud service compo-
sition problem. E3–MOGA (Multi-Objective Genetic Algo-
rithm) finds optimal solutions equally distributed in objective
space and select any one of them based on end-user SLA
requirements. E3–MOGA supports three different categories
of the users namely silver, gold and platinum for generating
optimal service composition plans. Wang et al. [7] proposed
recommendation based service selection approach for multi-
tenant SaaS. They used the K-mean clustering technique for
grouping the services and tenants based on similarity in terms
of QoS requirements. However, these approaches support ser-
vice provisions of equivalent functionalities with varying QoS.
Tenants may have different functional and QoS requirements
in the SaaS cloud. Consequently, these approaches are not
suited for the dynamic and adaptive provision of variant
execution plans, where each may offer a customized plan for
a given tenant. Unlike existing approaches, each execution
plan may need to support a distinct variant of functionality,
QoS and cost requirements. Additionally, scaling is another
limitation that needs to be addressed algorithmically. This is
important for the technique to be fit for real real-time dynamic
and adaptive composition and recomposition scenarios. Our
middleware addresses these limitations.

VII. THREATS TO VALIDITY

We carried out the evaluation and simulation of our pro-
posed approach by implementing a multi-tenant middleware
for dynamic service composition. In a simulation study, the
middleware supports only two different type of users request
for a service (e.g., professional and enterprise service). The
simulation, however can be extented to support more users;
they have different functional and QoS requirements.

Though the evaluation uses the WS Dream datasets [18],
as opposed to application logs, the use was beneficial as it
compasses wide variation of behavior over time that may be
tedious to accumulate over time and in scenarios characterized
by stability and observes in a deployed setting. Middleware
could be used in a real environment where web service
QoS capacity can be measured based on the infrastructure

and allocated resources (e.g., CPU). In addition, we only
considered two non-functional requirements (e.g., throughput,
response time and cost constraints) submitted by the user for a
service. However, the QoS model can be extended to include
more non-functional requirements (e.g., availability, latency,
and service reputation).

VIII. CONCLUSIONS

Existing approaches for dynamic services composition tend
to be limited when addressing multitenant execution plans.
This is due to the fact that they are not fundamentally designed
for the dynamic and adaptive provision of variant execution
plans, each offering a customized plan for a given tenant
with its functionality, QoS and cost requirements. Additionally,
these approaches can fail to scale with the number of tenants,
their varying functionalities, QoS and cost, rendering them
unfit for real-time dynamic and adaptive composition and re-
composition scenarios. The problem is acknowledged to be an
NP-hard problem. To address this problem, we proposed multi-
tenant middleware that goes beyond the state-of-art to envision
scenarios, where variants of functionalities can be supported.
We model service composition as an evolutionary optimization
problem with a novel encoding representation and fitness
evaluation strategy. The middleware has the capability to react
proactively, if changes would occur during the execution of
a composite service (e.g., partner service failure, uncertain
request workload, QoS fluctuation, and environmental changes
etc.) and re-compose the service execution plan that ensures
the QoS required by the tenant. For evaluating the effectiveness
of our approaches, we conducted several experiments and our
results showed that the MOEA/D-STM outperforms NSGA-II
in terms of performance and quality of solutions.

REFERENCES

[1] A. Jula, E. Sundararajan, and Z. Othman,” Cloud computing service
composition: A systematic literature review”, Expert Systems with
Applications, vol. 41, no. 8, pp. 3809 – 3824, 2014.

[2] Gartner Inc. ”Gartner Forecasts Worldwide Public
Cloud Revenue to Grow 21.4 Percent in 2018”,
https://www.gartner.com/newsroom/id/3871416, [Online; accessed
20-July-2018], 2018.

[3] M. Cremene, M. Suciu, D. Pallez, and D.DDumitrescu, ”Comparative
analysis of multi-objective evolutionary algorithms for QoS-aware web
service composition”, Applied Soft Computing, Elsevier, pp. 124-139,
2016.

[4] Q. He, J. Han, Y. Yang, J. Grundy, and H. Jin, ”QoS-driven service
selection for multi-tenant SaaS”, IEEE International Conference on
Cloud Computing,pp. 566–573, 2012.

[5] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, ”E3: A multiobjective
optimization framework for SLA-aware service composition”, IEEE
Transactions on Services Computing, vol.5, no. 3, pp. 358-372, 2012.

[6] S. Liu, Y. Wei, K. Tang, A. K. Qin, and X. Yao,” QoS-aware longterm
based service composition in cloud computing”, IEEE Congress on
Evolutionary Computation, pp. 3362-3369, 2015.

[7] Y. Wang, Q. He, and Y. Yang, ””Qos-aware service recommendation
for multi-tenant saas on the cloud”, IEEE International Conference on
Services Computing, pp. 178-185, 2015.

[8] Z. Ye, X. Zhou, and A. Bouguettaya, ”Genetic Algorithm Based QoS-
Aware Service Composition in Cloud Computing”, International Con-
ference on Database Systems for Advanced Applications, pp. 321-334,
2010.

[9] Salesforce. ”Sales Cloud Edition Report”.
https://www.salesforce.com/products/sales-cloud/pricing/. [Online;
accessed 20-July-2017], 2017.

[10] C. Jatosh, G.R. Gangadharan, U. Fiore, R. Buyya, ”QoS-aware Bigh
service composition using MapReduce based evolutionary algorithm
with guided mutation”, Future Geneation Computer System, Elsevier,
pp. 1008-1018, 2018.

[11] L. Zeng, B. benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H.
Chang, ”QoS-Aware Middleware for Web Service Composition”, IEEE
Transactions on Software Engineering, vol. 30,pp. 311-327, 2004.

[12] A. Ramrez, J. A. Parejo, J. R. Romero, S. Segura, and A. R. Corts,”
Evolutionary composition of QoS-aware web services: a many-objective
perspective”, Expert Systems with Applications, Elsevier, vol. 72, pp.
357–370, 2017.

[13] A. E. Yilmaz and P. Karagoz, ”Improved genetic algorithm based
approach for QoS aware web service composition”. IEEE International
Conference on Web Services, pp. 463–470, 2014.

[14] F. Chen, R. Dou, M. Li, and H. Wu, ”A flexible QoS-aware Web
service composition method by multi-objective optimization in cloud
manufacturing”, Computers and Industrial Engineering, Elsevier, vol.
99, pp. 423–431, 2016.

[15] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang,” Stable matching-
based selection in evolutionary multiobjective optimization” , IEEE
Transactions on Evolutionary Computation, vol. 18,no. 6, pp. 909923,
2014.

[16] Q. Zhang and H. Li,” MOEA/D: A multiobjective evolutionary algorithm
based on decomposition”, IEEE Transactions on Evolutionary Compu-
tation , vol. 11, no. 6, pp. 712–731, 2007.

[17] M. Suciu, D. Pallez, M. Cremene, and D. Dumitrescu, ” Adaptive
MOEA/D for QoS-based web service composition”, In European Con-
ference on Evolutionary Computation in Combinatorial Optimization,
pp. 73–84, 2013.

[18] Z. Zheng, Y. Zhang, M.R. Lyu, ”Investigating QoS Real-world Web
Services”, IEEE Transation on Service Computing, vol. 7, no. 1, pp.
32-39, 2014.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ” A fast and
elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] K. Bringmann and T. friedrich, ”Approximation Quality of the Hyper-
volume Indicator”, Artificial Intelligence, Elsevier, pp. 265-290, 2013.

[21] Y. Chen, J. Huang, C. Lin, and X. Shen, ”Multi-Objective Service
Composition with QoS Dependencies”, IEEE Transactions on Cloud
Computing, 2016.

[22] C. Jatoth, G.R. Gangadharan, and R. Buyya,” Computational intelligence
based QoS-aware web service composition: A systematic literature
review”, IEEE Transactions on Services Computing, vol. 10,no. 3, pp.
475–492, 2017.

[23] Y. Feng, L. D. Ngan, and R. Kanagasabai,”Dynamic service compo-
sition with service-dependent QoS attributes”, IEEE 20th International
Conference on Web Services, pp. 10–17, 2013.

[24] X. Liang, A. K. Qin, K. Tang, and K. C. Tan,” QoS-aware Web Service
Composition with Internal Complementarity”, IEEE Transactions on
Services Computing, 2016.

[25] T.Chen, M.Li, and X.Yao, ”On the Effects of Seeding Strategies: A Case
for Search-based Multi-Objective Service Composition”,The Genetic
and Evolutionary Computation Conference, pp. 1419-1426, 2018.

[26] A. Mostafa and M. Zhang, ”Multi-objective service composition in
uncertain environments”, IEEE Transactions on Services Computing,
2015.

