
Future Generation Computer Systems 128 (2022) 117–131

a

b

c

d

M

e
d
p
s
u

s
r

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Amulti-level collaborative framework for elastic stream computing
systems
Dawei Sun a,∗, Shang Gao b, Xunyun Liu c, Rajkumar Buyya d

School of Information Engineering, China University of Geosciences, Beijing, 100083, China
School of Information Technology, Deakin University, Waurn Ponds, Victoria 3216, Australia
Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, 100071, China
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
elbourne, Australia

a r t i c l e i n f o

Article history:
Received 9 January 2021
Received in revised form25 September 2021
Accepted 5 October 2021
Available online 12 October 2021

Keywords:
Multi-level framework
Stream computing
Elastic processing
Distributed system
Big data

a b s t r a c t

An elastic stream computing system is expected to process dynamic and volatile data streams with
low latency and high throughput in timely manner. Effective management of stream application
is considered one of the keys to achieve elastic computing by scaling in/out the workload of each
computing node properly during runtime. Many existing work tried to build an elastic stream
computing system from one perspective or at one level, which limited to some extent the system
performance improvement. To address the problems brought by single level management, in this
paper, we propose and implement a multi-level collaborative framework (called Mc-Stream) for
elastic stream computing systems. This paper introduces our solution from the following aspects:
(1) Extensive experiments show that system performance is affected by multiple factors locating at
different levels. A multi-level collaborative optimization strategy can coordinate those factors and
optimize the performance to a greater extent. (2) A system model is constructed to explain the
multi-level collaborative framework, with the creation of topology model, data model and grouping
model. The process of multi-level collaborative framework is formalized, including optimizing instances
number, determining data stream load ratio among instances and deploying instances. (3) The system
performance is optimized at multiple levels (user level, instance level, scheduling level, and resource
level). It is further improved by the components of lightweight instances management, available
resource-aware data stream redirection, fast and effective scheduling management, and asynchronous
runtime redeployment without state loss. (4) Mc-Stream is implemented on top of Apache Storm
platform. Metrics are evaluated with real-world stream applications, such as the fulfillment of system
latency, throughput and resources utilization. Experimental results show the significant improvements
made by Mc-Stream: reducing average system latency by 32%, increasing average system throughput
by 26% and average resources utilization by 34%, compared with existing state-of-the-art scheduling
strategies.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Real-time data stream is an important data form in big data
ra. It exhibits features of high-velocity — tens of millions of
ata tuples generated per seconds, high-variability — data tu-
les coming from multiple independent data sources and each
ource generating data tuples in an unpredictable manner, high-
npredictability — each data tuple being asynchronous, affected

∗ Corresponding author.
E-mail addresses: sundaweicn@cugb.edu.cn (D. Sun),

hang.gao@deakin.edu.au (S. Gao), xunyunliu@gmail.com (X. Liu),
buyya@unimelb.edu.au (R. Buyya).
ttps://doi.org/10.1016/j.future.2021.10.005
167-739X/© 2021 Elsevier B.V. All rights reserved.
by multiple factors from generating to processing, and high-
valuable — the value of data stream itself trending to be less
meaningful compared with the value of knowledge behind the
data stream, which should be extracted freshly in a timely man-
ner. Data parallelism is an essential feature of data stream pro-
cessing. It calls for a new on-the-fly computing paradigm [1],
where the architecture is designed from the perspective of ‘‘data
as the center’’ rather than ‘‘computing as the center’’. In recent
years, stream computing paradigm has become the de facto stan-
dard for processing continuous and unbounded data streams due
to its distinctive features, such as low latency and high through-
put, compared with batch computing paradigm. Many modern
stream computing systems have been developed and deployed at

scale, such as Google Millwheel [2], Google Dataflow [3], Apache

https://doi.org/10.1016/j.future.2021.10.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.10.005&domain=pdf
mailto:sundaweicn@cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:xunyunliu@gmail.com
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2021.10.005


D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

S
i
s

i
a
j
S
e
b
d
n
i
h
s
t

p
t
a
n
s
p

t
r
f
t
m
e
b
w
n
t
b
n
m
i
b
p
r
a
e

a
m
l
f
s
n
t
s
l

1

p
m
d
p

c
d
l

torm [4], Twitter Heron [5] and Apache Samza [6]. Apache Storm
s one of the most prominent open source software for distributed
tream computing.
To process data streams promptly, an elastic stream comput-

ng system is always needed. It is expected to adjust resources
llocated to stream applications at runtime, while bearing the ob-
ectives of high elasticity, low latency and high stability in mind.
tream application scheduling is one of the keys to make such
lasticity possible by dynamically determining the relationships
etween vertices of stream applications and computing nodes in
ata center, and scaling in/out the workload of each computing
ode properly during runtime. However, this scheduling problem
s also considered as one of the most thought-provoking NP-
ard problems in general cases [7]. The real-time fluctuating data
treams and complex vertex dependencies add more challenges
o building such an elastic system.

To accomplish this goal, researchers have been trying to im-
rove scheduling strategies in many different ways [7,8]. E.g., op-
imizing the deployment status of vertices on computing nodes,
djusting the number of computing nodes, the vertex instance
umber, or the distribution of data stream among multiple in-
tances of a vertex. All those strategies help improve the system
erformance from one perspective or another.
Our work is motivated by the observation that unsatisfac-

ory system performance is mainly caused by frequent online
escheduling. Each rescheduling state may optimize system per-
ormance. However, during the transition process from one state
o another, the performance may deteriorate drastically. It is com-
on that a new state has not been retained long, the computing
nvironment such as data stream changes, requiring the state to
e adjusted again. For each round of rescheduling, it is neither al-
ays necessary to optimize the performance to an optimal state,
or practical to simply adjust the state based on the changes of
he environment. Moreover, the system performance is affected
y multiple factors at different levels. Those factors are usually
ot independent of each other. By only optimizing the perfor-
ance from one factor’s perspective, the extent of improvement

s limited, and sometimes even invalid. All these issues occur
ecause resources are not fully utilized and multi-level com-
rehensive factors are not considered [9]. The fulfillment of the
equirements raises challenges to achieving low system latency
nd effective resource utilization in big data stream computing
nvironments.
As such, our aim is to address the aforementioned issues using

multi-level collaborative framework, which continuously opti-
izes the system performance using multiple factors at different

evels. Each factor is first considered to improve the system per-
ormance accurately and quickly, then their collaboration is con-
idered to maintain and further maximize the optimization. The
ew scheduling framework is expected to keep a relatively long-
erm online state and deal with fluctuating data streams while
upporting features such as high system stability, low system
atency and effective resource utilization.

.1. Paper contributions

The key contributions of our work are as follows:
(1) Extensive experiments are conducted, showing that system

erformance is affected by multiple factors at different levels. A
ulti-level collaborative optimization strategy could help coor-
inate those factors from different levels and optimize system
erformance to a greater extent.
(2) A system model is constructed to explain the multi-level

ollaborative framework, with the creation of topology model,
ata model and grouping model. The process of multi-level col-
aborative framework is formalized, including optimizing instance
118
Table 1
Hardware configurations of computing nodes in the cluster.
Type CPU Memory Bandwidth External storage

1 Intel Core i3 4 GB RAM 1 Gbps LAN 1TB SSD
2 Intel Core i5 8 GB RAM 10 Gbps LAN 2TB SSD
3 Intel Core i7 16 GB RAM 100 Gbps LAN 4TB SSD

number, determining data stream load ratio among instances and
deploying instances.

(3) The system performance is optimized at multiple levels
(e.g. user level, instance level, scheduling level, and resource
level). It is further improved by the components of lightweight in-
stance management, available resource-aware data stream redi-
rection, fast and effective scheduling management and asyn-
chronous runtime redeployment without state loss.

(4) A multi-level collaborative framework (Mc-Stream) is im-
plemented on top of Apache Storm platform. Metrics are eval-
uated with real-world stream applications, such as the fulfill-
ment of system latency, throughput and resources utilization.
Experimental results show the significant improvements made by
Mc-Stream: reducing average system latency by 32%, increasing
average system throughput by 26% and average resources utiliza-
tion by 34%, compared with existing state-of-the-art scheduling
strategies.

1.2. Paper organization

The rest of the paper is organized as follows: Section 2 dis-
cusses the observed factors that affect system latency and re-
source utilization on current Storm platform and the motiva-
tions for our research work. Section 3 describes the system
model, including the topology model, data model, and group-
ing model. Section 4 formalizes the process of multi-level col-
laborative framework, especially the parts for optimizing in-
stances number, determining data stream load ratio among dif-
ferent instances and deploying instances. Section 5 focuses on
the system architecture, instance management, redirection of
data stream, scheduling management and resources management
in Mc-Stream. Section 6 analyzes the performance evaluation
results with metrics of average latency, average throughput and
average resource utilization of a data center. Section 7 reviews
the related work on application scheduling for elastic stream
computing systems, as well as system performance optimization
for distributed stream computing systems. Finally, conclusions
and future work are discussed in Section 8.

2. Observations and motivations

To identify these most important factors affecting the system
performance, we design a series of experiments on current Storm
platform. In this section, the experiments are first discussed,
followed by the motivations inspired by the observations.

2.1. Experimental environment

To observe the factors affecting system stability, latency and
resource utilization on current Storm platform, we deploy and
test the performance of Storm 1.2.2 [4] on top of CentOS 6.3.
A monitor module is developed to monitor the Supervisors and
Worker nodes. The cluster used in the experiments is provided
by the school of Information Engineering, China University of
Geosciences, Beijing. It consists of 35 computing nodes, being
further divided into three types. Detailed configuration is shown
in Table 1.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

r
s

a
s
i
a

2

a
u
b
o
d
d
t
C
r
i

i
s
a
m
c
o
m

i

Fig. 1. The instance topology of Top_N.

Fig. 2. The instance topology of WordCount.

In the cluster, one node runs Nimbus sub-system, two nodes
un Zookeeper sub-system, and the rest 32 nodes run Supervisor
ub-system.
Moreover, two applications Top_N and WordCount are used

s the test cases, which are the most basic and commonly used
treaming applications for performance testing and analysis. The
nstance topologies of Top_N and WordCount are shown as Fig. 1
nd Fig. 2, respectively.

.2. Observations

We use average load balancing (ALB) of data center (DC), aver-
ge latency (AL) of streaming applications, and average resource
tilization (ARU) of data center (DC) to evaluate the system load
alancing, latency and resource utilization, respectively. The ALB
f data center DC can be evaluated by calculating the standard
eviation of the average CPU utilization of computing nodes in DC
uring time [0, t]. The AL and ARU can be evaluated by calculating
he average latency of each streaming application and the average
PU utilization of computing nodes in DC during time [0, t],
espectively. All the evaluations are done at 4 levels: user level,
nstance level, scheduling level and resource level.

(1) User level
At the user level, user constructs a logical graph for a stream-

ng application according to its function. When applications are
ubmitted to Storm platform for processing, the total number of
pplications is one of the key factors affecting its overall perfor-
ance, especially the metrics such as the load balance of data
enter, latency of streaming applications and resource utilization
f data center. The determination of the critical states becomes
ore important for the timing of optimization.
When the input rate of data stream is 1000 tuples/s, with the

ncrease of application number, the average load balancing ALB of
data center DC, average latency AL of applications, and average re-
source utilization ARU of DC are increasing accordingly. As shown

in Fig. 3, when the application number for WordCount is less than

119
Fig. 3. Average load balancing (ALB) of data center (DC) with different number
of applications.

Fig. 4. Average latency (AL) of streaming applications with different number of
applications.

Fig. 5. Average resource utilization (ARU) of data center (DC) with different
number of applications.

12, the average load balancing is less than 0.3. However, when the
number is greater than 12, the average load balancing is greater
than 0.3, worsening the load balance of DC. A similar situation
also occurs for Top_N. With the increase of its application number
(>10), the average load balancing is greater than 0.3.

As shown in Fig. 4, when the application number for Word-
Count is less than 12, the average latency is stabilized at a low
level, which is 36 ms. When the number is greater than 12, the av-
erage latency continues increasing. A similar situation occurs for
Top_N, where the average latency increases dramatically when
the application number is greater than 10.

As shown in Fig. 5, when the application number for Word-
Count is less than 16, the average resource utilization of DC is
less than 100%. When the number is greater than 16, the average
resource utilization is 100%. The same trend applies to Top_N,



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

a

i

w
a

i
a
a
w
B
b
F
a
s

i

Fig. 6. Average latency (AL) of application with different instance numbers under
stable input rate (2000 tuples/s).

Fig. 7. Average resource utilization (ARU) of data center (DC) with different
nstance numbers under a stable input rate (2000 tuples/s).

here the average resource utilization reaches 100% when the
pplication number is greater than 12.
(2) Instance level
At the instance level, the number of instances for each vertex

n an application topology is set by users based on experience. For
static computing environment, it is important to set and keep
reasonable instance number for each vertex. Too few instances
ill overload each instance and affect the system performance.
ut too many instances will make the instances themselves a
urden to the system and each instance cannot be fully utilized.
or a dynamic computing environment, the timing and fitting of
n adjustment to the instance number for each vertex impact the
ystem performance.
When the input rate is stabilized at 2000 tuples/s, with the

ncrease of instance number of vertex vcount in Top_N and vsplit
in WordCount, the best performance of average latency AL of
application and average resource utilization ARU of data center
DC can always be achieved given a suitable instance number. As
shown in Fig. 6, within range [0, 4], when the instance number of
vsplit in WordCount increases, the average latency of WordCount
is constantly decreasing. When the instance number is greater
than 8, the average latency of WordCount climbs slowly. A similar
situation occurs to the instance number of vcount in Top_N.

As shown in Fig. 7, with the increase of instance number
of vsplit in WordCount, the average resource utilization of DC
is constantly increasing. When the number is less than 4, the
increase of average resource utilization remains slow. After that,
it climbs dramatically.

(3) Scheduling level
At the scheduling level, all instances of a topology are sched-

uled to computing nodes in a data center according to a chosen

scheduling strategy. Different strategies may significantly affect

120
Fig. 8. Average latency (AL) of application under different input rates.

Fig. 9. Average latency (AL) of application with different amounts of resources.

the system performance. More specifically, in a stream computing
environment, once the topology of an application is submitted, it
will run forever unless being forcibly terminated. During the run-
time, the data stream may change, so does the load of computing
nodes. This unique characteristic requires the scheduling strategy
further adjusts the scheduling state on the fly. This kind of ad-
justment should be done incrementally without triggering large
system performance fluctuation while considering the existing
scheduling state of stream applications.

As shown in Fig. 8, in time range [0, 19], [20, 39], and [40, 60],
the input rates are stabilizes at 1000 tuples/s, 2000 tuples/s, and
1000 tuples/s, respectively. At time 20 s, the rate increases from
1000 tuples/s to 2000 tuples/s. At time 40 s, it decreases from
2000 tuples/s to 1000 tuples/s. Within each range, the average
latency is stabilized at a certain level. When the rate changes, the
latency fluctuates for a relatively long time due to the instance
rescheduling in the instance topology. The fluctuation degree is
closely related to the instance number to be rescheduled. The
fewer the rescheduled instance number, the less fluctuation of
the average latency.

(4) Resource level
At the resource level, the number of resources and the choice

of appropriate resources have a significant impact on the system
performance. Generally speaking, the more resources, the better
performance. But this rule is not always valid in a distributed
stream computing environment. The choice of appropriate re-
sources also plays an important role.

As shown in Fig. 9, two WordCount streaming applications and
two Top_N streaming applications are submitted to the data cen-
ter. At the beginning, with the continuous increase of computing
nodes, the average latency is decreasing accordingly. However,
when the average latency reaches a certain level (minimum),
increasing computing nodes does not further improve the average
latency. Instead, it increases the latency slightly. This is caused by



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

t
i

2

n
s
m
p
m
T
c
g

i
s
a

a
r

p
p
p

u
m
n
h
s

3

f
r
t
i
m

3

r
(
(

(

f
w

3

d
i

v

b
o
i
d

d

w

w
t
s
o
t

he increase of network delay that constitutes the response time
n a distributed environment.

.3. Motivations

Though the two experimental cases WordCount and Top_N are
ot complex streaming applications, the results are still repre-
entative. They verify that the system performance is affected by
ultiple factors at different levels and these factors are not inde-
endent of each other. The extent of performance improvement
ight be limited if only considering one factor or from one level.
o optimize the performance to a greater extent, a multi-level
ollaborative optimization strategy may help. The motivations we
et from the above analysis are summarized as below:
(1) Given the system stability, resource utilization and other

ssues are interdependent, how to balance these metrics and con-
ider them in a comprehensive way when targeting low latency
nd high throughput?
(2) How to emphasize the influence of one specific factor at
specific level when they usually further cross-influence and

estrict each other?
(3) How to optimize the system performance from multi-

le perspectives? One factor based optimization only improves
erformance to a certain degree, which limits the extent of im-
rovement.
(4) The system performance is extremely sensitive to contin-

ous fluctuation of data stream. Is it possible to find an effective
ulti-level collaborative optimization strategy helping coordi-
ate those factors from different levels and dimensions? If yes,
ow should it perform compared to the existing system provided
trategies?

. System model

Motived by the above findings, we consider collaborative
ramework from multiple levels. Before proposing concrete algo-
ithms, we first formalize the system model to precisely describe
he multi-level scheduling problem in an elastic stream comput-
ng system. This includes the definitions of topology model, data
odel and grouping model.

.1. Topology model

The function of a streaming application [10,11] is usually
epresented in a logical topology by users. The logical topology
LT ) can be viewed as a directed acyclic logical graph GLT =

V (GLT ) , E (GLT )), where V (GLT ) = {vi|i ∈ 1, . . . , n} is a finite set
of n vertices. All the vertices work together to deliver outputs. The
vertex function fun (v) of each vertex v is completely different,
that is if ∀vi, vj ∈ V (GLT ), then ∄fun (vi) = fun

(
vj

)
. w (vi) is

the weight of vertex vi in fulfilling the whole function, which
can be evaluated by the time and space complexity. E (GLT ) ={
evi,vj |vi, vj ∈ V (GLT )

}
is a finite set of directed edges, and evi,vj ∈

E (GLT ) indicates that there is a data stream flowing from vertex
vi to vj, where vi and vj are the upstream and downstream vertex
of evi,vj , respectively. w

(
evi,vj

)
is the weight of evi,vj . It represents

the traffic load of evi,vj in transferring data tuples from vertex vi
to vj, which can be evaluated by the number of data tuples per
unit time.

As shown in Fig. 10, the logical topology of Top_N consists
of four vertices, and V

(
GLT (Top_N)

)
=

{
vreader , vcount , vrank, vmerge

}
.

The functions of vreader , vcount , vrank and vmerge are ‘‘reading data
tuples’’, ‘‘counting key words’’, ‘‘ranking key words’’, and ‘‘rank-
ing key words by count’’, respectively. There are five directed
edges, three of which transfer data tuples from upstream and
downstream; the first special edge, input edge, is responsible
 t

121
Fig. 10. The logical topology of Top_N.

Fig. 11. Data stream and data tuple.

for reading data from data source; the last special edge, output
edge, is responsible for generating the final processing result. The
size of each vertex indicates the weight of corresponding vertex,
and the size of data stream on each edge indicates the weight
of corresponding edge. (For simplicity, the weights of vertex and
edge in the following figures are not explicitly depicted).

The logical topology at runtime is usually viewed as an in-
stance topology (IT ). It is a directed acyclic instance graph GIT =

V (GIT ) , E (GIT )), and V (GLT ) ⊆ V (GIT ), E (GLT ) ⊆ E (GIT ). If
∀vi ∈ V (GLT ), then ∃k ∈ {1, 2, . . . ,m}, vi1, . . . , vik, . . . , vim are
instances of vi, and {vi1, vi2, . . . , vim} ⊂ V (GIT ). The functions of
m instances of vi are the same, that is fun (vi1) = fun (vi2) = · · · =

fun (vim). The weights of m instances of vi are also the same, that
is w (vi1) = w (vi2) = · · · = w (vim).

An instance topology of Top_N is shown as Fig. 1, where
vcount has three instances vcount1, vcount2, and vcount3. Their func-
tions and weights of vcount are the same, that is, fun (vcount1) =

un (vcount2) = fun (vcount3), and w (vcount1) = w (vcount2) =

(vcount3).

.2. Data model

A data stream ds = {dt1, dt2, . . . , dti, . . .} is a time series of
ata tuples [12,13], which originates from a data source, and ends
n a data sink.

As shown in Fig. 11(a), data stream dsk flows from data source
i to data sink vj. A data tuple dti = (keyi, valuei, tsi) is described
y keyi, valuei and tsi, representing the key, value and timestamp
f dti, respectively. As shown in Fig. 11(b), data tuple dtm flows
n vi and data tuple dtn flows out of vi. The relationship between
ata tuple dtm and dtn can be described as (1).

tn = fvi (dtm) , (1)

here fvi () is the function of vertex vi.
The timestamp [14] of a data tuple is assigned by a vertex,

hich produces that data tuple. Each vertex assigns a timestamp
o a data tuple independently. All data tuples produced by the
ame vertex form a data stream, ordered by the timestamps, each
f which is unique in its data stream. As shown in Fig. 11(c), the
imestamp of each data tuple is assigned by vertex vi. All data

uples form a stream dsk.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

3

c
E
d

a
s

i
o
s
s
g
i
r

4

m
v
i
n
s

l
o
b
a

Fig. 12. Different instance sets of vertex vj .

Fig. 13. Partitioning data stream among instances of vj .

.3. Grouping model

In an instance topology GIT , it is critical to dynamically deter-
mine an appropriate instance number for each vertex for perfor-
mance purposes [15,16]. For vertex vj, different sets of instances
an be created, each of which has different number of instances.
ach instance fulfills the same function but different sets provide
ifferent processing capabilities. These instance sets of vj can be

elastically replaced with each other to adapt the dynamic data
streams.

As shown in Fig. 12, in order to meet different processing
requirements, e.g. low, medium, and high speed input, vj can
djust the instance number accordingly by selecting one instance
et out of the three.
For vertex vj, if the instance number is greater than one, the

nput data stream needs to be partitioned among all the instances
f vj. The partitioning method of data stream between the in-
tance sets of two directly connected vertices is called grouping
trategy. As shown in Fig. 13, according to the grouping strategy
() between vertex vi and vj, the data stream dsk is partitioned
nto 3 sub-data streams dsk1, dsk2 and dsk3 for vj1, vj2 and vj3,
espectively.

. Problem statement

Based on the system models defined, in this section, we for-
alize the problems of optimizing the instance number for each
ertex, determining the data stream load ratio among the vertex
nstances, and deploying the instance topology to computing
odes in data center, which are located at the instance level, data

tream level and scheduling level, respectively.

122
4.1. Optimizing instance number

At the instance level, one or more instances will be created
for each vertex of a logical topology to improve the processing
capacity. To adapt to the changing data stream and utilize the
resources well, the instance number for each vertex needs to
be adjusted from time to time. For a vertex vi ∈ V (GLT ) in a
ogical topology GLT , if vi1, vi2, . . . , vimvi

are the instances of vi, the
ptimization problem at this instance level converts to finding the
est fit number mvi for vi, which helps maximize the throughput
nd minimize the latency of vi.

max (t (vi)) andmin (l (vi)) , (2)

subject to

1 ≤ mvi ≤ mmax, vi ∈ GLT , (3)

where t (vi) and l (vi) are the throughput and latency of vi, respec-
tively. mmax is the system-specified SLAs (Service Level Agree-
ments) [17] constraint.

4.2. Optimizing data stream load ratio among instances

At the data stream level, it is necessary to constantly moni-
tor available resources and optimize data stream partition [18]
among multiple instances. A good data stream grouping strategy
can often well achieve load balancing among vertex instances,
helping maximize the throughput and minimize the latency of
GIT . For a vertex vi ∈ V (GLT ), if vi1, vi2, . . . , vimvi

are the instances
of vi, the load balancing deviation of all the mvi instances of vi can
be evaluated by (4).

lbdvi =
1
mvi

mvi∑
k=1

⏐⏐lenvik − lenvi

⏐⏐ , (4)

where lenvik is the length of data tuple queue on the kth instance
of vi, and lenvi is the average length of data tuple queue on all
instances of vi.

The data stream grouping optimization problem for mvi in-
stances of vi can be formalized as follows:

min
(
lbdvi

)
, (5)

subject to

1 ≤ mvi ≤ mmax, vi ∈ GLT (6)

4.3. Optimizing deployment of instance topology to computing nodes

At the scheduling level, it is necessary to constantly monitor
the state of each instance on computing nodes and optimize the
deployment according to the changing data stream and available
resources. It is expected that both the stability and adaptability
are being maintained, while trying to maximize the throughput
and minimize the latency of GIT . For an instance topology GIT ,
V (GIT ) and E (GIT ) are finite set of vertices and directed edges.
For a data center DC with n computing nodes cn1, cn2, . . . , cnn,
the instance deployment optimization problem for all vertices in
V (GIT ) can be formalized as follows:

max (t (GIT )) andmin (l (GIT )) , (7)

subject to

∆tm ≤ tmmin, (8)

where t (GIT ) and l (GIT ) are the throughput and latency of GIT .
∆tm is the time interval to redeploy part or all the instances
online from the current state to the next new state. tmmin is a

user-specified SLAs constraint.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

i

Fig. 14. Mc-Stream architecture.

5. Mc-Stream: Architecture and algorithms

Based on the above experimental and theoretical analysis,
a multi-level collaborative framework, Mc-Stream, is proposed
on top of the Storm platform. To provide an overview of the
framework, this section discusses its system architecture and al-
gorithms used for instance management, data stream redirection,
scheduling management and resource management.

In Storm platform, once an application is submitted, the plat-
form instantiates its logical topology and deploys the topology
to computing nodes. If the system performance is not ideal, our
multi-level collaborative framework will step in to optimize the
initial settings for performance improvement. For instance, the
instance number of each vertex and the data stream grouping
strategy among instances are to be optimized at the instance
level. This specific grouping strategy can be customized by imple-
menting the CustomStreamGrouping interface on Storm [4]. The
scheduling state of instances on each computing node is to be
optimized at the scheduling level. The utilization of resources is
to be optimized at the resource level.

5.1. System architecture

The system architecture of Mc-Stream includes four levels:
user level, instance level, scheduling level and resource level, as
shown in Fig. 14.

At the user level, user subdivides the application function,
clarifying the internal logic, data dependencies and indicating
the data stream grouping strategy between the upstream and
downstream vertices. This logical topology is built via the Spout
and Bolt interface provided by the Storm platform. Generally,
the logical topologies constructed by different users for the same
123
application might be different due to different function subdivi-
sion. It is difficult to make all the constructed logical topologies
optimal. Instead, it is more practical to improve users’ under-
standing of the application function and implementation logic
to build a reasonable logical topology. Once the logical topology
is submitted to the Storm platform, it can be further optimized
through instantiation.

At the instance level, each vertex in the logical topology is
instantiated to one or more instances. All the instances form
an instance topology of the logical one. For a vertex, its in-
stance number is the most critical parameter to determine in
the instantiation process [19]. A reasonable instance number can
significantly improve the throughput and latency of the instance
topology, otherwise it may increase the burden of the system
and affect the performance negatively. In a general sense, the
instance number of a vertex is determined by factors such as
the vertex function, the available computing resources and the
data stream ratio, etc. Choosing a right number will enable the
vertex to process the data stream effectively and reduce the risk
of introducing a bottleneck in the instance topology.

At the scheduling level, each instance in the instance topology
is deployed to a computing node in the data center according
to a scheduling strategy. When the resources are limited or the
data stream fluctuates, the scheduling strategy aims for meeting
the user’s requirements for throughput and latency; when the
resources are sufficient, it aim for best utilizing the resources or
trying to optimize the throughput and latency. In general, the
scheduling strategy needs to consider factors such as instance
topology, available resources in data center and rate of data
stream, etc. [20]. On Storm platform, a scheduling strategy can
be customized by implementing the IScheduler interface and
specified in the configuration file Storm.yaml [4].

At the resource level, it is necessary to ensure the efficient
utilization of resources and maintain the system stability. The
realization of these objectives requires the multi-level coordina-
tion [21].

5.2. Instance management

While the Mc-Stream optimizing the initial scheduling, at the
instance level, the instance number for each vertex in the logical
topology is determined by the computational complexity of the
vertex function, the processing capacity of the computing node
and the rate of data stream.

For a vertex vi ∈ V (GLT ), cvi and mvi are the computational
complexity and instance number of vertex vi, respectively. pvi is
the processing capacity of the computing node that vertex vi is
running on. In order to set a reasonable instance number mvi and
balance computing load, each vertex in V (GLT ) needs to meet the
condition that the amount of calculation in one unit processing
capacity is proportional to the instance number, as specified by
(9).
cv1
pv1

:mv1 =
cv2
pv2

:mv2 = · · · =
cvn
pvn

:mvn . (9)

Under a data stream input ratio rv1 , for the first vertex v1
n logical topology GLT , its ideal instance number mv1 can be
determined by constantly increasing the instance number until
the performance is no longer improved. E.g. throughput no longer
increases and latency no longer decreases. Once the instance
number mv1 of v1 under ratio rv1 is determined, the instance
number for the rest vertices can be determined according to (9).

The algorithm for instance management is described in Algo-
rithm 1.

Algorithm 1: Instance management.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131
The input of this algorithm includes logical topology GLT , pro-
cessing capacity of each computing node in data center DC and
data stream input ratio rv1 . The output is the instance number for
each vertex in GLT under ratio rv1 . Step 6 to step 9 set the max-
imum throughput max (t (vi)) and minimum latency min (l (vi)),
and get the computational complexity cvi for each vertex vi. Step
10 to step 13 set the processing capacity pvi of each vertex under
the current scheduling state. Step 16 to step 19 get the instance
number mv1 for input vertex v1 under ratio rv1 by constantly
increasing the instance number until the throughput t (v1) and
latency l (v1) are no longer improved. Step 20 to step 23 calculate
and optimize the instance number mvi for the rest vertices in
GLT according to (9), ensuring that the processing capacity is
proportional to the number of instances.

5.3. Data stream redirection

At the instance level, unbalanced data stream distribution
among vertex instances may make some overloaded instances
124
Fig. 15. Processing instance online scheduling.

Fig. 16. Average latency (AL) of Top_N with different number of streaming
applications.

Fig. 17. Average latency (AL) of Top_N under different input rates.

become system bottlenecks, while the others are under-loaded
or even idle, compromising resources efficiency and system per-
formance [22]. It is important to balance the load among these
instances and optimize the local performance at the granularity of
instance, helping improve the global performance of the instance
topology.

For a vertex vi ∈ V (GLT ), if vi1, vi2, . . . , vimvi
are instances

of vi in instance topology GIT , data tuples flow from upstream
vertex/vertices to downstream vertex vi, to balance load among
all mvi instances of vi, the data tuples will be grouped according
to the length of current idle queue of each instance. (Usually, a
stream computing system maintains a local queue to buffer data
tuples for each vertex.)

For the kth instance vik, its probability of being assigned a data
tuple can be calculated by (10).

pbvik =
lvik − lenvik∑mvi

l=1

(
lvil − lenvil

) (10)

where lvik is the queue length on the kth instance of vi, and lenvik
is the queue occupancy length by data tuples on the kth instances.

The algorithm for data stream redirection is described in Al-
gorithm 2.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

q
7

a

Algorithm 2: Data stream redirection.

The input of this algorithm includes instance topology GIT ,
queue state of each computing node in data center DC. The output
is data stream grouping scheme for vertex instances in instance
topology GIT . Step 3 to step 6 set the total queue length lvik and
ueue occupancy length lenvik on the kth instances in GIT . Step
to step 11 set the maximum average queue length max

(
len

)
and the minimum average queue occupancy length min

(
len

)
on

all the m instances of v , and set the maximum load balancing
v1 i

125
Fig. 18. Average latency (AL) of Top_N with different number of computing
nodes.

Fig. 19. Average throughput (AT ) of Top_N with different number of streaming
pplications.

Fig. 20. Average throughput (AT ) of Top_N under different input rates.

deviation max
(
lbdvi

)
for each vertex vi, where max

(
len

)
is to pre-

vent all instances from being overloaded, min
(
len

)
is to prevent

all instances from being underloaded. max
(
lbdvi

)
is to keep all

instances in a reasonable load balancing state. Step 12 to step 17
update the instance number of each vi in GLTby Algorithm 1. Step
18 to step 24 update the data tuple assigning probability pbvik
of the kth instance vik by (10), and get the data stream grouping
scheme for all the instances in instance topology GIT .

5.4. Scheduling management

At the scheduling level, instances in the instance topology
need to be properly deployed to available computing nodes.
This deployment should not only meet the requirements for
throughput and latency imposed by users, but also ensure effi-
cient utilization of resources in data center. In an elastic stream



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

c
n
o
o
s
a
O

A

p
d
s
5
c
s
o
t
c
t
S
I
t
s
a
d
a
g
a
t
i

5

a
j
t
s
r

i
c
e
h
c
w
I
i
c
a

s
i
(
e

f
G
(
A
c
t
n
v

f
v

p
i
s

A

omputing environment, a theoretical optimal schedule might
ot always be practically optimal due to continuously changing
f data stream and available resources [23,24]. Therefore, instead
f spending too much time on searching for a theoretical optimal
chedule at the scheduling level, we use much less time to find
scheduling scheme to only meet users’ SLOs (Service Level
bjectives).
The algorithm for scheduling instance topology is described in

lgorithm 3.
Algorithm 3: Scheduling instance topology.
126
The input of this algorithm includes instance topology GIT ,
rocessing capacity of each computing node in data center DC and
ata stream input ratio rv1 . The output is an instance scheduling
cheme for GIT on computing nodes under ratio rv1 . Step 3 to step
get the weight w (vi) share of each instance, where w (vi) is the
omputational complexity cvi obtained via code analysis. Step 6 to
tep 8 get the weight w

(
evi,vj

)
of each directed edge via analysis

n the size of data tuple volume per unit time from vi to vj at
he instance level. Step 9 to step 11 get the available processing
apacity pcni of computing node cni. Step 12 sets the maximum
hroughput max (t (GIT )) and the minimum latency min (l (GIT )).
tep 13 to step 29 schedule instances of GIT to computing nodes.
n this process, the following principles are applied: (1) instances
hat have data stream dependencies should be allocated to the
ame computing node as much as possible should resources
llow; (2) different instances of the same vertex are scheduled to
ifferent computing nodes; (3) an instance should be deployed to
computing node with the most available resources, providing a
ood basis for potential future rescheduling. In addition, step 14
nd 15 ensure that the instances are in a topological order and
he computing nodes are in a descending order, which further
mproves the efficiency of instance scheduling.

.5. Resource management

At the resource level, when the data stream input or the
mount of available resources changes, it is necessary to ad-
ust the deployment of instances to the computing nodes on
he fly. This adjustment should be done in a timely manner to
ustain a high-performance system and efficient utilization of
esources [25].

For an instance vik in instance topology GIT , if its weight w (vik)

n current scheduling state is the highest, then instance vik is
onsidered as a hotspot [26] instance. Similarly, the directed
dge evi,vj with the highest weight w

(
evi,vj

)
is considered as a

otspot edge. The instance vik with the lowest weight w (vik) is
onsidered as a coldspot instance, and the directed edge evi,vj

ith the lowest weight w
(
evi,vj

)
is considered as a coldspot edge.

n the process of improving throughput and latency, the hotspot
nstances and edges can be the focus of optimization, while in
ases for improving resource usage rate, the coldspot instances
nd edges can be the candidates.
To optimize current scheduling for the hotspot/coldspot in-

tances and edges, the following principles can be applied: (1)
ncrease the resource deployment for the hotspot instance; and
2) reduce the resource deployment for coldspot instances and
dges.
To reschedule an instance to another computing node, the

ollowing conditions should be satisfied: (1) the instance topology
IT is running continuously; (2) the data stream has no loss; and
3) the instance scheduling is realized through pseudo scheduling.
s shown in Fig. 15(a), instance vik is to be rescheduled to another
omputing node and instance vij is the upstream instance of vik. At
he beginning, a replica instance v′

ik of vik is started on the target
ode. By now, the upstream vij still distributes the data tuples to
ik only, as shown in Fig. 15(b). When the replica instance v′

ik is
ully deployed, the upstream vij starts to distribute data tuples to
′

ik, and stops the data distribution to vik. At the same time, vik
erforms state migration to v′

ik, as shown in Fig. 15(c). After that,
nstance vik is removed and relevant resources are released, as
hown in Fig. 15(d).
The algorithm for online resource management is described in

lgorithm 4.
Algorithm 4: Online resource management.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

i
i

r

e

6

S

The input of this algorithm includes current instance schedul-
ng scheme for GIT , processing capacity of each computing node
n data center DC and data stream input ratio rv1 . The output
is an optimized instance scheduling scheme for GIT on comput-
ing nodes under ratio rv1 . Step 8 to step 13 optimize the cur-
ent instance scheduling scheme to improve throughput t (GIT )

and latency l (GIT ). Step 14 to step 18 further optimize the cur-
rent instance scheduling scheme of GIT by improving the usage
fficiency of computing nodes e (DC).

. Experimental evaluation

This section focuses on the evaluation of the proposed Mc-
tream framework. For comparison purposes, the experimental
127
settings are the same as those in Section 2. Three performance
metrics are evaluated for Top_N application: average latency (AL),
average throughput (AT ) and average resource utilization (ARU).

6.1. Latency

The average latency (AL) of a streaming application is one
of the key performance metrics for an elastic stream computing
system. We evaluate the application latency under different ap-
plication numbers, different data stream input rates and different
numbers of computing nodes.

Given the data stream input rate is set to 1000 tuples/s, for
each application number, the average latency of Top_N by Mc-
Stream is shorter than the default scheduling strategy by Storm.
With the increase of application number, the difference between
the two strategies becomes apparent. As shown in Fig. 16, when
the number is less than 12, both the average latencies of Mc-
Stream and Storm can stabilize at a certain level, which are 30mz
and 43mz, respectively. However, when the application number
is greater than 12, both the average latencies are increasing
accordingly. When the number reaches 20, the average latencies
are 71mz and 106mz, respectively. The latency difference is sig-
nificant, demonstrating the improvement brought by Mc-Stream
against Storm in this scenario.

Given the application number of Top_N is set to 2, under
different input rates, the average latency of Mc-Stream is shorter
than that of Storm. With the increase of input rate, the difference
between the two strategies also becomes apparent. Mc-Stream
has a better average latency improvement under higher input
rates. As shown in Fig. 17, when the rate is 1000 tuples/s, the
average latencies of Mc-Stream and Storm are 30mz and 43mz,
respectively. The difference between the two strategies is 13 mz.
However, when the rate reaches 5000 tuples/s, the average laten-
cies are 258mz and 391mz, respectively. The difference between
the two is 133 mz. Mc-Stream outperforms Storm.

Given the application number of Top_N is set to 2, for different
numbers of computing nodes, the average latency of Mc-Stream is
shorter than that of Storm. To be more specific, when the number
of computing nodes increases to a certain extent, the average
latency of Mc-Stream still keeps stable, however, Storm’s latency
does not. As shown in Fig. 18, when the number of computing
nodes is under 15, with the increase of node number, the average
latencies of Mc-Stream and Storm both are decreasing. When the
number is greater than 15, Mc-Stream’s latency stabilizes at a
certain level, which is 28 ms. However, for Storm, its latency
is slowly increasing. When the number reaches 35, the average
latency of Storm becomes 58 ms, 30 ms higher than that of
Mc-Stream.

Generally, compared with Storm, Mc-Stream has shorter aver-
age latency and greater improvement under conditions of higher
application numbers, higher data stream input rates and higher
numbers of computing nodes. This is because Mc-Stream sup-
ports collaboration between multiple strategies at multiple levels,
and tries to maximize the performance optimization space in the
shortest possible time.

6.2. Throughput

The average throughput (AT ) of a streaming application is its
average output rate of data tuples in a stream computing environ-
ment. In general, the higher the system throughput, the greater
the data processing capability of the computing environment.
We evaluate the throughput of the streaming application Top_N
under different application numbers, different input rates and
different numbers of computing nodes.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131
Fig. 21. Average throughput (AT ) of Top_N with different number of computing
nodes.

Given the input rate is set to 1000 tuples/s, for each appli-
cation number, the average throughput of Mc-Stream is greater
than that of Storm. With the increase of application number,
a situation of relative resource shortage is developed and the
average throughputs of both strategies continue to decline. As
shown in Fig. 19, when the application number is less than 12,
both the average throughputs stabilize at a certain level, which
are 621 tuples/s and 459 tuples/s, respectively. By this point, the
throughput difference between the two is quite significant (162
tuples/s) with Mc-Stream outperforming Storm. However, when
the number is greater than 12, both throughputs decrease along
with the increase of the application number. When the number
reaches 20, the average throughputs of Mc-Stream and Storm are
411 tuples/s and 307 tuples/s, respectively. The difference is still
notable with Mc-Stream taking the lead.

Given the application number of Top_N is set to 2, under
different input rates, the average throughput of Mc-Stream is
higher than that of Storm. With the increase of input rate, their
difference also becomes apparent. Mc-Stream has a better av-
erage throughput improvement under a higher input rate. As
shown in Fig. 20, when the rate is 1000 tuples/s, the average
throughputs of Mc-Stream and Storm are 621 tuples/s and 459
tuples/s respectively. The difference is 162 tuples/s. However,
when the rate reaches 5000 tuples/s, their average throughputs
are 3051 tuples/s and 2231 tuples/s, respectively. The difference
is 820 tuples/s with Mc-Stream outperforming Storm.

Given the application number of Top_N is set to 2, for different
numbers of computing nodes, the average throughput of Mc-
Stream is higher than that of Storm. More specifically, when
the number of nodes increases to a certain extent, the aver-
age throughput of Mc-Stream keeps stable, however, Storm’s
throughput does not. As shown in Fig. 21, when the number is
under 15, with the increase of node number, both the average
throughputs are increasing. When the number is greater than
15, Mc-Stream’s throughput stabilizes at a certain level (621 tu-
ples/s). However, Storm’s is slowly decreasing. When the number
of nodes reaches 35, the average throughput of Storm is 407
tuples/s, 214 tuples/s lower than that of Mc-Stream.

From the above scenarios, it can be found that similar to the
average latency, Mc-Stream also has higher average throughput
and greater improvement over Storm.

6.3. Resource utilization

The average resource utilization (ARU) of computing nodes in
data center DC can be evaluated by the average CPU utilization
of these nodes, which reflects the average loading state of CPU
queue. The average resource utilization needs to be kept at a
reasonable load level. Either too high or too low is not ideal.
128
Fig. 22. Average resource utilization (ARU) of computing nodes with different
number of streaming applications.

Fig. 23. Average resource utilization (ARU) of computing nodes under different
input rates.

We evaluate the resource utilization of computing nodes under
different application numbers, different input rates and different
numbers of computing nodes.

Given the input rate is set to 1000 tuples/s, for each appli-
cation number, the average resource utilization of Mc-Stream is
more efficient than that of Storm. With the increase of application
number, a situation of relative resource shortage is developed
in the data center DC. The average resource utilization rates by
both strategies continue increasing. As shown in Fig. 22, when
the application number of Top_N is under 14, both the average re-
source utilization rates are increasing along with the application
number. At this stage, compared with Storm, Mc-Stream reduces
the resource utilization rate by more than 34%, which means
it uses resources more wisely. However, when the application
number is greater than 14, the rate of Storm is increasing to 100%,
while Mc-Stream still has room to reach the full load. When the
application number reaches 20, the rate of Mc-Stream is 97%,
while Storm has reached 100% when the number is 14.

Given the application number of Top_N is set to 2, under
different data stream input rates, the average resource utilization
of Mc-Stream is more efficient than that of Storm. In the case of
sufficient resources, with the increase of input rate, the difference
between the two strategies becomes apparent. In the case of
insufficient resources (e.g. less computing nodes than required),
with the increase of input rate, the average resource utilization
of Mc-Stream is more efficient than that of Storm. As shown in
Fig. 23, when the input rate varies within range [1000, 3000]
tuples/s, the utilization rate difference between the two changes
from 10% to 29%. When the input rate varies within range [3000,
5000] tuples/s, the resource utilization of Mc-Stream is always
more efficient than that of Storm. When the input rate reaches
4000 tuples/s, Mc-Stream and Storm use up to 89% and 100% of
resources, respectively.



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

n

n
M
i
w
s
t
s
r
v
s
r
w
a
s
a

t
o
h

7

w
t
c

7

b
m
i
t
e
p
m
e
a

i
o
p
d
p
e
t

Fig. 24. Average resource (ARU) utilization of computing nodes with different
umber of computing nodes.

Given the application number of Top_N is set to 2, for different
umbers of computing nodes, the average resource utilization of
c-Stream is more efficient than that of Storm. In the case of

nsufficient resources (e.g. less computing nodes than required),
ith the increase of node number, both the utilization rates drop
harply. In the case of sufficient resources, with the increase of
he node number, the utilization rates of Mc-Stream maintains a
teady decreasing trend and achieves a more efficient utilization
ates than Storm. As shown in Fig. 24, when the node number
aries within range [0, 15], both the utilization rates are dropping
harply. When the node number is greater than 15, Mc-Stream’s
ate stabilizes at a relatively stable level with a decreasing trend,
hile Storm’s rate also stabilizes at a certain level but maintains
slowly increasing trend. It can be seen that Mc-Stream uses re-
ources more efficiently than Storm in the scenarios of sufficient
nd insufficient resources.
In summary, similar to the average latency and average

hroughput, Mc-Stream has more efficient resource utilization
f computing nodes and greater improvement over Storm. The
arsher the conditions, the more obvious this advantage.

. Related work

In this section, we review the two broad categories of related
ork: application scheduling for elastic stream computing sys-
ems and system performance optimization of distributed stream
omputing systems.

.1. Application scheduling for elastic stream computing systems

Application scheduling plays an important role [23,27] for
uilding an elastic stream computing system. In recent years,
ore and more researchers [28–30] focus on application schedul-

ng problem to provide a low system latency and high system
hroughput in an online stream computing environment. How-
ver, it is hard to find an optimal scheduling as the scheduling
roblem for stream applications is NP-hard [7,31,32]. What is
ore difficult is that the scheduling is carried out in an online
nvironment, which needs to take into account both the system
vailability and scheduling efficiency.
To process large volume of data with low latency and min-

mal resources in a stream computing environment, similar to
ur work, in [9], the authors first showed their finding that is
roviding a wrong kind of container would lead to performance
egradation, then they proposed a multi-level elastic resources
rovision strategy. The strategy considered different levels of
xecution containers and provided the least expensive container
o increase performance.
129
Table 2
Comparison of our work and other related work.
Type Other related work Our work

[9] [23] [25] [35]

User level ✘ ✘ ✘ ✘ ✓

Instance level ✓ ✘ ✓ ✘ ✓

Scheduling level ✓ ✓ ✓ ✘ ✓

Resource level ✓ ✓ ✓ ✓ ✓

Coordinate ✘ ✘ ✘ ✓ ✓

Focusing on the problem of scheduling streaming applications
in a heterogeneous environment, in [33], a maximum throughput
scheduler was developed, where a dynamic programming tech-
nique was used to efficiently schedule the streaming applications
based on the computing and data transfer requirements.

To optimize the usage of heterogeneity resources, such as
CPUs, GPUs and FPGAs, in [34], a heterogeneity-aware scheduling
was proposed. It tried to facilitate holistic optimization over
multiple running tasks with various service level agreements. A
framework called HaaS was proposed, aiming at real-time data
analytics by encompassing a collection of existing algorithms and
primitive operations. Fault-tolerance and at-least-once guarantee
were also considered in HaaS.

In [35], the problem of resource allocation and resource place-
ment were considered separately. The proactive elastic resource
scheduling problem for computation-intensive and
communication-intensive applications was investigated. A dy-
namic collaborative strategy was proposed and a latency esti-
mation model was constructed to estimate the latency of the
streaming applications.

To minimize the cost of processing streaming applications in
geographically distributed data centers, in [36], a transformation-
based streaming application allocation algorithm was proposed,
targeting the objective of cost-minimization. It considered the
characteristics of streaming applications and price heterogeneity
among geographically distributed data centers.

Reducing the energy consumption of data centers is a neces-
sity. In [37], a holistic energy-efficient real-time scheduler was
proposed for mixed stream and batch processing systems, where
a DVFS (Dynamic Voltage and Frequency Scaling) technique was
applied to minimize energy consumption.

To summarize, building an elastic stream computing system
by optimizing scheduling state of applications has been exten-
sively studied. However, most of them tried to build an elastic
stream computing system from one perspective or at one level.
The summary of the comparison between our work and other
related works is given in Table 2. Extensive experiments in this
paper show that the extent of performance improvement is lim-
ited if only optimizing scheduling from one single perspective
or level. It is recommended to build an elastic stream com-
puting system by considering multiple perspectives at multiple
levels. Moreover, appropriate coordination is needed as the mul-
tiple perspectives or multiple levels are not isolated. To explore
this idea, in our work, we build one multi-level collaborative
framework for elastic stream computing systems. It can optimize
the scheduling performance from multiple levels, including user
level, instance level, scheduling level and resource level, and
coordinate factors from these levels.

7.2. System performance optimization of distributed stream comput-
ing systems

To optimize the performance of distributed stream computing
systems, many researchers have widely investigated this area
from multiple different aspects, such as large parameter config-

uration [1,38], fault tolerance management [12,39,40] and state



D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131

m
m

i
a
p
r
I
c
S

a
m
T
r
i
f
l
r
i
t
w
s

i
i
I
t
s

p
s
a
a

8

e
d
c
s
r
p
s
l

t
r
m
d
f
l
a
s
u
m
w

s
f
m
a
f
l
a

i
y
i
R
S

D

c
t

A

d
R
N
R

R

anagement [41]. All those work improved the system perfor-
ance from one aspect or another.
To solve the problem of high variability and unpredictabil-

ty of workloads in a cluster environment, in [1], a scalable
nd programmable control plane was designed. The plane sup-
orted continuous monitoring and feedback, enabled dynamic
e-configuration and asynchronously executed control policies.
n [38], a self-regulating streaming system was designed, which
ould automatically reconfigure topologies to meet throughput
LOs and scale resources consumption up and down as needed.
To build a fault tolerance system with fast recovery time

nd low system overheads, in [12], the authors provided a state
anagement strategy for each vertex in a streaming application.
he fault tolerance only focused on the stateful vertices, which
educed the amount of data for checkpoint drastically. It helped
mprove the recovery time and reduce the overheads. In [39], a
ine-grained fault-tolerant strategy for economical resource uti-
ization was proposed. It was on the premise of efficient data
ecovery. Both workload and fault tolerance were considered
n the framework. In [40], a passive and partially active fault
olerance was proposed for parallel stream computing systems,
here a passive approach was applied to all tasks while only a
elected set of tasks were actively replicated.
To implement an elastic stateful stream computing system,

n [41], a library for efficient reconfiguration of running queries
n the presence of very large distributed state was proposed.
t provided a handover protocol and a state migration protocol
o consistently and efficiently migrate stream processing among
ervers.
Compared with the aforementioned research work, in this

aper, we build an elastic stream computing system from the per-
pective of scheduling streaming applications. The problems such
s large parameter configuration, fault tolerance management,
nd state management are beyond the scope of our work.

. Conclusions and future work

Stream application scheduling is one of the keys to achieve
lasticity in a stream computing system. It requires on-demand
etermining the relationships between vertices of stream appli-
ations and computing nodes in a data center, and on-demand
caling in/out the workload on computing nodes properly during
untime. This scheduling problem is one of the most thought-
rovoking NP-hard problems. The real-time fluctuating data
treams and complex vertex dependencies also increase the chal-
enge to resolving this problem.

Our work is motivated by the observation that unsatisfac-
ory system performance is mainly caused by frequent online
escheduling. Moreover, the performance may be affected by
ultiple factors at different levels. As these factors are not in-
ependent of each other, by simply optimizing the performance
rom one factor’s perspective, the extent of improvement can be
imited, and sometimes might even be invalid. To address the
bove issues, we build a system which supports high system
tability, low system latency and effective resource utilization
sing multi-level collaborative framework. It suits for environ-
ents which require relatively long-term online state and deal
ith fluctuating stream input.
In this paper, comparative experiments are conducted, demon-

trating that the system performance is affected by multiple
actors at different levels. Based on the Storm platform, a system
odel is constructed, including a topology model, a data model
nd a grouping model. The problem of multi-level collaborative
ramework is formalized, followed by the proposal of the multi-
evel strategies, which include a lightweight instance number
djustment strategy, an available resource-aware data stream
130
redirection strategy, a fast and effective scheduling management
and an asynchronous runtime redeployment method without
state loss. Performance metrics such as system latency, through-
put, and resources utilization are evaluated using real-world
stream applications. The effectiveness of the proposed solution
is verified.

Our future work will be focusing on integrating the state man-
agement as a part of Mc-Stream, considering the configuration
of online optimization parameter to improve the system perfor-
mance, and applying Mc-Stream in real elastic stream computing
scenarios, such as real-time online product recommendation.

CRediT authorship contribution statement

Dawei Sun: Conceptualization, Methodology, Validation, Writ-
ng – original draft, Funding acquisition. Shang Gao: Formal anal-
sis, Investigation, Writing – review & editing. Xunyun Liu: Val-
dation, Investigation, Data curation, Writing – review & editing.
ajkumar Buyya: Conceptualization, Writing – review & editing,
upervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work is supported by the National Natural Science Foun-
ation of China under Grant No. 61972364; the Fundamental
esearch Funds for the Central Universities, China under Grant
o. 2652021001; Melbourne-Chindia Cloud Computing (MC3)
esearch Network, Australia.

eferences

[1] M. Luo, Z. Kai, P. Rahul, X. Le, S. Steve, V. Shivaram, C. Paolo, K. Terry,
M. Saravanan, K. Vamsi, D. Sudheer, R. Sriram, Chi: A scalable and
programmable control plane for distributed stream processing systems,
in: 44th International Conference on Very Large Data Bases, VLDB 2018,
ACM Press, 2018, pp. 1303–1316.

[2] T. Akidau, A. Balikov, K. Bekiroǧlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, S. Whittle, Millwheel: Fault-tolerant
stream processing at internet scale, VLDB Endow. 6 (11) (2013) 1033–1044.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, S. Whittle,
The dataflow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing, VLDB
Endow. 8 (12) (2015) 1792–1803.

[4] Storm, https://storm.apache.org.
[5] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M. Patel,

K. Ramasamy, S. Taneja, Twitter heron: Stream processing at scale, in: Proc.
the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2015, ACM Press, 2015, pp. 239–250.

[6] Samza, http://samza.apache.org/.
[7] H. Röger, R. Mayer, A comprehensive survey on parallelization and elas-

ticity in stream processing, ACM Comput. Surv. 1 (2019) 1–37, https:
//arxiv.org/abs/1901.09716.

[8] M. Dias de Assunção, A. da Silva Veith, R. Buyya, Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions, J. Netw. Comput. Appl. 103 (2018) 1–17.

[9] M.M. Vania, D.P. Noel, E.R. Ahmed, Multi-level elasticity for data stream
processing, IEEE Trans. Parallel Distrib. Syst. 30 (10) (2019) 2326–2337.

[10] D. Sun, S. Gao, X. Liu, X. You, R. Buyya, Dynamic redirection of real-time
data streams for elastic stream computing, Future Gener. Comput. Syst.
112 (2020) 193–208.

[11] Y. Wang, Z. Tari, X. Huang, A.Y. Zomaya, A network-aware and partition-
based resource management scheme for data stream processing, in: Proc.
the 48th International Conference on Parallel Processing, ICPP 2019, ACM
Press, 2019, p. a20.

http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb1
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb2
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb2
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb2
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb2
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb2
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb3
https://storm.apache.org
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb5
http://samza.apache.org/
https://arxiv.org/abs/1901.09716
https://arxiv.org/abs/1901.09716
https://arxiv.org/abs/1901.09716
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb8
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb8
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb8
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb8
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb8
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb9
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb9
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb9
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb10
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb10
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb10
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb10
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb10
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb11


D. Sun, S. Gao, X. Liu et al. Future Generation Computer Systems 128 (2022) 117–131
[12] R.C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Integrating
scale out and fault tolerance in stream processing using operator state
management, in: Proc. ACM International Conference on Management of
Data, SIGMOD 2013, ACM Press, 2013, pp. 725–736.

[13] F. Kalim, T. Cooper, H. Wu, Y. Li, N. Wang, N. Lu, M. Fu, X. Qian, H. Luo,
D. Cheng, Y. Wang, F. Dai, M. Ghosh, B. Wang, Caladrius: A performance
modelling service for distributed stream processing systems, in: Proc. 2019
IEEE 35th International Conference on Data Engineering, ICDE 2019, IEEE
Press, 2019, pp. 1886–1897.

[14] X. Liao, Y. Huang, L. Zheng, H. Jin, Efficient time-evolving stream processing
at scale, IEEE Trans. Parallel Distrib. Syst. 30 (10) (2019) 2165–2178.

[15] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, T. Roscoe,
Three steps is all you need: Fast, accurate, automatic scaling decisions for
distributed streaming dataflows, in: Proc. the 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, USENIX
Association, 2018, pp. 783–798.

[16] J. Fang, R. Zhang, T.Z.J. Fu, Z. Zhang, A. Zhou, X. Zhou, Distributed
stream rebalance for stateful operator under workload variance, IEEE Trans.
Parallel Distrib. Syst. 29 (10) (2018) 2223–2240.

[17] B. Remesh, R. Kaippilly, P. Samuel, Service-level agreement–aware schedul-
ing and load balancing of tasks in cloud, Softw. - Pract. Exp. 49 (6) (2019)
995–1012.

[18] Z. Abbas, V. Kalavri, P. Carbone, V. Vlassov, Streaming graph partitioning:
An experimental study, Proc. VLDB Endow. 11 (11) (2018) 1590–1603.

[19] D. Cheng, X. Zhou, Y. Wang, C. Jiang, Adaptive scheduling parallel jobs with
dynamic batching in spark streaming, IEEE Trans. Parallel Distrib. Syst. 29
(12) (2018) 2672–2685.

[20] A. Singh, P. Ekberg, S. Baruah, Uniprocessor scheduling of real-time
synchronous dataflow tasks, Real-Time Syst. 55 (1) (2019) 1–31.

[21] X. Ni, S. Schneider, R. Pavuluri, J. Kaus, K.L. Wu, Automating multi-level
performance elastic components for IBM streams, in: Proc. 2019 20th
International Middleware Conference, Middleware 2019, ACM Press, 2019,
pp. 163–175.

[22] G. Hesse, C. Matthies, K. Glass, J. Huegle, M. Uflacker, Quantitative impact
evaluation of an abstraction layer for data stream processing systems, in:
Proc. 2019 39th IEEE International Conference on Distributed Computing
Systems, ICDCS 2019, IEEE Press, 2019, pp. 1381–1392.

[23] L. Eskandari, J. Mair, Z.Y. Huang, D. Eyers, T3-scheduler: A topology and
traffic aware two-level scheduler for stream processing systems in a
heterogeneous cluster, Future Gener. Comput. Syst. 89 (2018) 617–632.

[24] T. Tuor, S. Wang, K.K. Leung, B.J. Ko, Online collection and forecasting of
resource utilization in large-scale distributed systems, in: Proc. 2019 39th
IEEE International Conference on Distributed Computing Systems, ICDCS
2019, IEEE Press, 2019, pp. 133–143.

[25] F. Lombardi, L. Aniello, S. Bonomi, L. Querzoni, Elastic symbiotic scaling of
operators and resources in stream processing systems, IEEE Trans. Parallel
Distrib. Syst. 29 (3) (2018) 572–585.

[26] A. Arfeen, K. Pawlikowski, D. McNickle, A. Willig, Global and local scaling
analysis of link streams in access and backbone core networks, Comput.
Netw. 149 (2019) 154–172.

[27] J. Rho, T. Azumi, M. Nakagawa, K. Sato, N. Nishio, Scheduling parallel and
distributed processing for automotive data stream management system, J.
Parallel Distrib. Comput. 109 (2017) 286–300.

[28] H. Jin, F. Chen, S. Wu, Y. Yao, Z. Liu, L. Gu, Y. Zhou, Towards low-latency
batched stream processing by pre-scheduling, IEEE Trans. Parallel Distrib.
Syst. 30 (3) (2019) 710–722.

[29] A. Vulpe, M. Frincu, Scheduling data stream jobs on distributed systems
with background load, in: Proc. 2017 17th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, CCGRID 2017, IEEE Press,
2017, pp. 838–848.

[30] M. Barika, S. Garg, R. Ranjan, Cost effective stream workflow scheduling
to handle application structural changes, Future Gener. Comput. Syst. 112
(2020) 348–361.

[31] M. Mortazavi-Dehkordi, K. Zamanifar, Efficient deadline-aware scheduling
for the analysis of Big Data streams in public cloud, Cluster Comput. 23
(1) (2020) 241–263.

[32] M. Nardelli, V. Cardellini, V. Grassi, F. Lo Presti, Efficient operator place-
ment for distributed data stream processing applications, IEEE Trans.
Parallel Distrib. Syst. 30 (8) (2019) 1753–1767.

[33] A. Al-Sinayyid, M. Zhu, Job scheduler for streaming applications in hetero-
geneous distributed processing systems, J. Supercomput. 76 (12) (2020)
9609–9628.

[34] J. He, Y. Chen, T. Fu, X. Long, M. Winslett, L. You, Z. Zhang, HaaS: Cloud-
based real-time data analytics with heterogeneity-aware scheduling, in:
Proc. 2018 IEEE 38th International Conference on Distributed Computing
Systems, ICDCS 2018, IEEE Press, 2018, pp. 1017–1028.
131
[35] X. Wei, L. Li, X. Li, X. Wang, S. Gao, H. Li, Pec: Proactive elastic collaborative
resource scheduling in data stream processing, IEEE Trans. Parallel Distrib.
Syst. 30 (7) (2019) 1628–1642.

[36] C. Chen, I. Paik, P.C.K. Hung, Transformation-based streaming workflow
allocation on geo-distributed datacenters for streaming big data processing,
IEEE Trans. Serv. Comput. 12 (4) (2019) 654–668.

[37] S. Maroulis, N. Zacheilas, V. Kalogeraki, A holistic energy-efficient real-time
scheduler for mixed stream and batch processing workloads, IEEE Trans.
Parallel Distrib. Syst. 30 (12) (2019) 2624–2635.

[38] A. Floratou, A. Agrawal, B. Graham, S. Rao, K. Ramasamy, Dhalion: Self-
regulating stream processing in heron, Proc. VLDB Endow. 10 (12) (2017)
1825–1836.

[39] J. Fang, P. Chao, R. Zhang, X. Zhou, Integrating workload balancing and
fault tolerance in distributed stream processing system, World Wide Web
22 (6) (2019) 2471–2496.

[40] L. Su, Y. Zhou, Passive and partially active fault tolerance for massively
parallel stream processing engines, IEEE Trans. Knowl. Data Eng. 31 (1)
(2019) 32–45.

[41] B. Del Monte, S. Zeuch, T. Rabl, V. Markl, Rhino: Efficient management
of very large distributed state for stream processing engines, in: Proc.
the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2020, ACM Press, 2020, pp. 2471–2486.

Dawei Sun is an Associate Professor in the School of In-
formation Engineering, China University of Geosciences,
Beijing, P.R. China. He received his Ph.D. degree in
computer science from Northeastern University, China
in 2012, and conducted the Postdoctoral research in
the department of computer science and technology
at Tsinghua University, China in 2015. His current
research interests include big data computing, cloud
computing, and distributed systems. In these areas,
he has authored or co-authored over 60 journal and
conference papers.

Shang Gao received her Ph.D. degree in computer sci-
ence from Northeastern University, China in 2000. She
is currently a Senior Lecturer in the School of Informa-
tion Technology, Deakin University, Geelong, Australia.
Her current research interests include distributed
system, cloud computing, and cyber security.

Xunyun Liu received the B.E. and M.E degree in
Computer Science and Technology from the National
University of Defense Technology in 2011 and 2013,
respectively. He obtained the Ph.D. degree in Com-
puter Science at the University of Melbourne in 2018.
His research interests include stream processing and
distributed systems.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company of the
University, commercializing its innovations in Cloud
Computing. He has authored over 750 publications and
four text books. He is one of the highly cited authors in
computer science and software engineering worldwide
(h-index 150 with 117,600+ citations). He served as the
founding Editor-in-Chief (EiC) of IEEE Transactions on

Cloud Computing and now serving as EiC of Journal of Software: Practice and
Experience.

http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb12
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb13
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb14
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb14
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb14
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb15
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb16
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb16
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb16
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb16
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb16
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb17
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb17
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb17
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb17
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb17
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb18
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb18
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb18
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb19
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb19
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb19
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb19
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb19
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb20
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb20
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb20
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb21
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb22
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb23
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb23
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb23
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb23
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb23
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb24
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb25
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb25
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb25
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb25
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb25
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb26
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb26
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb26
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb26
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb26
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb27
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb27
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb27
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb27
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb27
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb28
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb28
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb28
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb28
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb28
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb29
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb30
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb30
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb30
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb30
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb30
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb31
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb31
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb31
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb31
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb31
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb32
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb32
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb32
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb32
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb32
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb33
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb33
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb33
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb33
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb33
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb34
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb35
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb35
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb35
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb35
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb35
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb36
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb36
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb36
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb36
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb36
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb37
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb37
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb37
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb37
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb37
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb38
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb38
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb38
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb38
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb38
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb39
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb39
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb39
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb39
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb39
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb40
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb40
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb40
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb40
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb40
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41
http://refhub.elsevier.com/S0167-739X(21)00395-2/sb41

	A multi-level collaborative framework for elastic stream computing systems
	Introduction
	Paper contributions
	Paper organization

	Observations and motivations
	Experimental environment
	Observations
	Motivations

	System model
	Topology model
	Data model
	Grouping model

	Problem statement
	Optimizing instance number
	Optimizing data stream load ratio among instances
	Optimizing deployment of instance topology to computing nodes

	Mc-Stream: Architecture and algorithms
	System architecture
	Instance management
	Data stream redirection
	Scheduling management
	Resource management

	Experimental evaluation
	Latency
	Throughput
	Resource utilization

	Related work
	Application scheduling for elastic stream computing systems
	System performance optimization of distributed stream computing systems

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


