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Abstract—Understanding human interests and intents from
movement data are fundamental challenges for any location-
based service. With the pervasiveness of sensor embedded
smartphones and wireless networks and communication, the
availability of spatio-temporal mobility trace (timestamped loca-
tion information) is increasingly growing. Analysing these huge
amount of mobility data is another major concern. This paper
proposes a cloud-based framework named MovCloud to efficiently
manage and analyse mobility data. Specifically, the framework
presents a hierarchical indexing schema to store trajectory data
in different spatio-temporal resolution, clusters the trajectories
based on semantic movement behaviour instead of only raw
latitude, longitude point and resolves mobility queries using
MapReduce paradigm. MovCloud is implemented over Google
Cloud Platform (GCP) and an extensive set of experiments on
real-life data yield the effectiveness of the proposed framework.
MovCloud has achieved ~ 28% better clustering accuracy and
also executed three times faster than the baseline methods.

Index Terms—Trajectory, Clustering, MapReduce, Cloud
Computing, Deep Learning

I. INTRODUCTION

With the increasing use of mobile-devices and advancement
of location acquisition technologies and sensor networks, a
huge amount of location traces are accumulated from varied
moving agents such as people on the move, private vehicles
and public transportation. These time-stamped sequences of
latitude and longitude information are depicted as trajectory
trace. The trajectories generated from the movement of agents
provide unprecedented opportunity to discover implied knowl-
edge and fosters several location-based services, namely, traffic
resource management, ride-sharing services [1], next location
prediction [2] and categorizing individuals from mobility
traces [3]. However, clustering mobility patterns from the huge
amount of historical traces is a challenging issue.

Interpreting human movement behaviour is pivotal for ef-
ficient urban planning and resource management. Mobility
trace analysis not only provides information about the crowd-
flow between varied places in different temporal-scales, it
has a significant role in mapping the intent of the move
[4]. For instance, the intent of a trip can be commuting to
workplace or a leisure travel. This analysis helps in location-
based advertising or even facilitates an effective transporta-
tion resource planning. Trajectory clustering is the primary
method to group similar movement patterns in a cluster [5]
and trajectory clustering has a wide range of applications.

It has an ubiquitous applicability in traffic monitoring, next
location prediction and activity analysis, since clustering helps
to reduce the storage and computing time of any pattern
mining task. Although, there are various methods [6],[7] to
cluster similar movement patterns, but all of the existing
works mainly focus on similarity measurements using raw
spatial and/or temporal features (speed, distance, time etc.)
of a trajectory. In this paper, our major goal is to clus-
ter the trajectories that represent similar moving behaviors
(semantic meaning) instead of only spatio-temporal features.
For example, commuting from home to work is a moving
behavior. Other examples include commuting for leisure travel,
business travel, shopping or commuting for medical help. It
may be noted that two trajectories having different spatial and
temporal scales can represent the same moving behavior. For
example, the commuting time from home to workplace may be
fifteen minutes for one individual and for other person, it takes
one hour. Clustering such moving behaviours do not work
well with conventional supervised learning with hand-crafted
feature set since human movement behaviours are diverse in
nature. To achieve this, MovCloud deploys a novel deep neural
network to cluster such movement trajectories.

Another concern in analysing mobility traces is the enlarg-

ing volume of time-series data, which makes the clustering
a challenging task. The mobility information management
task is non-trivial in a standalone database, due to this huge
volume of moving data and the constant updates. A survey
of big data analytics in cloud paradigm is presented in [8],
however, the existing approaches fall short to store, manage
and analyse spatio-temporal data. These necessitates a cloud-
based framework to effectively manage and explore mobility
traces in a timely manner.
Contributions: In this direction, the paper aims to build an
end-to-end cloud-based framework which is capable to cluster
the mobility pattern of a region and efficiently resolve the
mobility-based queries. The major contributions of the paper
can be summarized as:

- We propose a novel deep learning based trajectory clus-

tering algorithm to group similar moving behaviours.

- A novel indexing and query processing is proposed which

is executed in a distributive manner in the cloud.

- The system is also scalable to incorporate huge query-

load in a given time-period.



- The framework is evaluated using real-life mobility traces
and encouraging results have been found.

The rest of the paper is organized as follows. Section II
presents a review of recent studies in this direction. A few
preliminary concepts of the work and different modules of the
framework are presented in section III. Section IV depicts the
experimental evaluation and, finally, section V concludes the
paper with future research directions.

II. RELATED WORK

Trajectory clustering has widely attracted research attention
in the data mining community [6], [7]. There are several dis-
tance or density based clustering algorithms which measure the
similarity among the trajectory segments: EDR (Edit Distance
on Real sequence), DTW (Dynamic Time Warping) and LCSS
(Longest Common Subsequences) [6]. The partition-and-group
framework is proposed in [5] to discover common trajecto-
ries. The authors propose the framework namely, TRACLUS,
a widely referred trajectory clustering approach, using the
minimum description length (MDL) and a density-based line-
segment clustering method. Hung et al. [9] present a trajectory
aggregation algorithm by analysing spatially and temporally
co-located data points. A novel temporal-constrained sub-
trajectory cluster analysis is presented in [10], where the
authors propose a novel indexing structure: Representative
Trajectory Tree. There are also research advances to deploy
deep learning architecture in trajectory data mining tasks. Yao
et al. [11] propose a novel trajectory clustering approach by
deep representation learning. The authors present a sequence
to sequence auto-encoder to capture the movement behaviour
sequences. A RNN based model (coupling the check-ins)
called TULER is designed to capture the dependency of check-
ins and to infer the latent patterns of users in [12]. However, no
existing work focuses on clustering trajectory segments based
on similar movement behaviour or intent of the moving agent.

Table I: Comparisons of existing works and MovCloud frame-
work

Related Works
[51, 91, | [13] | [14], [15]
[10]
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There are few works on geo-spatial cloud and approaches
to speed up the computations. Shashi Shekhar et al. [16]
present the emerging challenges to analyse spatial big data and
how cloud paradigm is used to solve them. There are several
spatial data processing systems, namely, Hadoop-GIS [14] and
SpatialHadoop [17] which utilize MapReduce [15] paradigm
for power and cost effectiveness. Sijie Ruan et al. [18] present
a cloud-based trajectory data pre-processing framework based

on Spark. Traj-Cloud is presented in [13], where the frame-
work provides map-matching and query-processing services.
Li et al. [19] present an efficient framework to resolve path-
query from massive trajectory database on cloud. There are
several interesting applications of analysing human movement
history and activity-patterns [20]. For instance, optimal route
prediction [21], finding correlations of mobility patterns and
other contexts are studied in [22], [23], where authors observe
the correlations between movement history and academic
performances of students.

Table I summarizes the features of other existing works
and MovCloud. To the best of our knowledge, there is no
existing work which clusters trajectory segments by analysing
the semantic behaviour of the moving agents. Furthermore,
MovCloud presents novel MapReduce based query processing
and trajectory clustering approaches.

III. MovCLOUD FRAMEWORK

Fig. 1 illustrates the proposed framework, MovCloud, con-
sisting three major modules. In the pre-processing step, the
raw GPS log is associated with the semantic (geo-tagged)
information. In the next step, the trajectory is segmented
and stored followed by building a trajectory-index. Finally,
the clustering is carried out and the query mining module is
presented. Few preliminary terms are defined as follows:

- Road Network (R): Road network of a region is rep-
resented by a directed graph R = (Vg, Fr) where Vg
represents all intersecting points of the road-segments,
i.e., either starting or ending points of each such road-
fragment and Fr is the set of edges or roads in the map.

VR.:
ER = {'URi —J> |(URi7URJ‘) c VR}

- GPS Trajectory (G): The location information as p :<
latitude, longitude > pairs in chronologically ordered
time-series is termed as GPS trajectory or Trajectory
Trace.

,0n) = {(lat1,lony, t1) — (latg, long, ta)
— -+ — (laty, long, t,)}

(D

where (lat;,lon;) € R%, t; C R and t; < ty...t,.
The trajectory is formed by connecting the location
information on increasing time-ordering.

- POI-taxonomy: POI or Point-of-interest refers to a
specific-type of landuse associated with a location, which
typically depicts the social functional region of a place
such as residential building, academic premise, entertain-
ment area. Several apis namely Google Place API' and
Foursquare* provide such place information to associate
raw GPS trace with their POI-tags. In this work, the
POIs of the region-of-interest are classified in a tree-
structured taxonomy where the leaf nodes represent the

G(p17p27"'

'Google Place API: https://developers.google.com/maps/documentation/
javascript/examples/geocoding-reverse
2Foursquare: https://developer.foursquare.com/places-api
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Figure 1: Workflow of MovCloud framework

specific POI-information and nodes at the top represent
more generic POI information.

- Stay-point (S) and Trajectory Segment (Traj_Seg): The
stay-point depicts set of GPS-points which are spatially
close and the time-differences of the visits are within
a temporal threshold. Typically, stay-points of a trace
represent that user has stopped in these locations and
spent a specific amount of time-duration (7"). Stay-point
(S(B, Pl1,T)) is represented by the bounding box (B),
POI-information and 7" time-duration. The bounding-box
(polygon, spatial data-type [24]) encloses the area covered
by the user in her 7' stay-duration.

The trajectory segment is defined as:
Traj_Seg = {S;(B;, Pl;,T;) — (p1,t1) — ... @
— (P, tn) — S;(B;, Pl;, 1))}
where B; and B; are two stay-points. It may be noted
that each T'raj_Seg consists of two stay-points and the
GPS log between start and end stay-points.

e Movement Behaviour: This term holds the semantic
meaning or intent of a trip. In this work, we consider
48 such trip-purposes (few trip-purposes are mentioned
in section IV-A).

The problem definition of this work can be summarized as:

(i) Given the GPS trajectories » = {G1,Ga,...,G,}, gen-
erate the clusters of trajectories with similar movement
behaviour.

(i) Resolve mobility-based queries efficiently in timely man-
ner.

A. Mobility Trace Pre-processing

In the pre-processing step, the error removal is carried out. It
is checked such that all the GPS points are strictly ordered on
increasing time-stamp. The duplicate points with same time-
stamp are removed.

In the GPS data cleaning step, two types of GPS errors
are observed: (i) large scale error or outlier, i.e., completely

different position from the actual location due to low number
of satellites in view or device error, and (ii) small or random er-
rors. The large GPS errors are removed by deploying Kalman
Filtering technique [25], where first the error is modeled by
adding random Gaussian noise to the actual GPS points. The
noise vector is drawn from Gaussian probability distribution
of mean difference between actual GPS point and deviated
point. Furthermore, speed-based GPS error detection is also
implemented, where the deviation between the speed-limit and
speed at previous GPS location is estimated and the points
outside the threshold are filtered. It may be noted, that among
759328 trajectory-segments used in the study, there are 52356
large scale errors, and the filtering technique is able to modify
45034 such instances. The percentage of random errors are
quite low (approx ~ 2%) in the dataset and largely removed
in the Mapmatching process.

The trajectory is represented by episodes of stop (stay-point)
and move. Using density-based clustering and distance, time
thresholds, different possible stay-points are extracted. In the
next step, geo-tagged information for each stop points are
extracted and appended to enrich the semantic information
of the raw traces. For tagging landuse information, iterative
reverse geocoding(IRG) is used. Additionally, we build the
POI-taxonomy where <latitude, longitude, POI> are stored
for any subsequent computation. Finally, for semantic enrich-
ment, the road network structure of the region is extracted from
OSM?. The features related to underlying road-structure (such
as, length, width etc. of the road-segments), the connectivity
and continuity (like, intersection of roads) are appended in this
step. Here, we have used the map-matching algorithm named
AntMapper [26] which considers both topological information
and global similarity measurement.

The most significant contexts are time and geotagged loca-
tion of the trajectory trips to infer the movement behaviour.
Although, the collected raw GPS traces do not have these
semantic information, however, we append semantic informa-

3OpenstreetMap: https://www.openstreetmap.org/



tion such as nearest POIs of the start and destination of any
trip. The intuition is that individual visit specific places for
some activity or intent. Furthermore, the movement patterns
of individuals exhibit high level of spatio-temporal regularity.
The day of the week, stay-duration, POI-type, timestamp of the
visit directly influence the semantic-label or the trip-purpose.
Moreover, the other contexts also indirectly influence this
semantics. For example, the class-time schedules of students
and faculty members or in general appointment schedule
of individuals helps to accurately map their intent for the
movements. All these information are embedded with the raw
trajectory trips in this pre-processing step.

The pre-processing step of MovCloud is carried out in a
VM [Ubuntu 16.04, 15GB memory] of Google App Engine.
The road-network and POI information are stored in Google
Cloud Big Query Storage. The map-matching and semantic
enrichment algorithms are implemented in the VM, which calls
Google Place API service and stores the data in a database
[Oracle Spatial and Graph] with spatial extension.

B. Trajectory Data Indexing and Storage

To facilitate a fast access of trajectory or location search
process, we propose a hierarchical schema to store the trajec-
tory traces.

First, the map-matched trajectory-segments are taken as
the input, where each trajectory has an associated road-edge
segment. The region-of-interest is divided into rectangular
grids and the geo-hash codes of each grids are calculated.
Geohash code of the grids represent the spatial location on
the earth surface using unique alphanumeric strings. We aim to
store the trajectory information by representing the road-map
as Quadtree [1]. Typically, a quadtree is a tree data structure
having exactly four children of each internal node. Quadtrees
are utilized to partition a two-dimensional space by recursively
subdividing it into four quadrants or regions. Here, using fixed-
size grids has a major disadvantage. The cost of accessing
trajectory data depends on the spatio-temporal resolution of
the query. If we select big grids, then it will be inadequate for
smaller queries, since they will contain many other trajectory
segments which do not have any intersection with the query.
On the other side, too small grids will require more number
of disk seeks to access a given solution.

To resolve this issue, we maintain a hierarchical structure
where at the top level bigger-size grids store large location
information and at the bottom level small location information
are stored. Similarly, the temporal information is also sub-
divided into different levels based on the resolution (3 hours,
1 hour, 15minutes etc.). Each cell is defined by the geo-hash
code and an list of trajectory information is stored in it. The
major objective is to reduce the memory footprint of the index.
To achieve this, we only consider the non-empty grid-cells.
Cloud Spanner of GCP is used to store these information
which supports horizontal scalability.

C. Trajectory Data Mining

In this section, we describe the proposed approach to cluster
trajectory such that similar movement behaviour are grouped
into a cluster, even if they are space and time invariant. The
process is deployed in MapReduce paradigm for time and cost
effectiveness.

We aim to cluster the trajectories based on the trip-purposes
of the individuals in a given ROI (region-of-interst). The input
of the task is few labelled trajectories (10% of the complete
mobility traces) of m users for n days, and the output is
labels for all users’ trips. The labelled trajectories are used
as training data for the mapping task. To carry out the task,
we need to capture the similar movement behaviours from the
training data to learn the mobility semantics. To this end, deep
hierarchical models can generate useful representations of
mobility data and distinguish between different trip-purposes
albeit they can have similar spatio-temporal features. Here,
we propose a deep architecture based mobility clustering
framework which involves (i) classify the trajectory-segments
into any of the semantic labels (or trip-purposes). and (ii)
grouping similar movement traces considering all features and
contexts.

Deep Neural Network (DNN) is a feed-forward neural
network which maps inputs (feature set) to required outputs.
To solve more complex problems, several variations of DNNs
are proposed. Most simpler model is with one input layer, one
hidden layer and one output layer. The interconnected neurons
map the input layers to output layer:

y=f(Wz+b) 3)

where the output and input vectors are y and x respectively. In
our set-up, y represents the semantic label of the trajectory and
x contains the mobility features such as timestamp, duration,
POI-tag or trip-distance etc. f(.) is the activation function.
The bias (b) and weight vectors (W) are learned by deploying
gradient based algorithm. While DNN can only operate on
a fixed-size sliding window and thus unable to capture the
context-shifts. The LSTM (Long Short Term Memory) - a type
of RNN (Recurrent Neural Network) is suitable to learn the
long term dependency of the time-series data and determine
the output vector more efficiently. Figure 2 illustrates the basic
building blocks of the network. The movement behavioural
features (My) of the trajectories are extracted in the first
step. In order to extract features, the trajectory-segments
are fragmented into fixed-length raj_sliders, such that each
traj_slider contains one stay-point. Few attributes are stay-
duration (tsq), average speed(Av) and timestamp. Sample
traj_seg and traj_slider and few attributes are shown:

Traj_Seg = {(Si,t;), (p1,t1), .-+, (Pa>ta), .- (S;,T;)}
Traj_Slider = {(S;,t:), (p1,t1), - (Pasta)}
tsqg =t1 — t;

anzl(vm—&-l - U7n)

Av = @—1)

“4)
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Figure 2: Deep learning architecture to group similar movement behaviour

Similarly we extract other features (My) by traversing each
record of the traj_slider. Next, for each trajectory data, the
differences of features are extracted. The fixed length deep
representation of the trajectory is carried out here. Next, two
steps are followed to extract the trip-purposes:

- A Gated recurrent unit (GRU) is used which is similar to
LSTM. The reset and update gates of GRU is formally

defined as:
2t = U(Wz : [htfla‘rt})
e = J(Wr : [ht—laItD
hy = (1 - Zt) x hy_1 + z¢ * tanh( . [’I‘t * ht_l,a:t]
&)

W,, W, and W are the weight matrices. The update gate
(2z¢) helps to extract the required information and the reset
gate (r,) determines how much past information needs to
be eliminated.

- Finally, the trajectory-segments are mapped to the seman-
tic labels. The representation of the trajectory-segments
(lg) produced by the previous block is fed into the next
layer. Here, a softmax function is used.

lg, = softmax(Wg, ha, + ba,) (6)

In this stage, we find the semantic labels of all trajectory
segments, and finally we group them in different clusters using
classical clustering algorithm K-means and the clusters are
obtained. Since, it is observed that back-propagation procedure
to derive the LSTM gradient is the most time expensive step.
Therefore, we execute this step parallely on each subset of
the data in the map phase. Then, the weight increment is
computed and updated by the reducer function. In the next
step, MovCloud resolves mobility queries using MapReduce
paradigm. In this work, we have considered R-query (Range-
Query) and T-query (Trajectory-query) [1] to resolve effi-
ciently. The R-query (RQ(Qs, Q:)) returns all trajectory line
segments intersecting the given spatial (@) and temporal (Q;)
extent.

RQ(Qs, Q) — Gy (7

Algorithm 1 : Query Processing - A MapReduce based
approach

Input: Trajectory Traces GG, Spatial Extent location F;, Time
Interval Er, Query context Q.
Output: < G > > Query Result: Trajectory Segments

1. function MAPPER(Es, ET,G][])

2: geo — hash(j) < generate geo — hash code(E5)

3: a + Find QuadTree index(G) > Search the QuadTree

4 B<<anj

5: for all b; € B do

6: L + ExtractTraj(b;) > Extract trajectory
information within the cell

7: EMIT(t, L) > t: Temporal information

8: end for

9: function REDUCER(L,t)

10: Sort the segments based on t

11: Ly — Eliminate(L, ET)

12: G — Eliminate(L1,Q.)

13: Gj, — Combine(G) > Aggregate all trajectory segments
from the reducer phase

14: Print < Gy >

The T-Query or trajectory-based query returns all trajectory
line segments of a moving agent (m) in the temporal interval
Qo)

TQ(m, Qt) — Gy ()

Algorithm 1 presents the proposed approach. In the map
phase, the index is searched against the spatial extent of the
query and the intersecting trajectory segments are extracted. In
the reducer phase, the segments are sorted based on temporal
information, and refinement of the trajectory segments send
by the mapper function is carried out. Typically, the segments
not satisfying temporal constraint or other query context (other
attributes such as POI-name, POI-type) are eliminated and rest
of the trajectories are reported.

The deep learning architecture is implemented using Google
Tensorflow*. The implementation is done on the top of the

4Tensorflow: https://www.tensorflow.org/



Google App Engine, including DataStore and Task Queues.
Two Cloud SQL instances are created, where one is executed
from Google App engine. The other instance has the database
access permission. To add storage capacity, automatic storage
increase is enabled.

IV. PERFORMANCE EVALUATION

This section evaluates different modules of MovCloud and
compares our approach with others (K-means, DTW and other
query processing approaches [19], [27], [28]).

A. Dataset

The mobility datasets are collected voluntarily from the
students, staffs and faculty members of two Indian Institutes,
Indian Institute of Technology Kharagpur (IIT KGP) and
National Institute of Technology, Warangal, Telangana (NIT
W). A total of 145 subjects from IIT KGP and 72 from NIT
W participated in the survey. Mobility log from the participants
are collected from their GPS-enabled smartphones and Google
Map Timeline for a span of 28 months. The subjects are
requested to upload their movement history weekly basis
through a web-form>. A sub-set of the data is available in
the 1ink®.

Table II: Top 10 semantic labels of mobility (trip purpose +
activity) traces and their counts in the dataset

ID Semantic Label Count

s1 Commuting to Office/WorkPlace 736.3 x 102
52 Shopping 287.2 x 102
s3 Business Travel 158.6 x 102
S4 Commuting for medical help 148.5 x 10
S5 Leisure Travel 371.2 x 102
S6 Commuting to sports-complex 258.9 x 10
S7 Commuting to hangout spot 479.6 x 102
S8 Commuting to University/Lecture Hall 668.1 x 103
S9 Commuting to restaurant/cafeteria 378.5 x 102
s10 | Commuting to auditorium/ movie-complex | 178.2 x 102

Moreover, the volunteers logged the semantics (trip-
purposes) of their movement history. We have provided a
list (total 48) of trip-purpose or activity and the individuals
can identify the intent of the movements for each trajectory-
segment.

Few of the semantic labels of trajectories are reported in
Table II. We have also provided the total number (count in
Table II) of such trip-purposes in the datasets. The activity-
survey is designed in a way such that users can log the
activities performed or trip-purposes in different time-slots.
In the experimental set-up, 70% of the movement traces are
used for training the module, 20% and 10% for testing and
validating respectively.

SGPS:https://form.jotform.me/61262371630448
6DataSet:https://drive.google.com/drive/folders/
1BpM-K3clH6 X YpSHkFe12aGsG8n1Acll4?usp=sharing
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B. Experimental Observations

The major goal of this paper is to cluster users’ movement
trajectories based on their movement behaviour. We evaluate
the clustering approach by five validation metrics, namely,
overall similarity (O), precision (Pre), recall (Re), cohesion
(Co) and separation (Se) [6]. Table III reports the normalized
values of 10 clusters (C1, ..., C1p). Here, the clusters are num-
bered based on the same ordering of semantic labels presented
in Table II. The overall similarity depicts the agglomeration
degree and compact clusters have less O value. The closeness
of the trajectories within the cluster and separateness with
other clusters are defined by C'o and Se values. MovCloud
has achieved 0.84 cohesion value and 0.79 separation values
- which support the correctness of our proposed approach.

Figure 3 shows the learning accuracy of the proposed
clustering algorithm compared to other baseline methods. The
experiment has carried out with 30 classes and accuracy
is compared with four other classical clustering technique.



Table III: MovCloud Clustering Validation Result

Cluster ID | Overall Similarity (O) | Precision (Pre) | Recall (Re) | Cohesion (Co) | Separation (Se)

Ch 0.18 0.721 0.28 0.792 0.756

Co 0.32 0.56 0.47 0.581 0.602

C3 0.21 0.68 0.30 0.702 0.684

Cy 0.16 0.82 0.26 0.84 0.791

Cs 0.36 0.61 0.52 0.671 0.708

Cs 0.22 0.65 0.33 0.684 0.702

Cr 0.304 0.58 0.42 0.616 0.64

Cy 0.258 0.64 0.37 0.672 0.703

Cy 0.33 0.53 0.42 0.582 0.546

Cho 0.27 0.66 0.36 0.672 0.658
With the increasing number of classes, the accuracy of other
clustering techniques reduce drastically, while MovCloud has

I ., . e
e Standalone ‘ manitained an accuracy value within 0.83 to 0.98. Other
60 | | —— MovCloud * baselines show accuracy value in the range of 0.56 to 0.48,
when the number of classes is 30. The average improvement
— of clustering accuracy over other baselines is ~ 28%. It is
é observed that MovCloud has outperformed other baselines in
o 40F . a large margin. The reason behind obtaining more accurate
E results than other methods, is that other approaches rely only
T on spatial and temporal features of the raw trajectory, and
3 fall short on capturing the semantic meaning or intent of the

= 20 - 4 movement trajectories.

Figure 4 illustrates the different number of concurrent
queries and the average execution time of MovCloud with dif-
ferent number of nodes in the framework. We have evaluated
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Figure 5: Indexing Efficiency of MovCloud
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queries and report the average execution time. Along with
the standalone system, varied number of nodes (5-20) are
used to show the variations of execution time. The framework
is scalable to handle query-load at any given instance. Our
approach using MapReduce paradigm allows MovCloud to
handle concurrent queries compared to a standalone server set-
up.

The indexing efficiency of our framework is shown in
Figure 5. It is observed that 50GB data insertion takes less
than 20 minutes, whereas standalone needs more than 60
minutes. Cloud Spanner of GCP is utilized in MovCloud
framework appropriately to support horizontal scalability. We
have compared MovCloud with [19], [27] and [28] by varying
number of T-Query (Figure 6). In the experimental set-up,
the numbers of T-Query are varied from 100 to 1000 range.
The other baselines take in the range of 32s — 48s and
421s—561s for 100 and 1000 concurrent queries respectively.
The response time of MovCloud is 28s and 82s in the
same set-up. It is observed that the average response time of
MovCloud is significantly better than these existing works.
The distributed way of query handling and novel indexing
schema of MovCloud are the key reasons of this performance.

In summary, the MovCloud is capable to cluster trajectory
segments efficiently and shows better learning accuracy than
baseline clustering methods. Since, the approaches are imple-
mented using MapReduce paradigm, the average execution
time of query processing is much lesser than standalone.
MovCloud reduces the data insertion time by almost 1/3rd



than standalone set-up using the novel indexing scheme and
distributed platform. It is observed that, for 2000 concurrent
queries, MovCloud takes around 45secs (20 nodes), while
standalone needs almost 600secs - which is useless in any
real-life application.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an end-to-end cloud-based framework
MovCloud conducive to index, store and analyse mobility
traces of individuals. The proposed clustering approach is ca-
pable to cluster users’ movement trajectories based on similar
movement behaviour. Furthermore, the query processing over
MapReduce paradigm provides an edge over other existing
query solving approaches in terms of computational time. The
hierarchical indexing of trajectory information using QuadTree
is a novel proposition. The framework is implemented over
an interface of Google cloud platform and an extensive set of
experiments illustrates the effectiveness of the framework.

In future, we would like to extend the present cloud-
based framework to provide varied mobility services such
as personalized route recommendation, trip-planner. Using
the same framework, we will deploy a ride-sharing service,
where similar mobility trips will be clustered. Also, we will
accommodate more semantic trip-lables and validate with dif-
ferent mobility datasets instead of only traces from academic
campuses to make the framework more generic. We strongly
believe that proposed framework will act as a foundation of
several cloud-enabled spatio-temporal mobility analytics.
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