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Abstract—Mobile and cloud computing are converging as the
prominent technologies that are leading the change to the post
personal computing (PC) era. Computational offloading and data
binding are the core techniques that foster to elastically augment
the capabilities of low-power devices, such as smartphones. Mo-
bile applications may be bonded to cloud resources by following a
task delegation or code offloading criteria. In a delegation model,
a handset can utilize the cloud in a service-oriented manner
to delegate asynchronously a resource-intensive mobile task by
direct invocation of the service. In contrast, in an offloading
model, a mobile application is partitioned and analyzed so that
the most computational expensive operations at code level can be
identified and offloaded to a remote cloud-based surrogate. We
compared in this paper, the mobile cloud computing models for
offloading and delegation. We utilized our own frameworks for
computational offloading and data binding in the analysis. While
in principle, offloading and delegation are viable methods to
augment the capabilities of the mobile devices with cloud power,
they enrich the mobile applications from different perspectives
at diverse computational scales.

Index Terms—Mobile Cloud Computing; Access Models; Code
Offloading; Task Delegation; Middleware; Mobile Crowdsourcing

I. INTRODUCTION

Mobile and cloud computing are converging as the promi-
nent technologies that are leading the change to the post
personal computing (PC) era. Computational offloading and
data binding are the core techniques that foster to elastically
augment the capabilities of low-power devices [4], [15], [29],
[8], such as smartphones. In the case of computational offload-
ing, the process occurs at code level, a mobile application may
be partitioned (e.g. methods, classes) and analyzed a priori
(at development stages) or a posteriori (at runtime) so that
the most computational expensive operations can be identified
and offloaded. A mobile operation may be offloaded or not,
depending on the impact of its execution over the mobile re-
sources. Conceptually, offloading is an optional process, which
is preferable if a mobile operation requires high amounts of
computational processing and at the same time, low amounts

of data need to be sent in the communication. Otherwise,
offloading is not encouraged [22] as excessive amount of
energy and time is consumed in transmission of data to cloud.
Moreover, computational offloading has been identified by
previous works to be required mainly by applications that
implement graphical rendering, image and video processing
techniques (e.g. face detection) [7], [5], [31].

In the case of data binding, the process takes different per-
spectives. Data binding between cloud and low-power devices
may occur by following different access schemas [20]. The
most common schema is based on service oriented integration
via Web API (aka task delegation), where there is a continuous
assumption that cloud is always reachable. Task delegation is
utilized to delegate a mobile task asynchronously by direct
invocation of the service [8]. This task by nature is time-
consuming, programmable and parallelizable among multiple
servers, and computationally unfeasible for offline devices
(e.g. MapReduce jobs) [33]. Moreover, the delegated task aims
at enriching the device with a sophisticated feature (PC-like
functionality) instead of alleviating its intrinsic components
(e.g. battery) from a resource-intensive operation. This is due
to the fact that an operation may become process intensive
based on the context of the device (e.g. available bandwidth,
transfer data size, etc.), but in contrast, this data binding after
been established becomes a compulsory operation rather than
optional. This means that the delegation of a mobile task can
happen at anytime without analyzing the effort required to
establish the data binding.

On the other hand, data binding may be also granted with
inference logic that enables to decide when to transfer data
between local and remote locations based on opportunistic
communication algorithms (aka data offloading) [16]. How-
ever, this kind of logic is mainly utilized with the purpose
of minimizing the data traffic in a mobile network [23],
[17]. Thus, decreasing active communication processes within
the mobile. Consequently, saving batterylife for the devices.



Data binding techniques are commonly utilized to 1) augment
storage space (e.g. DropBox), 2) replicate and centralize data
(e.g. Funambol [27]), and 3) integrate services that involve
executing remote algorithms over big data repositories (e.g.
Activity recognition - queries from mobiles). Moreover, data
binding is utilized within the applications based on architec-
tural choices and communication preferences. Thus, unlike
computational offloading, data binding counts with bigger
spectrum of applicative cases.

While in principle, computational offloading and data bind-
ing are viable methods to augment the capabilities of the
mobile devices with cloud power, they focus on different issues
and implement different techniques to bring the infrastructure
closer to the mobile user. Consequently, these approaches
enrich the mobile applications from different perspectives at
diverse computational scales. In order to investigate the bene-
fits and drawbacks of delegation and offloading, and define the
generic access schemas for mobile cloud, we analyzed in this
paper multiple case studies that implement the mentioned ap-
proaches. We relied on our own frameworks for computational
offloading and task delegation for this analysis. Basically, our
analysis mainly tries to overcome questions such as what
is the complexity of developing a mobile application that
implements code offloading/task delegation?, which strategy
seems to provide more richer usability and functionality to
the mobile user? and which approach tries to exploit the truly
concept of cloud computing?. Moreover, we identified major
issues and challenges in current models, and discuss possible
solutions about how to design the mobile cloud architectures
of the future.

The remainder of this paper is structured as follows: Section
2 examines the current state of the mobile cloud solutions
and presents the access models for mobile cloud applications.
Section 3 presents an evaluation of the methods by presenting
some case studies and finally section 4 concludes the paper
with future research directions.

II. ACCESS MODELS FOR MOBILE CLOUD APPLICATIONS

Recently, there has been a growing interest in adapting the
cloud computing paradigm for delegating/offloading mobile
operations to the cloud. In the case of mobile delegation,
current solutions try to overcome the problems of multi-cloud
service integration (at SaaS level) in mashups that can be
accessible from the handset. More sophisticated solutions try
to address the issues of interoperability across multiple clouds,
transparent delegation and asynchronous execution of mobile
tasks that require resource-intensive processing, and dynamic
allocation of cloud infrastructure [8]. In contrast, most of the
research works have proposed solutions to bring the cloud
to the vicinity of a mobile [9], [7], [5], [14], [21] from an
offloading perspective, and thus addressing partially the issues
of determining what, when and how to offload from mobile to
cloud. The rest of this section examines each model in detail.

A. Offloading Mobile Operations to Cloud

Code offloading has re-gained a lot of interest towards
the development of mobile cloud applications as it can be
implemented by the smartphones as a mechanism to offload
resource intensive operations to cloud-based surrogates [30].
Basically, in mobile code offloading, a mobile application may
be partitioned explicitly for remote execution by a software
developer [7] (based on his/her expertise) or implicitly by
an automated mechanism [5] (based on code profiling tech-
niques), so that at runtime the marked mobile components
are identified and analyzed by an offloading decision engine.
The engine is in charge of deciding whether a mobile com-
ponent (aka mobile operation) is offloaded or not. Basically,
a decision engine profiles multiple local aspects of the device
(e.g. bandwidth connectivity, size of data, etc.) and applies
certain logic over them (e.g. linear programming), so that
the engine can measure whether the handset obtains or not a
concrete benefit (e.g. extended battery life) from the offload-
ing. Mobile application partitioning is preferable by using an
automated mechanism at runtime as it provides flexibility to
execute the same application on multiple devices with different
hardware properties, and thus avoiding a brute-force mobile
development approach, which consists of developing the same
application for a specific device as needed.

A common code offloading architecture is represented in
Figure 1. This kind of architecture fosters a design, in which,
the cloud provides the virtual computational resources (aka
instances) and the mobile introduces the partition strategies
(e.g. static analysis), the decision logic based on local param-
eters (e.g. network bandwidth), and the basic implementation
primitives (e.g. annotations) that enables to synchronize a
mobile application stack with a virtual machine running in the
cloud (e.g. Android x86). Prominent works in this domain are
described in Table I, considering two perspectives, mobile and
cloud. Based on this information, we can clearly distinguish
the main aspects of an offloading architecture, such as logic of
the mechanisms, context considered for adaptation, offloading
effects in the mobile applications, cloud features leveraged in
the offloading process, etc. From the table, we can also observe
that currently, most of the effort has been focused on providing
the device with an offloading logic based on its context.

However, given this context, we can argue that much of the
advantages of cloud computing are left unexploited and poorly
considered. A cloud does not just mean a virtual machine or a
pool of servers which are accessible from the Internet. It has
its own intrinsic features like elasticity, utility computing, fine-
grained billing, parallelization of tasks, dynamic allocation of
resources-based capacity, massive data-intensive processing,
etc. So an ideal mobile cloud framework should take advantage
of several of these features. Cloud computing may introduce
many other dynamic variables (e.g. performance metrics) to
current code offloading models that could affect the overall
offloading decision process. For instance, performance metrics
(e.g. CPU load) of the instance/cluster at the cloud may be
useful by the mobile in order to determine 1) whether a server



Fig. 1. Offloading model for mobile cloud applications

is not that busy so that it can handle an incoming request
and 2) a dynamic execution plan that allows to parallelize
mobile operations in a single machine with multiple cores
or in different machines with a single core. Consequently, a
code offloading model should not just target mobility aspects,
but also target oscillating changes in cloud infrastructure.
Moreover, we think that a mobile cloud architecture must
be one that not just increases the storage and computational
functionalities of the smartphones when the context of the
device is suitable (e.g. low communication latency), but rather,
uses its inherent capabilities to process big data in order
to enhance periodically the mechanisms of the devices with
offline cloud analysis based on history mobility data [25],
[26], such that each time a device may have opportunity to
interact with the cloud again, the handset does it better using
refined profiling strategies that allow to increase performance
and save energy. Thus, fostering a shared process distributed
between mobile and cloud that concentrates in application
adaptation based prediction, and in which each related sub-
process implements an independent logic.

On the basis of previous assumptions, we have proposed
EMCO to counter those issues; its conceptual details are
addressed in a different publication [9]. In short, EMCO can be
envisioned as a solution to overcome the issues of adaptive ap-
plication partitioning, offloading decision-making and cloud-
aware dynamic resource allocation. Unlike other approaches,
EMCO allows to enrich the offloading decision process of
a device by exploiting cloud processing capabilities with
evidence-based learning methods, over code offloading traces.
Basically, EMCO claims that offloading is not a decision
process that happens just in the device, but rather offloading is
a learning process that involves a global understanding of the
complete mobile cloud infrastructure and this understanding
may be found in the offloading information traces which are
generated by the massive amount of devices that connect

Fig. 2. Evidence-based mobile code offloading architecture

to the cloud (aka mobile crowdsourcing). For instance, it
could be possible to find which type of instance provides
greater offloading benefits to a specific device?, what mobile
components to offload based on back-end availability, etc.
EMCO fosters a mobile cloud architecture that enhances the
decision offloading process of a device by introducing dynamic
cloud parameters and exploring code offloading traces. The
complete architecture is shown in Figure 2 and consists of 1)
a mobile offloading decision mechanism based on fuzzy logic,
2) a virtualized mobile infrastructure (based on Android x86),
3) a repository of code offloading traces along with a cluster
to analyze it and 4) a cloud-based messaging framework to
push data to the handset asynchronously.

B. Delegating Mobile Tasks to Cloud

Task delegation has become a common operation that is
supported by any mobile platform through various mecha-
nisms (e.g. Web sockets, REST-based requests, etc.). Different
mobile platforms or versions of the same mobile platform
implement different approaches for managing network com-
munication. For instance, Android platform level-10 handles
REST-based requests synchronously. In contrast, Android plat-
form higher or equal than level-15 forces the developer to
extend any network communication with the AsyncTask Class
running on a different thread so that it will be executed in
the mobile background. However, a cloud request may be
time consuming operation (e.g. MapReduce jobs), and thus
it requires a proper mechanism to handle the communication,
otherwise this can cause an overhead in the mobile resources,
in terms of energy (e.g. keeping an open connection while
transaction is performed) and operability in the OS (e.g.
handset get stuck).

Integration of cloud functionality within the mobile involves
adapting different Web APIs from different cloud vendors
within a native mobile platform. Vendors generally offer
the Web API as an interface that allows programming the
dynamic computational infrastructure that support massively
parallel computing. Deploying a Web API on a handset is
demanding for the mobile operating system due to many
reasons like compiler limitations, additional dependencies,
code incompatibility etc., and thus in most of the cases the



TABLE I
CODE OFFLOADING APPROACHES FROM A MOBILE AND CLOUD PERSPECTIVES

Code offloading strategies Mobile perspective Cloud perspective

Framework Goal Code profiler Offloading adaptation
context

Offloading
characterization Applications effect Features exploited

MAUI Energy-saving Manual
annotations Mobile None Low resource consumption,

Increased performance None

CloneCloud Transparent
code migration

Automated
process Mobile None Performance increased

up to 20x None

ThinkAir Scalability Manual
annotations Mobile + Cloud None Increased performance Dynamic allocation and

destruction of VMs

COMET
Transparent

code migration
(DSM)

Automated
process Mobile None Average speed

gain 2.88x None

Odessa [28] Responsiveness Automated
process Mobile None Applications are up

to 3x faster None

EMCO [9] Adaptation
based on context

Automated
process Mobile + Cloud Based on historical

crowdsourcing data

Based on context
(Low resource consumption,

increased responsiveness, etc.)

Dynamic allocation and
destruction of VMs,
Big data processing

Characterization-based
utility computing

deployment just fails. For instance, Amazon API and typica
API [32] allow to manage EC2 instances (run scripts, attached
volumes, etc.), jetS3t [19] API provides access to S3/Walrus
and GData API [11] enables configuring services such as
calendar, analytics, etc. Consequently, software applications
that require cloud intercommunication are forced to implement
multiple Web APIs. A common task delegation architecture
(synchronous communication) is shown in Figure 3. Basically,
this kind of architecture aims the integration of cloud function-
ality which is provided as Web services at SaaS level by using
a specialized middleware. The middleware implements the
data management logic along with other optimization services
(e.g. protocol transformation) that allows the provisioning of
cloud functionality to the device. However, there are also other
cloud services in each layer of the cloud computing domain
(e.g. IaaS) that might enable the mobiles for augmenting
their processing capabilities. These services mainly offer par-
allelization capabilities which are by nature time consuming
operations, and thus asynchronous communication is required
in the mobile cloud communication.

Asynchronous communication in a mobile cloud environ-
ment may be achieved by relying on push technologies (aka
notification services) for dealing with remote executions, and
thus avoiding the effect of polling caused by protocols such as
HTTP (Hypertext Transfer Protocol). However, these mecha-
nisms are considered as black box services which have certain
constraints and limitations such as being platform specific
(e.g. AC2DM [12]/ GCM [13] for Android, APNS [3] for
iOS, MPNS [24] for Windows Phone 7, etc.), the size of the
message that can be pushed into the device (e.g. 1024 bytes for
Android, 256 bytes for iOS, 4096 bytes for Windows Mobile
etc.) and the number of the messages that can be sent to a
single handset (e.g. 200,000 for AC2DM). Moreover, such
mechanisms are considered to be moderately reliable, and thus
are not recommended in scenarios that require high scalability
and quality of service. For example: AC2DM simply stops
retrying after some delivery attempts.

Asynchronous delegation of mobile tasks to the clouds
is useful to overcome the problems of multi-cloud service
integration in mashups that can be accessible from the handset,
when those include data-intensive operations. A multi-cloud
operation consists of delegating mobile tasks to a diversity
of cloud services (e.g. from the infrastructure level, platform
level, etc.) located on different clouds (e.g. public, private, etc.)
and orchestrating (e.g. parallel, sequential, etc.) those transac-
tions for achieving a common purpose. In an asynchronous
process, when a mobile application sends a request to access
a cloud service, the handset immediately gets a response that
the transaction has been delegated to remote execution in the
cloud, while the status of the mobile application is sent to
local background so that the mobile device can continue with
other activities. Once the process is finished at the cloud,
a notification about the result of the task is sent back to
the mobile, so as to reactivate the application running in the
background, and thus the user can continue the activity.

We have studied the delegation of mobile tasks to hybrid
clouds in detail and we have developed a Mobile Cloud
Middleware [8] framework (MCM) that addresses the issues of
interoperability across multiple clouds, transparent delegation
and asynchronous execution of mobile tasks that require
resource-intensive processing, and dynamic allocation of cloud
infrastructure. Moreover, we have developed several successful
study cases of data-intensive mobile cloud applications that
benefit by going cloud-aware [31]. MCM is introduced as an
intermediary between the mobile phones and the clouds for
managing asynchronous delegation of mobile tasks to cloud
resources (Figure 4). MCM hides the complexity of dealing
with multiple cloud providers by abstracting the Web APIs
from different clouds in a common operation level so that the
service functionality of the middleware can be added based on
combining different cloud services. Moreover, MCM enables
the development of customized services based on service
composition, in order to decrease the number of offloading
times needed in a mobile cloud application. Asynchronicity is



Fig. 3. Delegation model for mobile cloud applications

added to the MCM by using push notification services pro-
vided by different mobile application platforms, by extending
the capabilities of a XMPP-based IM infrastructure [10] and
by using notification services provided by some of the most
popular mobile platforms (Android, iOS and Window Phone
7).

MCM is implemented in Java as a portable module based
on Servlets 3.0 technology, which can easily be deployed
on a Tomcat Server or any other application server such as
Jetty or GlassFish. Web APIs are encapsulated using Clojure,
and thus are accessed by a common API. This encapsulation
guarantees updating deprecated Web APIs with newer versions
which are released constantly by the cloud vendor. Moreover,
Clojure is also considered due to its distributed nature, which
introduces flexibility for scaling the applications horizontally.
Thus, augmenting the fault-tolerant properties of the overall
system. Hybrid cloud services from Amazon EC2, S3, [1]
Google and Eucalyptus based private cloud are considered.
Jets3t API enables the access to the storage service of Amazon
and Google from MCM. Jets3t is an open source API that
handles the maintenance for buckets and objects (creation,
deletion, modification). A modified version of the API was
implemented for handling the storage service of Eucalyptus,
Walrus. Latest version of jets3t also handles synchronization
of objects and folders from the cloud. Typica API and the
Amazon API are used to manage (turn on/off, attach vol-
umes) the instances from Eucalyptus and EC2 respectively.
MCM also has support for SaaS from Facebook, Google and
AlchemyAPI.com. We are not analyzing MCM framework in
this paper, but rather we are relying on its basic delegation
mechanism in order to determine what is the computational
gain achieved by the mobile resources through this model.

III. CASE STUDIES

In this section, we compared the models described previ-
ously. The comparison is conducted by analyzing two frame-
works. MCM is utilized for delegation and an annotation
framework based on java similar to [7] for offloading. In the
case of delegation, we have developed a simple mobile cloud
application in Android platform that delegates a steganography
process to the cloud by uploading a picture from the handset
via the MCM. A steganography process consists of hiding
information of one object within the properties of another
object, without affecting the visual representation of this last
one for the human eye. The aim of the application is to merge
two images into one (encode data) or to extract one image
from another (decode data). Notice that more sophisticated
applications can be envisioned in multiple scenarios by using
MCM delegation [8].

When the mobile application tries to upload the picture
for applying the MapReduce steganography process, it sends
the request (REST-based) to the MCM along with the picture
which is located in a bucket. Once the MCM has received the
data, then it sends an acknowledgement back to the mobile,
notifying that the process has been started and then releases
the mobile so that the device is free to perform other activities.
At the MCM, the transactional process consists of creating the
internal adapter for starting a new instance (Amazon) using
typica API [32], and to attach the picture (located in a bucket)
to the instance so that the requested process (encode or decode)
can be applied to the image.

Hiding process itself is based on the least-significant bit
substitution as shown in Algorithm 1 (Image encoding). One
byte from the user’s image is saved in three pixels of the base
image, 8 bits of one byte are saved in 8 least-significant bits
of 8 bytes, leaving the ninth bit to indicate whether there is
more hidden data in next bytes or not. Ninth bit information
is useful when analyzing the image for extracting information
purposes as shown in Algorithm 2 (Image decoding). Change
of the least-significant bit in every byte of an image is not
trivially recognizable by human eye due to the fact that in
RGB color model, there are total of 16,776,216 color variants
(224), but human eye can only distinguish about 10 million
different colors. At the end of any process (encode or decode),
once the job has completed, result is put to server’s static file
folder and a link (URL) to the image is provided to mobile
user. The URL can be used by the user for downloading and
sharing the image with other users.

In the case of offloading, we implemented multiple mobile
components (methods) that require data-intensive processing
for the device. Thus, we implemented five methods within
different Android projects, a matrix multiplication method that
calculates the product of two 16x16 matrices, a Fibonacci
method that calculates the Fibonacci number of 200000,a
Quick sort method that sorts an array of 999999 positions
filled with Random numbers, a Bubble sort method that
orders an array of 9999 positions and a NQueens method
that implements an heuristic puzzle that calculates how to



Fig. 4. Asynchronous mobile task delegation for resource-intensive operations

Algorithm 1 Image encoding
• Map

Require: baseImagePath, secretImagePath
imageBytes = readImage(secretImagePath)
for each byte in imageBytes do

secretImageByte = [byteIndex(byte),
byteValue(byte)]
emit(baseImagePath, secretImageByte)

end for
• Reduce

Require: baseImagePath, list <secretImageBytes >
sortedBytes = sortByIndex(secretImageBytes)
for each secretByte in sortedBytes do

holderBytes = getThreeBytesFromBaseImage()
encodeData(holderBytes, secretByte)

end for

place n queens on an n xn chessboard. These methods were
annotated with the identifier @Cloud, later our framework
was utilized to read the annotations and create an offloadable
version for that particular method. In this process, the class
that contains the method is parsed, the annotated method is
identified and then a new class with distinct name is created.
This new class contains the routines to establish the connection
with a server running a Dalvik x86 virtual machine and to
push the method for remote execution. At runtime, the mobile
application decides based on available bandwidth whether to
execute the offloadable or the local definitions.

Algorithm 2 Image decoding
• Map

identity function
• Reduce

Require: imageName, imagePath
image = readImage(imagePath)
pixels = readPixels(image)
while true do

hiddenNineBytes = readThreePixels(image)
data = readEightLeastSignificantBits(hiddenNine-
Bytes)
writeToOutput(data)
if readNinthLeastSignificantBit(hiddenNineBytes) =
1 then

break
end if

end while

For both cases, the mobile device considered for running
the applications is a Samsung Galaxy S2 i9100 with Android
4.1, 32 GB of storage, 1 GB of RAM and support for Wi-
Fi 802.11 a/b/g/n. Moreover, the device is connected via Wi-
Fi to a network with an upload rate of ≈ 1409 kbps and
download rate of ≈ 3692 kbps, respectively. At cloud level,
MCM is configured to run on Amazon EC2 infrastructure
using a small instance (1.8 GB of memory and up to 10 GB
of storage). Dalvik x86 is built from source using Android
Open Source Project (AOSP) [2] targeting a x86 architecture.
Offlodable components were executed in different instances
in order to show how cloud infrastructure may affect the
offloading process. Amazon was used as cloud provider and



TABLE II
EXECUTION TIME OF THE MAPREDUCE ALGORITHMS

MapReduce
algorithm

Execution time
(msec)

Encode 45000
Decode 76000

instances considered were micro (613 MB of memory, EBS
storage and 1 virtual core with up to 2 EC2 Units), small,
medium (3.75 GB of memory, up to 410 GB of storage and 1
virtual core with 2 EC2 Units) and large (7.5 GB of memory,
up to 850 GB of storage and 2 virtual cores with 2 EC2
Units). One EC2 computational instance is equivalent to a
CPU capacity of 2.66 GHz Intel R©XeonTMprocessor. Servers
were running on 64 bit Linux platform (Ubuntu).

A. Results

On the basis of the functional prototype of the mobile cloud
application presented, which is based on steganography, we
can derive that it is possible to delegate process intensive
hybrid cloud services from the smart phones, via the MCM.

Tmcsa
∼= Ttr + Tm + ∆Tm +

n∑
i=1

(Ttei + Tci) + Tpn (1)

Where, Ttr is the transmission time taken across the radio
link for the invocation between the mobile phone and the
MCM. The value includes the time taken to transmit the re-
quest to the cloud and the time taken to send the response back
to the mobile. Apart from these values, several parameters also
affect the transmission delays like the Transmission Control
Protocol (TCP) [6] packet loss, TCP acknowledgements, TCP
congestion control etc. So a true estimate of the transmission
delays is not always possible. Alternatively, one can take the
values several times and can consider the mean values for the
analysis. ∆Tm is the extra latency added to the performance
of the MCM. Tte is the transmission time across the Inter-
net/Ethernet for the invocation between the middleware and
the cloud. Tc is the time taken to process the actual service
at the cloud. ∼= is considered in the equation as there are also
other timestamps involved, like the client processing at the
mobile phone. However, these values will be quite small and
cannot be calculated exactly. The sigma is considered for the
composite service case, which involves several mobile cloud
service invocations. However, in other cases the access to
multiple cloud services may actually happen in parallel. In
such a scenario, the total time taken for handling the cloud
services at MCM, TCloud, will be the maximum of the time
taken by any of the cloud services ( Maxn

i=1(Ttei + Tci) ).
Finally, Tpn, represents the push notification time, which is
the time taken to send the response of the mobile cloud
service to the device. With the introduction of support for push
notification services at the MCM, the mobile phone just sends
the request and gets the acknowledgement back once the multi-
cloud operation is performed. However, in this case, the delays

completely depend on external sources like the latencies with
GCM/APNS/MPNS frameworks and the respective clouds.

Results for delegation are shown in Table II. The value
of Ttr + ∆Tm is quite short (< 870 msec), which is
acceptable from the user perspective. So, the user has the
capability to start more data intensive tasks right after the
last one or go with other general tasks, while the cloud
services are being processed by the MCM. The total time
(workflow) taken for handling the cloud services at MCM,
TCloud (

∑n
i=1(Ttei + Tci) ), is also logical and higher as

expected. Moreover, it depends directly from the underlying
resources of the cloud, which can be configurable dynamically
by the middleware. The Tpn varies depending on current traffic
of the GCM service and has an average of ≈4.5 seconds.

In the case of offloading, deriving a model is rather sim-
ple as the communication follows a standard client/server
design, where latencies to consider are mainly focused on
the network bandwidth, which by default, in an offloading
process is always good as the mobile local profilers detect
when communication is suitable to offload. Moreover, server
processing happens in milliseconds (as shown in Table III).
Consequently, we do not provide such derivation.

B. Discussion

There are many benefits and drawbacks that emerge from
implementing offloading and delegation mechanisms within
the development of mobile cloud applications. We highlight
key differences in approaches, implementation effort, usability,
and richness of the mobile applications.

• Offloading is preferable than delegation as mobile ap-
plications can be executed in standalone mode if there
is not available connection to the cloud. Thus, making
delegation not suitable for contexts out of network com-
munication.

• Delegation enriches the mobile applications with more
sophisticated functionality than offloading. Even though,
mobile components at Class-method level can be of-
floaded, the compiler limitations of the mobile virtual
machines (VMs) unable to implement complex routines
within the mobile. For instance, the Dalvik virtual ma-
chine of Android offers just a set of java functionality.
Consequently, the richness of the language cannot be
exploited and libraries such as jclouds [18] or typica can
not be executed on mobile platforms.

• Offloaded mobile components require less execution time
than delegated mobile tasks. Consequently, we can argue
that delegated mobile tasks do not provide suitable inter-
activity to the mobile users. However, natively a mobile
platform supports and implements for some processes this
kind of behavior. Thus, it is not trivial that a mobile
application may need long waiting times for completing
an operation.

• There are multiple tradeoffs between offloading and
resource augmentation. Thus, a mobile application is
potentiated by cloud based on its goals (e.g. Energy-
saving, responsiveness, etc.). However, we believe that



TABLE III
MOBILE COMPONENTS EXECUTED IN MOBILE AND CLOUD (USING DIFFERENT INSTANCE TYPES)

Execution time
(msec)

Mobile
component

Data size
(bytes) Device (i9100) Micro Small Medium Large

NQueens 1159 149.30 3.90 3.04 3.41 0.11
MultiplyMatrices 1887 2.69 0.14 0.215 0.204 0.18

Fibonacci 871 81.44 30.70 198.28 31.09 29.34
QuickSort 1485 1653.77 1076.55 2551.83 1254.43 1244.25
BubbleSort 994 3077.74 16850.34 6966.26 2842.39 2428.23

through characterization of an offloading operation, a
mobile application can be adapted based on the context,
such that a specific tradeoff can be applied at specific
context, in order to obtain the maximum benefit each time
the device goes cloud-aware.

• Delegation fosters a model, in which, mobile applications
are enriched with the variety of cloud services provided
on the Web, and thus this allows to create new business
opportunities and alliances.

• The effort required to develop a mobile application that
follows a delegation model is greater than an application
that uses offloading. By default, a mobile architecture
for delegation is highly distributed and multi-functional.
Thus, it is complex to maintain.

• Different offloading frameworks provide different granu-
larity regarding the definition of mobile components. Cur-
rently, mobile components can be offloaded at Class [15],
Class-method [7], [21], [9] and Thread level [5], [14],
[28]. Each of these levels require a specialized back-
end running in the cloud (e.g. Android x86). Moreover,
each strategy enriches the mobile application at different
performance rates. Refer to Table I for more detailed
information.

• Asynchronous delegation suffers from reliability as no-
tification services do not ensure quality of services for
delivering messages. However, notification mechanisms
are highly integrated with mobile platforms, and thus the
mechanisms are optimized to work using low resource
consumption.

• Code offloading may fail in some cases, as the current
scope utilized by most of the proposed work to charac-
terize an offloading operation is not enough to measure a
real benefit for the handset. This can easily be realized as
1) mobile components share a non-deterministic behavior,
which makes complex the process of evaluating their
impact at runtime (e.g. input variability), and 2) cloud
infrastructure play an important role in the overall system.
Moreover, next generation technologies for mobiles are
computational comparable with some instances running
on the cloud. For example, Samsung Galaxy S3 compu-
tational power is similar to a micro instance running in
Amazon. Consequently, this discourages offloading as a
mechanism for increasing the performance of the mobile

applications. As explained in previous sections, to counter
these issues, we proposed "Evidence-based mobile code
offloading" (EMCO) approach [9].

IV. CONCLUSION AND FUTURE DIRECTIONS

In the emerging world of mobile computing, a rich mobile
application is one, in which through a soft real-time interactiv-
ity, huge amounts of information is processed and presented to
the user as a single result. Performing such tasks in a mobile
phone is difficult due to the limitations in energy and storage.
Thus, computational offloading or task delegation is needed
for extending the capabilities of the mobile applications, in
order to cover high user demands in functionality. Latest
developments in cloud computing offer perfect platform for
pushing these process intensive tasks to the cloud.

Computational offloading have been proven feasible with
latest mobile technologies (e.g. Android), mostly due to vir-
tualization technologies and their synchronization primitives,
enabling transparent migration and execution of intermediate
objects. There are multiple tradeoffs between offloading and
resource augmentation, and thus offloading adaptation happens
by focusing on the goal of the mobile application (e.g.
responsiveness). Moreover, computational offloading seems to
be necessary just for applications that implement media and
image processing functionalities, as those involve process-
ing mobile components that require the execution of many
computational steps, like in the case of mobile games. Data
binding on the other hand, has a bigger spectrum of applicative
cases that can be exploited to augment the capabilities of
the mobile applications with sophisticated functionality (PC-
like). Moreover, task delegation foster the utilization of cloud
in a service-oriented manner, which requires architectures
that support high availability, fault tolerance and scalability.
Consequently, we believe that mobile cloud architectures of
the future have to be designed to fit multiple data binding
perspectives.

We compared in this paper, the mobile cloud models for
offloading and delegation. We utilized MCM and an offloading
framework based on annotations in our analysis. While in
principle, offloading and delegation are viable methods to
augment the capabilities of the mobile devices with cloud
power, they focus on different issues that need to be solved in
order to reduce the gap between mobile and cloud. As future
directions, we propose investigation on how to support high



performance and elastic (scale-out and scale-up) capability
for applications via Cloud middleware architectures for code
offloading and task delegation in a seamless manner to meet
users’ quality of service requirements.

Furthermore, from an offloading perspective, we envisioned
the exploration of augmented reality mobile applications,
which are computationally fed by cloud, such that computa-
tional provisioning can improve the perception and responsive-
ness requirements that emerge from mixing the actual context
with the digital device in real-time. Moreover, the exploration
of these issues also involve the study about how to deploy
virtualized mobile platforms in any cloud architecture in a
transparent way. A virtualized mobile platform in the cloud
is an architectural requirement for code migration at Class-
method level.

Finally, from a data binding perspective, the mobile cloud
convergence is also establishing the initial basis (e.g. Mech-
anisms, access models) that leads to the era of the Internet
of Things (IoS). In this new paradigm, firstly, the concept of
mobile user is expanded radically to include any entity that is
able to transmit and receive data, such that an entity can be
address as an object. Secondly, cloud is utilized to spread the
pervasive presence of the objects and to support the availability
of that presence continuously at high demand scales. Thus, we
believe that the study of data binding mechanisms to support
continuous sensing will be a key factor that enables to connect
any low-power device to cloud.
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