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Abstract
Mission-critical applications refer to the real-time applications, which require fast 
and secure service provisioning, such as defense sector and disaster management. 
This paper proposes a delay-aware and secure service provisioning model for such 
types of applications. As a use-case, we have considered the defense sector, which 
is a vital sector for a country’s all-round well-being including security, safety, soci-
ety, and economy. In the conventional sensor-cloud model, the sensor data is stored 
and processed in the cloud. However, the sensor nodes have small coverage and the 
use of the long distant cloud servers increases the delay. Therefore, the conventional 
sensor-cloud model may not be efficient for defense application. Moreover, data hid-
ing for security purposes is another important aspect of this field. To address these 
challenges, this paper proposes a mobility-aware sensor-fog paradigm for mission-
critical applications based on network coding and steganography, referred to as 
Mobi-Sense. In Mobi-Sense, steganography is used for hiding the data during trans-
mission. The theoretical results demonstrate that Mobi-Sense outperforms the exist-
ing frameworks with respect to delay and power consumption by ∼ (40 − 80) %. The 
simulation results present that Mobi-Sense reduces the delay by ∼ (18 − 40) % than 
the conventional sensor-cloud framework for mission-critical applications. An opti-
mal path finding algorithm based on deep learning has been deployed in the context 
of disaster scenario. The experimental analysis shows that the proposed optimal path 
finding method achieves precision and accuracy above 90%. This is observed that 
our proposed modules have outperformed existing baselines in terms of accuracy, 
delay, and power consumption.
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1 Introduction

The mission-critical applications are real-time applications and require fast and 
secure service provisioning. The defense sector and disaster management are two 
examples of such applications. In this paper, we have focused on the delay-aware 
and secure service provisioning for mission-critical applications. We have consid-
ered the military or defense sector as a use-case. Usually, military sector is cat-
egorized into three sub-sectors: army, air force, and navy. Mission-critical appli-
cations related to such sectors require continuous monitoring of different regions 
of the country specially the sensitive regions. If any adverse situation occurs, 
prompt action needs to be taken. Therefore, continuous monitoring and fast ser-
vice provisioning are highly recommended for such applications. In the existing 
methods for military services, sensor-cloud paradigm is generally used. There are 
different types of sensor nodes used in the military sector, for example, motion 
sensor, Global Positioning System (GPS) sensor, infrared sensor, gas sensor, light 
sensor, ultrasonic sensor, etc. These sensors are used to collect the environmental 
object status of a region [1]. In the conventional sensor-cloud paradigm, the sen-
sor nodes collect data and transmit to the cloud for processing and storage [2, 3]. 
However, the conventional sensor-cloud model has the following drawbacks:

• The sensor nodes have small coverage and limited battery life.
• The use of long distant remote cloud increases the delay in service provision-

ing.

Hence, the conventional sensor-cloud model may not be efficient for mission-critical 
applications. Another important issue of military sector is data security. Hiding of 
data during transmission is highly recommended for military sector. To address all 
the issues, we propose network coding and steganography-based sensor-fog para-
digm in this paper. As the sensor nodes have small coverage and limited battery life, 
relay nodes are used in the sensor network. In the proposed framework, network 
coding [4, 5] is used during data transmission by the relay nodes, steganography 
[6–8] is used to hide the data during transmission to the fog node and cloud, and fog 
computing [9–11] is used to reduce the delay in service provisioning.

1.1  Motivating example

Figure  1 illustrates a motivating example, where sensitive information of the 
defense sector (military data) is being transferred among army camps. As shown 
in the figure, dotted lines (red) illustrate the affected region, where road network 
has been affected. Such vulnerable regions should be avoided. Road side units 
(RSUs) send information regarding vulnerable regions and any other sensitive 
information along with predicted path (with low risk) to the nearby camp or vol-
unteers. These information is required to send using secure data transmission 
approach. Now, the requirements are:
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• The data must be protected as the data is confidential.
• Based on the collected and processed sensor data, continuous monitoring is 

required. If any exigency is detected, that information needs to be communicated 
to the relief centres.

• In case of emergency, relief materials need to be sent to the victim region in 
minimal time, and the volunteers also need to take the route with minimal risk 
(avoiding road-blockage) to reach the destination.

1.2  Contributions

The key contributions of the paper are:

• A mobility-aware sensor-fog paradigm is proposed for mission-critical applica-
tions, named as Mobi-Sense (Mobility-aware Sensor-Fog Paradigm for Mission-
Critical Applications using Network coding and Steganography). The sensor-fog 
framework is implemented in iFogSim. The theoretical and simulation results 
show that Mobi-Sense has lower delay and power consumption than the existing 
frameworks.

• In Mobi-Sense, network coding is used during data transmission by the relay 
nodes, and image steganography is used to provide data confidentiality during 
transmission to the fog node and cloud servers.

• A risk-modelling module is proposed by mining road-graph data and other con-
textual information using opportunistic network. A deep learning-based path rec-
ommendation algorithm is presented for finding the optimal path to reach the 
victim region in minimal time with minimal risk in case of exigency situation. 
The experimental analysis demonstrates that Mobi-Sense determines the optimal 
path with better accuracy than the existing models.

Organization of the paper: The existing works related to the problem is discussed in 
Sect. 2. We demonstrate the proposed paradigm Mobi-Sense in Sect. 3, and Sect. 4 
presents the delay and power consumption model of Mobi-Sense. In Sect. 5, we pre-
sent the experimental evaluations and the conclusion is offered in Sect. 6.

Fig. 1  Motivating scenario of proposed framework
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2  Related work

Cloud computing has gained its popularity for on-demand service provisioning 
in various sectors, such as healthcare, home monitoring, and military. Internet of 
Things (IoT) is a key component of smart applications in different fields, such as 
healthcare and agriculture [12]. The traditional wireless sensor network (WSN) 
alone cannot support the primary requirements of smart applications, such as data 
collection at low latency, parallel processing, and dynamic resource sharing [13]. 
In such a case, integration of WSN with cloud virtualization is required [13]. 
The use of IoT in military sector has been highlighted in [14]. A cloud-based 
paradigm for military tri-services has been proposed in [2]. However, the use of 
remote cloud may enhance the delay in service provisioning [1, 15], which can 
be fatal for such critical sectors. For time-sensitive task scheduling the fog-cloud 
architecture plays an important role [16]. For time-critical applications like health 
care, fog computing is widely used nowadays [17, 9, 18]. The use of fog comput-
ing for mission-critical applications has been discussed in [1], and the authors 
have showed that the use of fog computing reduced the delay than the cloud-only 
paradigm. In the sensor-fog-cloud framework for defense sector, the geolocation 
information is very important because if any adverse situation occurs, then the 
optimal path to the victim region has to be found. In such a situation, the existing 
well-known path may not be available due to road-blockage. Hence, an alternate 
path has to be found to reach the victim region in minimal time with minimal 
risk (avoiding road-blockage). For health care application, optimal path finding 
method has been discussed in [18]. The physical layer security for military IoT 
links have been highlighted in [19]. The enabling of civil-military collaboration 
for disaster management in smart city scenario has been discussed in [20]. The 
use of IoT-fog architecture for military sector with an emphasis on energy conser-
vation has been discussed in [21]. In the present work, the geospatial information 
is analysed to reach the affected region from the source during disaster manage-
ment. The data related to a place if is represented in terms of geographic coordi-
nates, it is referred as geospatial information [22, 23]. The cloud usually stores, 
process, and analyses the geospatial information as the data volume is huge [24].

Data confidentiality is a critical aspect of defense application. The security 
issues of military cloud have been discussed in [25]. For secure military cloud 
application a hybrid routing protocol has been discussed in [26]. In [1], the secu-
rity issues in fog-based mission-critical applications have been discussed. How-
ever, the data hiding process has not been highlighted in [1]. In the present work, 
we use steganography for hiding data while transmission takes place to the fog 
and to the cloud. In the present work, we have also proposed a deep learning-
based method for optimal route identification to the victim region in case of 
adverse situation. In Table 1, the proposed framework (Mobi-Sense) is compared 
with the existing frameworks for mission-critical applications. Table 1 shows that 
Mobi-Sense uses fog computing, network coding, and steganography together for 
the first time in the field of mission-critical applications. The use of steganogra-
phy provides data confidentiality during transmission, and fog computing helps to 
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reduce the delay in service provisioning. Another unique feature of Mobi-Sense 
is to use deep learning for selecting optimal path to the affected region in emer-
gency situation. The use of network coding, steganography, deep learning, and 
fog computing together makes Mobi-Sense novel and advantageous with respect 
to the existing models.

3  Mobi‑Sense: proposed framework

In this section, we will discuss the architecture and mathematical model of Mobi-
Sense (refer to Sect. 3.1), the use of network coding and steganography in Mobi-
Sense (refer to Sect. 3.2), and the optimal path finding method to reach the victim 
region in case of emergency situation (refer to Sect. 3.3).

3.1  Architecture and mathematical model

In Mobi-Sense, the sensor nodes are spatially distributed in a region, and attached 
with various objects to collect their status continuously. The sensor nodes are 
connected with the sensor network director (SND), which receives data continu-
ously from the sensor nodes. If there are X sensor nodes, there will be Y num-
ber of SNDs, where Y < X , i.e. under each SND there are multiple sensor nodes. 
Here, it may be noted that due to limited coverage and battery life of the sensor 
nodes, relay nodes may be used. In that case, the data transmission from sensor 
nodes to the SND will take place through relay nodes. The SNDs are connected 
with the sensor fog organizer (SFO). Multiple SNDs are connected with a SFO, 
i.e. if there are Y SNDs and Z SFOs, then Z < Y  . The SFOs are connected with 
the cloud. In this framework, different types of sensor nodes can be used for envi-
ronmental objects’ status detection, such as ultrasonic sensor, temperature sen-
sor, humidity sensor, light intensity detecting sensor, GPS sensor, and explosive 
material detecting sensor. The sensor-fog paradigm is presented in Fig. 2, and the 

Fig. 2  Sensor-fog paradigm for 
mission-critical applications
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working model is presented in Fig. 3. As observed from the figures, the sensor 
and relay nodes are connected with SND, the SND is connected with SFO, and 
the SFO is connected with the cloud.

The components of Mobi-Sense (sensor node, relay node, SND, SFO, and 
cloud computing instance) are mathematically defined here.

• Definition 1: Sensor node (Sensor): A sensor node is defined as, 

 where IDsensor represents the unique ID of the sensor node, Objsensor denotes the 
object type, and Geosensor denotes the geolocation information of the sensor node.

• Definition 2: Relay node (Relay): A relay node is defined as, 

 where IDrelay represents the unique ID of the relay node and Georelay denotes the 
geolocation information of the relay node.

• Definition 3: Sensor Network Director (SND): A SND is defined as, 

 where IDSND represents the unique ID of the SND, HWSND denotes the hard-
ware specification of the SND, GeoSND denotes the geolocation information of 
the SND, and SecSND denotes the security scheme adopted by the SND.

• Definition 4: Sensor Fog Organizer (SFO): A SFO is defined as, 

 where IDSFO represents the unique ID of the SFO, HWSFO denotes the hard-
ware specification of the SFO, GeoSFO denotes the geolocation information of the 
SFO, and SecSFO denotes the security scheme adopted by the SFO.

(1)Sensor = ⟨IDsensor, Objsensor, Geosensor⟩

(2)Relay =

⟨
IDrelay, Georelay

⟩

(3)SND = ⟨IDSND, HWSND, GeoSND, SecSND⟩

(4)SFO = ⟨IDSFO, HWSFO, GeoSFO, SecSFO⟩

Fig. 3  Working flow diagram of proposed framework Mobi-Sense
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• Definition 5: Cloud computing instance (CI): A cloud computing instance is 
defined as, 

 where IDcloudcomp denotes the cloud component ID and IDsproc represents a set 
that contains the processing unit IDs of all the necessary cloud servers of the 
instance.

Here, the mapping from sensor/relay nodes to SND is many-to-one, the mapping 
from SND to SFO is many-to-one, and the mapping from SFO to cloud computing 
instances is many-to-many. In Sect. 4, delay and power consumption of the Mobi-
Sense (considering the sensors, relay nodes, SND, SFO, and cloud) are discussed. In 
Sect. 5, the sensor-fog model of Mobi-Sense is implemented in iFogSim to evaluate 
the performance.

3.2  Application of network coding and steganography

In Mobi-Sense, network coding is used during data transmission by the relay nodes, 
and steganography is used to hide the data during transmission to the fog node and 
cloud.

3.2.1  Application of network coding

As sensor nodes have small coverage area and limited battery life, relay nodes may 
be used. In that case, relay node applies XOR network coding [4] while transmit-
ting data. A relay node maintains two queues: one queue ( Qs ) containing sending 
data packets and another queue ( Qr ) containing receiving data packets. If Qs con-
tains data packets, XOR network coding is performed between one packet picked 
from Qs and one packet picked from Qr . Otherwise, two consecutive packets from Qr 
are picked, and XOR network coding is performed. The encoded packet is transmit-
ted. The SND when receives an encoded packet, it decodes and retrieves the original 
data packet.

3.2.2  Application of steganography

In the proposed architecture, we have used steganography-based data transmis-
sion from the SND to SFO, and from the SFO to cloud servers. We have observed 
that the data from multiple sensors are received by the SND. The SND accumu-
lates and organizes the data, and forwards to the SFO. In Mobi-Sense, before for-
warding the data to the SFO, the sensor data are hidden inside an image using 
steganography. Least Significant Bit (LSB)-based steganography is a popular 
approach of data hiding [27, 28]. In [28], modified LSB-based audio steganogra-
phy has been used. In our work, we encode the sensor data using XOR and one’s 
complement, and then hide the encoded data into the image using XOR-based 
LSB image steganography. The image is sent to the SFO. The SFO extracts the 
encoded data from the image, decodes the data, and performs processing on the 

(5)CI =
⟨
IDcloudcomp, IDsproc

⟩
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data. If any abnormality is detected, the processed sensor data is encoded using 
XOR and one’s complement, and then hidden inside an image using XOR-based 
LSB image steganography, and sent to the cloud. The cloud extracts the encoded 
data from the image and decodes the data. Inside the cloud spatial data analysis 
is performed, and the optimal path is extracted using the method described in 
Sect. 3.3. As in our approach, we first perform encoding on the original sensor 
data and then the encoded data is hidden inside the image, we have referred the 
approach as modified LSB-based image steganography. As the latency is a vital 
factor for real-time applications, we have used a simple encoding approach based 
on XOR and one’s complement.

Modified LSB-based image steganography: In LSB-based image steganography 
method, the last bit of a pixel of an image is modified without affecting the visible 
change in the colour [27]. In our approach, we first encode the data using XOR and 
one’s complement, and then use XOR-based LSB image steganography to embed 
the encoded data into the image. The process is stated in Algorithm 1. For decoding 
the image, first the number of pixels containing the data is calculated. After that one 
pixel of the image is traversed at a time. The LSB of each pixel is extracted, and the 
encoded data packet is generated subsequently. After that decoding is performed on 
the encoded data packet and the original data packet is obtained. Use of the modified 
LSB-based steganography helps to hide the data during transmission to fog node 
and cloud servers. 

Algorithm 1 Modified LSB-based Image Steganogra-
phy for Mobi-Sense

Input: Sensor data, Input image
Output: Output image
1: transform the input image into gray scale
2: resize the image if required
3: if the sensor data is not in binary form, convert it into

binary form then
4: endatai ← datai ⊕ datai+1 where 0 ≤ i <

length(data)− 1 � XOR is performed
between consecutive bits of sensor data, length(data) de-
notes number of bits in sensor data, endata denotes data
obtained after XOR-ing

5: Encodata ← One′s complement(endata) � One’s
complement endata, Encodata denotes encoded data

6: initialize the output image to the input image
7: for each pixel of the image do
8: convert the pixel value to respective binary form
9: take the next bit of Encodata
10: take a variable v
11: v ← db⊕ pixlsb � XOR the encoded data bit db

with the LSB of the pixel pixlsb
12: pixop ← pixip+ v � pixel value of

the output image pixop is updated to (pixel value of the
input image pixip + v)

13: end for
14: update the output image until all bits of Encodata

are embedded
15: send the output image to the destination node
16: end if



17504 A. Mukherjee et al.

1 3

As the image data is transmitted, the size of the image will be a parameter while 
data load is considered. The time consumption in embedding the data into an image 
and extracting from the image will be considered while calculating the total delay 
for the proposed framework. Here, the authors wish to mention that audio/video-
based steganography [29] can also be used to hide the data. However, the size of an 
image file is usually lower than an audio or video file, therefore considering the data 
load we have used image-based steganography in Mobi-Sense.

3.3  Optimal path selection strategy

One of the major components of Mobi-Sense is finding an optimal path to avoid the 
regions with risk (or affected areas). We have deployed an opportunistic network of 
the study region. The conventional opportunistic network [30] is a network, where 
the nodes are wirelessly connected and the connection is temporary. Due to mobil-
ity or other issues like node deactivation, the network topology changes with time. 
In this work, we form the opportunistic network with the sensor nodes, and each of 
the SND has the road-network information between any two such connected regions. 
The SND sends the information to the connected SFO, and forwards it to the cloud. 
Since the optimal route finding algorithm is compute intensive, Mobi-Sense deploys 
the algorithm in the cloud server. Algorithm 2 presents the basic steps of movement 
network modelling. Here, for sensor node we have used the term sensor node, and 
by node we have denoted the node of road network. The road network is represented 
by a directional graph, where road-segments are edges and intersection points of the 
road-segments are denoted as nodes.

Algorithm 2 : Movement network generation
Input: Set of sensor node location G
Output: Movement network < Traj Window(V,E, Υ ) >
1: S, V,E ← NULL; � S: Stay-point, V: Nodes, E: Edges

(Road network)
2: for each GPS point pi ∈ G do
3: j ← i+1
4: for each GPS point pj ∈ G do
5: Sj ← Compute (boundingbox, time-interval)
6: Sj ← compute geotagg()
7: S.insert(Sj)
8: end for
9: end for
10: for each trajectory trace tr ∈ T do
11: for each un− visited sensor − node s ∈ S do
12: V.append(s) � A new node with sensor node is

created
13: visited ← s
14: CPT ← Create Conditional Probability table(s)
15: t ← extractTemporal(s) � Time interval of the

edge creation between two such sensor nodes
16: E.append(dirEdge(S, t))
17: end for
18: end for
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We propose a deep architecture to extract path to reach the destination considering: 
(a) finding paths without any risk by analysing all environmental features and contexts, 
and (b) avoiding the affected regions. The overall process has three stages: (i) mobility-
feature set preparation, (ii) mobility feature learning, and (iii) path prediction.

Deep Neural Network (DNN), a feed-forward neural network, is not capable to 
deal with context-shifts, since it does not have any feedback loop [31, 32]. On the 
other hand, the Recurrent Neural Network (RNN) feeds the activations from his-
torical observations, thus, influences the classification in the present time [33]. This 
internal states of the architecture are capable to capture long-term dependency of 
contextual information. Briefly, Long Short Term Memory (LSTM) is suitable for 
learning the long term dependency of the time-series data, and overcomes the lim-
itations of conventional RNN, such as vanishing gradient and exploding gradient 
issues.

Our framework utilizes deep RNN architecture, where multiple networks are 
stacked for annotating the trajectory segments. Initially, in level 1, all the segments 
of the study-area are passed through the input layer and affected regions are clus-
tered together. In the next step (level 2), each path is weighted based on the risk-
factor. Finally, the route with the minimal risk is selected to reach the destination.

The first step is to extract affected regions, for which the road-segments are not-
reachable. The region is segmented into fixed-length traj_sliders, and each traj_
slider contains one sensor-node. This traj_slider is utilized as a sliding window, and 
the environment behaviour changes are captured. For example, the attributes can be 
noise-intensity ( tsd ), light-intensity ( �v ), and timestamp. Similarly, we extract the 
other features (F) (impacts on the neighboring regions) by traversing the record of 
the traj_slider. In the next step, the fixed length deep representation of the trajectory 
is generated by computing the differences of the features.

The initial phase utilizes a Gated recurrent unit (GRU), which is similar to LSTM 
[34]. GRU has reset and update gates, which are formally defined as:

where Wz , Wr , and W are weight matrices. The update gate ( zt ) helps to extract the 
required information from the past time-step, and pass to the future, ht and xt are 
forget gate and input gate, respectively. It is specifically important to remember the 
context or model long-term dependencies. The reset gate ( rt ) and forget gates are 
crucial to capture the context-shift problem of the movement behaviours, since it 
eliminates the vanishing gradient problem, but passes the relevant information to the 
next steps of the network.

Finally, a softmax function is used and the representation ( lTr ) produced by the 
previous block is fed into the next layer.

where WTri
 is the weight matrix for layer i that is applied to the hidden representa-

tion ( hTri ) in the model. hTri is the hidden representation of the road-sequence ( lTr ) at 
layer i. The bias term for layer i is defined as bTri . The parameter set ( � ) including the 

(6)
zt = �(Wz ⋅ [ht−1, xt]) rt = �(Wr ⋅ [ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ tanh(W ⋅ [rt ∗ ht−1, xt])

(7)lTri = softmax(WTri
hTri + bTri)
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weight metrics are learnt as follows: Given a road-sequence ( lTr ) and the semantic 
labels (risk factor) Sl , the log-likelihood is maximized with respect to �:

where Tr and Tr′ are the labelled trajectory segment and training data, respectively. 
p(S|lTr, �) is the probability of the semantic labels (risk factors) S given the road-
sequence ( lTr ) and the parameter set � . The parameter set is estimated by deploying 
stochastic gradient descent:

where � is the learning rate. � log p(S|lTr, �)∕�� is the gradient of the log-likeli-
hood with respect to the parameter set � , used to update the parameters during 
optimization.

The representation learning module encodes different mobility semantics at var-
ied contexts. Then, the GRU  and softmax modules map the trajectory segments to 
appropriate semantic labels and point of interests (POIs). The aggregated movement 
pattern over the underlying road network is initially mapped to find out the footprint 
deviation in different temporal scales in varied POIs. To achieve this, the region 
of interest (ROI) is divided into different uniform grids (gr), and the time period 
is divided into n slots. This is a necessary step since the GPS trajectory traces are 
timestamped continuous numerical variables. The moving agents (people or vehi-
cle) depart from a region (POI), arrive in the destination (POI). All of these trips 
comprise the overall aggregated movement flow of the complete study region. This 
mobility flow represents the semantics of the region, and helps to identify differ-
ent optimal paths in a region. First, convolutional neural network (CNN) is used to 
model the mobility flows in different regions and in fixed timestamp. Several layers 
of CNNs are stacked. Each CNN takes the input of aggregated GPS footprints ( agt ) 
and represented by:

where ReLU (rectified linear unit) is the activation function. AGi,t represents the 
flow matrices including all footprint count of the grid gri . All L CNN layers are 
stacked into a fully connected layer. The representation of grid ( gri ) is agi,t , and bk 
is the bias-vector. Next, a LSTM network is used to capture the spatial relations of 
mobility flow in different temporal scales.

where gri,t is the output representation of grid gri considering spatio-temporal rela-
tion and context-information ( ci,t ). Then, we append different penalty-values for 
each instance to learn the model. Finally, after this step, a softmax layer is imple-
mented to compute the optimal path considering all risk-factors and minimal time to 
reach the destination. Algorithm 3 presents the path extraction process.

(8)S(lTr) ⊢
∑

lTr∈Tr
�

log p(S|lTr, 𝜉)

(9)� ← � + �
� log p(S|lTr, �)

��

(10)AGl
i,t
= ReLU(Wk ∗ AGl−1

i,t
+ bk)

(11)gri,t = LSTM([agi,t;ci,t], gri,t−1)
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Algorithm 3 Path extraction in emergency situation
Input: Data modalities (D1, D2, D3) from sensor nodes and
GPS log (G)
Output: Optimal path to reach the destination

1: Construct Mobility network with senor nodes Sensori
with last 1 hour data

2: Construct Mobility network with sensor nodes Sensorj
with available data of present timestamp � Missing links
and labels are generated

3: Uniform Grid Construction
4: Aggregated Movement flow generation
5: Spatio-temporal feature generation of Movement Flow �

CNN layer construction
6: Extracting and representing correlations of Movement

Flow in varied temporal scales and contexts � LSTM
network construction

7: Convert the mobility features of Sensori in fixed-length
representation

8: Minimize the risk value
9: Predict the path with minium risk � Softmax layer
10: Refinement of the path using available few sensor-node

data

4  Delay and power consumption in Mobi‑Sense

In this section, the total delay and the total power consumption in Mobi-Sense are 
mathematically determined. Table 2 presents the parameters used in this calculation.

The delay in data collection by sensors, reception, encoding, and transmission by 
relay nodes, and reception by the SND (considering all the objects), is given as,

Total delay of the paradigm is calculated as the sum of the delays in data collection, 
processing, transmission, reception, encoding, and decoding by all the components, 
given as,

Total power consumption of the paradigm is calculated as the sum of the power con-
sumption by all the components for data collection, processing, transmission, recep-
tion, encoding, and decoding, given as,

(12)LtSNDO = max(Lt1, Lt2, ..,LtNo
)

(13)

Lttot =LtSNDO + Ltdec + LtpSND + Ltsten

+ LtSNDSFO + Ltext + LtpSFO + LtenSFO

+ LtSFOC + LtpC + Ltpopt
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Total delay and power consumption of the proposed framework will be compared 
with the existing frameworks in Sect. 5.

(14)

Ptot =PSensors + PrSND + PdeSND + PpSND

+ PenSND + PtSND + PrSFO + PdeSFO + PpSFO

+ PenSFO + PtSFO + PrC + PpC + Ppopt

Table 2  Parameters used for delay and power calculation

Parameter Definition

Ltoj Total delay in data collection by sensor, reception, encoding, and transmission by relay 
nodes, and reception by SND for object oj

No Number of objects under consideration
Ltdec Delay in decoding sensor data by SND
LtpSND Delay in accumulating and organising sensor data by SND
Ltsten Delay in encoding and embedding data into image by SND
LtSNDSFO Delay in data transmission from SND to SFO
Ltext Delay in extracting data from image and decoding by SFO
LtpSFO Data processing delay at SFO
LtenSFO Delay in encoding and embedding data into image by SFO
LtSFOC Delay in data transmission from SFO to cloud
LtpC Delay in data extraction from image, decoding, and processing at cloud
Ltpopt Data processing delay for finding optimal path
PSensors Power consumption of all the sensor nodes (including relay nodes) for data collection, 

transmission and reception
PrSND Power consumption of SND in data reception
PdeSND Power consumption of SND in data decoding
PpSND Power consumption of SND in data processing (accumulation and organization)
PenSND Power consumption of SND in data encoding and embedding into image
PtSND Power consumption of SND in data transmission
PrSFO Power consumption of SFO in data reception
PdeSFO Power consumption of SFO in data extraction from image and decoding
PpSFO Power consumption of SFO in data processing
PenSFO Power consumption of SFO in data encoding and embedding into image
PtSFO Power consumption of SFO in data transmission
PrC Power consumption of cloud in data reception
PpC Power consumption of cloud in data extraction from image, decoding, and processing
Ppopt Power consumption in processing data to find optimal path
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5  Performance evaluation

To evaluate the performance of the proposed paradigm we have used iFogSim for 
implementation, MATLAB for theoretical analysis and steganography code imple-
mentation, and Google Cloud Platform for implementation of the code of the pro-
posed optimal path finding algorithm.

5.1  Implementation using iFogSim

The sensor-fog framework for mission-critical applications has been simulated using 
iFogSim [35]. Eclipse IDE has been used for implementation, and with it the JPro-
filer has been integrated. The iFogSim has been used to create the sensor-fog topol-
ogy (refer to Fig. 4), and the respective code has been written, complied, and exe-
cuted. During execution of the topology and the code, with the Java Virtual Machine 
(JVM) the JProfiler has been attached for monitoring the CPU load and memory 

Table 3  Configurations used in simulation

Configuration 
(Config) No

Host storage 
(GB)

Cloud virtual machine 
(VM) CPU (GHz)

Cloud VM 
RAM (GB)

Fog CPU 
(GHz)

Fog 
RAM 
(GB)

1 1 3 4 3 4 
2 1.5 3 4 3 4 
3 2 3 4 3 4 
4 2.5 3 4 3 4 
5 3 3 4 3 4 

Fig. 4  Created Sensor-fog topology in iFogSim
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usage. As observed from Fig.  4, sixteen sensors, four actuators, four relay nodes, 
two SNDs, one SFO, and cloud are used in the created topology. Four sensors and 
one actuator are mapped into one relay node. Here, we have four subsets each con-
taining four sensors and one actuator. Each subset is mapped into a relay node. Two 
relay nodes are mapped into one SND. Two SNDs are mapped into one SFO. The 
SFO is mapped into the cloud.

Figure  5 presents the CPU load. Here, the green and blue lines, respectively, 
represent the process load and system load. Figure  6 presents the memory usage, 

Fig. 5  CPU load during execution of the topology and code

Fig. 6  Memory usage during execution of the topology and code
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where the committed, used, and free memory (heap) size are presented. The code 
corresponding to the created topology has been executed to monitor the execution 
delay. We have simulated the sensor-cloud framework (without fog computing) for 
mission-critical applications to compare with the sensor-fog framework. The code 
corresponding to the sensor-cloud framework has been executed, and the execution 
delay has been monitored. Five different cases are considered (refer to Table 3). Fig-
ure 7 presents the execution delays (measured in second (s)) in fog-based (sensor-
fog) and cloud-only (sensor-cloud) frameworks for mission-critical applications. 
This is observed that the fog-based framework (sensor-fog framework) has reduced 
the execution delay by ∼ (18 − 40) % than the cloud-only framework (sensor-cloud 
framework).

5.2  Modified LSB‑based Image Steganography for Data hiding

We have used MATLAB R2023a for implementation of the modified LSB-based 
image steganography. The sensor data in binary form is encoded and embedded 
into an image using modified LSB-based image steganography. We have used an 
image (refer to Fig. 8) as input image and then applied modified LSB-based image 
steganography. The output image is displayed in Fig. 9. As observed from Figs. 8 
and 9, there is no visible change. After receiving this image, the SFO extracts the 
encoded data embedded into the image and decodes the data. The time consumption 
in encoding (encoding and embedding into image) and decoding (extracting from 
image and decoding) while using modified LSB-based image steganography are dis-
played in Fig. 10 with respect to the number of bits in the sensor data. The used sen-
sor data stream (in bits) are:

00110001001100000011000101111100
0011000100110000001100010011000101111100
001100010011000000110001001100010011000101111100

Fig. 7  Comparison of execution delay: Fog-based and cloud-only frameworks for mission-critical appli-
cations
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This is observed that the time consumption in encoding and decoding varies from 
150–250 millisecond (ms) and 50–100 ms, respectively. The delay and power con-
sumption of the proposed framework considering the data transmission, encoding, 

Fig. 8  Input image: Original 
image used in Encoding

Fig. 9  Output image: Encoded 
image after using modified 
LSB-based image steganog-
raphy

Fig. 10  Time consumption in 
encoding and decoding while 
using modified LSB-based 
image steganography
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decoding, and processing are presented in Figs. 11 and 12, respectively. The results 
are compared with the cloud-only framework (conventional sensor-cloud frame-
work, where fog computing is not used) for mission-critical applications. This is 
observed that the proposed framework reduces the delay and power consumption 
by ∼ (40 − 80) % and ∼ (40 − 80) % than the cloud-only framework (sensor-cloud 
framework). The proposed framework is compared with the sensor-fog frame-
work for mission-critical applications, where no encoding has taken place [1]. It is 
observed that the proposed framework has approximately same power consumption 
and delay though it uses network coding and steganography. This is because the use 

Fig. 11  Comparison of total delay: Proposed and existing frameworks for mission-critical applications

Fig. 12  Comparison of power consumption: Proposed and existing frameworks for mission-critical appli-
cations
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of steganography and network coding result in a small amount of delay and power 
consumption.

5.3  Optimal path finding

The performance of optimal path finding module is presented in this section. The 
test configurations used are: Google Cloud VM ( 4 vCPU, 15GB memory ), Tensor-
Flow platform. A region of 10.8km2 with 16 × 103 nodes is considered for evaluat-
ing the framework over the underlying road-network. For fair comparisons, we have 
simulated several exigency scenarios. Our framework finds out the path when these 
scenarios occur. Figure 13 presents the precision, recall, and F-measures of the path 
finding module with a high precision ( ≥ 0.90 ) and recall ( ≥ 0.912 ) values with 100 
and 5000 nodes in the road-graph, respectively. It is observed that in exigency situ-
ations Mobi-Sense is capable of extracting optimal paths to reach the destination 
avoiding the blockage or affected regions.

Figure  14 illustrates accuracy of the path finding module with varied number 
of nodes ranging from 100 to 5000. We have compared the accuracy result with 

Fig. 13  Precision, Recall, and F-measure in path extraction using proposed method

Fig. 14  Accuracy values for 
path extraction using proposed 
and existing methods
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two well-known deep-learning baselines, namely, ST-RNN [33] and CNN [31]. The 
accuracy is computed based on the percentage of correct path extracted to reach the 
destination in minimal time. It shows high accuracy in the range of 0.979 − 0.9375 . 
In the same set-up, ST − RNN and CNN provide 0.98 − 0.887 and 0.978 − 0.878 
range of accuracy, respectively. Since Mobi-Sense models the study-region in an 
opportunistic network, and deploys the path finding algorithm using deep learning 
architecture to capture the impact of overall environment (victim region, blockage 
of roads etc.), it can efficiently extract optimal path and outperforms the existing 
baselines.

5.4  Summary of the inferences from results

As observed from the simulation and experimental results the proposed framework 
achieves:

• Reduction in delay than the cloud-only framework (sensor-cloud framework 
without fog computing) as observed from the iFogSim results.

• Data is hidden in another medium to provide data confidentiality during trans-
mission, and no visible change in the transmitted media in which the data is hid-
den. This is observed from the results obtained using MATLAB.

• Reduction in delay and power consumption than existing cloud-only framework 
(sensor-cloud framework without fog computing) as observed from the results 
obtained using MATLAB.

• The proposed optimal path selection method has high accuracy and precision as 
observed from the experimental results.

Thus, we can state that the proposed framework Mobi-Sense provides data confi-
dentiality during transmission, achieves lower delay and lower power consumption, 
and finds path to the victim region with high accuracy and precision in emergency 
situation.

6  Conclusions and future work

In this paper, we have proposed a mobility-aware sensor-fog paradigm for mission-
critical applications using network coding and modified LSB-based image steg-
anography, referred to as Mobi-Sense. The data collected by the sensor nodes is 
processed inside the fog device to predict the current status of a region. For confi-
dentiality during data transmission to the fog node and cloud, modified LSB-based 
image steganography is used. In the modified LSB-based image steganography, we 
encode the sensor data and then embed into the image using LSB-based steganog-
raphy. If any disaster is detected, an optimal path to the affected region is found 
using opportunistic network and deep learning. The sensor-fog framework has been 
implemented in iFogSim, and the results illustrate that Mobi-Sense has reduced the 
delay by ∼ (18 − 40) % than the cloud-only framework (sensor-cloud framework) for 
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mission-critical applications. The theoretical analysis illustrates that Mobi-Sense 
has ∼ (40 − 80) % lower delay and power consumption than the cloud-only frame-
work (sensor-cloud framework). The experimental analysis shows that the proposed 
optimal path finding method has achieved precision and accuracy above 90%. The 
experimental results also demonstrate that the proposed method outperforms the 
existing path finding modules with respect to the accuracy. As part of the future 
work we plan to extend our framework for secure monitoring of highly sensitive 
unmanned regions.
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