
Received 26 April 2023, accepted 24 May 2023, date of publication 30 May 2023, date of current version 21 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281348

Resource Provisioning Using Meta-Heuristic
Methods for IoT Microservices With
Mobility Management
SHINU M. RAJAGOPAL 1, M. SUPRIYA 1, AND RAJKUMAR BUYYA 2, (Fellow, IEEE)
1Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru 560035, India
2CLOUDS Laboratory, School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC 3010, Australia

Corresponding author: Shinu M. Rajagopal (mr_shinu@blr.amrita.edu)

ABSTRACT The fog and edge computing paradigm provide a distributed architecture of nodes with
processing capability for smart healthcare systems driven by Internet of Thing (IoT) applications. It also
provides a method to reduce big data transmissions that cause latency and enhance the system’s efficiency.
Resource provisioning and scheduling in edge and fog systems is a significant problem due to heterogeneity
and dispersion of edge/fog/cloud resources. The goal of scheduling is to map tasks to appropriate resources,
which belong to NP-hard problems, and it takes much time to find an optimal solution. Meta-heuristic
methods achieve near-optimal solutions within a reasonable time. Current edge/fog resource allocation
research does not sufficiently address resource allocation problems in mobility-aware microservice-based
IoT applications. This paper proposes a meta-heuristic-based micro-service resource provisioning model
with mobility management for smart healthcare systems. The proposed approach has been tested on an
experimental set-up with a simulation of a critical real-time smart healthcare application with and without
considering the mobility of the devices. It applies meta-heuristic methods such as modified genetic and
flower pollination algorithms for resource management. The proposed method outperforms the existing
solutions in energy consumption, network usage, cost, execution time, and latency by 17%, 20%, 22%,
17%, and 63%, respectively.

INDEX TERMS Edge computing, fog computing, Internet of Things, meta-heuristic, microservices,
mobility, smart healthcare, time critical applications.

I. INTRODUCTION
The vast amounts of data generated by Internet of Thing
(IoT) devices require latency-sensitive processing, which is
impossible when applications are placed in distant cloud
data centers [1]. Hence cloud computing seems infeasible for
delay-sensitive medical real-time IoT applications [2]. Fog or
edge computing, a cloud extension, can address these needs
for smart IoT systems to provide better resourcemanagement.
The purpose of the fog or edge computing model is to pro-
cess tasks using local computing resources in fog or edge
devices that have storage, computation, and communica-
tion capabilities to enhance mobility, confidentiality, privacy,

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

reduced latency, and bandwidth [3], [4]. It allows a seamless
connection between smart medical devices and computa-
tional resources to have more control over data privacy and
security [5]. It also supports critical latency-sensitive IoT
applications that require faster responses with reduced energy
and bandwidth consumption [6]. In some emergencies, mak-
ing a decision using the appropriate resources in a fraction of
a minute directly impacts the patient’s life [7]. To avoid issues
with over-provisioning or under-provisioning while satisfy-
ing QoS requirements, it is critical to dynamically provide the
right amount of available fog or edge resources to manage
the workload of IoT services [8]. Because of its dynamic,
unpredictable nature, resourcemanagement is one of themost
challenging problems to tackle in such environments [9].
To create a comprehensive solution for proactive resource

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 60915

https://orcid.org/0000-0002-6483-3189
https://orcid.org/0000-0001-6147-7142
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0002-7952-0038


S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

management, the transition between multiple resource man-
agement strategies based on various network circumstances
is presented [10].

As a user relocates from one place to another, the proximity
to a fog or edge service may change; hence, user mobility
restricts such benefits in practice [11]. IoT device mobility
can impact fog computing systems when they repeatedly
change access points. The mobility of end IoT devices causes
migration of the requested application services from one
computing node to another to maintain the desired QoS.
The deployment of local, small-scale data processing and
storage at the network’s edge using edge computing makes
computations closer to the source data, thus ensuring the QoS
requirements. In addition to meeting the demands of latency
and bandwidth on the network, it offers intelligent services
at the edge to fulfill the vital needs of IoT applications in
real-time [12], [13].

IoT applications use various technologies to connect,
manage, and operate IoT smart devices. Microservices,
a service-oriented architecture, have attracted much inter-
est nowadays. It is an emerging technology based on the
microservices concept to enable services with the small-
est granularities that perfectly complement the distributed
nature of IoT devices [14]. Each microservice is responsible
for a single sub-task or service, requiring fewer compute
resources and lowering communication overhead. Based on
the resource availability andworkload of fog nodes, microser-
vices can scale up and down dynamically due to loosely
coupledmodules. Compared to an existingmonolithic design,
integrating distributed microservices into the application pro-
cess provide advantages such as independent deployment,
scalability, and fault isolation [15].

Resource management is a mechanism that manages the
system’s finite physical and virtual resources for the execu-
tion of user tasks. Resource provisioning involves the process
of allocating and provisioning resources, such as comput-
ing, storage, network bandwidth, and others, to support the
demands of applications or services. Resource scheduling,
on the other hand, deals with the process of determining when
and how to allocate resources to tasks or jobs based on their
requirements and priorities. Resource provisioning methods
when combined with resource scheduling policies, allocate
resources to applications efficiently in distributed scenarios,
especially in edge/fog computing environments. To max-
imize the utilization of these resources and improve the
efficiency of applications, efficient scheduling, and resource
allocation are required. To avoid over-provisioning and
under-provisioning, dynamic resource provisioning, an effec-
tive method of preparing resources based on changes in the
workload of IoT applications, is required [16]. Due to the vast
solution space, scheduling in fog/edge computing is classified
as an NP-hard problem, which means it takes a long time
to discover an optimal solution. No algorithms can handle
these issues in polynomial time and yield optimal results.
Finding a sub-optimal solution in a short period is preferred in
such scenarios. To address such issues, meta-heuristic-based

strategies have been experimented to generate near-optimal
solutions in a reasonable amount of time [17]. Meta-heuristic
scheduling algorithms flower pollination algorithm (FPA)
and genetic algorithm (GA) can emulate the best characteris-
tics are seen in nature and assist the scheduling algorithm in
performing better. The modified GA and the modified FPA
are meta-heuristic methods used in the proposed scheduling
method.

The genetic algorithm is one of the most effective
population-based algorithms in terms of ease of use and effec-
tiveness for different problem contexts. Each chromosome on
GA consists of a set of genes representing a possible solution
to a problem. The initial population, chosen at random, is the
starting point of the algorithm. A fitness function determines
whether a chromosome is suitable for its environment. Single-
point crossover and mutation methods are used to create
a new population. This procedure is repeated when there
are enough children. To select the best solution, heuristic
algorithms use the objective function, but the fitness func-
tion is implemented by the genetic algorithm for choosing
the optimal solution [18]. The flower pollination algorithm,
which simulates the pollination process of flowering, has
been proposed in the literature for multi-objective optimiza-
tion applications. Global and local pollination are the two
most important processes in this algorithm. A flower and its
pollen gametes provide a stable approach to the optimization
problem. The benefits of FPA include a more straightforward
flower analogy and lightweight computing depending on just
one control factor [19]. This paper proposes using the mod-
ified genetic algorithm and flower pollination algorithm to
effectively provision fog and edge resources.

The significant contributions of our work are as follows:
• Proposing a resource provisioning solution using IoT
microservices with mobility management for healthcare
applications.

• Utilizingmodifiedmeta-heuristic scheduling techniques
for efficient resource provisioning in fog and edge
devices.

• Simulating a set of experiments to validate the effective-
ness of our proposed solution under real workloads in
terms of energy consumption, network use, cost, execu-
tion time, and latency.

The rest of the paper is organized as follows: Sections II
and III present the motivation, background, and related work.
Sections IV and V discuss the proposed method and the
experimental setup. Results are presented in Section VI. The
concluding comments are set out in Section VII.

II. BACKGROUND AND MOTIVATION
Vast amounts of sensor data from IoT endpoints are expected
to be transferred to the cloud in a conventional healthmonitor-
ing system, requiring significant network resources. Delay is
crucial in real-time contexts like health monitoring systems,
and it gets complex if the technology is used on a big scale.
The paradigm for resolving the issues mentioned above is
fog/edge computing. Fog/edge computing reduces latency

60916 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

by bringing resources close to the network’s edge [20].
Microservice architecture is used to keep up with the IoT
applications’ demand for fast development and deployment.
Due to the microservices’ fine-grained modularity and being
independently deployable and scalable, they show tremen-
dous promise for utilizing both cloud and fog/edge resources
to satisfy various QoS demands of IoT application ser-
vices [21]. Latency brought on by the mobility of a sensor
device can significantly impact edge-based IoT applications
for remote monitoring, including erroneous analysis and poor
service quality. In order to reduce the latency while maintain-
ing a connection, high-quality of service and energy-efficient
mobility support techniques are necessary [15]. Resource
provisioning and scheduling is a significant problem due
to heterogeneity, mobility, and dispersion of edge/fog/cloud
resources. Scheduling aims to match tasks with the right
resources, which are included within the scope of NP-hard
issues, and it takes a long time to discover the optimal
solution.

Meta-heuristic-based techniques have been proven to
achieve near-optimal solutions within a reasonable time for
such problems [22]. Finding global optimum solutions to sev-
eral complicatedmulti-modal design problems in engineering
and industry seems to be very difficult. In such scenarios,
conventional optimization techniques perform inadequately
because they may become locked in local optima. The utiliza-
tion of meta-heuristic algorithms derived from nature is hence
proposed. Due to their ability to avoid stagnation in local
optima and high convergence speed in the right direction of
the near-optimal solution, meta-heuristic optimization algo-
rithms have greatly impacted many fields in recent decades.
These algorithms tackle many optimization problems, espe-
cially problems in the engineering domain. Meta-heuristic
algorithms currently occupy the leading technique as opti-
mizationmodels for solving various optimization problems in
a reasonable amount of time due to their significant results.
By making a few assumptions about the optimization prob-
lems, meta-heuristics offer a set of solutions that can be
applied to various issues. These algorithms use less process-
ing to find feasible results.

According to the source of their inspiration, meta-heuristic
algorithms have been divided into four groups: human-based,
swarm-based, physics-based, and evolutionary algorithms.
The first group of algorithms, referred to as ‘‘evolution-based
algorithms,’’ imitate biological evolution by using repro-
duction, mutation, recombination, and selection to create
new offspring that are more powerful than their parents.
The majority of population evolutionary algorithms, such
as genetic algorithms, evolution strategy, genetic program-
ming, biogeography-based optimizer, and probability-based
incremental learning, have been extensively used for different
optimization issues. The swarm-based or social behavior-
based algorithms include the harris hawks algorithm, particle
swarm optimization, cuckoo search, whale optimization
algorithm, slimemold algorithm,marine predators algorithm,

grey Wolf optimizer, ant colony optimization, bat algorithm,
and flower pollination algorithm. Virtualizing fog computing
includes an essential concept for optimal task scheduling.

The best way to solve task scheduling issues in fog comput-
ing is to usemeta-heuristic algorithms that can quickly handle
a large search area and find the best solution. Hence we have
selected meta-heuristic approaches for the proposed method.
We have also chosen a genetic algorithm for the proposed
approach since genetic algorithms use several sets in a search
space where a search space is a collection of all possible
solutions to the problem. It requires one objective function
to calculate an individual’s fitness and can work in parallel.
Genetic algorithms operate on potential solutions’ repre-
sentations, known as chromosomes, rather than the actual
solutions. Genetic Algorithms are not guaranteed to produce
global optimal solutions as well but genetic operators like
crossover and mutation increase the likelihood of producing
global optimal solutions. Genetic algorithms are stochastic
and probabilistic in nature. With the right parameter setting,
due to their large solution space, genetic algorithms are highly
effective at handling multi-modal problems [23].

Because of the following characteristics, we have chosen
the flower pollination method as the other meta-heuristic
approach. Swarm intelligence (SI) optimization algorithms,
which are modeled after numerous forms of biological behav-
ior found in nature, have the advantages of being easy to
use, performing well in optimization, and having strong
robustness. The flower pollination algorithm (FPA) is a
meta-heuristic inspired by flowering plants for artificial intel-
ligence. Flower pollination is the process of transferring
pollen from one flower to another. Animals, such as birds,
bats, insects, and so forth, are the principal actors in such
transfers. Flowers and insects will form a flower-pollinator
alliance. These blooms can attract birds which are part of
the pollination, and these insects are the primary pollinators
of the flowers. A flower and its pollen gametes provide a
reliable answer to the optimization problem. With only one
control parameter, FPA gives a simplified flower analogy
with lightweight computing and provides a balanced intensi-
fication and diversity of solutions by implementing the Lévy
flight and switch condition, which may be used to switch
between local and global search. The pollinator transports
pollen over greater distances to high-fitting flowers in case
of global pollination; however, in other circumstances, local
pollination is carried out inside a small area of an exclu-
sive bloom. Switch probability is a possibility for global
pollination. Local pollination can be used to replace phased
elimination. The flower optimization algorithm (FPA), which
was developed to address global optimization based on sim-
ulating the pollination process of flowers, has successfully
addressed several optimization problems. FPA is distin-
guished by its formulation’s simplicity, adaptability, and
great computational performance efficiency. According to
numerous studies, it can also outperform other well-known
meta-heuristic optimization methods. As a result, FPA has

VOLUME 11, 2023 60917



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

been incorporated into several optimization studies and suc-
cessfully used to solve numerous optimization issues in a
variety of scientific domains.

To summarize, current research on edge/fog resource allo-
cation does not sufficiently address resource allocation issues
in mobility-aware microservice-based IoT applications. The
rise of edge/fog computing has opened up new possibilities
for healthcare sector, leading us to select a crucial medical
application as the focus of our study. Edge/fog computing
allows real-time processing of data generated by medical
devices and wearable sensors, thus enabling remote patient
monitoring, faster diagnosis, and more personalized treat-
ment. Efficient resource provisioning is crucial for healthcare
applications in edge/fog computing because of the reasons
such as low-latency requirements, limited network band-
width, and resource constraints. Therefore, we conducted a
review of existing literature on resource allocation methods
employed in healthcare applications, which led us to consider
utilizing metaheuristic techniques for resource provisioning.
We chose GA and FPA because similar applications of this
category of heuristics, such as resource management on cloud
infrastructure, have produced promising results.

III. RELATED WORK
Reserving data processing, network, and storage resources
for use by IoT applications is called provisioning. A fog or
an edge node must effectively provide resources to allocate
IoT requests. In the literature, resource provisioning has been
studied for years and has gained much attention recently [24].
This section reviews resource management concerns in fog
and edge computing.

Shakarami et al. propose an overview of resource
provisioning methods in fog computing environments
and discuss the open challenges in this area. Machine
learning-based, heuristic/meta-heuristic-based, framework-
based, game theoretic-based, and model-based are the
five primary classifications presented [7]. Masoumeh et al.
provide a resource provisioning technique that uses a
Bayesian learning-based autonomic computing model for
decision-making and control loop planning. This work has
been carried out using time series prediction models [8]. The
work proposed in [25] also uses Bayesian learning along with
linear regression and autonomic computing to efficiently allo-
cate the cloud resources. Dinesh et al. suggest an improved
resource provisioning method based on the JAYA (a sanskrit
word meaning victory) approach for placing virtual machines
in a data center which aims to reduce energy consumption
by effectively organizing the migrated VMs [26]. Literature
also presents many heuristic-based and evolutionary-based
techniques for task scheduling. Heuristic algorithms are faster
than evolutionary algorithms but unsuitable for finding an
optimal solution in NP-complete situations. Recently, meta-
heuristics have also been employed to generate optimal
solutions [27].

Mishra et al. use meta-heuristic service allocation algo-
rithms for a heterogeneous fog computing system that

processes heterogeneous jobs, formulate the linear program-
ming problem for time and energy optimization and uses
particle swarm optimization (PSO), binary PSO, and bat
algorithm [22]. Hosseinioun et al. propose a strategy based on
the dynamic voltage and frequency scaling (DVFS) technique
that is energy aware and saves it using hybrid invasive weed
optimization [28]. Ashkan et al. recommend FOGPLAN,
a QoS-aware dynamic fog service provisioning framework,
by defining it as an optimization problem and evaluating it
using a simulation based on real-world traffic traces [29].
Naranjo et al. propose a penalty-aware bin packing heuristic
algorithm for resource management hosted by each fog node,
allowing resource consolidation and admission control by
scaling up or scaling down computation frequencies [30].
To reduce the average peak age of information, Fang et al.
designed the associated time slot allocation problems and,
using an exact linear search strategy, found the best solutions
to the resulting non-convex problems [33].

FCM-FPA, a new fuzzy clustering with flower pollination
method as a resource provisioning model for fog computing
proposed in the literature, includes resource normalization
and fuzzy clustering and has been evaluated using the Iris and
Wine datasets [19]. Abdel et al. introduce an energy-aware
meta-heuristic approach for task scheduling based on Har-
ris hawk optimization to enhance QoS, which also assesses
energy consumption, cost, makespan, flowtime, and carbon
dioxide emission [34]. To more effectively address numer-
ous research difficulties, such as resource placement and
scheduling, mobility, communication and edge control, many
nature-inspired meta-heuristic (NIMH) methods have been
applied in edge computing. Fuzzy logic, edge network sys-
tems, and various research issues are all included in the survey
conducted byAdhikari et al., which divides the current NIMH
into three categories based on the nature of their work [35].
To reduce Service Level Agreement (SLA) violations caused
by the limitations of edge computing resources and to handle
the computational complexity of edge computing problems,
Adyson et al. propose a random and heuristic approach to ini-
tialize the population for multi-objective genetic algorithm.
The solution thus developed is found to be close to opti-
mal and is employed to examine the placement and load
distribution of IoT applications. It performs better than exist-
ing benchmark algorithms in response to deadline violation,
cost, and service accessibility [36]. Fang et al. provide a
heuristic particle swarm optimization (PSO) approach built
on a Lyapunov framework to balance system queue backlog
and energy efficiency for trajectory scheduling and alloca-
tion of computational resources for Internet of Underwater
Things [37]. Table 1 presents the summary of related works
in meta-heuristic methods.

Among many applications, the healthcare sector deserves
to be prioritized in terms of service quality compared to other
domains. Critical functions such as simultaneous reporting
and monitoring, tracking and alerts, and remote medical aid
are all possible with IoT-based apps. The center for connected
health policy conducted a study that observed that remote

60918 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

TABLE 1. Summary of related works in heuristic/meta-heuristic methods.

TABLE 2. Summary of related works in mobility implementations of fog computing.

health monitoring systems lower the re-admission rates of
heart failure patients by 50 percent [38], [39]. The following
paragraph discusses fog and edge technology in the medical
sector.

Nashatt et al. propose an E-health and wellness moni-
tor application to encourage a healthier lifestyle. This work
gathers the user behaviors, analyzes them, and later pre-
dicts certain events with personalized recommendations [40].
However, the latency in data processing affects critical
emergencies. Adesh et al. suggest a real-life cloud-based
smart medical system using a communication networking
where-in a doctor treats his patients via internet. This pro-
posed application uses mobile, wireless body area networks,
and so on, intending to be extended to fog technology.
The proposal claims that the suggested framework is more
effective in computation and communication expenditure
than the existing protocols in smart healthcare [41]. Tuli et
al. propose a lightweight healthcare fog service that man-
ages cardiac patients’ IoT data. The FogBus framework
allows efficient edge/fog/cloud integration for reliable and
fast results [3]. A comprehensive overview of fog-based
technologies in healthcare IoT systems has been conducted
by Ammar et al. [42]. To identify the challenges and require-
ments of edge devices for diverse use cases, Morghan et al.
explore current and developing edge computing architectures
and approaches for health care applications [43]. To evenly
distribute the load amongst fog nodes when the health moni-
toring system is installed on a big scale, Asghar et al. offer a
new load balancing scheme (LBS). It presents the comparison
of the parameters, network use, and latency for different
placements namely cloud-only implementation, load Balanc-
ing scheme, and fog node placement [44].

The mobility of IoT end devices can impact the per-
formance of fog-based provisioning. The provisioning of
resources considering mobility for critical real-time applica-
tions is a growing field with several unsolved issues. The
following articles examine the implementation of end node
mobility in fog and edge computing environments.

Puliafito et al. implement theMobFogSim, an add-on to the
iFogSim simulator that can account for user mobility, wire-
less connectivity, and the virtual machine/container migration

process [11]. Isaac et al. propose yet another fog simulator
(YAFS) for fog computing environments that model network
failures and thereby allow the evaluation of service placement
solutions in failure cases through run time creation/deletion
of cloudlets and network links, as well as functions invoked at
run time to implement actual events [31]. FogNetSim++ is
a framework for constructing network simulators that extend
OMNeT++14 to mimic all aspects of energy consumption,
pricing, mobility, and handoff mechanisms [32].

Jayasena et al. use a whale optimization meta-heuristic
algorithm for optimal task scheduling in a smart healthcare
application model and found that it outperforms PSO, short-
est job first and round robin in terms of energy usage and
cost [45]. Qiu et al. analyze the minimization optimization
in fog computing-based Internet of Medical Things, which
is considered a non-convex and non-linear problem [46].
The work considers the quality of service, power limit, and
wireless constraint as optimization parameters. Abdel et al.
propose a fog-based IoT platform for real-time diabetic
patient tracking, using a hybrid strategy based on type-2 neu-
trosophic with the help of VIKOR method [47]. Hasse et al.
present an e-health system that collects general and physio-
logical health indicators from older people using My signals
HWV2 technology using a fog computingmobile application
for monitoring health [48]. The recommended strategies have
the advantage of handover latency. However, they are unsuit-
able for IoT fog systems since the message notifications, and
distributed storage cannot be refreshed when moving [49].
Table 2 presents the summary of related works in mobility
implementations of fog computing.

This paper’s primary focus is building IoT microser-
vices for the healthcare sector. The goal of microservice
architecture is to break down the system into small, self-
contained components linked to shared services with more
significant service decoupling compared to service-oriented
and monolithic architectures [50]. Because of its essential
characteristics, such as small granularity and low coupling,
microservices architecture is recommended as a new design
method that is easier to update and deploy fog IoT appli-
cations. Due to its excellent performance and applicability
for IoT applications, microservice deployments are more

VOLUME 11, 2023 60919



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

relevant nowadays [51]. Each microservice is responsible
for a single sub-task or service, requiring fewer compute
resources and lowering communication overhead. Zhao et al.
offer an architecture based on the microservice container fog
system to execute delay-sensitive and cost-effective mobility
applications in which the costs are calculated as the sum of
the computation and communication expenses [52]. A novel
approach to learn the microservice applications using pre-
dictive autoscaling deployed on containerized fog computing
infrastructure has been proposed by Abdullah et al., which
seems to have less number of rejected requests and SLA
violations compared to existing systems [53]. Samodha et al.
investigate the factors that distinguish microservices-based
application scheduling in fog computing from other applica-
tion models. In addition, the work analyzes the integration
of microservices for IoT applications using applica-
tion modeling, placement composition, and performance
evaluation [54].

We aim to develop a framework based on meta-heuristic
approach for mobile-aware IoT microservices that could be
implemented on edge/fog computing scenarios for the medi-
cal IoT applications. Our proposed approach involves modi-
fying and integrating the mobility module within iFogSim2.
Along with latency addressed in the existing works, other
parameters like energy consumption, network use, cost, and
execution time are also to be considered while developing a
healthcare IoT system. The focus of this paper is to develop a
resource provisioning solution using IoT microservices with
mobility management by deploying meta-heuristic methods
for healthcare applications and comparing the results against
the existing implementations.

The main contributions of this paper are as follows:
• Resource provisioning of IoT microservice applications
considering the mobility of nodes.

• Experimentation on the meta-heuristic microservice
framework for efficient resource management.

IV. PROPOSED METHOD
A. APPLICATION MODEL
Healthcare systems are facing enormous challenges due to the
pandemic and chronic diseases. The proposed architecture is
based on expectations extracted from the actual application of
the healthcare sector. If successfully applied, fog computing
can reduce the latency experienced in the quality of service
(QoS) and minimize the bandwidth usage in any healthcare
application and later can be extended to other time-critical
applications. The main difference between fog-based and
cloud-based systems is the computing and storage capability
of the fog devices between the patient and the cloud data cen-
ter. With fog technology, the underutilization of intermediate
devices can also be addressed. Virtualized processing cores,
storage, and memory are considered resources at fog nodes.
If a request meets the resource requirements such as CPU,
memory, and bandwidth, the request can be processed by the
current fog or edge device; else the request can be trans-
mitted to the neighboring device. The proposed fog-based

architecture includes the concept of fog node virtual machine
partitioning to run medical IoT device data efficiently. Multi-
ple processes running on a single fog/edge node might cause
congestion, preventing tasks from running smoothly. To solve
this problem, fog/edge nodes can establish virtual machines
responsible for delivering computational resources to the
tasks. Virtual machines are primarily separate modules, each
doing a specific task. Medical IoT applications are increas-
ingly being implemented using modular architectures, which
use microservices architecture and allow time-sensitive tasks
inside fog/edge and latency-tolerant jobs inside the cloud.
Hence we have selected microservice architecture for design-
ing and modeling critical real-time medical applications. The
application model is discussed in detail in the following
paragraphs.

For an integrated fog healthcare application, a multitier
architecture paradigm has been chosen for the proposed
approach. IoT devices such as sensors and actuators consti-
tute tier 0. Electrocardiogram (ECG) signals are sensed by
sensors connected to the patient and transmitted to the fog
nodes via smartphones. All sensors have the same sensing
frequency. In the proposed system, the tuple transmit rates
of the sensors are set using transmitDistribution, which is
an attribute in the Sensor class. DeterministicDistribution
(EEG_TRANSMISSION_TIME) defines the transmitDistri-
bution of the sensor, and EEG_TRANSMISSION_TIME is
selected as 5ms in the proposed system. Actuators are used
to carry out corresponding actions based on the outcomes
of applications. The fog nodes (proxy servers, gateways)
constitute the architecture’s tier-1 and tier-2. In the proposed
fog-based smart healthcare system, the fog layer act as a
supportive intermediary layer for processing and analyzing
real-time critical healthcare data close to end-users. The fog
nodes process the data from the sensor IoT device, and the
patient’s health condition is relayed to the patient’s smart-
phone. The fog nodes are located near the network’s edge,
which is closer to the IoT device, hence the patients receive
a quick response in a real-time application. The data center
at the cloud layer is the upper layer of the proposed system,
which stores the permanent healthcare data of the patient. The
cloud, which acts as tier 3, supplies additional processing and
storage resources if fog devices cannot handle the incom-
ing request requirements. Data stored in the cloud can be
retrieved anytime by the users connected with the application.
Our proposed health monitoring system’s multitier architec-
ture is depicted in Figure 1.

B. PROBLEM FORMULATION
A systematic strategy of allocating available resources to
clients is known as resource allocation. Every fog device
has a data center with similar capabilities as a cloud but
with fewer hosts, computing elements, and storage. Hence,
the fog computing model has limited resources to serve the
incoming user requests with stringent latency requirements.
The fog network’s client applications can run as cloudlets in
virtual machines (VM). The cloudlet tasks are executed in the

60920 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 1. Multitier architecture.

corresponding virtual machine. By creating multiple virtual-
ized copies of the hardware, the VMs provide resources to the
applications. In such distributed environments, task schedul-
ing involves allocating resources to the tasks efficiently.
A task scheduler is in charge of mapping an application’s
task to the available resources so that specific requirements
can be met. Since each VM is cost-effective, task schedul-
ing is a challenging issue. To address the challenges faced,
the literature finds the use of meta-heuristic approaches,
namely the genetic algorithm and the flower pollination
algorithm, for resource allocation. As a resource provisioning
model, this study proposes a mobility-aware IoT healthcare
application using modified meta-heuristic approaches for
scheduling. This proposed work integrates mobility, cluster-
ing, and microservice techniques for healthcare applications
and analyzes energy consumption, network usage, cost, exe-
cution time, and latency parameters. IFogSim2 simulator
has been used to evaluate the proposed system [15]. The
following subsections go through the proposed method in
considerable detail.

1) SYSTEM MODEL
The proposed system model assumes the presence of a task
scheduler placed at the edge/fog nodes, that is in-charge of
the scheduling of the tasks which are forwarded for execution
once they are submitted. As a result, a resource provisioning
technique is to be used in the nodes that help in finding an
efficient match between tasks and resources.

The main aim of this research is to allocate resources
efficiently by considering users’ mobility with minimal pro-
cessing time. The applications considered in this work are
time-sensitive and hence processing user requests only using
a cloud is not a preferable option due to the incurring latency
issues. The participation of fog/edge devices is a need to
complete the tasks in a timely manner. The proposed model
should address the limitations of such fog/edge devices like
highly distributed nature and minimal resource availability.
It should also consider the hybrid fog-cloud environment
with the deadline and dynamic behavior of the users. Prior
research have not considered resource allocation in the fog

FIGURE 2. The operation of task scheduling.

by considering the location change of users. As mentioned
earlier, this paper experiments the mobility of the devices
and analyzes the results for varying conditions. A detailed
description of the mobility of the users is described in
Section IV-B5 and results in Section VI-B1.

IoT applications handle the processing of user requests
and respond to consumers’ need on a regular basis. The flow
of the task scheduling module for the proposed approach is
described below:

A mobile user first sends a request, which is processed by
the fog node to whom it is linked. The fog broker receives job
request. Each job is broken down into a series of tasks to be
handled in the distributed system, and the resource require-
ment for each of them is then calculated. The fog broker
manages the data about tasks and nodes and uses a scheduling
algorithm to determine the suitable assignment of resources
to the task. Tasks are then dispatched to the corresponding
fog nodes. Each node is responsible for completing all the
tasks allocated to it before sending the completed work back
to the fog broker. The connected fog node then transmits the
response to the mobile user. The sequence diagram depicting
the above discussions is presented in Figure 2.

An edge/fog computing system consists of a fully inter-
connected set of m servers. Each server consists of n
VMs. Virtualization allows the creation of multiple virtual
machines on the same host or server. We assume that all
the resources are homogeneous with respect to computing
capacity and capability. Each hostmay be assigned to perform
different or the same services. The workload submitted to the
system is the tasks that are later submitted to the scheduler.
The scheduler allocates the tasks to the VMs on different
computing hosts. Tasks are independent scheduling entities
that cannot be preempted and generally represent the user’s
compute or service request.

Efficient resource provisioning for edge /fog systems can
be represented as an optimization problem to minimize the
execution time, as represented in the following paragraph.
Since time-critical applications have a greater impact on this
parameter, we optimize the execution time in our model.

Requests from user applications are broken down into
small, independent tasks when they are transferred to the

VOLUME 11, 2023 60921



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

fog layer to be processed through the cloud-fog computing
infrastructure. The following characteristics belong to each
task: the number of instructions, memory required, and size
of input and output files. A set of n independent tasks are
delivered to the system at each time, assuming that Tk repre-
sents the k th task, as follows:

T = {T1,T2,T3, . . . ,Tn} (1)

The cloud-fog infrastructure comprises cloud nodes and fog
nodes, which are processors with characteristics such as CPU
rate, CPU usage cost, bandwidth usage cost, and memory
usage cost. The cost of using cloud nodes is higher than that of
fog nodes, despite the fact that they are often more powerful.
The system’s set of m processors is made up of fog nodes,
as follows.

N = {N1,N2,N3, . . . ,Nm} (2)

where Ni presents the ith processing node. The processor Ni
is given each job Tk , which is denoted by T ik .
A set of one ormore tasksmay be assigned to one processor

for computing:

NiTasks = {T ix ,T
i
y, . . . ,T

i
z} (3)

The execution time (EXT) required by node Ni to finish a
set of NiTasks assigned to it, as follows:

EXT (Ni) =

∑
T ik∈NiTasks

EXT (T ik ) (4)

EXT (T ik ) =
length(T ik )

CPUi
(5)

where length(T ik ) denote the number of instructions in the
task Tk and the node Ni’s CPU rate is represented by CPUi
and is depending on factors such as clock rate, core count,
instruction level parallelism, etc. Total execution time is the
total time taken by the system to complete all the tasks,
defined from the time when the request is received until the
last task, or the time when the last machine completes. Total
execution time is determined by the formula:

TXT =

∑
m

[EXT (Ni)] (6)

The execution time of a task includes the time taken to
complete the jobwhile utilizing system services. The duration
of execution varies for different tasks depending on the level
of processing and input-output activities involved. Enhancing
execution speed increases system effectiveness; as a result,
it becomes a crucial factor. Efficient resource provisioning
for edge /fog systems can be represented as an optimization
problem to minimize the execution time, as represented in the
following paragraph. Since time-critical applications have a
greater impact on this parameter, we optimize the execution
time in our model.

2) EVALUATION PARAMETERS
The objective function used in our work intends to minimize
the execution time. Additional metrics considered are latency,
energy consumption, network use, and cost. This section
explains these performance measures which are used to eval-
uate the modified meta-heuristic approaches (explained in
the next sub-section) for task scheduling in mobility-aware
microservice-based IoTmedical applications proposed in this
study.

a: LATENCY
The application’s control loop is Client Microservice →

Preprocessing Microservice → Decision Making Microser-
vice → Client Microservice which is described in
Section IV-B7. The relatively lower latency of this con-
trol loop suggests improved allocation and coordination
of computer resources. Microservices in the fog hierarchy
are upgraded by edgeward placement, resulting in a single
instance of each microservices from an edge to a cloud path.
The limited resource capacity of fog nodes necessitates a
strategy where microservice instances are placed in higher
fog layers. However, this approach leads to an increase in
average latency.

TL =

∑
m

CAL (7)

Total latency (TL) represented in Equation 7 directly
depends on the allocation of VMs in fog devices in which
the tasks are distributed for execution. Total latency is the
summation of the current average delay (CAL) experienced
by every VM inside the host for m servers, where CAL is
calculated as follows.

CAL = CC−ET (8)

In the above Equation, CC is the simulator clock and ET is
the execution time of the tuple.

b: ENERGY CONSUMPTION
Energy consumption is a crucial factor in computing systems,
encompassing various components such as data communica-
tion infrastructure, backup power supplies, cooling systems,
fire control, and security technologies. The operational costs
of infrastructure are influenced by the power supply, mak-
ing it essential to implement strategies for reducing these
costs. The edgeward method involves deploying the majority
of microservices on cloud virtual machines, which leads to
increased energy consumption of cloud resources. The extent
of energy usage depends on the number of active microser-
vices in each tier. Reducing energy consumption significantly
affects the efficiency, affordability, availability, dependabil-
ity, and environmental sustainability of devices.

The energy consumption of a server or host can be repre-
sented by separating it into two main components: the fixed
energy consumption when the server is in an idle state, and
the variable energy consumption when the server is actively

60922 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

processing requests. Energy consumption depends on the
server’s number of VMs and the allocated MIPS allocated for
each VM.
E0 is the current energy consumption, the fixed energy for

the server in an idle state. The variable energy for server
utilization while processing the requests is ENik . E is the total
energy consumption which can be calculated by

E = ENik + E0 (9)

ENik = c1 ∗ EXT (T ik ) (10)

where ENik is the energy consumption by the task Tk running
on the virtual machine or node i, E0 is the power required to
operate a data center which is the fixed energy for the server
in an idle state, where c1 denote the CPU usage fee per time
unit in node Ni

c: NETWORK USAGE
A crucial metric for comparing various approaches is the
overall volume of data delivered across a network. Par-
ticularly on large networks, high data transfer techniques
may result in network congestion, service interruptions,
or an increase in the control loop’s average delay for the
applications. Compared to cloud operations, latency can
be significantly minimized by offloading a portion of the
workload to the network edge. It is important to maintain
efficient communication between the edge and the cloud.
Data pre-processing at edge and fog devices can greatly
reduce the size of data transmission. However, it is crucial
to conserve bandwidth due to the large number of endpoints
connected to the network and the requirement for multiple
database servers to support them. Network usage depends on
the latency experienced by the network and the tuple size of
the data for ′n′ VMs in the host as listed in Equation 11.

NU =

∑
n

(l ∗ TNS) (11)

where l denote the latency experienced by the network and
TNS denote the tuple network size. Total network use depends
on the number of VMs in fog devices in which the tasks are
distributed for execution.

d: COST
Costs include infrastructure, network hardware, processing,
network communications and storage costs. The investment
made by service providers in fog computing also includes the
placement of communication and processingworkloads in the
fog device. One of the main issues with fog computing is cost
saving.

Processing cost is defined as:

cost(T ik ) = c1 ∗ EXT (T ik ) + c2 ∗M (T ik ) + c3 ∗ Bw(T ik )
(12)

where c1 denote the CPU usage fee per time unit in node Ni,
and EXT(T ik ) is given in Equation 5. c2 denote the memory
usage fee per data unit in node Ni and M(T ik ) represent the

TABLE 3. Notations used in evaluation metrics equations.

memory needed by task Tk . Task Tk processed in node Ni
needs an amount of bandwidth Bw(T ik ), which is the sum of
input and output file size. c3 is the bandwidth usage fee per
data unit. The following formula is used to determine how
much each task in the cloud-fog system will cost in total:

Totalcost =

∑
T ik∈NiTasks

cost(T ik ) (13)

Our proposed strategy aims to deploy meta-heuristic
resource-provision methods and evaluate the above-
mentioned parameters.

Table 3 contains the list of acronyms used in this section.

3) MULTI-OBJECTIVE OPTIMIZATION
This paper proposes the solution to the resource provisioning
problem in two approaches. The first approach is address-
ing the resource provisioning problem as a multi-objective
optimization problem with the objective to minimize the
evaluation parameters considered in this work. This approach
uses the weighted sum method to aggregate the results. The
second approach is to solve the problem usingmodifiedmeta-
heuristic methods. This subsection explains the formulation
of the multi-objective optimization problem and the next
subsection explains the meta-heuristic approach in detail.

The parameters considered for optimization are energy
consumption, network use, execution time, cost and latency
represented by the weight vectors w1, w2, w3, w4, w5 respec-
tively. They hold the values between 0 and 1 and sum to 1.
These weights are subjective and define the contribution
of each parameter in the solution space. The multi criteria
decision making methods like analytical hierarchical process
could be used to derive the weight vector. Any point of a
convex pareto front can be obtained by altering the weights.
The model is solved for each combination of weighted coef-
ficients, and the objective function values returned are saved
in the pareto set. The objective functions considered in this
work are presented in Equations 14, 15, 16, 17, and 18. The
multi-objective optimization problem is given in Equation 19.

obj1 = min(TXT ) (14)

obj2 = min(TL) (15)

obj3 = min(E) (16)

obj4 = min(NU ) (17)

obj5 = min(Totalcost) (18)

VOLUME 11, 2023 60923



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

TABLE 4. Weight selection for weighted sum method.

min(w1 ∗ obj1 + w2 ∗ obj2 + w3 ∗ obj3 + w4 ∗ obj4
+ w5 ∗ obj5) (19)

where

w1 + w2 + w3 + w4 + w5 = 1 (20)

The constraints for this problem include ensuring that the
total CPU requirements of all the jobs assigned to a particular
host do not surpass the host’s capacity. Additionally, each
Virtual Machine should be allocated to only one host. The
start time for the simulation should be greater than zero,
and the tuple network size must not exceed the network size
limit.

Analytical Hierarchical Process (AHP) is a structured tech-
nique that is used to solve multi-criteria decision making
problems in many areas including e-commerce, transporta-
tion, portfolio selection, supplier selection etc. It helps
in organizing and analyzing complex decisions, based on
mathematics and psychology, where alternatives are ranked
using the pairwise comparison of multiple criteria [55]. The
weighted sum for each alternative is computed bymultiplying
each objective value with its corresponding weight and sum-
ming up the result, ending in a singular value representing
the performance of each alternative. These alternatives are
then ranked in descending order based on their weighted sum
values, creating a list from best to worst. Beginning with
the top alternative, non-dominated solutions are identified by
comparing their weighted sum value to those of the alterna-
tives below it. If an alternative has a better or equal weighted
sum value for at least one objective and a better-weighted sum
value for at least one other objective, it is considered non-
dominated. This process is repeated for all alternatives, and
the preferred solution is selected from the non-dominated set.
However, this weight assignment is subjective and can vary
from problem to problem. The use of AHP in this proposed
study leads to the set of weight vectors listed in the Table 4
for the parameters considered.

The results comparing this with the existing and the pro-
posed methods are presented in Fig. 13.

4) PROPOSED META-HEURISTIC METHODS
This section explains the solution to the resource provision-
ing problem using the meta-heuristic methods. As described
in section IV-B, this work uses the modified version of
genetic algorithm and the flower pollination algorithm which
is described below.

a: FITNESS FUNCTION
Execution time is the the most important factors influencing
energy consumption, network use, cost, and latency. Thus,
an objective function is employed for evaluating the candidate
solutions as same as Equation 5, which can be represented as
follows:

Fitness =

m∑
i=1

length(T ik )

CPUi
(21)

where length(T ik ) denote the number of instructions in the task
Tk and the node Ni’s CPU rate is represented by CPUi

Algorithm 1Modified Genetic Algorithm
1: Input: An application’s set of resources available and

unmapped tasks.
2: Output: Output mapping
3: Construct a list of the available resources.
4: Create population
5: for Each chromosome do
6: Determine the optimum resources (best fit) for every

activity based on the time it will take to complete it.
7: Go to the next resource in the list.
8: if The counter of index = last resource then
9: Go to the first resource on the list.
10: end if
11: end for
12: Evaluate all chromosomes using the fitness function
13: while Termination condition not reached do
14: Random selection and crossover
15: Mutation
16: select best chromosomes
17: end while
18: Save the best solution
19: Map the tasks on resources

b: MODIFIED GENETIC ALGORITHM
By taking into consideration the fog/cloud system features,
a modified meta-heuristic method based on GA is proposed
in this approach.

• Initial population: In a standard genetic algorithm, it is
generated at random. In fog-critical time applications,
creating a good and goal-oriented initial population that
leads to finding the response promptly is preferable.
Hence to build the initial population, the tasks/cloudlets
are sorted by execution times and their processing capac-
ity in MIPS. The chromosome’s first row of genes is
occupied with sorted cloudlets. The best-fit technique is
to select a suitable VM with the shortest operating time
for each task from the virtual resource list.
The proposed pseudo-code is presented as Algorithm 1.
Figure 3 presents the flowchart for the same.

• Crossover: A random gene selection is used in this case.
Two parents are chosen randomly, and their genes are

60924 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 3. Modified genetic algorithm flowchart.

chosen at random. Then, two other solutions are devel-
oped by altering resource regions of selected genes.

• Mutation: A chromosome and one of its genes along
with a resource from a virtual list is chosen at random.
If the execution time is faster than the last candidate, the
selected resourcewill be replacedwith the selected gene.
The mutation leads to the speedy discovery of a good
solution.

• Evaluation and selection solutions: It uses a fitness func-
tion with efficient parameters to recognize the value
of a solution. The fitness function is applied to all the
solutions, and their values are determined in GA. Then
the solution with the best value is identified as the maxi-
mum orminimum for the fittest solution using parameter
placement guidelines. In the proposed approach, solu-
tions with minimum execution time can be considered
the best value after fitness function estimation. The num-
ber of virtual resources in the list is denoted as ′n′. Each
solution’s fitness value is calculated using Equation 21.
The chromosome with minimum fitness value is consid-
ered as the best solution among others. The target is to
minimize the fitness function. The method tries to find a
solution by using crossover and mutation operations to
reduce the fitness value asmuch as feasible. Single-point
crossover has been applied in the proposed approach due
to its advantages, which include enhanced genetic diver-
sity, expedited convergence, effective exploration of the
search space, and retention of favorable genetic mate-
rial. By utilizing single-point crossover, the diversity of
solutions can be increased, and the search for optimal

solutions can be accelerated. The population selection
strategy opted is the elite selection, which is a simple
method to implement. It only involves selecting a fixed
number of themost best individuals from the population.
Elite selection helps quicken the convergence, enhance
the genetic diversity, and keep the good genetic material
by preserving the best individuals in the population.
It prefers some of the best chromosomes for the next
iteration, considered elites. The time complexity of GA
for the resource allocation problem considered in this
work depends on the number of generations (g), the
population size (n), and the complexity of the fitness
function (m) represented as O(g * n * m). The memory
complexity of the GA implementation depends on the
representation of the chromosome, the population size,
and the size of the problem. The memory required to
store the population is proportional to the number of
chromosomes (n) and the length of each chromosome
(l) denoted as O(n * l).

c: MODIFIED FLOWER POLLINATION ALGORITHM
The flower pollination algorithm (FPA) is a meta-heuristic
inspired by flowering plants for artificial intelligence. Flower
pollination is the process of transferring pollen from one
flower to another. Animals, such as birds, bats, insects, and so
forth, are the principal actors in such transfers. Flowers and
insects will form a flower-pollinator alliance. These blooms
can attract birds which are part of the pollination, and these
insects are the primary pollinators of the flowers. A flower
and its pollen gametes provide a reliable answer to the opti-
mization problem. With only one control parameter, FPA
gives a simplified flower analogy with lightweight computing
and provides a balanced intensification and diversity of solu-
tions by implementing the Lévy flight and switch condition,
which may be used to switch between local and global search.
The pollinator transports pollen over greater distances to
high-fitting flowers in case of global pollination; however,
in other circumstances, local pollination is carried out inside
a small area of an exclusive bloom. Switch probability is a
possibility for global pollination. Local pollination can be
used to replace phased elimination. The steps of modified
FPA in the proposed method are described below:

• Step 1: Initialize the population with the help of the best
fit strategy to get the response rapidly. Hence to build
the initial population, the tasks/cloudlets are sorted by
execution times, and their processing capacity in MIPS.
Cloudlets are allocated to VMs in the virtual resource
list using the best-fit strategy.

• Step 2: Evaluate performance for each solution in the
initial population using the fitness function in Equation
21. The fitness function is applied to all the solutions,
and their values are computed in FPA, after which the
solution with the best value is selected as the maximum
or minimum for the fittest solution using parameter
placement guidelines. In the proposed approach, solu-
tions with minimum execution time can be considered

VOLUME 11, 2023 60925



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 4. Modified flower pollination algorithm flowchart.

the best value after fitness function calculation. Each
solution’s fitness value is calculated using Equation 21.

• Step 3: Find the best solution among all. The best solu-
tion among the others is the one with the lowest fitness
value. The goal is to minimize the fitness function as
much as possible.

• Step 4: Define switch probability. In the proposed
approach, the switch probability is considered as 0.8.

• Step 5: Check to stop criteria. In the proposed approach,
the algorithm stops once it reaches the required number
of iterations.

• Step 6: Flower pollination main loop start. According to
switch probability, perform local pollination or global
pollination.

• Step 7: Update new solution and compare with old solu-
tions.

• Step 8: Display the best solution among all.
Figure 4 shows the flowchart for the same. The proposed

algorithm’s pseudo-code is included in Algorithm 2. The
switching probability p, the scaling parameter, and the popu-
lation size n are the parameters in FPA. Empirical findings
and numerical simulations imply that a small population
is adequate, regardless of whether the real-world popula-
tion sizes are large. The time complexity of FPA for this
implementation depends on the number of iterations (t), the
population size (n), and the complexity of the objective func-
tion or the number of decision variables (m) which is given as
O(n * m * t). The memory complexity of FPA for this work
relies on the population size (n) and the number of decision
variables (m) denoted as O(n * m).

The proposed approach described in Algorithm 3 is
the implementation of investigating resource provisioning
based on meta-heuristic methods for microservice-based IoT

Algorithm 2Modified Flower Pollination Algorithm
1: Input: An application’s set of resources available and

unmapped tasks.
2: Output: Output mapping
3: Construct a list of the available resources.
4: Create population
5: for Each solution do
6: Determine the optimum resources (best fit) for every

activity based on the time it will take to complete it.
7: Go to the next resource in the list.
8: if The counter of index = last resource then
9: Go to the first resource on the list.
10: end if
11: end for
12: Find the fitness of each solution in the population using

the fitness function
13: Find the best solution
14: while Termination condition not reached do
15: if (rand) is less than switching probability (.8) then
16: performs global pollination
17: else
18: performs local pollination
19: end if
20: Find fitness of the new solution
21: if new solution better than existing solutions then
22: swap with the new solution
23: end if
24: end while
25: Save the best solution
26: Map the tasks on resources

medical applications in a fog computing environment utiliz-
ing mobility components of iFogSim2.

5) MOBILITY
The mobility of fog nodes or users raise an issue for the fog
computing platform by maintaining resources close to users
at all times [56]. IoT device mobility can impact the perfor-
mance of fog applications because of the rapid movement
of the devices from one access point to another. This causes
IoT device application service migration from one computing
node to another to maintain the committed QoS.When opting
for mobility, one must consider identifying an intermediary
node to which the origin fog node can upload the relevant
application service, so that the final fog node can download.
Location data for IoT devices, the device’s mobility trajectory
or mobility direction and speed, are the factors we must con-
sider for service migration. If we consider end node mobility,
networkmetrics such as delay, energy use, and other variables
also fluctuate dramatically. Considering all these characteris-
tics, we have extended the mobility component of iFogSim2
to customize with the proposed application. A comprehensive
description of these classes is provided in Figure 5.

60926 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

Algorithm 3 Healthcare Application
1: Input: Sensor data
2: Output: Response to an actuator
3: Create new FogBroker
4: Create new Application
5: Create new dataparser object and location handler object
6: Adding microservices (Client module, datapreprocess-

ing, decision making, storage) to the application
7: Using edges to connect application modules in the appli-

cation model
8: Defining the relationships of the input and output

microservice modules
9: Defining the microservice application loop as

sensor-client module-data preprocessing-decision
making-client-actuator

10: Add application to fogbroker
11: Create fog devices in the physical topology
12: Create Cloud datacenter
13: for each i to locator.getLevelWiseResources do
14: Create proxy fog device
15: Applymodified genetic algorithm for task scheduling

and Apply modified flower pollination algorithm for task
scheduling

16: end for
17: for each i=0 to locator.getLevelWiseResources do
18: Create gateway fogdevice
19: end for
20: Initialize microservice mapping
21: Create MicroservicesMobilityClusteringController and

submit the controller to the application
22: Start Simulation
23: Stop Simulation
24: End

FIGURE 5. IFogSim2 mobility.

The modified mobility components can expand data from
external sources using the DataParser class as an interface by
reading data from .csv files. The multitier logical hierarchy
of edge/fog nodes described in the previous subsection has
been employed to deploy end devices, edge, fog, and cloud.
The DataParser class can independently assimilate the loca-
tion data of various mobile users and IoT devices, allowing
application services to be handled according to each user’s

unique mobility pattern without harming other users. The
DataParser class parses the location data of edge, fog, and
end nodes and generates separate location object for each
coordinate. A Location object may also contain the relevant
entities’ block-wise information. Additionally, DataParser
can use these Location objects to refer to the LocationHan-
dler class to sequence all mobile entities’ movement events.
The MobilityController class wraps the object references
of various mobility-specific classes to collectively address
mobility-related problems.

The proposed use case dynamically initiates the necessary
sequential or parallel events on various FogDevice and App-
Module referenced objects. The MobilityController refers to
an object of the MobilityPlacementMobileEdgewards class
for the initial placement of AppModules. Including a feature
that tracks the fog node-wise deployment of microservices
or application modules for each end mobile device in the
simulation environment, this class duplicates the Module-
PlacementEdgewards of the simulator. When the simulation
begins, MobilityController moves in to carry out activities
like module launch and resource management following ini-
tial placement. It has many steps, including initialization, new
parent selection, migration of intra-cluster and inter-cluster
modules, and update. The mobility management operation’s
necessary setup is carried out in the initialization phase. The
new parent selection step establishes the mobile entity’s new
upper-tier contact’s minimum distance due to the shifting
of locations. During the migration of intra-cluster modules
and inter-cluster phase, the migration of modules between
clusters happen. In the final update stage, the simulation
environment must be updated based on intra-cluster or inter-
cluster module migration. The above operations are described
in Algorithm 4.

The consideration of mobility component in the applica-
tion causes the migration of applications modules from one
fog device to another which affects the scheduling of tasks to
resources and hence the evaluation parameters.

6) CLUSTERING
Resource augmentation can greatly help applications that
require a finite amount of fog resources, particularly in terms
of storage and computing power. To meet their QoS require-
ments, some tasks performed by IoT nodes may be delegated
to adjacent nodes [57]. Therefore, a clustering method that
permits resource augmentation among fog resources is essen-
tial. The iFogSim2 clustering component enables distributed
dynamic coordination and collaboration between several
nodes. In accordance with the particular clustering policies,
every node can probe and register its cluster members.

7) MICROSERVICES
To effectively exploit the fog computing paradigm, applica-
tion development has transitioned from monolithic design
to microservice architecture. The application model for the
suggested system consists of a number of microservices.

VOLUME 11, 2023 60927



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

Algorithm 4 Customized Mobility Management Logic
1: Input: Dataparser object, reference object, location han-

dler object, location of mobile entity m at time t, parent
of mobile entity, level of the mobile entities

2: Output:Migration of applicationmodules to different fog
nodes due to the mobility of mobile entities

3: ρ′ = null
4: δ = getmaximum distance denoted in the reference class
5: η = operation tier
6: ρ = upper tier contact due to the location change
7: for Every fog node of the upper layer of mobile entity do
8: Lfu =location of fog node
9: δ′ = distance between m and fog node

10: Fog node residing at a minimum distance from
mobile entity marked as new upper tier contact or parent
node ρ

11: if The current and new upper tier contact of mobile
entity m differs then

12: Applicationmodules of mobile entity deployed in
ρ′ push to ρ, which is a new parent in the same cluster

13: else
14: Applicationmodules of mobile entity deployed in

ρ′ push to ρ, which is a new parent in the different cluster
15: end if
16: end for

A methodology called microservices allow us to create an
application out of a number of small services, each of which
operates in its own process and uses simple protocols to com-
municate. Microservices enable the creation of systems made
up of a number of small, independent components that may
each manage their own data. The development of large-scale
IoT applications is made possible by advantages including
heterogeneity, robustness, scalability, ease of deployment,
organizational alignment, and composability. Microservice
deployments aremore important in themodernworld because
of their high performance and suitability for IoT applications.
Figure 6 shows the application model of the proposed system,
which consists of a group of microservices. Each microser-
vice is represented by a vertex, while the edges depict the
data connections between them. In this design, there are three
microservices, which are listed below.

• Client microservice: It is the front end of the
fog computing-based healthcare system. The client
microservice is deployed on the users smartphone and
receives the sensor ECG signals associated with the
patient. Later it transmits sensor data to the preprocess-
ing microservice which is stored on the fog device.

• Preprocessing microservice: The preprocessing
microservice performs data validation and cleaning to
reduce noise from ECG sensor data before transmitting
it for further processing.

• Decision-making microservice: To alert the client
microservice about the patient’s health, the microservice
must determine whether an emergency situation exists

FIGURE 6. Data flow diagram with microservice modules.

from the data in real-time. This decision-making is per-
formed in this microservice.

To monitor user health, these microservices communicate
with one another. Depending on the placement policy, time-
critical microservices for preprocessing and decision-making
can be deployed in fog or in the cloud. The storage module
receives the data that will be residing in the cloud perma-
nently. This study suggests a useful resource provisioning
mechanism that takes advantage of a multi-level hierarchi-
cal fog architecture, where multiple levels of application
placement requests are processed at the fog nodes. It uses
a decentralized placement method to disperse microservices
across the fog environment to model a critical IoT medical
application.

V. EXPERIMENTAL SETUP
Themarket is very competitive with simulators for simulating
cloud, fog, and edge devices. One such discrete event network
simulator is NS3, which enables us to create various virtual
nodes and install devices, internet stacks, programs, etc.,
on our nodes with the aid of various classes. For model-
ing and simulating edge/fog/cloud computing infrastructures
and services, we have chosen iFogSim2, an extension of
Cloudsim, since this framework can be used to develop and
deploy experiments for edge/fog/cloud devices that handle
compute, memory, I/O, and VM allocation, as well as VM
power models, among other things. The iFogSim2 Simulator,
an extension of the iFogSim simulator, holds the properties
of service migration, distributed cluster building across fog
nodes, and microservice orchestration. This simulator helps
validate the proposed approach’s performance in the fog
computing environment. The components of the iFogSim2,
such as mobility, clustering, and microservices, are loosely
coupled and can be utilized for simulation in such scenarios.
iFogSim2 incorporates real datasets for assessing the per-
formance of different service management strategies in fog
computing settings, unlikemost existing solutions. It includes

60928 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

node clustering, mobility management, and microservice
orchestration methodologies that can be used as benchmarks
for comparing performance [15].

All iFogSim core classes, such as FogDevice, Actuator,
sensor, and AppModule, have object references in the Con-
troller class, and it can access the Tuple class through an
Application object. The Clustering element of iFogSim2
allows distributed dynamic coordination and collaboration
among multi-fog nodes. To add the modified mobility com-
ponent, which is customized for the proposed use case to the
iFogSim2 simulation, it includes classes such as DataParser
and MobilityController. The functions of these classes are
described below:

• The DataParser class allows the separation and assim-
ilation of location data from many IoT end devices so
that application services may be handled based on their
unique mobility patterns.

• MobilityController class helps to dynamically start
the required sequential or parallel actions on sepa-
rate FogDevice and AppModule referenced objects for
mobility management.

During simulations, the proposed model considers two
different types of mobility patterns namely ‘RAN-
DOM MOBILITY’ and ‘DIRECTIONAL MOBILITY’.
In ‘DIRECTIONAL MOBILITY’ model, the time period
between any two of these motions is made to be equal to
ensure that the user/IoT device maintains a constant speed.
The ‘DIRECTIONAL MOBILITY’ model is being used,
which has a significant number of consecutive coordinates
lying at the same distances across the Melbourne central
business district (CBD) for a user/IoT device. Based on those
coordinates, events are constructed to simulate the movement
of the associated end IoT device. There are numerous random
mobility patterns to represent users ‘RANDOMMOBILITY’
model behaviors. According to numerous mobility criteria,
user speed, direction, stopping time at each location, and
duration within each edge/fog node’s communication range
can be produced by the RandomMobilityGenerator class and
can be expanded for multiple random mobility models. The
diagrammatic representation of the connection between these
modules are presented in Figure 5.

This section explains the simulation environment used to
evaluate the suggested approach’s performance. The sensors
detect ECG and regularly send data to the fog nodes through a
smartphone. Data is processed and analyzed on the fog nodes
to determine whether the patient’s health status is normal
or critical. The results are subsequently sent to the patient’s
smartphone and to the cloud for storage. The fog nodes’
connection to the cloud server is established through a proxy
server. The client module is embedded in IoT devices to get
the sensor data. The processing module is embedded in fog
nodes to process and analyze the incoming data to assess the
patient’s health status. The fog node then communicates the
results to the associated IoT device, which displays them.
It must define values for numerous parameters such as CPU
length, bandwidth, RAM, and so on, in iFogSim2 when

FIGURE 7. User mobility.

FIGURE 8. Resource location.

generating fog devices. The settings used for device configu-
ration in iFogSim2 [58] are listed in Table 5. The typical unit
of measurement for latency is milliseconds, which indicates
the amount of time it takes for a tuple to travel from the
sensor to the mobile device, from the mobile device to the
Fog, from the Fog to the Proxy, from the Proxy to the Cloud,
and between clusters of Fog nodes. Table 6 displays the values
assigned to these parameters in the configuration settings of
iFogSim2.

Fog devices are the computational devices in iFogSim2.
Computational gadgets, on the other hand, come in various
levels. On Level 3, the parent node is a cloud server. The
fog nodes are connected to the cloud server via a proxy
server at Level 2. Fog nodes are located closer to the user
at Level 1, giving more frequent computational and storage
capacities. Sensors and actuators are used in Level 0 IoT
devices. The MicroserviceFogDevice, Actuator, and Sensor
classes of iFogSim2 simulate the physical topology.

These scenarios were simulated on an Intel Core i7 CPU
running at 1.80 GHz and 4GB of RAM. The fractional selec-
tivity of the input-output relationship inside a module is set
to 1.0.

VI. RESULTS AND DISCUSSION
A. DATA SET
This work uses EUA dataset [59], which provides the posi-
tion information of the fog nodes deployed across Central

VOLUME 11, 2023 60929



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 9. Directional mobility of the user.

FIGURE 10. Random mobility of the user.

TABLE 5. Configuration parameters [58].

TABLE 6. Simulation parameters [58].

Business District zones of major Australian cities such as
Melbourne and Sydney. The dataset is segmented into various
regions and is divided into several blocks, among which a
specific node is picked as the proxy server at random to ensure
impartiality. Within a block, all nodes except the proxy server
serve as the gateway for IoT devices. This repository includes
a collection of EUA datasets gathered from real-world data
sources. The datasets have been made available to the public
in assisting edge computing research. The data corresponds to
the Australian region and helps in better simulation of a real-
time environment. Figures 7 and 8 show the characteristics

TABLE 7. Results of Modified Genetic algorithm based resource
provisioning.

TABLE 8. Results of Modified Flower pollination algorithm based
resource provisioning.

of user mobility and resource location in the dataset, and
Figures 9 and 10 show directional movement, and random
movement of the user [59].

B. OBSERVATIONS
The proposed work compares the system’s performance with
two approaches, namely, cloud-only and edge-fog with cloud,
changing the deployment of meta-heuristic algorithms for
resource management. The section also presents the results
with and without mobility considerations of IoT devices.
Parameters, namely cloud energy, router energy, cost, net-
work use, latency, and execution time, are analyzed with
and without mobility as presented in Figure 11. The pro-
posed system’s performance is evaluated using the modified
genetic algorithm for resource provisioning, considering the
identified parameters, and are presented in Table 7 by uti-
lizing the evaluation metrics discussed in section IV-B. The
proposed system’s performance is also evaluated using the
modified flower pollination algorithm, considering the same
parameters, and is presented in Table 8. The fitness of solu-
tions for modified FPA and modified GA are depicted in
Figure 12. The comparison of fog implementation, edge
implementation, and cloud-only implementations for the
identified parameters using modified GA, modified FPA, the
multi-objective optimization method and the existing (First
Come First Serve) FCFS method in the simulator are pre-
sented in Figure 13.

The results presented in Figure 14 and Figure 15 presents
the results of modified FPA and modified GA for resource
provisioning while taking into account directional and ran-
dom mobility models for user movements with microservice
placement and clustering approach and compares the pro-
posed models for different movement patterns of a patient.

1) OBSERVATIONS FROM THE INTEGRATION OF MOBILITY
AND MICROSERVICE FEATURES IN EDGE-FOG-CLOUD
COMPUTING ENVIRONMENTS

• In comparison to simulations lacking mobility compo-
nents, simulations with mobility systems are practical.

60930 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 11. Result graphs with mobility and microservice integration.

TABLE 9. Sensitivity analysis for modified GA.

• Cloud energy, cost, network usage, execution time, and
latency are all reduced in the fog computing model since
processing happens at the lower fog level, which is very
close to the end device both in mobility and without

mobility implementations. This brings practical proof of
performing the computation at the fog level.

• Router energy consumption is less for cloud-only imple-
mentations if we deploy mobility and microservice

VOLUME 11, 2023 60931



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 12. Fitness values.

FIGURE 13. Result graphs comparing modified GA, modified FPA, multi-objective optimization method and existing FCFS method.

concepts since microservice modules are loosely cou-
pled, which consume less energy than monolithic
architecture.

• If we include mobility in our application, the network
use, execution time, and delay for cloud and fog sce-
narios is slightly longer in milliseconds since mobility

60932 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 14. Results of modified FPA and modified GA in fog and edge computing using directional mobility user model.

requires service migration which needs more network
requirements and causes an increase in execution time
and delay.

2) OBSERVATIONS FROM THE INTEGRATION OF
META-HEURISTIC METHODS IN EDGE-FOG-CLOUD
COMPUTING ENVIRONMENTS

• Metaheurtic methods provide efficient provision-
ing compared to existing systems. The reason
being, meta-heuristic methods converge to optimal or
sub-optimal solutions at a faster rate when compared to
multi-objective optimization approaches.

• The energy consumption of routers are same for GA and
FPA since more computations are happening in the fog
layer.

• When compared to GA, FPA has less cost of execution
since FPA converges faster than GA. GA and FPA have
almost the same network use and latency.

• In cloud scenarios, FPA takes less time to execute since
FPA converges fast, but GA and FPA take about the same
amount of time to execute in edge/fog scenarios.

• While considering the parameters, cloud energy, cost,
network use, execution time, and latency, genetic
algorithm, and FPA outperforms the existing resource
provisioningmethods sincemeta-heuristicmethods con-
verge to optimal or sub-optimal solutions fast. However,
router energy is slightly higher than traditional resource
provisioning methods since more computations are hap-
pening in the fog layer.

• In comparison, cloud energy consumption decreases by
15%, network use by 7%, cost by 29%, execution time

VOLUME 11, 2023 60933



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 15. Results of modified FPA and modified GA in fog and edge computing using random mobility user model.

by 16% and latency by 55% when using meta-heuristic
based resource provisioning approach for edge com-
puting. While cloud energy consumption decreases
by 18%, network use by 33%, cost by 16%, execu-
tion time by 18% and latency by 72% when using
meta-heuristic based resource provisioning approach for
fog computing.

• The router energy consumption is 0.1% more for edge/
fog computing since more computations are happening
in the fog layer for the meta-heuristic methods consid-
ered in this work.

3) OBSERVATIONS OF DIRECTIONAL AND RANDOM
MOBILITY USER MODELS IN EDGE-FOG-CLOUD COMPUTING
ENVIRONMENTS

• Cloud energy is lesser for edge computing than fog com-
puting since computation occurs only in edge devices.

• Router energy is the same for edge computing compared
to fog computing because computations are happening
in the router for edge and fog computing in a similar
manner.

• Since computations are happening in the edge layer,
edge computing has less cost of execution, network

60934 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

FIGURE 16. Comparative analysis [44].

FIGURE 17. Comparative analysis [60].

use, latency, and execution time than fog computing for
directional and random user mobility models.

In conclusion, edge computing is superior to fog com-
puting, and the resource provisioning efficiency of the
meta-heuristic techniques is high. However, in real-time
scenarios, there may be around 30 hops between the IoT
device and the destination server making fog computing and
cloud computing very distinct in real-world deployments.
In such scenarios, it is evident that the deployment of the

microservices in the edge/fog layers would be beneficial.
However, since we only simulate a few hops, there will not
be a significant difference between edge computing and fog
computing in the simulator.

4) COMPARATIVE ANALYSIS
In order to have an effective conclusion, the proposed
approach has been compared for its network use and the
latency parameters against the existing results presented in

VOLUME 11, 2023 60935



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

TABLE 10. Sensitivity analysis for modified FPA.

TABLE 11. Topologies for simulation.

the literatures [44] and [60] which are presented in Figures 16
and 17. The comparison of the parameters for the different
architectures named config 1, 2, 3, 4, and 5, the description
of which is listed in Table 11, is depicted in Figure 16. These
results also prove the conclusion statement in the previous
sub-section.

5) SENSITIVITY ANALYSIS
The proposed model has been tested for its sensitivity to
minor variations in the input feed. The results thus obtained
conclude that the small changes in the input cause little to
no change in the output measurements. This proves that the
model is less sensitive to minimal changes in the input and is
robust. It has been seen that a slight change in the input causes
little to no change in the output parameters. Tables 9 and 10
show the findings for the same.

VII. CONCLUSION AND FUTURE WORK
Due to the heterogeneous and dynamic nature of critical
medical IoT applications in fog scenarios, efficient resource
management becomes a crucial problem. This paper investi-
gates the trade-off between mobility and non-mobility of IoT
devices using the modified meta-heuristic-based fog resource
provisioning approach in microservice-based IoT medical
applications. In addition, we also examine the performance
of the proposed algorithms using the identified parameters
and prove that the modified algorithms outperform the exist-
ing ones, which is very much needed for a time-critical
medical application. The simulation’s assumptions include
the availability of resources in the edge and fog computing
infrastructure and reliable network connectivity to handle
application traffic. However, it may not take into account
regulatory and legal requirements for patient data collection
and usage, as well as the behavior of real-world users and
stakeholders, which can affect the application’s adoption and
effectiveness and the proposed system considers only ECG
sensor values for deployment, but it can be extended to any
other sensor by changing the attributes of the sensor class.

As part of future work, we plan to pursue various
research directions in this domain, put the proposed strategy
into practice, and address the proposed system’s scalabil-
ity. We will investigate, enhance, and apply more hybrid
meta-heuristic algorithms to solve scheduling problems that
take into account task dependency and priority. We aim to
tackle and overcome the scalability limitations present in
the proposed approach, providing valuable information for
real-world deployments. We plan to extend our technique
to other critical real-time IoT applications which can be
deployed in real-time edge/fog/cloud environments. Future
directions for the simulation include considering the Edge AI
and Blockchain technologies on the application’s deployment
and performance in edge and fog computing environments.

REFERENCES
[1] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, ‘‘Towards end-to-

end resource provisioning in fog computing over low power wide area
networks,’’ J. Netw. Comput. Appl., vol. 175, Feb. 2021, Art. no. 102915.

[2] V. K. Quy, N. V. Hau, D. V. Anh, and L. A. Ngoc, ‘‘Smart healthcare
IoT applications based on fog computing: Architecture, applications and
challenges,’’ Complex Intell. Syst., vol. 8, no. 5, pp. 3805–3815, 2021.

[3] S. Tuli, N. Basumatary, S. S. Gill,M. Kahani, R. C. Arya, G. S.Wander, and
R. Buyya, ‘‘HealthFog: An ensemble deep learning based smart healthcare
system for automatic diagnosis of heart diseases in integrated IoT and
fog computing environments,’’ Future Gener. Comput. Syst., vol. 104,
pp. 187–200, Mar. 2020.

[4] V. Sankar, M. N. Devi, and M. Jayakumar., ‘‘Data augmented hardware
trojan detection using label spreading algorithm based transductive learn-
ing for edge computing-assisted IoT devices,’’ IEEE Access, vol. 10,
pp. 102789–102803, 2022.

[5] I.Martinez, A. S. Hafid, andA. Jarray, ‘‘Design, resourcemanagement, and
evaluation of fog computing systems: A survey,’’ IEEE Internet Things J.,
vol. 8, no. 4, pp. 2494–2516, Feb. 2021.

[6] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani,
‘‘Edge and fog computing for IoT: A survey on current research activities
future directions,’’ Comput. Commun., vol. 180, pp. 210–231, Dec. 2021.

[7] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and
M. Faraji-Mehmandar, ‘‘Resource provisioning in edge/fog computing: A
comprehensive and systematic review,’’ J. Syst. Archit., vol. 122, Jan. 2022,
Art. no. 102362.

[8] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘Resource provi-
sioning for IoT services in the fog computing environment: An autonomic
approach,’’ Comput. Commun., vol. 161, pp. 109–131, Sep. 2020.

[9] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, ‘‘Resource manage-
ment approaches in fog computing: A comprehensive review,’’ J. Grid
Comput., vol. 18, no. 1, pp. 1–42, Mar. 2020.

[10] Y. Wang, Q. Cui, and K. Chen, ‘‘Machine learning enables predictive
resource recommendation for minimal latency mobile networking,’’ in
Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Sep. 2021, pp. 1363–1369.

[11] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira,
E. Mingozzi, O. Rana, and L. F. Bittencourt, ‘‘MobFogSim: Simulation of
mobility and migration for fog computing,’’ Simul. Model. Pract. Theory,
vol. 101, May 2020, Art. no. 102062.

60936 VOLUME 11, 2023



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

[12] M. Shinu andM. Supriya, ‘‘Performance comparison of VM allocation and
selection policies in an integrated fog-cloud environment,’’ in Proc. Int.
Conf. Ubiquitous Commun. Netw. Comput. Cham, Switzerland: Springer,
2021, pp. 169–184.

[13] H. Pydi and G. N. Iyer, ‘‘Analytical review and study on load balancing in
edge computing platform,’’ in Proc. 4th Int. Conf. Comput. Methodolog.
Commun. (ICCMC), Mar. 2020, pp. 180–187.

[14] B. E. Khalyly, A. Belangour, M. Banane, and A. Erraissi, ‘‘A comparative
study of microservices-based IoT platforms,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 11, no. 8, pp. 389–398, 2020.

[15] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, ‘‘IFogSim2: An
extended iFogSim simulator for mobility, clustering, and microservice
management in edge and fog computing environments,’’ J. Syst. Softw.,
vol. 190, Aug. 2022, Art. no. 111351.

[16] M. Faraji Mehmandar, S. Jabbehdari, and H. H. S. Javadi, ‘‘A dynamic fog
service provisioning approach for IoT applications,’’ Int. J. Commun. Syst.,
vol. 33, no. 14, Sep. 2020, Art. no. e4541.

[17] M. Shakil, A. F. Y. Mohammed, R. Arul, A. K. Bashir, and J. K. Choi,
‘‘A novel dynamic framework to detect DDoS in SDN using metaheuris-
tic clustering,’’ Trans. Emerg. Telecommun. Technol., vol. 33, no. 3,
Mar. 2022, Art. no. e3622.

[18] W. Rankothge, F. Le, A. Russo, and J. Lobo, ‘‘Optimizing resource
allocation for virtualized network functions in a cloud center using
genetic algorithms,’’ IEEE Trans. Netw. Service Manage., vol. 14, no. 2,
pp. 343–356, Jun. 2017.

[19] V. Porkodi, A. R. Singh, A. R. W. Sait, K. Shankar, E. Yang, C. Seo, and
G. P. Joshi, ‘‘Resource provisioning for cyber–physical–social system in
cloud-fog-edge computing using optimal flower pollination algorithm,’’
IEEE Access, vol. 8, pp. 105311–105319, 2020.

[20] B. Farahani, M. Barzegari, F. S. Aliee, and K. A. Shaik, ‘‘Towards
collaborative intelligent IoT eHealth: From device to fog, and cloud,’’
Microprocessors Microsyst., vol. 72, Feb. 2020, Art. no. 102938.

[21] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, and
A. Y. Zomaya, ‘‘AI-enabled secure microservices in edge computing:
Opportunities and challenges,’’ IEEE Trans. Services Comput., vol. 16,
no. 2, pp. 1485–1504, Mar. 2023.

[22] S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo, and E. Dutkiewicz,
‘‘Sustainable service allocation using a metaheuristic technique in a fog
server for industrial applications,’’ IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4497–4506, Oct. 2018.

[23] A. Bajaj and O. P. Sangwan, ‘‘A systematic literature review of test
case prioritization using genetic algorithms,’’ IEEE Access, vol. 7,
pp. 126355–126375, 2019.

[24] R. Mahmud, K. Ramamohanarao, and R. Buyya, ‘‘Application manage-
ment in fog computing environments: A taxonomy, review and future
directions,’’ ACM Comput. Surv., vol. 53, no. 4, pp. 1–43, Jul. 2021.

[25] R. Panwar and M. Supriya, ‘‘Dynamic resource provisioning for service-
based cloud applications: A Bayesian learning approach,’’ J. Parallel
Distrib. Comput., vol. 168, pp. 90–107, Oct. 2022.

[26] D. R. Vemula, M. K. Morampudi, S. Maurya, A. Abdul, M. M. Hussain,
and I. Kavati, ‘‘Enhanced resource provisioning and migrating virtual
machines in heterogeneous cloud data center,’’ J. Ambient Intell. Human-
ized Comput., vol. 13, pp. 1–12, Jul. 2022.

[27] F. A. Saif, R. Latip, Z. M. Hanapi, and K. Shafinah, ‘‘Multi-objective grey
wolf optimizer algorithm for task scheduling in cloud-fog computing,’’
IEEE Access, vol. 11, pp. 20635–20646, 2023.

[28] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi,
‘‘A new energy-aware tasks scheduling approach in fog computing using
hybrid meta-heuristic algorithm,’’ J. Parallel Distrib. Comput., vol. 143,
pp. 88–96, Sep. 2020.

[29] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, Wang, Xi, H. C. Cankaya,
Q. Zhang, W. Xie, and J. P. Jue, ‘‘FOGPLAN: A lightweight QoS-aware
dynamic fog service provisioning framework,’’ IEEE Internet Things J.,
vol. 6, no. 3, pp. 5080–5096, Jun. 2019.

[30] P. G. V. Naranjo, E. Baccarelli, and M. Scarpiniti, ‘‘Design and energy-
efficient resource management of virtualized networked fog architectures
for the real-time support of IoT applications,’’ J. Supercomput., vol. 74,
no. 6, pp. 2470–2507, Jun. 2018.

[31] I. Lera, C. Guerrero, and C. Juiz, ‘‘YAFS: A simulator for IoT scenarios in
fog computing,’’ IEEE Access, vol. 7, pp. 91745–91758, 2019.

[32] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
‘‘FogNetSim++: A toolkit for modeling and simulation of distributed fog
environment,’’ IEEE Access, vol. 6, pp. 63570–63583, 2018.

[33] Z. Fang, J. Wang, Y. Ren, Z. Han, H. V. Poor, and L. Hanzo, ‘‘Age of
information in energy harvesting aidedmassive multiple access networks,’’
IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1441–1456, May 2022.

[34] M. Abdel-Basset, D. El-Shahat, M. Elhoseny, and H. Song, ‘‘Energy-aware
metaheuristic algorithm for industrial-Internet-of-Things task scheduling
problems in fog computing applications,’’ IEEE Internet Things J., vol. 8,
no. 16, pp. 12638–12649, Aug. 2021.

[35] M. Adhikari, S. N. Srirama, and T. Amgoth, ‘‘A comprehensive survey
on nature-inspired algorithms and their applications in edge computing:
Challenges and future directions,’’ Softw., Pract. Exper., vol. 52, no. 4,
pp. 1004–1034, Apr. 2022.

[36] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, ‘‘An
improved multi-objective genetic algorithm with heuristic initialization
for service placement and load distribution in edge computing,’’ Comput.
Netw., vol. 194, Jul. 2021, Art. no. 108146.

[37] Z. Fang, J. Wang, J. Du, X. Hou, Y. Ren, and Z. Han, ‘‘Stochastic
optimization-aided energy-efficient information collection in Internet of
underwater things networks,’’ IEEE Internet Things J., vol. 9, no. 3,
pp. 1775–1789, Feb. 2022.

[38] D. H. Brahmbhatt andM. R. Cowie, ‘‘Remotemanagement of heart failure:
An overview of telemonitoring technologies,’’Cardiac Failure Rev., vol. 5,
no. 2, pp. 86–92, May 2019.

[39] M. Prabhu and A. Hanumanthaiah, ‘‘Edge computing-enabled healthcare
framework to provide telehealth services,’’ in Proc. Int. Conf. Wireless
Commun. Signal Process. Netw. (WiSPNET), Mar. 2022, pp. 349–353.

[40] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[41] A. Kumari, V. Kumar,M. Y. Abbasi, S. Kumari, P. Chaudhary, and C. Chen,
‘‘CSEF: Cloud-based secure and efficient framework for smart medical
system using ECC,’’ IEEE Access, vol. 8, pp. 107838–107852, 2020.

[42] A. A. Mutlag, M. K. A. Ghani, N. Arunkumar, M. A. Mohammed, and
O. Mohd, ‘‘Enabling technologies for fog computing in healthcare IoT
systems,’’ Future Gener. Comput. Syst., vol. 90, pp. 62–78, Jan. 2019.

[43] M. Hartmann, U. S. Hashmi, and A. Imran, ‘‘Edge computing in smart
health care systems: Review, challenges, and research directions,’’ Trans.
Emerg. Telecommun. Technol., vol. 33, no. 3, Mar. 2022, Art. no. e3710.

[44] A. Asghar, A. Abbas, H. A. Khattak, and S. U. Khan, ‘‘Fog based archi-
tecture and load balancing methodology for health monitoring systems,’’
IEEE Access, vol. 9, pp. 96189–96200, 2021.

[45] K. P. N. Jayasena and B. S. Thisarasinghe, ‘‘Optimized task scheduling
on fog computing environment using meta heuristic algorithms,’’ in Proc.
IEEE Int. Conf. Smart Cloud (SmartCloud), Dec. 2019, pp. 53–58.

[46] Y. Qiu, H. Zhang, and K. Long, ‘‘Computation offloading and wireless
resource management for healthcare monitoring in fog-computing-based
Internet of Medical Things,’’ IEEE Internet Things J., vol. 8, no. 21,
pp. 15875–15883, Nov. 2021.

[47] M. Abdel-Basset, G. Manogaran, A. Gamal, and V. Chang, ‘‘A novel
intelligent medical decision support model based on soft computing and
IoT,’’ IEEE Internet Things J., vol. 7, no. 5, pp. 4160–4170, May 2020.

[48] H. Ben Hassen, W. Dghais, and B. Hamdi, ‘‘An E-health system for
monitoring elderly health based on Internet of Things and fog computing,’’
Health Inf. Sci. Syst., vol. 7, no. 1, pp. 1–9, Dec. 2019.

[49] T. Nguyen Gia, A. M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, ‘‘Fog computing approach for mobility support in Internet-
of-Things systems,’’ IEEE Access, vol. 6, pp. 36064–36082, 2018.

[50] A. Benayache, A. Bilami, S. Barkat, P. Lorenz, and H. Taleb, ‘‘MsM: A
microservice middleware for smart WSN-based IoT application,’’ J. Netw.
Comput. Appl., vol. 144, pp. 138–154, Oct. 2019.

[51] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, ‘‘A survey on security issues in
services communication of microservices-enabled fog applications,’’ Con-
currency Comput., Pract. Exper., vol. 31, no. 22, Nov. 2019, Art. no. e4436.

[52] X. Zhao and C. Huang, ‘‘Microservice based computational offloading
framework and cost efficient task scheduling algorithm in heterogeneous
fog cloud network,’’ IEEE Access, vol. 8, pp. 56680–56694, 2020.

[53] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, ‘‘Predic-
tive autoscaling of microservices hosted in fog microdata center,’’ IEEE
Syst. J., vol. 15, no. 1, pp. 1275–1286, Mar. 2021.

[54] S. Pallewatta, V. Kostakos, and R. Buyya, ‘‘Placement of microservices-
based IoT applications in fog computing: A taxonomy and future
directions,’’ 2022, arXiv:2207.05399.

VOLUME 11, 2023 60937



S. M. Rajagopal et al.: Resource Provisioning Using Meta-Heuristic Methods for IoT Microservices

[55] M. Supriya, K. Sangeeta, and G. K. Patra, ‘‘Trustworthy cloud service
provider selection using multi criteria decision making methods,’’ Eng.
Lett., vol. 24, no. 1, pp. 1–10, 2016. [Online]. Available: www.scopus.com

[56] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, ‘‘Joint container placement
and task provisioning in dynamic fog computing,’’ IEEE Internet Things
J., vol. 6, no. 6, pp. 10028–10040, Dec. 2019.

[57] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, ‘‘Multi-
UAV-Enabled load-balance mobile-edge computing for IoT networks,’’
IEEE Internet Things J., vol. 7, no. 8, pp. 6898–6908, Aug. 2020.

[58] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.,
Pract. Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[59] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and Y. Yang,
‘‘Optimal edge user allocation in edge computing with variable sized
vector bin packing,’’ in Proc. Int. Conf. Service-Oriented Comput. Cham,
Switzerland: Springer, 2018, pp. 230–245.

[60] R. Paesani, G. Paolone, P. D. Felice, D. Iachetti, and M. Marinelli,
‘‘iFogSim simulations on IoT computational alternatives,’’ Eng. Proc.,
vol. 31, no. 1, p. 44, 2022.

SHINU M. RAJAGOPAL received the B.Tech.
degree in electronics and communications from
Calicut University, India, and the M.E. degree
in computer science and engineering from Anna
University, India, in 2008. She is currently pur-
suing the Ph.D. degree with Amrita Vishwa
Vidyapeetham, Bengaluru, India. She has more
than ten years of teaching experience. Her research
interests include distributed computing, cloud
computing, fog computing, and edge computing.

M. SUPRIYA received the Ph.D. degree in CSE
from Amrita Vishwa Vidyapeetham, Bengaluru.
She is currently an Associate Professor with the
Department of Computer Science and Engineer-
ing, Amrita School of Computing, Bengaluru,
India. She has more than 22 years of teaching
experience, among which 12 years contribute to
research. She has more than 40 Scopus-indexed
publications in reputed journals and conferences.
She is an active ACM professional member and

leads various ACM club activities at the college. Her research interests
include parallel/distributed computing, cloud computing, and fog computing.
She also works on integrating cloud computing with the Internet of Things,
which has emerged as a new challenging domain in research.

RAJKUMAR BUYYA (Fellow, IEEE) is currently
a Redmond Barry Distinguished Professor and the
Director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, The University
of Melbourne, Australia. He is also the Founder
and the CEO of Manjrasoft, a spin-off company of
the university, commercializing cloud computing
technologies. Hewas anHonorary/Visiting Profes-
sor for several elite universities, including Imperial
College London, U.K., and University of Birming-

ham, U.K. He has written over 850 publications, including seven textbooks.
He has been recognized as aWeb of Science Highly Cited Researcher for five
consecutive years, since 2016, and a Scopus Researcher of theYear 2017with
Excellence in Innovative Research Award by Elsevier and the ‘‘Best of
the World,’’ in computing systems field, by The Australian 2019 Research
Review.

60938 VOLUME 11, 2023


