
The Journal of Systems and Software 209 (2024) 111910

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

MicroFog: A framework for scalable placement of microservices-based IoT
applications in federated Fog environments✩

Samodha Pallewatta ∗, Vassilis Kostakos, Rajkumar Buyya
The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Fog computing
Microservices
Application placement
Internet of things
Microservice composition

A B S T R A C T

MicroService Architecture (MSA) is gaining rapid popularity for developing large-scale IoT applications for
deployment within distributed and resource-constrained Fog computing environments. As a cloud-native
application architecture, the true power of microservices comes from their loosely coupled, independently
deployable and scalable nature, enabling distributed placement and dynamic composition across federated Fog
and Cloud clusters. Thus, it is necessary to develop novel placement algorithms that utilise these microservice
characteristics to improve the performance of the applications. However, existing Fog computing frameworks
lack support for integrating such placement policies due to their shortcomings in multiple areas, including
MSA application placement and deployment across multi-fog multi-cloud environments, dynamic microservice
composition across multiple distributed clusters, scalability of the framework to operate within federated
environments, support for deploying heterogeneous microservice applications, etc. To this end, we design
and implement MicroFog, a Fog computing framework compatible with cloud-native technologies such as
Docker, Kubernetes and Istio. MicroFog provides an extensible and configurable control engine that executes
placement algorithms and deploys applications across federated Fog environments. Furthermore, MicroFog
provides a sufficient abstraction over container orchestration and dynamic microservice composition, thus
enabling users to easily incorporate new placement policies and evaluate their performance. The capabilities
of the MicroFog framework, such as the scalability and flexibility of the design and deployment architecture
of MicroFog and its ability to ensure the deployment and composition of microservices across distributed
fog–cloud environments, are validated using multiple use cases. Experiments also demonstrate MicroFog’s
ability to integrate and evaluate novel placement policies and load-balancing techniques. To this end, we
integrate multiple microservice placement policies to demonstrate MicroFog’s ability to support horizontally
scaled placement, service discovery and load balancing of microservices across federated environments, thus
reducing the application service response time up to 54%.
1. Introduction

The Internet of Things (IoT) is growing rapidly, and the ever-
increasing number and variety of connected devices generate massive
amounts of data related to a wide range of smart application do-
mains, such as smart cities, smart healthcare, Industrial IoT, and smart
transportation, to mention a few. Hence, IoT application development
is adapting Microservices Architecture (MSA) to support the rapid
evolution of IoT application development towards creating an IoT
ecosystem. Being a cloud-native application architecture, MSA builds
applications as collections of modules known as microservices that
are independently deployable and scalable (Fowler and Lewis, 2014).
Microservices are containerised using technologies such as Docker and
dynamically composed using container orchestration platforms like

✩ Editor: J.C. Duenas.
∗ Corresponding author.

E-mail address: ppallewatta@student.unimelb.edu.au (S. Pallewatta).

Kubernetes and service mesh technologies such as Istio, thus ensuring
seamless connectivity among microservices deployed across distributed
computing resources.

Meanwhile, Fog computing is emerging as a powerful distributed
computing paradigm for hosting latency-critical and bandwidth-hungry
IoT applications. Fog computing extends cloud-like services towards
the edge of the network by using the computing, networking and
storage resources residing within the path connecting IoT devices to
the centralised Cloud data centres (Mahmud et al., 2018). With the in-
creasing use of IoT applications, sending large amounts of data towards
the centralised Cloud incurs high latency and bandwidth congestion.
Moreover, distributed Fog resources provide the location awareness,
data security, mobility awareness, and scalability required by the IoT
vailable online 30 November 2023
164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access ar

https://doi.org/10.1016/j.jss.2023.111910
Received 11 February 2023; Received in revised form 18 June 2023; Accepted 20 N
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
mailto:ppallewatta@student.unimelb.edu.au
https://doi.org/10.1016/j.jss.2023.111910
https://doi.org/10.1016/j.jss.2023.111910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111910&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
applications, with geo-distributed users seeking ubiquitous access to the
application services (Goudarzi et al., 2022).

While the use of distributed Fog computing resources is a solu-
tion for this, the resource-constrained nature of the Fog resources is
the main drawback which can be overcome through the federation
of geo-distributed Fog clusters and Cloud data centres. This includes
cooperative use of distributed Fog computing cluster/data centres and
Cloud data centres for the placement of applications to satisfy their
demands and meet QoS requirements (Santo et al., 2019). Such an
approach focuses on extending the hybrid Cloud to include Fog comput-
ing resources provided by multiple Fog Infrastructure Providers (FIP)
and maintain seamless connectivity across different environments to
achieve the best possible performance (Farzin et al., 2022). Further-
more, cloud-native characteristics of microservices make them per-
fect for such placement of large-scale IoT applications, which has
given rise to novel paradigms like Osmotic Computing that proposes
the convergence of IoT, MSA and Fog computing where microser-
vices are dynamically moved and composed across hybrid fog–cloud
environments (Neha et al., 2022).

To harvest the full potential of MSA in Fog computing environ-
ments, the development of efficient placement algorithms is of vital
importance. Thus, research on designing, developing and evaluating
algorithms for the placement of microservice-based IoT applications is
attracting a lot of attention. Existing literature contains works focusing
on horizontally scaled placement of microservices to meet QoS param-
eters such as throughput, reliability and latency (Faticanti et al., 2019;
Guerrero et al., 2019a; Deng et al., 2020; Pallewatta et al., 2022b),
location-aware placements (Guo et al., 2022), etc. that place inter-
connected microservices across distributed resources. However, these
algorithms require extensive and accurate evaluations and validations
before applying them at the enterprise level (Mahmud et al., 2022).

Evaluation of the placement policies can be conducted using nu-
merical evaluations (Guo et al., 2022; Guerrero et al., 2019a), simula-
tors (Fang and Ma, 2020; Pallewatta et al., 2022b; Paul Martin et al.,
2020) and real-world deployments through small-scale testbeds (Fat-
icanti et al., 2019; Fu et al., 2021). Cloud computing-related policy
evaluation can be conducted using Cloud infrastructure provided by
commercial service providers like Amazon AWS, Google Cloud, etc.,
through their Infrastructure as a Service (IaaS) offerings through a
rental model. Due to the lack of such platforms for Fog computing, Fog
application placement policies are primarily evaluated using numerical
evaluations and simulators.

However, several frameworks are proposed in the literature to eval-
uate placement policies through real-world deployments (Deng et al.,
2021; FogAtlas, 2023; Santoro et al., 2017; Bellavista and Zanni, 2017).
These frameworks enable the creation of small-scale testbeds for the
management of Fog and Cloud resources. Many of the frameworks
support containerised application deployment using container orches-
tration platforms such as Docker Swarm (Bellavista and Zanni, 2017)
and Kubernetes (FogAtlas, 2023; Santoro et al., 2017; Wang et al.,
2022). Several works use service mesh technologies like Istio (Ruuska-
nen et al., 2021; Marchese and Tomarchio, 2023) on top of Kubernetes
to support microservices. However, they have limitations related to
the dynamic and automated deployment of Microservices-based IoT ap-
plications across federate Fog environments. Existing frameworks lack
support for the dynamic composition of microservices across federated
Fog and Cloud data centres, easy integration of distributed place-
ment policies, compatibility with open-source cloud-native technolo-
gies, support for heterogeneous microservices-based applications, ease
of setup and prototyping support, etc. To overcome these limitations,
we propose MicroFog: an easily configurable software framework for
microservice-based application placement within federated fog–cloud
environments. MicroFog can be used by IoT application developers, Fog
infrastructure providers, and researchers in Fog computing to create,
integrate and evaluate novel placement policies to deploy and manage
2

microservices-based IoT applications. MicroFog enables the users to
create placement approaches that harvest the potential of MSA, thus
improving the QoS of applications.

MicroFog provides a configurable control engine that executes
placement policies in a distributed or centralised manner and deploys
containerised microservices within Kubernetes and Istio-managed Fog
and Cloud resource clusters. MicroFog abstracts Kubernetes and Istio re-
source deployment (i.e., pods, services, virtual services, gateways, etc.)
while providing support for integrating novel placement algorithms
and load-balancing policies. Moreover, MicroFog ensures the dynamic
composition of microservices distributed across geo-distributed multi-
fog multi-cloud environments by enabling service discovery and load
balancing.

The major contributions of our work are as follows:

• A scalable and extensible framework is proposed for deploying
and managing microservices-based IoT applications within the
federated Fog and Cloud environments. The framework consists of
multiple components, including a Control Engine (MicroFog-CE)
for placement algorithms execution and application deployment,
data stores to store required metadata, a monitoring component
and a logging component.

• MicroFog-CE is designed and developed as an easy-to-configure
microservice supporting different operation modes (centralised
vs distributed), application placement modes (periodic vs event-
driven), integration of novel placement policies, load balancing
policies, etc.

• Deployment architectures are proposed for the major components
of the MicroFog framework to ensure their scalable and fault-
tolerant deployment across federate Fog and Cloud environments.

• A proof-of-concept prototype of the framework is created, and the
main features of the framework are demonstrated and evaluated
using multiple use cases and benchmark policies integrated with
the control engine.

The rest of the paper is organised as follows. In Section 2, we
provide a comprehensive background on microservices-based applica-
tion placement and analyse related research. Section 3 derives the
requirements of the framework based on the background and intro-
duces the MicroFog framework, and Section 4 details the deployment
architectures for the main components of the framework. APIs to access
MicroFog-CE are presented in Section 5. Features of the framework are
evaluated in Section 6. Finally, Section 7 concludes the paper.

2. Background and related works

In this section, we present a comprehensive background on the
Fog computing paradigm, microservices-based applications and how to
model them, and deployment-related aspects of the microservice appli-
cations including use of cloud-native technologies for their deployment
and composition. We also discuss Fog application placement problem.
Moreover, we provide a qualitative comparison of existing frameworks
to highlight the capabilities of our proposed framework. These re-
lated background concepts will be used in later sections to derive
requirements of the framework and to make design and implementation
decisions of our proposed framework.

2.1. Fog computing

Fog computing introduces an intermediate layer between IoT de-
vices and the Cloud, consisting of distributed, heterogeneous and
resource-constrained resources compared to Cloud data centres (Mah-
mud et al., 2018). With the rapid growth in IoT applications, Fog
computing is evolving towards a federated multi-fog multi-cloud archi-
tecture (Farzin et al., 2022) where multiple FIPs provide infrastructure,
including computing, storage and networking resources within the Fog

layer. In this work, we consider the existence of multiple such Fog



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.

on-
r

Fig. 1. Federated multi-fog and multi-cloud architecture.

clusters provided by various service providers where they maintain con-
nectivity with neighbouring clusters and the Cloud. Fig. 1 depicts the
architecture of the federated multi-fog and multi-cloud environment
considered in our work.

2.2. Microservices-based applications

This section discusses the Microservice Architecture and how to
model a microservices-based application based on its architectural
characteristics. MicroService Architecture (MSA) decomposes an ap-
plication into a set of independently deployable modules known as
microservices designed around business logic to have well-defined
business boundaries (Joseph and Chandrasekaran, 2019). Microser-
vices communicate with each other using lightweight APIs to create
composite services that the end users access.

As microservices-based applications have interactions among mi-
croservices, they can be modelled using Directed Acyclic Graphs (DAGs)
(Pallewatta et al., 2022b) where the vertices of the DAG represent
microservices (𝑚 ∈ 𝑀𝑎 where 𝑀𝑎 is the set of microservices of ap-
plication 𝑎). Directed edges in DAG represent microservice invocations
such that the direction is from the client microservice (consumer) to
the invoked microservice (consumed). Microservices are independently
packaged and have heterogeneous resource requirements that can be
defined in terms of required RAM, CPU, storage, etc., needed to satisfy
a specific request rate/throughput. Due to the fine-grained nature of the
microservices, they communicate to create composite services where
each application provides multiple services (𝑆𝑎: the set of services
of application 𝑎) with heterogeneous QoS requirements that can be
defined at the service level. As microservices can have complex inter-
action patterns to create composite services (i.e., chained, aggregator,
hybrid), the dataflows among microservices can be uni-directional or
bi-directional (𝑑𝑓 𝑎: set of dataflows among 𝑚 ∈ 𝑀𝑎). Thus, each
application can be denoted as a tuple of ⟨𝑀𝑎, 𝑑𝑓 𝑎, 𝑆𝑎⟩ where each
service 𝑠 ∈ 𝑆𝑎 is depicted by a tuple containing its microservices, data
paths within them and QoS requirements of the service; ⟨𝑀𝑠

𝑎 , 𝑃
𝑠
𝑎 , 𝑅𝑒𝑞𝑎⟩.

Data paths are collections of dataflows within a composite service that
can be used to calculate the makespan of the service. It depends on the
interaction pattern of the microservices within the composite service
(i.e., the chained pattern has a single data path, whereas the aggregator
invokes multiple datapaths).
3

2.3. Application deployment related aspects

The loosely coupled nature of these microservices enables them to
be deployed and scaled independently within distributed environments.
Thus, MSA require dynamic service discovery and load-balancing mech-
anisms to ensure seamless connectivity among microservices deployed
dynamically across distributed multi-fog multi-cloud environments. To
this end, Microservices-based application deployment and management
are aided by three cloud-native technologies: containerisation platforms
(i.e., Docker, LXC), container orchestration systems (i.e., Kubernetes,
Docker Swarm) and service mesh platforms (i.e., Istio, Consul). The Mi-
croFog framework proposed in this work uses Docker, Kubernetes and
Istio for the deployment and management of the microservices. Hence,
we describe each technology and its aspects related to the federated
fog–cloud deployment of applications in the following sections.

2.3.1. Containerisation using Docker
Microservices are packaged as containers to make them independent

of the host environments. Moreover, compared to earlier used virtual
machines, containers are light-weigh with less startup time. Thus,
containerisation of the microservices suits distributed deployment and
scaling across heterogeneous and resource-constrained Fog nodes.

While there are multiple containerisation technologies in use (e.g.,
Docker, LXC, etc.), Docker has gained rapid popularity for the deploy-
ment of microservices-based enterprise applications. Being an ‘‘applicati
centric container technology’’, Docker supports higher portability, highe
scalability, lightweight container image creations, etc. As the focus of
MicroFog is to support rapidly growing microservices-based IoT appli-
cation deployment, we use Docker as the containerisation technology.

Docker container images are stored and distributed using a con-
tainer registry. Docker provides a fully managed container repository
known as DockerHub. However, this is a centralised repository with
limitations in privacy and security. Pulling images from a centralised
repository can incur extra latency during microservice deployment in
Fog environments. Thus, for Fog computing, it is important to ex-
plore distributed container image registries, depending on the resource
availability of the Fog infrastructure to host the registry.

2.3.2. Kubernetes as container orchestration platform
Decomposition of an application according to microservices archi-

tecture results in a large number of microservices and an even more
significant number of containers due to horizontally scaled deploy-
ment of microservice instances to meet throughput demand, redundant
placement of microservice instances to ensure reliability, distributed
placement across Fog cluster to support location-awareness, etc. Thus, a
container management platform such as Kubernetes is required to man-
age the life cycle of thousands of containers. As one of the most popular
open-source container orchestrators, Kubernetes is rapidly improved for
use within heterogeneous computing environments through distribu-
tions like k3s which is a minimal Kubernetes distribution for extreme
edge (i.e., resource-constrained IoT devices, Raspberry Pis, etc.). Thus,
the use of k8s and k3s across multi-fog multi-cloud environments is
exceeding explored by Cloud providers and Telco providers in their ef-
forts to extend cloud-like services towards network edge (Google, 2023;
Ericsson, 2023; IBM, 2023). Thus, we summarise the basic concepts
used in Kubernetes. To deploy containers at a scale and to maintain
communication among microservice containers, Kubernetes provides
build-in ‘‘resources’’ (i.e., Pods, Service, etc.) that provide abstractions
for underlying management operations. We discuss some of the most
used resources in our framework below.

• Pod: A Pod is the smallest deployable unit supported by Ku-
bernetes, where each pod can contain one or more containers
(containers co-located with its sidecar containers). A pod repre-
sents a logical host where all co-located containers of the pod
share the network resources and communicate through localhost.



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.

2

t
b
t
a
t
s
f

a
(
t

2

r
b
A
a
a
s
t
s
b
r

r
t

t
r
r
e
D
r
a
b
K
o
m

2

c
i
o
w
w
H
c
w
a
n
d
t
n
a

t
M
c
D
e
F
r

2

e
w
A
S
t
S
w
b
v

a
m
s
D
t
e
i
e
2
Q

m
c
p
p

Pods provide fine-grained control over microservice instance de-
ployment by enabling the deployment of pods on specific nodes
by adding node selection constraints (i.e., node selectors, node
name, etc.) to the pod.

• Service: Kubernetes service is an abstraction over a set of pods
within a Kubernetes cluster that decouples service end-point from
IP addresses of the individual pods. Use of Services provide
dynamic discovery and load balancing to those pods, thus al-
lowing pods to get dynamically created and destroyed. Although
in-cluster service discovery is handled through services, multi-
cluster service discovery is not possible with Kubernetes alone.

• Namespace: Namespaces isolate name-spaced Kubernetes objects
(i.e., pods, services, etc.), thus providing a way to isolate re-
sources within multi-tenant Kubernetes clusters.

• ConfigMaps: ConfigMaps stores configurations as key–value pairs,
thus separating configurations from the pods. This improves the
flexibility and portability of containerised microservices.

• Secrets: Secrets are similar to ConfigMaps, but are designed to
hold sensitive information that should not be stored within the
application code.

• Roles and Rolebindings: They grant role-based access to Kuber-
netes resources (i.e., nodes, pods, configmaps, etc.)

.3.3. Istio as service mesh
While Kubernetes provides basic functionalities required for con-

ainer orchestration, it has limitations related to service discovery, load
alancing, observability, fault tolerance and security management of
he microservice applications. Thus, the service mesh is introduced
s a software abstraction layer on top of Kubernetes to overcome
hese limitations. To this end, Istio implements multiple Custom Re-
ource Definitions (CRDs) extending Kubernetes resource definitions as
ollows:

• Virtual Service (VS): Virtual Services provide more control over
traffic routing by providing a way to define traffic routing rules
to pods exposed through Kubernetes services.

• Destination Rules (DR): Once virtual service routing rules are
applied, and the traffic is routed to the destination, Destination
Rules are applied to perform load balancing, direct traffic towards
service subsets, etc.

• Gateway: Gateway is an abstraction for a load-balancer for ingress
and egress traffic of the cluster. Furthermore, to support inter-
cluster traffic among Kubernetes clusters spread across different
networks, Istio provides a specialised gateway known as the
east–west gateway.

Kubernetes and Istio provide HTTP REST APIs to retrieve, cre-
te, update, and delete the above resources. Moreover, client libraries
i.e., Fabric8, client-go, etc.) are available for accessing these APIs
hrough programming languages.

.3.4. Example application deployment
In this section, we demonstrate the use of Kubernetes and Istio

esources to deploy a microservices-based IoT application within Ku-
ernetes and Istio available clusters. We use a Smart Health Monitoring
pplication (see Fig. 2) (Pallewatta et al., 2022b) as a use case. The
pplication consists of three microservices and two composite services
ccessed by the users: a latency-sensitive emergency event detection
ervice (𝑆1) where both its microservices (𝑚1, 𝑚1) are placed in dis-
ributed Fog resources, a latency-tolerant predictive health warning
ervice consisting two microservices (𝑚1, 𝑚3). 𝑚1 is shared between
oth services and placed within the Fog layer to meet stringent latency
equirements of service 𝑆1, whereas 𝑚3 is deployed within the Cloud.

Fig. 2 demonstrates a logical view of how Kubernetes and Istio
esources route external traffic from users to 𝑚1 and 𝑚3 and main-
ain communication between interconnected microservices (between
4

𝑚1 and 𝑚2, between 𝑚1 and 𝑚3). With the use of Istio, the ingress
raffic received at the IP and port of the Istio ingress gateway are
outed towards the desired pods based on the ‘‘host’’ header of the
equest. In Istio, the ‘‘host’’ value acts as the address of each set of pods
xposed through Kubernetes services. Istio gateway, Virtual Service and
estination Rules are configured accordingly to enable proper traffic

outing. Internal traffic among communicating microservices of the
pplication is also routed by Virtual Services and Destination Rules
ased on ‘‘host’’ value. Moreover, these Istio resources together with
ubernetes services decouple service end-point from the IP addresses
f the individual pods, so that the pods can be dynamically placed and
igrated to different nodes within and across clusters.

.3.5. Kubernetes + Istio multi cluster support
Istio supports deploying a single mesh to span multiple Kubernetes

lusters, thus enabling cross-cluster service discovery and load balanc-
ng. The Istio deployment model for multi-cluster scenarios depends
n the nature of the underlying network model. The simplest net-
ork model considers multiple clusters belonging to a single network
here all nodes are fully connected through technologies like VPN.
owever, large-scale production systems that span multiple Kubernetes
lusters belong to multiple networks with administrative boundaries
here each cluster is exposed through load balancers. Fog computing
rchitecture considered in this work (Section 2.1) maps to a multi-
etwork model. Hence, in this work, we consider Istio multi-network
eployment with multiple control planes to improve the resilience of
he deployment. In this deployment mode, each Istio control plane con-
ects to the API server of the connected clusters for service discovery
cross clusters.

Istio introduces an east–west gateway to expose the services within
he cluster to other clusters to enable cross-cluster service discovery.
oreover, to ensure successful DNS lookup across clusters, consumer

lusters need to have access to the Kubernetes Service resource, Istion
R and VS of the consumed service deployed in other clusters. As an
xample, for 𝑆1 an example application, for 𝑚1 to route traffic from its
og cluster to 𝑚2 deployed within a Cloud cluster, the above resources
elated to 𝑚3 should be deployed within both Fog and Cloud clusters.

.4. Placement problem

Microservice-based IoT application placement problem within Fog
nvironments addresses deployment and maintenance of microservices
ithin federated Fog and Cloud environments to meet the Service Level
greements (SLA) of the application services (Guerrero et al., 2019a;
karlat et al., 2017). To this end, placement algorithms are developed
o consider resource requirements of the microservices (i.e., CPU, RAM,
torage, Bandwidth) and map them to available Fog or Cloud resources
hile ensuring the satisfaction of QoS parameters such as makespan,
udget, reliability, availability, and throughput of the application ser-
ices.

Furthermore, due to the flexibility provided by the microservices
rchitecture (i.e., independently deployable and scalable nature of
icroservices), placement algorithms aim to incorporate horizontal

calability to meet throughput requirements (Guerrero et al., 2019a;
eng et al., 2020; Pallewatta et al., 2022b), location-aware distribu-

ion (Guo et al., 2022), redundant placement to improve reliability (Xu
t al., 2020), balanced placement across Fog clusters and Cloud depend-
ng on service discovery capabilities (Guerrero et al., 2019b; Pallewatta
t al., 2022b), optimum load balancing and routing (Herrera et al.,
021), etc. to efficiently utilise limited Fog resources while satisfying
oS parameters.

Execution of placement algorithms can take place as batch place-
ents (Samanta and Tang, 2020; Pallewatta et al., 2022b) that pro-

ess multiple application placement requests at once or sequential
lacements (Lera et al., 2018; Guerrero et al., 2019b) where queued
lacement requests are processed one after the other. Moreover, the



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 2. Example deployment of a Smart Health Monitoring Application.
placement policies can be developed as centralised (Farhat et al., 2020)
or distributed (Pallewatta et al., 2019) algorithms to achieve place-
ment across distributed Fog and Cloud resources provided by multiple
infrastructure providers.

2.5. Existing fog frameworks

In this section, we compare existing Fog frameworks qualitatively
based on their supported features related to microservice-based IoT ap-
plication deployment within federated fog environments (see Table 1).

Yousefpour et al. (2019) present ‘‘FogPlan’’, a framework for dy-
namic provisioning containerised Fog services using container orches-
tration platforms such as Kubernetes or OpenStack. FogPlan consists
of a centralised Fog Service Controller responsible for hosting the
data stores, provisioning Fog services and deploying them within
Fog nodes. Santoro et al. (2017) provide an open-source technology-
based (i.e., OpenStack, Kubernetes, Docker) platform named Foggy for
workload placement in Fog computing environments. FogAtlas (2023)
extends Foggy platform by extending Kubernetes to orchestrate dis-
tributed Fog and Cloud resources in a user-friendly manner. Ermolenko
et al. (2021) also propose a framework based on Kubernetes and
Docker where a Kubernetes cluster is deployed within a Mobile Edge
Computing (MEC) environment. Bellavista and Zanni (2017) create
a microservice deployment framework based on Docker and Docker
Swarm with a centralised control engine deployed in the Cloud to
execute placement algorithms and deploy microservices accordingly.
While they utilise Kubernetes and Docker Swarm features for container
orchestration, they also have limitations in multi-cluster support, ad-
vanced microservice composition with service mesh technologies, and
5

scalability of the control engine across multi-fog multi-cloud environ-
ments. Tuli et al. (2019) introduced FogBus framework to harness
edge/Fog and remote Cloud resources for the placement of applications
developed as a collection of inter-connected modules. Deng et al.
(2021) proposed FogBus2, a resource management framework for
the deployment of containerised applications across edge and Cloud
resources that are interconnected to each other using a VPN net-
work. Wang et al. (2022) improved FogBus2 and integrated container
orchestration capabilities to the framework using Kubernetes. Their
framework supports the integration of novel placement policies and
their performance monitoring to evaluate novel placement policies.
However, their framework lacks support for multi-cluster scenarios
with multiple geo-distributed Kubernetes clusters. Moreover, they lack
support for the dynamic composition of microservices due to limitation
in service discovery and load balancing aspects and does not integrate
service mesh technologies to fully leverage the capabilities of microser-
vices architecture. Kubernetes resource usage in FogBus2 is limited
only to Pods, which limits the framework’s scalability. Furthermore,
application-level changes are required for the containerised application
modules to be deployed within the framework. Mahmud and Toosi
(2021) propose a fully distributed and scalable framework named
Con-Pi to execute microservices-based applications. Con-Pi provides
a centralised controller to execute integrated customised placement
policies and deploy containerised microservices accordingly. However,
Con-Pi does not provide advanced microservice composition, dynamic
service discovery and load balancing for the deployed microservices
and does not consider application deployment across multiple Fog re-
source clusters. Marchese and Tomarchio (2023) propose a framework
for microservice orchestration in the Cloud-to-Edge continuum using



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.

D
s
c
d
a
e
f
o
e
e
s
c
m

f
c
c
o
t
f
t
m
m
b
s

3

q
l
M

3

n

Table 1
Comparison of existing frameworks.

Architecture Cloud-native application support Microservice composition support Control-engine Data stores

Work Integration Multi- 𝜇services Containers Container Service Automated Service discovery Load balancing Extensibility Scalability Configurability

cluster orchestration mesh deployment Avail. Cross-
cluster

Avail. Configurable Cross-
cluster

Yousefpour
et al. (2019)

Fog, Cloud – ✓ ✓ – – 𝜕 𝜕 – – – ✓ 𝜕 𝜕 Centralised

Santoro
et al. (2017)

Fog, Cloud – ✓ ✓ ✓ – 𝜕 ✓(Kubernetes) – ✓(Kubernetes) – – ✓ 𝜕 𝜕 Distributed

FogAtlas
(2023)

Fog, Cloud – ✓ ✓ ✓ – 𝜕 ✓(Kubernetes) – ✓(Kubernetes) – – ✓ 𝜕 𝜕 –

Ermolenko
et al. (2021)

Edge – ✓ ✓ ✓ – – ✓ – ✓ – – ✓ 𝜕 𝜕 –

Bellavista
and Zanni
(2017)

Fog, Cloud – ✓ ✓ ✓ – 𝜕 ✓(Docker Swarm) – – – – 𝜕 𝜕 𝜕 –

Tuli et al.
(2019)

Fog, Cloud – – – – – 𝜕 – – – – – 𝜕 𝜕 𝜕 Distributed

Deng et al.
(2021) and
Wang et al.
(2022)

Fog, Cloud – 𝜕 ✓ 𝜕 – 𝜕 𝜕 (Proxy Server) – – – – 𝜕 𝜕 𝜕 Distributed

Mahmud
and Toosi
(2021)

Fog, Cloud – ✓ ✓ – – 𝜕 𝜕 – – – – ✓ 𝜕 𝜕 Centralised

Ruuskanen
et al. (2021)

Fog, Cloud ✓ ✓ ✓ ✓ ✓ – ✓ 𝜕 ✓ 𝜕 𝜕 – – – –

(Kubernetes, Istio) (Istio)

Marchese
and
Tomarchio
(2023)

Fog, Cloud – ✓ ✓ ✓ ✓ 𝜕 ✓ – ✓ – – 𝜕 𝜕 – –

(Kubernetes, Istio) (Istio)

Our Fog, Cloud ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Distributed,
Replicated

(Kubernetes, Istio) (Istio) Fault-
tolerant

✓: Supported by the framework, 𝜕: Partially supported.
ocker, Kubernetes and Istio service mesh and extends Kubernetes
cheduler to support network aware scheduling. However, their ar-
hitecture does not consider multi-cluster scenarios. Thus, their work
oes not use service mesh for microservice orchestration across clusters
nd does not automate application deployment within federated fog
nvironments. Ruuskanen et al. (2021) create an open-source sandbox
or deploying virtual clusters where Kubernetes is used for container
rchestration and Istio is used for inter-cluster communication. How-
ver the aim of their work is to create an emulated federated cloud
nvironment. Thus, application deployment related aspects are out of
cope for their work and does not provide a configurable and scalable
ontroller to abstract and automate the application deployment across
ulti-cluster environment.

Based on the qualitative analysis provided in Table 1, existing
rameworks have limitations in multiple areas such as multi-fog multi-
loud placement, fully-automated deployment of applications, ensuring
ross-cluster dynamic composition of microservices through container
rchestrators and service mesh technologies, improving extensible of
he framework through open-source technologies, scalability of the
ramework across highly distributed Fog environments, configurability
o support different operation and placement modes, and distributed
anagement of data required for application placement and deploy-
ent. Thus, this work introduces a novel framework for microservices-

ased application placement within federated Fog environments that
atisfy the above requirements.

. MicroFog framework

In this section, we discuss the functional and non-functional re-
uirements addressed by the proposed MicroFog framework, its high-
evel architecture, main components and workflow to highlight how
icroFog meets the requirements identified in Section 3.1.

.1. Framework requirements

Based on the background analysis, we summarise the functional and
6

on-functional requirements of a framework for scalable placement of
microservices-based IoT applications within federated Fog and Cloud
computing environments, as follows:

• Multi-fog Multi-cloud microservice placement and deployment:
Framework should support execution of placement algorithm
across multiple Fog and Cloud clusters using either centralised or
distributed operation modes. Accordingly, application microser-
vices need to be deployed by using relevant Kubernetes and Istio
resources.

• Seamless microservice composition across hybrid environments:
Kubernetes and Istio resource deployment should ensure cross-
cluster service discovery and load balancing.

• Ability to integrate novel placement algorithms and load balanc-
ing policies easily.

• Support for heterogeneous cloud-native application deployment
without any application-level changes.

• Compatibility with cloud-native technologies so that the frame-
work can improve and evolve as the underlying technologies
evolve (extensibility).

• A configurable control engine to support different operation
modes like centralised or distributed operation, application place-
ment modes such as event-driven or periodic placement request
processing and batch or sequential placement request processing.

• Distributed storage solutions to store the data required for ap-
plication placement and deployment (i.e., application models,
Kubernetes and Istio resource definitions).

• Rapid prototyping support to enable evaluations of placement
algorithms during their rapid design and development cycles.

• Framework should be flexible and scalable such that it can be
deployed to operate across distributed Fog and Cloud clusters.

3.2. High-level architecture

Fig. 3 presents the high-level architecture and the workflow of
MicroFog. MicroFog provides a scalable and extensible Control Engine
(CE) to execute placement algorithms and deploy IoT applications

within Istio-installed Kubernetes clusters. CE communicates with three



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 3. MicroFog: High-level architecture.
data stores: 1. YAML File Store containing YAML definitions (both
Kubernetes and Istio) required for deployment of applications, 2. Meta
Data Store for storing application models and links to related deploy-
ment resources stored within the YAML File Store, and 3. Docker
registry hosting docker images for the application microservices. Appli-
cation providers can submit Placement Requests (PRs) to the MicroFog-
CE, defining the application for deployment and QoS requirements. CE
receives application placement requests (PRs), process them according
to a selected placement policy (either an inbuilt placement algorithm
or external algorithm accessed through an API), configure related
Kubernetes and Istio YAML files according to the generated placement
and the load balancing policy, and finally deploy them within Fog
and Cloud resources using Kubernetes API. Furthermore, MicroFog
integrates monitoring and logging tools to observe the performance of
the MicroFog framework and applications deployed using it.

3.3. Main components and technologies

3.3.1. Control Engine (CE)
CE is designed to abstract microservices placement (execution of

placement algorithms and deployment) and cross-cutting function han-
dling (i.e., service discovery, load balancing) for the dynamic compo-
sition of microservices across multi-fog multi-cloud environments.

We implement CE as an independently deployable and scalable
microservice developed using Quarkus,1 a novel Kubernetes-native
lightweight Java framework designed to build cloud-native microser-
vices. Quarkus reduces memory usage and improves deployment den-
sity (Falkner, 2020), which is suitable for developing microservices for
deployment within resource-constrained Fog environments. As Quarkus
is a Kubernetes-native framework, the development and deployment of
the CE become straightforward and less time-consuming, thus allowing
users to rapidly improve, extend and customise it with evolving needs.
Thus, Quarkus is rapidly becoming popular as a lightweight Java
framework for creating cloud-native microservices. Moreover, Quarkus
allows easy access to Fabric8 Kubernetes and Istio clients2 through its

1 https://quarkus.io/.
2 https://github.com/fabric8io/kubernetes-client.
7

extensions. Fabric8 is a highly popular Kubernetes and Istio client that
provides complete access to Kubernetes API. Fabric8 consists of a rich
DSL (Domain Specific Language) for interacting with Kubernetes API,
hence making it one of the most used open-source Kubernetes clients
with an extremely active community using and continuously improving
it. Thus, we have selected Qaurkus together with Fabric8 Kubernetes
and Istio clients to create our controller.

We discuss the functional and non-functional features of the
MicroFog-CE as follows:

1. PR submission for placement: Application providers can sub-
mit their PRs to the CE through an API which expects HTTP
POST requests with the PRs represented in JSON format (API
1 shown in Fig. 3). Each submitted PR can define multiple data
fields related to the application, including application id, QoS
parameters, any restrictions for application placement, traffic
entry clusters, etc. Once submitted, CE uses such information to
process the PR (i.e., the application id is the key to retrieving
the application model and deployment resources from the data
store, and entry clusters denote the clusters that act as the entry
point for the ingress traffic for the considered application) and
deploy the application microservices and deployment resources
accordingly.

2. Multiple operation and placement modes: CE supports Centralised
and Distributed operation modes (Fig. 4). In centralised mode, a
primary CE (i.e., deployed within the Cloud) with a global view
of the infrastructure (i.e., Fog, Cloud clusters, their topology and
resource availability) is responsible for executing the placement
algorithm. In this mode, the primary CE queries the secondary
CEs (through API 2) to gain information regarding the resources
available within each cluster and their topology-related data
(i.e., directly reachable Fog and Cloud clusters from each clus-
ter) to construct the global view of the federated environment.
Primary CE uses this information to generate placements for the
applications requested by the PRs and send the output placement
details to each relevant cluster (through API 3). The secondary
CEs deployed within each cluster process the placement output

https://quarkus.io/
https://github.com/fabric8io/kubernetes-client


The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 4. CE operation modes.
and deploy Kubernetes and Istio resources accordingly. In con-
trast, in the distributed mode, all CEs are responsible for running
the placement algorithm locally per cluster. They collaborate by
forwarding the PRs among the clusters for distributed placement
across multi-fog multi-cloud environments. MicroFog-CEs use
API 1 for PR forwarding among clusters as well.
Furthermore, the CE supports two placement modes: Periodic
Placement and Event-driven Placement. Periodic placement in-
vokes the placement algorithm periodically based on a config-
urable time period. Under this mode, the placement algorithms
can be designed to process the PRs either as a batch (all PRs
in the queue are processed simultaneously by the algorithm) or
sequentially (either in First-In-First-Out order or prioritised). In
the event-driven mode, the placement algorithm is invoked upon
receiving a new PR.

3. Placement Algorithm Integration: CE supports easy integration
of novel placement algorithms. This can be done using two
methods: in-built algorithm implementation where novel place-
ment policies can be implemented by extending PlacementAl-
gorithm.java base class of the CE. The base class is initialised
with the metadata required by the placement algorithms (i.e., re-
source availability of the devices, application model and topo-
logical information). Novel placement algorithms can extend this
to implement customised placement logic that utilises the meta-
data to produce placement output (denoted by PlacementOut-
put.java) consisting of microservice-to-device mapping and PR
completion data (completed PRs vs incomplete PRs that should
go through a forwarding process to other clusters for place-
ment completion). Moreover, CE provides capability to integrate
external placement algorithms, which allows algorithms to be
implemented in other programming languages (i.e., Python for
placement algorithms that use Machine Learning). Such algo-
rithms can be implemented as a separate microservice and in-
tegrate it to the MicroFog-CE by implementing an API that can
be called by the External Algo Service Rest Client in Fig. 3 of the CE
through an HTTP GET request. CE rest client is designed to send
the metadata along with the GET request so that the external
placement algorithm can generate the placement and return the
deployment-related information back to the CE.
By default, MicroFog-CE implements a Latency-aware Scalable
Placement Policy proposed in Pallewatta et al. (2019). The above
algorithm aims to place microservices of latency-critical service
as close as possible to the users who access them. We implement
this algorithm in both distributed and centralised modes. We
8

also implement it with and without horizontal scalability of
the microservices to demonstrate the performance improvement
MSA can provide within resource-limited Fog environments.

4. Access Infrastructure Metrics: To make placement decisions,
placement algorithms require metrics related to infrastructure,
such as resource availability within the cluster. To this end, the
current version of CE provides two measurements: 1. CE access
Kubernetes Metric Server to obtain node metrics of current CPU
and RAM usage, 2. CE also provides current resource allocation
of the deployed pods by querying the Kubernetes API. Placement
algorithms can utilise both types of metric information to make
placement decisions. Metric collection can be further extended
to use Prometheus as well to utilise time-series metric data for
placement decision making.

5. Load Balancing Policy Integration: Due to the independently
deployable and scalable nature of the microservices, load bal-
ancing plays a vital role in properly distributing the load across
horizontally scaled microservices deployed across federated Fog
and Cloud environments. By default, Istio use a round-robin load
balancing method to route the requests. Moreover, Istio supports
other load balancing methods like random, least request and
weighted load balancing, which are already implemented in En-
voy Proxy used by Istio for service discovery and load balancing
purposes. They can be configured by updating the Istio DRs
related to each microservice. In addition to thus, MicroFog-CE
provides enhanced capabilities to support custom load-balancing
policies, where weights of the weighted load-balancing approach
can be updated based on custom load-balancing policies.
As an example, the current version of the CE implements
weighted round-robin load balancing policy. Once the weight for
each microservice instance is calculated based on the placement,
CE handles the updates related to subsets, weights, and routes in
Istio VS and DR resources. While this update is straightforward
for centralised operation mode, distribute placement has one
main challenge. Load balancing information can only be calcu-
lated after all required microservice instances are placed. More-
over, to execute load-balancing policies properly, Istio needs VS
and DR resources to be available in all clusters that host the
particular microservice (consumed microservice) and any mi-
croservice that tries to interact with it (consumer microservices).
Thus, in distributed placement mode, for each microservice, the
CE waits until all its instances and its consumer microservices
are placed. Afterwards, the information required for VS and DR
updates (subset names and weights) are sent to relevant clusters
through API 3 of the distributed CEs.



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.

3

3

o
t
p
t
a
c
t
o
a
e
s
t
b
o
c
w
a
h
b
a
m
p

3

m
p
f
r
c
t
c
t

6. PR Forwarding Policy Integration: Placement across multi-cloud
multi-fog environments requires the use of distributed placement
policies across infrastructure provided by multiple Cloud and
Fog infrastructure providers. MicroFog-CE enables this by pro-
viding the ability to update the status of the partially processed
PRs and forward them to adjacent Fog or Cloud clusters. Such
PRs are submitted to the selected cluster’s API 1. Moreover,
novel forwarding policies can be integrated as well. The de-
fault implementation of the CE provides two forwarding policies
where the PRs can be either forwarded to a random Fog cluster
or to the Cloud. As CE instances are configured independently,
it is possible to use different forwarding policies across clusters.

7. Automated Application Deployment: MicroFog CE abstracts the
microservice deployment process from the framework users.
For each application, YAML File Store is used to retrieve the
Kubernetes and Istio resources related to the deployment of
microservices. This includes resources at different abstraction
levels such as 1. application level resources such as Names-
paces, Roles and RoleBindings, 2. microservice level resources
such as ConfigMaps, Secrets and Pod definition YAML files to
create microservice instances on mapped nodes based on the
placement algorithm output, 3. Services, Virtual Services and
Destination Rules for service discovery across clusters and to
load balance and route traffic to create composite services based
on the load balancing policy and 4. Gateways to enable ingress
traffic to reach root microservices of application DAG. More-
over, MicroFog-CE enables federation across multiple Fog and
Cloud clusters by deploying microservice composition-related
resources (i.e., Kubernetes Services, Virtual Services, Destination
Rules) in relevant clusters. CE rules are designed to handle
these functionalities, thus abstracting the underlying complex-
ities from the framework users.

8. Scalable and Distributed CE deployment: As the CE is devel-
oped as a microservice using a Kubernetes-native microservice
framework, it can be deployed within Kubernetes and Istio-
enabled environments in a distributed manner. Each CE can be
configured separately and communicate across clusters using the
REST APIs, thus making MicroFog scalable to operate across
federated Fog and Cloud environments.

9. Extensibility: Design and architecture of the CE capture the prob-
lem domain of microservices-based application placement by
implementing java objects as rich domain-specific objects. Fig. 5
domain diagram used in developing the MicroFog-CE, which
adheres with the system models and placement problem for-
mulated in Section 2. This makes the CE implementation easy
to comprehend and extend to incorporate novel features. More-
over, due to the compatibility of the MicroFog framework with
open-source cloud-native technologies, the CE can evolve as the
capabilities of the underlying technologies evolve.

10. Configurability: Quarkus enables application configuration prop-
erties to be acquired through Kubernetes ConfigMaps. This
highly improves the configurability of the CE, where the users
can update application configurations without creating new
Docker images to rapidly use different configurations (policies,
placement modes, operation modes, etc.).

.3.2. Data stores
MicroFog uses three main data stores as follows:

1. Meta Data Store: Metadata store contains application-related in-
formation belonging to two main categories: (1) application
model (as discussed in Section 2.2) which contains specification
related to microservices, interconnections among microservices
to create services, dataflows, etc. (2) application deployment
related Kubernetes and Istio resources. This includes resource
9

type (i.e., Namespaces, Pods, Services, etc.) and URL to the
YAML file containing the specifications of each resource. We
use Redis3 as a primary database to store this information. Even
though Redis was initially introduced as a cache, now it is
increasingly used as a primary database to reduce the complexity
of data retrieval and improve performance. Redis allows data to
be stored as key–value pairs. With the use of Redisson, a Redis
Java client, the 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 domain objects of the CE can be
easily serialised to store within the Redis metadata store and
retrieve them back as Java objects.

2. Yaml File Store: This is used for storing Kubernetes and Istio
resource configurations as YAML files. Due to the geo-distributed
nature of the Fog clusters, a distributed object store is required
for efficiently storing the YAML files. To meet this requirement,
we use MinIO Object Store,4 an AWS S3 compatible, Kubernetes-
native object store designed for multi-fog multi-cloud environ-
ments. For each Istion/Kubernetes resource to deploy, the CE
retrieves the YAML file from the MinIO data store using an object
URL and uses the Fabric8 Kubernetes client library to load it as
a domain object representing the deployment resource.

3. Docker Registry: As IoT application microservices are container-
ised for deployment, the container images must be stored in a
docker registry reachable by the CEs. In the current implemen-
tation, we use Docker Hub, a publicly available managed Docker
store. However, this can be further improved by using local
Docker stores in conjunction with Docker Hub, depending on the
resource availability of each Fog cluster to host the images.

.3.3. Monitoring and log management
Due to their highly distributed and dynamic nature, monitoring and

bservability remain essential aspects of cloud-native microservices. To
his end, Istio enables the integration of multiple tools in the form of
re-configured plugins. This includes metric collection and visualisa-
ion (Prometheus and Grafana), distributed tracing (Jaeger, Zipkin),
nd mesh visualisation using Kiali. In the current version of the Mi-
roFog framework, we have integrated Prometheus, Kiali and Grafana
o observe the traffic across clusters and to validate the functionalities
f the MicroFog-CE. In addition, MicroFog uses a cluster-level logging
rchitecture to manage the logs generated within each cluster. To this
nd, MicroFog uses Grafana Loki, a decentralised, lightweight logging
tack that compresses and stores data in object stores such as S3. As
he MinIO object store used for YAML File storage is S3 compati-
le, MicroFog uses the same store for storing the logs. Compared to
ther cloud-native logging solutions like ElasticSearch, Loki has a less
omplex architecture, requires less storage and consumes less power,
hich makes it suitable for Fog deployment. Depending on the resource
vailability of the Fog clusters, the logs can be stored within the MinIO
osted in Cloud to save storage space. However, other tools also can
e easily integrated depending on requirements. Moreover, the current
rchitecture can be easily extended so that MicroFog-CE can use the
etrics collected from monitoring and logging tools to execute dynamic
lacement algorithms or integrate machine-learning-based approaches.

.3.4. Rapid prototyping support
Producing novel placement algorithms undergo multiple develop-

ent and evaluation cycles to optimise their performance. Thus, rapid
rototyping during different stages of policy development is bene-
icial before conducting large-scale evaluations or applying them in
eal-word application deployments. Due to the use of open-source
loud-native tools, MicroFog enables fast creation of underlying infras-
ructure using tools such as Kind and MetaLB to create Fog computing
lusters consisting of heterogeneous nodes and route inter-cluster traffic
hrough load balancers.

3 https://redis.io/.
4 https://min.io/.

https://redis.io/
https://min.io/


The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.

1
C
a
i
i
T
P
P
n

m
a
p
d
d
w
e
i
b
q
c
t
s
R
r
d
q
e
J
i
a
m
o

a
m
m
T
a
t
b
R
o

t
C
c
t
w
f
i
m
t
w
a

t

3.4. PR processing flow of MicroFog-CE

In this section, we discuss the high-level pseudo-code (see Algorithm
1) of the MicroFog-CE with regards to processing received PRs. In an
environment where each cluster contains a separate CE, the depicted
PR processing procedure is executed in all CEs under the distributed
placement mode and only in the primary CE if the placement mode is
set to centralised placement.

PR processing begins with retrieving PRs from the PRQueue (line
). The method of retrieval depends on the placement mode of the
E, where in periodic placement, all PRs collected in the PRQueue
re retrieved for processing, whereas in event-driven mode, each PR
s taken from the queue as its added. If the PR processing thread
s busy, the PR waits in the queue until the thread becomes free.
he current implementation of the CE uses a single thread for the
R processing, whereas multiple threads add incoming requests to the
RQueue implemented using Java ConcurrentLinkedQueue, which is a
on-blocking and thread-safe queue implementation.

Retrieved PRs undergo three main steps: Meta Data Retrieval, Place-
ent Algorithm Execution, and finally, Deploying microservices-based

pplications using Kubernetes and Istio resources and handling uncom-
leted PRs. The first step of metadata retrieval is to generate cluster
ata required by the placement algorithm (lines 5-11). This includes
etails about the resource availability of each node in the cluster along
ith topological details such as adjacent Fog and Cloud clusters of
ach considered cluster. For centralised placement, the primary CE that
s responsible for executing the placement algorithm needs to have a
ird’s eye view of all the Fog and Cloud clusters. Thus, the primary CE
ueries other clusters by sending requests to the API 2 of the connected
lusters (lines 10-11). For this, we implement a Reactive REST Client
hat sends all requests simultaneously, waits for the results of all the
ent requests, and retrieve each cluster’s data from the reply. Reactive
EST Clients supported by the Quarkus framework enable concurrent
equest sending, which improves the efficiency of collecting data from
istributed clusters. As the second step of metadata retrieval, the CE
ueries the application model related to the application requested by
ach PR from the Redis metadata store (line 13). This retrieves a
ava domain object of type 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (as depicted in domain model
n Fig. 5) which consists of Microservices, Composite Services, Dat-
paths, Dataflows, Resource Requirements and Commands used for
icroservice deployment, which are all depicted using serialisable Java

bjects.
Afterwards, the CE starts processing the PRs using the placement

lgorithm (lines 16–19). As the CE can support integration of place-
ent algorithms either by extending the existing CE or as an external
icroservice, the algorithm can be configured as a property of the CE.
he CE is designed to use the factory pattern to initialise placement
lgorithms based on the configured placement algorithm name. Thus,
he internal integration of the placement algorithms requires them to
e added to the factory. To use external algorithms, CE implements a
EST client with a configurable URL that can be updated with the URL
f the external algorithm (line 19).

Once the placement output is generated by the placement algorithm,
he CE moves on to the application deployment stage. During this step,
E generates deployment information for each cluster under two main
ategories: basic deployment information and load balancing informa-
ion. Basic deployment information includes pod-to-device mapping
ith required resource allocation, ingress clusters for each application

or the deployment of Istio Gateway and related Virtual Service for
ngress traffic routing, etc. Load balancing-related deployment infor-
ation generation includes executing the load balancing policy for

he placement of completed microservices and generating subsets and
eights accordingly. This data will be used to update Virtual Services
nd Destination Rules to ensure desired load balancing.

After generating the deployment information, the CE invokes a new
10

hread to forward incomplete PRs (in the distributed placement mode)
based on the forwarding policy while the current thread continues with
deployment. In the centralised placement mode, the CE uses a Reactive
REST Client to send the deployment information to others concurrently
while the deployment for the current cluster is carried out in parallel
as well. This decision is made to improve the overall efficiency of the
placement as the deployment of microservices as Docker containers
can be time-consuming if carried out sequentially. Similarly, in the
distributed placement mode, load balancing information relevant to
previous clusters are also transmitted concurrently while one thread
continues with deployments related to the current cluster.

4. MicroFog deployment

Deployment of MicroFog within federated fog–cloud environments
includes two main steps: 1. distributed setup for data stores, and 2. dis-
tributed deployment of the CE. As example deployment scenarios, we
provide deployment architecture (see Figs. 6 and 7) for each step. The
demonstrated examples consider a federated fog–cloud environment
consisting of two Fog clusters and one Cloud cluster. Three clusters
belong to three separate networks and are three independent Kuber-
netes clusters interconnected through Istio multi-primary architecture
to enable inter-cluster microservice composition and traffic.

4.1. MinIO YAML File Store deployment

We provide an example deployment scenario in Fig. 6 to demon-
strate the distributed deployment of the MinIO YAML File Store within
federated fog–cloud environments. For distributed storage and access
of YAML files, we design the deployment architecture to meet the
following requirements: (1) Distributed deployment across clusters to
improve the latency of application deployment, (2) Replication across
distributed data stores to maintain data consistency, (3) Fault-tolerance
through a prioritised failover mechanism to ensure availability in a
latency-aware manner.

To achieve these objectives, we create two traffic routing layers
using Kubernetes and Istio resources, namely, the Management layer
and the Data Access layer. The management layer is used for con-
figuring individual MinIO servers deployed per cluster. Kubernetes
service and Istio VS for the management layer expose default MinIO
ports for management console access through ingress gateway (console
port) and data replication among distributed MinIO instances (API
port). The second layer of routing exposes the API port of the MinIO
data store, for access by the CE to retrieve YAML files required for
application deployment. This layer of traffic implements a two-tier
failover policy to improve the reliability of the deployment. Istio sup-
ports locality-aware load-balancing to failover based on region (topol-
ogy.kubernetes.io/region), zone (topology.kubernetes.io/zone) and
sub-zone (topology.istio.io/subzone) of the nodes. We use the region
and zone to conduct the failover where all Fog level resources belong
to the region ‘‘fog’’, where each Fog cluster is considered as a separate
zone. Similarly, all Cloud clusters belong to the region ‘‘cloud’’. Istio
default failover policy assigns high priority to failover within the same
region (i.e., Fog clusters would fail over to adjacent Fog clusters). We
further extend this by incorporating an Istio DR to ensure failover from
Fog to Cloud if no Fog clusters are available. To ensure proper fault
tolerance, each node in the Kubernetes clusters needs to be annotated
with their related region and zone. Although the number of tiers is
limited to two in the current implementation, it is possible to extend it
to three tiers by implementing Istio sub-zones as well.

4.2. Redis Meta Data store deployment

Deployment of Redis Meta Data flow follows a similar approach
with two traffic layers, one for data replication and the other for re-
trieving application information. We use the master-replica deployment

supported by Redis. In our proposed architecture, we deploy the master



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Algorithm 1 MicroFog-CE PR processing
1: procedure ProcessPRs(PRQueue)
2: PRs ← get PRs from the PRQueue for processing
3: # Step 1. Meta Data Retrieval wich consists of two sub-steps 1.1 and 1.2
4: # Step 1.1 : Cluster data retrieval (including both resource availability within cluster and tipology information
5: clusterData ← {} ⊳ Maps cluster name to its data
6: inclusterDeviceData ← loadInClusterDeviceData() ⊳ Device data related to the current cluster is loaded
7: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎 ← 𝑖𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑣𝑖𝑐𝑒𝐷𝑎𝑡𝑎 ∪ 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦𝐷𝑎𝑡𝑎
8: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎.add(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑁𝑎𝑚𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎)
9: # For centralised placement, request cluster data from other cluster using API 2

10: if centralisedPlacement AND is primary CE then
11: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎 ← requestOtherClusterData()
12: # Step 1.2 : Loading application meta data form the Meta Data Store
13: appInfo ← loadRelatedAppInfo(prs)
14: # Step 2: Execute the placement algorithm
15: placementOutPut ← {}
16: if is internalAlgo then
17: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑂𝑢𝑡𝑃 𝑢𝑡 ← 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐴𝑙𝑔𝑜.generatePlacement(𝑃𝑅𝑠, 𝑎𝑝𝑝𝐼𝑛𝑓𝑜, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎)
18: if is externalAlgo then
19: placementOutPut ← 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐴𝑙𝑜.generatePlacement(𝑃𝑅𝑠, 𝑎𝑝𝑝𝐼𝑛𝑓𝑜, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑎𝑡𝑎, 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑈𝑟𝑙)
20: # Step 3. Deploy using Istio + Kubernetes resources and handle incomplete PRs
21: perClusterDeploymentInfo ← {}
22: 𝑝𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐼𝑛𝑓𝑜.add(generateBasicDeploymentInfo(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑂𝑢𝑡𝑃 𝑢𝑡))
23: 𝑝𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐼𝑛𝑓𝑜.add(generateLoadBalancingRelatedDeploymentInfo(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑂𝑢𝑡𝑃 𝑢𝑡))
24: if is distributedPlacement then ⊳ Uses a separate thread
25: 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑃𝑅𝑠 ← 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑂𝑢𝑡𝑃 𝑢𝑡.getIncompletePRs()
26: forwardIncompletePRs(𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑃𝑅𝑠)
27: 𝑡ℎ𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 ← 𝑝𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐼𝑛𝑓𝑜.getThisCluster()
28: 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟.deploycommands(𝑡ℎ𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)
29: sendToOtherClusters(𝑝𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐼𝑛𝑓𝑜 − 𝑡ℎ𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)
Redis server in the Cloud cluster and deploy the rest as replicas where
they sync with the master server to retrieve the available metadata.
Similar to MinIO YAML Store, this deployment also uses locality load-
balancing in Istio to ensure failover from the Fog layer to the Cloud to
improve the availability of the data.

4.3. Control-engine deployment

Fig. 7 depicts an example scenario for the distributed deployment
of CEs across federated Fog and Cloud clusters. We discuss the main
aspects of the deployment as follows:

• Distributed deployment of CEs and maintaining communication
across clusters: In both centralised and decentralised placement
modes, CEs need to access APIs of the other CEs deployed in
different clusters for various functions, including querying cluster
data, forwarding PRs, submitting deployment information. We
enable this by using Istio DR and VS to route based on the header
value of each request. We introduce a header called ‘‘cluster’’,
which defines the destination cluster to route the requests. To
achieve proper routing, each pod of CE is labelled with its cluster
name, and the DR creates subsets based on the cluster name.
Following this implementation, the VS routes by matching the
header value to the subset label.

• PR submission to a particular cluster: The above implementation
enables not only inter-CE routing but enables ingress traffic to the
CE (i.e., submitting PRs) to be routed to a specific CE based on
the header value.

• Configure each CE separately during deployment: To improve
the efficiency of configuring the CEs and to enable each CE to
be configured independently, we use a Kubernetes CongfigMap
to define the CE configurations. Due to its Kuenernetes-native
nature, the Quarkus application is configured to retrieve the
values for application.properties from the ConfigMap.

• Ensure access to underlying Kubernetes and Istio deployments: CE
needs to access Kubernetes API for various actions (i.e., retrieve
11
node data, retrieve resource metrics, retrieve pod data, deploy
Kubernetes and Istio resources). To this end, the proper level
of permission should be granted to the CE. A dedicated service
account is created and attached to a ClusterRoleBinding and a
ClusterRole to grant the required access across the cluster.

4.4. Deployment of observability, monitoring and logging tools

For the current implementation, we integrate Prometheus and Kiali
to verify the feature supported by the CE. Kiali uses the Prometheus
monitoring tool to create topology graphs, calculate health and show
metrics. Istio add-on preconfigures it to visualise multi-cluster service
mesh, including different views such as graphs (depicting application,
services, microservice versions, etc.), traffic flows, metric details, and
Istio configurations (YAML files related to each deployed Istio re-
source). Within the distributed architecture, Prometheus and Kiali com-
ponents are deployed per cluster, and the Kiali dashboard is exposed
through the Istio ingress gateway to access it remotely.

For log aggregation and visualisation we use Loki and Grafana. Loki
is configured to use a object bucket from MinIO object store. As the
MinIO deployment and request routing is already handled (Section 4.1),
logs can be directed either to a central Cloud or stored within the own
cluster depending on the resource availability.

5. APIs of MicroFog-CE

In this section, we highlight the three main APIs provided by
MicroFog-CE and also explain the API implementation required to
integrate external algorithms into the CE.

• API 1 (see Fig. 8): API 1 is designed for receiving PRs through
POST requests, where the request is routed to the cluster defined
in the header. The request contains data related to the PR in JSON
format, which will be mapped into a Java-based domain object
by using the Jackson framework upon receipt. ‘‘applicationId’’,



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 5. MicroFog: Domain diagram for control engine.
which is used to identify the application to be deployed (matched
with the metadata available in the Redis Meta Data Store), and
the ‘‘entryClusters’’, which indicates the traffic entry points to
the application are required fields for the request data whereas
other fields are optional. The rest of the fields are optional and
can be filled if relevant. ‘‘placedMicroservices’’ indicate already
placed microservices and their status. Thus this is mostly used
for forwarding requests and can also be used for initial PR sub-
mission if some of the application microservices are excluded for
placement within Fog or Cloud (i.e., already placed within IoT de-
vices or client devices). ‘‘compositionOnlyPlacements’’ keep track of
intermediate clusters that needs to host service level resources to
enable compositing of microservices across non-adjacent clusters.
Boolean for ‘‘loadBalancingCompleted’’ indicates if load balancing-
related deployment information for the microservice has already
been transmitted to relevant clusters, whereas ‘‘subsetWeights’’
indicate relative resource-allocation among devices to be used for
executing load balancing policy. Due to complex dependencies
among microservices, the QoS parameters can be defined at multi-
ple granularity levels: per composite service, among microservices
and per application (Pallewatta et al., 2022a). ‘‘qosParameters’’
field allows detailed parameter definitions adhering to this.

• API 2 (see Fig. 9): API 2 is used in centralised placement mode
for querying cluster data from each cluster by defining the cluster
12
name in the header to ensure routing. The response returns two
main types of data: (1) an array containing resource availability
of each node in the cluster defining total resources, resource usage
at the time of query and allocated resources (i.e., memory in
bytes and CPU in the number of cores/vCPUs), (2) data related to
topology containing the names of adjacent Fog and Cloud clusters.

• API 3 (see Fig. 10): API 3 is for transmitting deployment infor-
mation to each cluster specified by the header field. For cen-
tralised mode, this includes both microservice deployment and
load balancing related Istio resource deployment, whereas, in
distributed mode, it is limited to load balancing related resources.
This API also accepts some additional information, such as the
Boolean indication if the cluster is the entry cluster for the
application so that the Istio Gateway and VS resources can be
deployed accordingly to enable ingress traffic to reach the ap-
plication. The request also contains a file that includes a list
of microservices (additionalMForSLevel), where their service level
resources (i.e., Kubernetes Service, Istio VS and DR) need to
be deployed within the cluster to maintain seamless connectiv-
ity among microservices deployed within clusters that are not
adjacent.



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 6. MinIO - YAML File Store - Deployment.
Fig. 7. Distributed control engine deployment.
Due to the use of Jackson library for conversion between JSON data
and JAVA domain objects, the data sent to/from APIs can be modified
easily by updating the relevant domain objects accordingly.

6. MicroFog - Evaluation and validation

In this section, we validate the main features and functions sup-
ported by MicroFog using multiple use cases.
13
6.1. Experimental setup

6.1.1. Infrastructure and MicroFog setup
To evaluate the features supported by MicroFog, we create a pro-

totype of a federated fog–cloud environment consisting of three Fog
clusters (fog1, fog2 and fog3) and one Cloud cluster (cloud1). Each
cluster belongs to a separate network and communicates with each



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 8. API 1 - For submitting PRs.

Fig. 9. API 2 - For querying cluster information.
14
Fig. 10. API 3 - For submitting placement output for deployment.

other through load balancers. For the prototype, we use MetalLB5 as the
load balancer that exposes each cluster to the outside. Each cluster is a
separate Kubernetes cluster, and the communication among microser-
vices running across different clusters is maintained by implementing
an Istio service mesh across the clusters in multi-primary mode. Table 2
summarises the details of each cluster.

One of the main advantages of MicroFog is its compatibility with
cloud-native technologies, which enables quick prototyping of feder-
ated fog–cloud architectures for placement algorithm development and
evaluation to overcome the limitations due to the lack of publicly
available Fog resources. To demonstrate this, we create the fog1, fog2
and fog3 clusters using virtualised resources available in the University
of Melbourne’s Queensberry Hall data centre, which is at the edge
of the network and create cloud1 using AWS EC2 instances from ap-
southeast-2 accessed through the internet. To replicate the behaviour of
Fog clusters where Fog nodes are connected to each other through high
bandwidth LAN links, we implement fog1, fog2 clusters as KinD Ku-
bernetes (containerised k8s) clusters and fog3 as a k3d (containerised
k3s) cluster belonging to separate sub-nets within the data centre. Their
communication to the Cloud cluster occurs over the WAN network.

6.1.2. Workload creation
Due to the lack of diverse microservices-based IoT application

benchmarks, we implement a tool to generate microservices-based
mock applications6 that can capture different characteristics of MSA
and generate heterogeneous applications for placement policy evalu-
ation purposes. The tool provides a base microservice as a template
that can be configured (using a Kubernetes ConfigMap) to create
microservices that have multiple interaction patterns among them

5 https://metallb.universe.tf/.
6 https://github.com/Cloudslab/MicroFog/tree/main/Workload_Generator.

https://metallb.universe.tf/
https://github.com/Cloudslab/MicroFog/tree/main/Workload_Generator


The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Table 2
Federated fog–cloud infrastructure setup.

Cluster Resources

details CPU (VCPUs) Memory (GB)

Cluster - fog 1 :
node1 (control-node) 3 6
node2 (worker 1) 4 9
node3 (worker 2) 5 16
node4 (worker 3) 3 8

Cluster - fog 2 :
node1 (control-node) 3 6
node2 (worker 1) 3 9
node3 (worker 2) 2 6
node4 (worker 3) 4 12
node5 (worker 4) 4 8

Cluster - fog 3 :
node1 (server) 3 6
node2 (agent 0) 2 4
node3 (agent 1) 2 4

Cluster - cloud 1 :
node1 (control-node) 8 14
node2 (worker) 8 14

(i.e., chained, aggregate, or microservice candidate patterns) to create
microservices-based applications having composite services that the
users can access. Furthermore, the microservices created using the
template can be configured to have different processing times and inter-
microservice message sizes to fabricate the behaviour of heterogeneous
applications. Using this tool, we create multiple microservices-based
applications containing chained and aggregator interaction patterns to
evaluate and verify different functionalities supported by the MicroFog
framework.

6.1.3. Placement algorithm
To highlight the main features supported by MicroFog, we adapt and

implement different variations of the placement algorithm proposed
in Pallewatta et al. (2019). The algorithm in Pallewatta et al. (2019)
aims to place the latency-critical IoT application services as close as
possible to the user such that the resource requirements of the mi-
croservices are met. To this end, the placement policy starts placement
from the traffic entry Fog clusters, moves towards adjacent Fog clusters
and finally considers Cloud if the Fog resources are insufficient. We
extend the policy in Pallewatta et al. (2019) to incorporate throughput
awareness where the throughput of the composite services can be
provided during PR submission, and the placement algorithm calculates
the number of microservice instances and resources requirement to
support the throughput. We use the calculation provided in Pallewatta
et al. (2022b) for this. We create three variations of this approach to
evaluate and validate multiple configurations and features of MicroFog
as follows:

1. Version 1 (V1) - Vertically Scaled Distributed Placement: The
placement algorithm retrieves already placed microservices from
the PR and calculates the next microservice to place based on the
DAG representation of the application. Afterwards, the algorithm
tries to place the microservice within the cluster in a resource-
aware manner. In this approach, since vertical scalability is
considered, a single instance is placed for each microservice so
that their resource allocation suffices the throughput require-
ment. If the cluster does not have enough resources to complete
the application placement, the PR is updated and forwarded to
the next cluster to place the rest of the microservices.

2. Version 2 (V2) - Horizontally Scaled Distributed Placement: This
follows a similar approach to V1 but supports the horizontal scal-
15

ability of the microservices. Thus, instead of a single instance,
multiple instances of each microservice are placed to support the
throughput requirement.

3. Version 3 (V3) - Centralised Placement: In this version, the
placement algorithm maintains a view of all available clusters.
Once the request is received, the algorithm selects one of the
entry clusters defined in the PR. Next, the algorithm traverses
the DAG and places microservices starting from the selected
Fog cluster, then consider adjacent clusters if no resources are
available and finally considers Cloud for placement.
As discussed above, V1 and V2 algorithms are designed specifi-
cally to support distributed operation mode of the MicroFog-CE
whereas V3 is designed for centralised operation mode and
cannot carry out placement in distributed mode. To operate
in distributed mode V1 and V2 algorithms are designed with
additional functionalities such as processing partially placed PRs
and forwarding partially completed PRs to adjacent clusters for
completion.

6.2. Use cases and results

6.2.1. Analysing flexibility and scalability of MicroFog architecture
Flexibility and scalability of the MicroFog architecture is denoted by

its ability to operate within distributed multi-fog multi-cloud environ-
ments. We explore distributed deployment architecture of the MicroFog
framework under different configurations to demonstrate this.

• Distributed Data management and access :
In this section, we analyse and validate the deployment archi-
tectures proposed in this paper for accessing MinIo Yaml File
Store and Redis Meta Data Store. Our proposed deployment ar-
chitectures aim to ensure lower latency and high availability
of the data stores to ensure reliable placement and deployment
of applications. To evaluate this, we consider three data access
scenarios. Relative data retrieval latency is measured for each
scenario as shown in Fig. 11(a) and (b) for MinIO YAML Store
and Redis Meta Data Store, respectively. We submit placement
requests to the CE placed in fog1 and observer behaviour under
distributed placement mode. In Scenario 1, both data stores are
deployed within all 3 clusters following the proposed architecture
in Fig. 6. Scenario 2 considers the unavailability of fog1 data
stores, whereas Scenario 3 considers the unavailability of data
stores in both fog1 and fog2.
Results demonstrate that the deployment architecture manages
request routing to data stores as intended. The failover policy
is configured to prioritise the closest data store in case of data
store failures. Accordingly, if all data stores are available, the CE
deployed within cluster fog1 accesses the data stored deployed
within the same Fog cluster, thus resulting in the lowest data
retrieval latency. If the data stores within the cluster are un-
available, the routing policy prioritises the closest adjacent Fog
cluster over the Cloud cluster and only accesses the Cloud cluster
in case the data stores in both Fog clusters are unavailable. This
behaviour is depicted by the obtained latency values, which show
a slight increase in latency due to failover triggered among Fog
clusters (Scenario 2 - FO to Fog) and a relatively larger increase
with failover from Fog to Cloud (Scenario 3 - FO to Cloud). Thus,
the proposed deployment architecture is robust to ensure data
access while aiming to improve performance. Furthermore, in the
case of resource-constrained Fog clusters, it would be more feasi-
ble to host the data stores in adjacent resource-rich Fog clusters
or Cloud clusters at the cost of data access performance. Our
proposed architecture is flexible enough to support this behaviour
and ensure data access across federated multi-fog multi-cloud

environments.



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
• Analysis on Distributed Deployment of CE and its Operation
Modes
MicroFog-CE is designed for scalable deployment across dis-
tributed Fog and Cloud clusters. To this end, CE supports dis-
tributed operation mode of the CE, where all CEs execute place-
ment algorithms independently and the centralised mode, where
the primary CE executes the placement algorithms and sends
placement output to individual clusters. In both approaches con-
nectivity among CEs are maintained using proposed deployment
architecture (Section 4.3) to achieve successful placement of
applications.
In the distributed mode, PRs can be forwarded to adjacent Fog
or Cloud clusters, and MicroFog-CE supports the integration of
different forwarding policies, thus providing the users of the
framework with the flexibility to control distributed placement
policies. We demonstrate this by implementing two forwarding
policies, (1) FP1: if the current cluster does not have enough
resources to complete PR placement, PR is forwarded to an ad-
jacent Fog cluster, (2) FP2: if the current cluster does not have
enough resources to complete PR placement, the PR is forwarded
to a connected Cloud cluster. To route the PR to the selected
cluster, the header of the PR forwarding request is updated with
the destination cluster name. The deployment architecture pro-
posed in Fig. 7 routes to the correct destination based on that.
Fig. 12 shows three scenarios where in Scenario 1, the entry
Fog cluster for the PR contains enough resources to host the
application, thus resulting in the lowest response time out of the
three scenarios. Scenario 2 and Scenario 3 consider a situation
where the entry Fog cluster does not have enough resources to
host the entire application. Scenario 2 uses FP1, thus placing
the application across two adjacent Fog clusters, which results
in a higher response time than the prior scenario due to inter-
fog communication delay. However, FP1 performs better than
Scenario 3, which uses FP2, where the request is forwarded to
the Cloud. This incurs the highest response time among the three
scenarios. The above use case demonstrates the scalability of the
CE deployment architecture to tackled multiple Fog and Cloud
clusters and also the ability to configure distributed placement
policies by integrating forwarding policies.
MicroFog-CE also supports centralised placement algorithm exe-
cution as well. In Fig. 13, we consider three placement scenarios
and analyse time to application placement under the CE’s dis-
tributed and centralised operation mode. The three scenarios
are as follows: Scenario 1–5 PRs are submitted to the system
simultaneously such that three have fog1 as the entry cluster
and the other two have fog2 as the entry cluster; scenario 2–
10 PRs are submitted to the system simultaneously such that
each receives 5PRs; scenario 3–15 PRs in total simultaneously
submitted to fog1, fog2, fog3 such that each received 5 PRs.
In the distributed operation mode PRs are submitted to the CE
of their entry cluster, whereas in the centralised mode, all PRs
are submitted to the primary CE deployed within the Cloud.
Furthermore, the centralised mode uses V3, whereas distributed
mode uses V2 as the placement policy. Fig. 13 depicts the total
time for PR deployment, calculated from when the CE receives
the PR to application deployment completion under event-driven
placement mode. According to the results, the distributed mode
takes lesser time to complete application placement in all three
scenarios. Moreover, experiment results depict that as the PR rate
grows (i.e., PR arrival rate at each cluster increases in Scenario
2 compared to Scenario 1) or as the scale of the federated Fog
environment grows (i.e., Scenario 2 with 3 Clusters and Scenario
3 with 4 Clusters), the relative increase in completion time is
higher for centralised mode. This is because, in the centralised
mode, a single controller is processing the received PRs whereas
in decentralised mode all controllers contribute to PR processing,
16
Fig. 11. Availability analysis of data stores.

thus reducing the load on each controller deployed per cluster.
Thus, as the PR arrival rate and the scale of the environment
increase, the distributed operation mode performs better.
However, the selection between the two modes depends also on
the design of the placement algorithm (i.e., V2 is designed to
operate in distributed mode, whereas V3 supports the centralised
operation mode). Thus, MicroFog-CE is designed in an easy-
to-configure manner, so that the users can use centralised or
distributed operation modes depending on the PR arrival rate, the
design of the placement policy and the scale of the federated Fog
environments.

• Analysis on Using Different Kubernetes Distributions
Due to heterogeneous resource availability, Fog and Cloud clus-
ters can run different Kubernetes distributions (i.e., k8s for
resource-rich clusters and k3s for resource-constrained clusters).
To analyse the ability of MicroFog to operate across different
distributions. Results show that PR deployment time is lesser in
fog3 (Scenario 2), which uses k3s due to its light architecture,
whereas fog1 (Scenario 1) deployment time is higher. Further-
more, scenario 3 depicts a cross-cluster PR placement scenario,
which takes longer than the k3s cluster but less time than the k8s
deployment due to deployment across both. This demonstrates
MicroFog-CEs’ flexibility to operate across clusters with different
Kubernetes distributions.

The above results demonstrate the ability of MicroFog to handle
placement across multiple clusters (scalable architecture) and config-
urability (integration of different placement algorithms, forwarding
policies, and operation modes) of the MicroFog-CE, which enables it to
successfully execute placement policies and deploy applications across
distributed Fog and Cloud clusters (see Fig. 14).

6.2.2. Federated fog–cloud deployment and compositing (service discovery
and load balancing) of microservices

One of the main advantages of MSA is the ability to indepen-
dently scale microservices across distributed computing resources while
ensuring their dynamic composition through service mesh technolo-
gies. As MicroFog-CE supports easy integration of multiple placement
algorithms, we implement V1 and V2 to demonstrate the effect of
scalable microservice placement and validate dynamic composition and
load-balancing enabled by MicroFog.

We consider the placement of two microservices-based applica-
tions generated using workload generator: smart healthcare application
(application id: hcapp) discussed as an example IoT application in
Section 2.3.4 (see Fig. 2) consisting of two composite services, and
a DAG-based application (application id: app2) which consists of a
single composite service that can be accessed by the user (see Fig. 15).
The service consists of 4 microservices, where a2m1 and a2m2 form
a chained invocation pattern and a2m2, a2m3, and a2m4 form an
aggregator pattern such that a2m1 invokes a2m3 and a2m4, aggregates



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Fig. 12. Distributed placement algorithm execution.

Fig. 13. Analysis of CE operation modes.

Fig. 14. Analysis of Kubernetes distributions.
17
Fig. 15. Multi-cluster service discovery and load balancing scenario - app2.

their results and return it back to a2m1 for further processing. The
resultant placements generated by the two versions of the placement
algorithm for app2 and hcapp are recorded in Table 3. As V1 does not
consider horizontal scalability, resource-constrained natures of the het-
erogeneous Fog nodes force the placement to move towards the Cloud,
thus resulting in higher latency, as shown in Fig. 17. In comparison
to that, V2 utilises the ability to scale microservices horizontally. This
results in better utilisation of limited Fog resources, thus resulting in
lower latencies, as shown under scalable placement in Fig. 17. Results
demonstrate that, V2 improves latency by 44% for app2 and 54% for
hcapp.

However, dynamic service discovery and load balancing across
clusters are required to ensure connectivity among microservices and
maintain the expected level of performance. To this end, MicroFog-
CE supports the integration of new load-balancing policies. In this
experiment, we implement a Weighted Round Robin Load Balancing
policy. Deployment rules of the MicroFog-CE deploy Istio VSs and DRs
according to the output of the load balancing policy. For the above
placement, we verify this based on the Kiali workload graph, which
depicts the traffic distribution across different horizontally scaled in-
stances of the same microservice. Table 3 shows that for the hori-
zontally scaled microservice a2m2 in app2, the resource distribution
is 1:2:1 among instances deployed within fog1-worker3, fog2-worker1
and fog2-worker2, respectively. Obtained graph (see Fig. 15) shows
that traffic for a2m2 is divided with a 1:3 ratio among two clusters and
2:1 within the fog2 cluster, thus dividing a2m2 traffic with an approx-
imate ratio of 1:2:1 among its three instances. This matches with the
expected traffic distribution of Weighted Round Robin load balancing,
thus confirming the ability of the MicroFog to automate Istio resource
deployment to ensure the custom load balancing capabilities across
clusters. This is further demonstrated by Fig. 16, which reflects the
traffic distribution of hcapp. The traffic distributions of microservices
hcm1 (1:1) and hcm2 (1:2:3) adheres to their resource distribution of
hcm1 (1:1) and hcm2 (1:2:3).

Results obtained from the above use cases capture different fea-
tures supported by MicroFog and verify that MicroFog is a scalable
and easy-to-configure framework that can deploy microservices across
federated Fog computing environments and ensure dynamic microser-
vice composition across clusters. Hence, the MicroFog framework can
be successfully used and extended for integrating and evaluating the
performance of novel placement algorithms designed for the placement
of microservices-based IoT applications.



The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Table 3
Generated placement for example applications (app2 and hcapp).

Placement app2 hcapp

algorithm Microservice Deployed nodes Microservice Deployed nodes

a2m1 fog1-worker2 hcm1 fog2-worker3
Version 1 a2m2 fog2-worker4 hcm2 cloud1-worker1
(V1) a2m3 cloud1-worker1 hcm3 cloud1-control-node

a2m4 cloud1-worker1

a2m1 fog1-worker2 hcm1 fog1-worker1, fog1-worker3

Version 2 a2m2 fog1-worker3, fog2-worker1, fog2-worker2 Allocated Resource Ratio - 1:1

(V2) Allocated Resource Ratio - 1:2:1 hcm2 fog1-worker1, fog2-worker1, fog2-worker3

a2m3 fog2-worker3 Allocated Resource Ratio - 1:2:3

a2m4 fog2-worker4 hcm1 cloud1-control-node
Fig. 16. Multi-cluster service discovery and load balancing scenario - hcapp.

Fig. 17. Scalable microservice placement.

7. Conclusions and future work

In this work, we proposed a framework for the scalable placement
of microservices-based IoT Applications in federated Fog environments.
The proposed framework is scalable, extensible and configurable to ex-
ecute placement algorithms and deploy applications across Kubernetes
and Istio-enabled multi-fog multi-cloud environments. Moreover, the
framework provides the ability to integrate novel placement policies,
load balancing policies and PR forwarding policies. Thus, placement
algorithm developers and IoT application developers can use the frame-
work to deploy their applications within federated Fog environments
and monitor their performance. Furthermore, the framework provides
rapid prototyping support, and the applications developed following
MSA do not require any application-level changes to be deployed
18
using the framework. Thus, the framework abstracts the underlying
deployment-related functionalities from the users, giving them a chance
to focus more on placement policy development and IoT application
development.

Due to the use of open-source technologies, modular design and
architecture, developers can easily extend the framework to add novel
functionalities. As future work, the MicroFog framework can be further
improved with lightweight security mechanisms for data transmission
across clusters, a scalable architecture to store and use observability-
related data to improve placement algorithms, integrate dynamic mi-
croservice scaling and migration approaches based on observability
data, ability to integrate novel fault-tolerance policies for applications.

CRediT authorship contribution statement

Samodha Pallewatta: Conceptualization, Methodology, Software,
Validation, Writing – original draft, Writing – review & editing. Vas-
silis Kostakos: Conceptualization, Methodology, Supervision, Writing
– review & editing. Rajkumar Buyya: Conceptualization, Supervision,
Methodology, Visualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Link to the source code is includes in the ‘‘Software Availability’’
section of the submitted manuscript.

Acknowledgements

We thank Melbourne Research Cloud (MRC) for providing the in-
frastructure used for implementing the MicroFog prototype.

Software availability

The source code and documentation of the MicroFog framework is
accessible from: https://github.com/Cloudslab/MicroFog

References

Bellavista, P., Zanni, A., 2017. Feasibility of fog computing deployment based on
docker containerization over raspberrypi. In: Proceedings of the 18th International
Conference on Distributed Computing and Networking. pp. 1–10.

Deng, Q., Goudarzi, M., Buyya, R., 2021. Fogbus2: a lightweight and distributed
container-based framework for integration of iot-enabled systems with edge and
cloud computing. In: Proceedings of the International Workshop on Big Data in
Emergent Distributed Environments. pp. 1–8.

https://github.com/Cloudslab/MicroFog
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb2


The Journal of Systems & Software 209 (2024) 111910S. Pallewatta et al.
Deng, S., Xiang, Z., Taheri, J., Khoshkholghi, M.A., Yin, J., Zomaya, A.Y., Dustdar, S.,
2020. Optimal application deployment in resource constrained distributed edges.
IEEE Trans. Mob. Comput. 20 (5), 1907–1923.

Ericsson, 2023. Enhancing service mobility in the 5g edge cloud and be-
yond. URL https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-
edge-cloud. Accessed February, 2023 [Online].

Ermolenko, D., Kilicheva, C., Muthanna, A., Khakimov, A., 2021. Internet of things
services orchestration framework based on kubernetes and edge computing. In:
Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (ElConRus). IEEE, pp. 12–17.

Falkner, J., 2020. Key findings from IDC red hat quarkus lab validation. URL https:
//www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation.

Fang, J., Ma, A., 2020. Iot application modules placement and dynamic task processing
in edge-cloud computing. IEEE Internet Things J. 8 (16), 12771–12781.

Farhat, P., Sami, H., Mourad, A., 2020. Reinforcement R-learning model for time
scheduling of on-demand fog placement. J. Supercomput. 76, 388–410.

Farzin, P., Azizi, S., Shojafar, M., Rana, O., Singhal, M., 2022. FLEX: a platform
for scalable service placement in multi-fog and multi-cloud environments. In:
Australasian Computer Science Week 2022. pp. 106–114.

Faticanti, F., De Pellegrini, F., Siracusa, D., Santoro, D., Cretti, S., 2019. Cutting
throughput with the edge: App-aware placement in fog computing. In: Proceedings
of the 2019 6th IEEE International Conference on Cyber Security and Cloud
Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom). IEEE, pp. 196–203.

2023. Fogatlas. URL https://fogatlas.fbk.eu/. Accessed February, 2023 [Online].
Fowler, M., Lewis, J., 2014. Microservices a definition of this new architectural term.

URL https://martinfowler.com/articles/microservices.html.
Fu, K., Zhang, W., Chen, Q., Zeng, D., Peng, X., Zheng, W., Guo, M., 2021. Qos-

aware and resource efficient microservice deployment in cloud-edge continuum.
In: Proceedings of the 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, pp. 932–941.

Google, 2023. Google distributed cloud edge overview. URL https://cloud.google.com/
distributed-cloud/edge/latest/docs/overview. Accessed February, 2023 [Online].

Goudarzi, M., Palaniswami, M., Buyya, R., 2022. Scheduling IoT applications in edge
and fog computing environments: a taxonomy and future directions. ACM Comput.
Surv. 55 (7), 1–41.

Guerrero, C., Lera, I., Juiz, C., 2019a. Evaluation and efficiency comparison of
evolutionary algorithms for service placement optimization in fog architectures.
Future Gener. Comput. Syst. 97, 131–144.

Guerrero, C., Lera, I., Juiz, C., 2019b. A lightweight decentralized service placement
policy for performance optimization in fog computing. J. Ambient Intell. Humaniz.
Comput. 10 (6), 2435–2452.

Guo, F., Tang, B., Tang, M., 2022. Joint optimization of delay and cost for microservice
composition in mobile edge computing. World Wide Web 1–29.

Herrera, J.L., Galán-Jiménez, J., Bellavista, P., Foschini, L., Garcia-Alonso, J.,
Murillo, J.M., Berrocal, J., 2021. Optimal deployment of fog nodes, microservices
and SDN controllers in time-sensitive IoT scenarios. In: Proceedings of the 2021
IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6.

IBM, 2023. Edge clusters. URL https://www.ibm.com/docs/en/eam/4.2?topic=nodes-
edge-clusters. Accessed February, 2023 [Online].

Joseph, C.T., Chandrasekaran, K., 2019. Straddling the crevasse: A review of microser-
vice software architecture foundations and recent advancements. Softw. - Pract.
Exp. 49 (10), 1448–1484.

Lera, I., Guerrero, C., Juiz, C., 2018. Availability-aware service placement policy in fog
computing based on graph partitions. IEEE Internet Things J. 6 (2), 3641–3651.

Mahmud, R., Kotagiri, R., Buyya, R., 2018. Fog computing: A taxonomy, survey and
future directions. In: Internet of Everything. Springer, pp. 103–130.

Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R., 2022. Ifogsim2: An extended
ifogsim simulator for mobility, clustering, and microservice management in edge
and fog computing environments. J. Syst. Softw. 111351.

Mahmud, R., Toosi, A.N., 2021. Con-pi: A distributed container-based edge and fog
computing framework. IEEE Internet Things J. 9 (6), 4125–4138.

Marchese, A., Tomarchio, O., 2023. Sophos: A framework for application orchestration
in the cloud-to-edge continuum. In: Proceedings of 13th International Conference
on Cloud Computing and Services Science. pp. 261–268.

Neha, B., Panda, S.K., Sahu, P.K., Sahoo, K.S., Gandomi, A.H., 2022. A systematic
review on osmotic computing. ACM Trans. Internet Things 3 (2), 1–30.

Pallewatta, S., Kostakos, V., Buyya, R., 2019. Microservices-based IoT application place-
ment within heterogeneous and resource constrained fog computing environments.
In: Proceedings of the 12th IEEE/ACM International Conference on Utility and
Cloud Computing. pp. 71–81.

Pallewatta, S., Kostakos, V., Buyya, R., 2022a. Microservices-based IoT applications
scheduling in edge and fog computing: A taxonomy and future directions. arXiv
preprint arXiv:2207.05399.
19
Pallewatta, S., Kostakos, V., Buyya, R., 2022b. Qos-aware placement of microservices-
based IoT applications in fog computing environments. Future Gener. Comput.
Syst..

Paul Martin, J., Kandasamy, A., Chandrasekaran, K., 2020. CREW: Cost and reliability
aware eagle-whale optimiser for service placement in fog. Softw. - Pract. Exp. 50
(12), 2337–2360.

Ruuskanen, J., Peng, H., Å kesson, A., Larsson, L., Kihl, M., 2021. Fedapp: a research
sandbox for application orchestration in federated clouds using openstack. arXiv
preprint arXiv:2109.01480.

Samanta, A., Tang, J., 2020. Dyme: Dynamic microservice scheduling in edge
computing enabled IoT. IEEE Internet Things J. 7 (7), 6164–6174.

Santo, W.d.E., Júnior, R.d.S.M., Ribeiro, A.d.R.L., Silva, D.S., Santos, R., 2019. System-
atic mapping on orchestration of container-based applications in fog computing.
In: Proceedings of the 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, pp. 1–7.

Santoro, D., Zozin, D., Pizzolli, D., De Pellegrini, F., Cretti, S., 2017. Foggy: a platform
for workload orchestration in a fog computing environment. In: Proceedings of the
2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, pp. 231–234.

Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S., 2017. Towards qos-aware fog service
placement. In: Proceedings of the 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC). IEEE, pp. 89–96.

Tuli, S., Mahmud, R., Tuli, S., Buyya, R., 2019. Fogbus: A blockchain-based lightweight
framework for edge and fog computing. J. Syst. Softw. 154, 22–36.

Wang, Z., Goudarzi, M., Aryal, J., Buyya, R., 2022. Container orchestration in edge
and fog computing environments for real-time iot applications. In: Computational
Intelligence and Data Analytics: Proceedings of ICCIDA 2022. Springer, pp. 1–21.

Xu, F., Yin, Z., Gu, A., Zhang, F., Li, Y., 2020. A service redundancy strategy and ant
colony optimization algorithm for multiservice fog nodes. In: Proceedings of the
2020 IEEE 6th International Conference on Computer and Communications (ICCC).
IEEE, pp. 1567–1572.

Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H.C., Zhang, Q.,
Xie, W., Jue, J.P., 2019. Fogplan: A lightweight qos-aware dynamic fog service
provisioning framework. IEEE Internet Things J. 6 (3), 5080–5096.

Samodha Pallewatta completed her Ph.D. from the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems, The
University of Melbourne, Australia. Her research interests
encompass Fog/Edge Computing, Internet of Things (IoT)
and Distributed Systems. She is one of the contributors
of the iFogSim simulator, used extensively for resource
management research in Fog/Edge computing.

Dr. Vassilis Kostakos is a professor at the School of Com-
puting and Information Systems, University of Melbourne,
Melbourne, Australia. His research includes Internet of
Things, ubiquitous computing, human–computer interaction
and social computing. Dr. Kostakos is a Marie Curie Fellow,
a Fellow in the Academy of Finland Distinguished Professor
Program, and a Founding Editor of the Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He has authored over 625 publi-
cations and seven text books including ‘‘Mastering Cloud
Computing’’ published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and in-
ternational markets respectively. He is one of the highly
cited authors in computer science and software engineering
worldwide (h-index=160, g-index=334, 137500+ citations).

http://refhub.elsevier.com/S0164-1212(23)00305-9/sb3
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb3
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb3
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb3
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb3
https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-edge-cloud
https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-edge-cloud
https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-edge-cloud
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb5
https://www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation
https://www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation
https://www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb8
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb8
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb8
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb10
https://fogatlas.fbk.eu/
https://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb13
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb15
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb15
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb15
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb15
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb15
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb17
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb17
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb17
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb17
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb17
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb19
https://www.ibm.com/docs/en/eam/4.2?topic=nodes-edge-clusters
https://www.ibm.com/docs/en/eam/4.2?topic=nodes-edge-clusters
https://www.ibm.com/docs/en/eam/4.2?topic=nodes-edge-clusters
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb21
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb21
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb21
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb21
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb21
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb25
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb25
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb25
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb27
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb27
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb27
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb28
http://arxiv.org/abs/2207.05399
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb30
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb30
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb30
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb30
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb30
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb31
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb31
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb31
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb31
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb31
http://arxiv.org/abs/2109.01480
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb33
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb33
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb33
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb36
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb36
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb36
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb36
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb36
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb37
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb37
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb37
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00305-9/sb40

	MicroFog: A framework for scalable placement of microservices-based IoT applications in federated Fog environments
	Introduction
	Background and Related works
	Fog Computing
	Microservices-based Applications
	Application Deployment Related Aspects
	Containerisation using Docker
	Kubernetes as Container Orchestration Platform
	Istio as Service Mesh 
	Example Application Deployment
	Kubernetes + Istio Multi cluster support

	Placement Problem
	Existing Fog Frameworks

	MicroFog Framework
	Framework Requirements
	High-level Architecture
	Main Components and Technologies 
	Control Engine (CE)
	Data Stores
	Monitoring and Log Management 
	Rapid Prototyping Support

	PR Processing flow of MicroFog-CE

	MicroFog Deployment
	MinIO YAML File Store Deployment
	Redis Meta Data Store Deployment
	Control-Engine Deployment
	Deployment of Observability, Monitoring and Logging Tools

	APIs of MicroFog-CE
	MicroFog - Evaluation and Validation
	Experimental Setup
	Infrastructure and MicroFog setup
	Workload Creation
	Placement Algorithm

	Use cases and results
	Analysing Flexibility and Scalability of MicroFog Architecture
	Federated fog–cloud deployment and compositing (service discovery and load balancing) of microservices 


	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Software Availability
	References


