
A Multi-Commodity Flow Approach to Maximising Utility in
Linked Market-Based Grids

James Broberg
Grid Computing and Distributed Systems

(GRIDS) Laboratory
Department of Computer Science and Software

Engineering
The University of Melbourne, Australia
brobergj@csse.unimelb.edu.au

Rajkumar Buyya
Grid Computing and Distributed Systems

(GRIDS) Laboratory
Department of Computer Science and Software

Engineering
The University of Melbourne, Australia

raj@csse.unimelb.edu.au

ABSTRACT
In this paper we consider the problem of maximising utility in
linked market-driven distributed and Grid systems. In such sys-
tems, users submit jobs through brokers who can virtualise and
make available the resources of multiple service providers, achiev-
ing greater economies of scale, improving throughput and poten-
tially reducing cost. Customers compete against each other by as-
signing a utility value or function to the successful processing of
their jobs in an effort to have them prioritised in the face of con-
tested and constrained resources. Brokers and service providers
also attempt to maximise the utility they gain, choosing to process
jobs that will earn them the highest profit with respect to the re-
sources required. For this to be effective over many linked comput-
ing marketplaces highly distributed resource allocation is needed,
where each participant can operate independently using only local
information, and ideally reach a global state where all participants
are satisfied. We model such a system by adapting the classical
multi-commodity flow problem to the market-based, utility driven
distributed systems, where all participants selfishly attempt to max-
imise their own gain. We then obtain a utility-aware distributed
algorithm that generates increased utility for participants in such
systems, especially under scenarios of high contention.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems—Distributed applications

1. INTRODUCTION
We are motivated by the problem of maximising utility for par-

ticipants in linked market-driven distributed [11, 9, 15] and Grid [5]
systems. In such systems (shown in Figure 1), users have jobs that
need to be processed, for which they are willing to proportionally
compensate a provider to perform depending on the utility they re-
ceive.

Rather than dealing with service providers directly, users facil-
itate access through brokers (like the Gridbus Broker [13]) who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC ’07, November 26, 2007 Newport Beach - CA, USA
Copyright 2007 ACM 978-1-59593-944-9-07/0011 ...$5.00.

u1

uk

b1

bB

p1

p2

p3

pP

Virtual Economy
$$$$$$

Negotiation
User - Broker

Negotiation
Broker - Provider

Figure 1: A Market-Based Distributed System

can virtualise and make available the resources of multiple hetero-
geneous service providers, achieving greater economies of scale,
improving throughput and reducing complexity for users.

Despite the advantages of market-driven systems, there is con-
siderable complexity involved in ensuring each participant is satis-
fied. Clients need to negotiate with brokers to obtain the resources
they need to process their jobs. They do this by setting a fixed value
or utility function describing what they are willing to pay for one
or many resources needed to process their job. The broker must
carefully choose between bids from many clients with the aim of
maximising the revenue it receives. However, finding the optimum
selection of users to service is an NP-hard problem. The broker also
continuously negotiates with different service providers to lease a
set of resources to provide the actual computation for user’s jobs.
The broker pays the service providers for access to their resources,
whilst aiming to make a reasonable profit from the value-added re-
selling of them to users. Brokers and service providers attempt to
maximise the utility they gain, by choosing to accept and process
the jobs that will earn them the highest revenue or yield with re-
spect to the resources required.

With the emergence of numerous commercial [1, 9] and experi-
mental [2, 6] computing marketplaces that can potentially be cherry-
picked from and aggregated together, it is clear that a co-operative,
centralised solution for assigning resources is not appropriate, let
alone tractable in this environment. We cannot mandate partici-
pants in such systems to behave in a certain manner to maximise

the utility of the system as a whole. Instead, we expect each partic-
ipant to behave in a selfish, autonomous manner, where their goal
is maximising their own gain [7]. Highly distributed solutions are
therefore required in order for users, brokers and providers to max-
imise their benefit from participating in such systems. The logic of
such solutions needs to be trivially embeddable inside user agents,
broker middleware and service provider resource management sys-
tems.

We propose to model these systems as an adaptation of the classi-
cal multi-commodity flow problem [4] to the market-based, utility
driven problem. In the traditional multi-commodity flow problem,
there are several “commodities”, which have a source (origin) and a
sink (destination). They each compete for capacity over bandwidth-
constrained edges in a network (represented by a graph) when rout-
ing flow from the source to the sink. Awerbuch and Leighton de-
vised a distributed potential energy argument to move flow in a
multi-commodity flow system, allowing each node to operate in a
distributed manner whilst still performing within some small (1+ε)
factor of the global optimal solution [3]. This high-level approach
has been successfully adapted to a variety of problem domains, in-
cluding maximising lifetime routing in wireless ad-hoc and sensor
networking [12], and enabling distributed resource allocation (both
bandwidth and CPU) in stream processing systems [14]. In this
paper we explore the use of a similarly distributed approach in per-
forming resource allocation, to maximise each participants utility
in linked market-based distributed and grid systems.

2. RELATED WORK
Resource allocation and scheduling algorithms are increasingly

incorporating market inspired techniques as an alternative to tradi-
tional approaches. These market-based techniques look beyond the
typical metrics that motivate system designers which focus on max-
imising throughput, and minimising response time and slowdown.
Rather, they focus on a user’s utility, which can be represented by
the value they place on successful processing of their job.

One such market-based technique is Bellagio [2] - a distributed
resource discovery and market-based allocation system. Users iden-
tify resources of interest via a resource discovery mechanism, and
register their preference (via virtual currency) for said resources
over time and space using combinatorial auction bids. Bellagio as-
sumes that an authentication entity exists that authenticates bids,
resource capabilities (reservations) and account balances. The Bel-
lagio system uses a “second-price” style auction to reveal users true
value for goods. The system controls the distribution of wealth in
the virtual economy (e.g. when to inject currency into system and
how much), which subsequently controls the share of resources re-
ceived by participating users.

Mirage [6] is very similar system to that of Bellagio - however it
is a real-world deployed system, which revealed many users behav-
ing strategically to exploit it. Other novel features (over Bellagio)
include a proportional share profit sharing, where proceeds from
cleared auctions are distributed proportionally to idle users to ac-
cumulate ad-hoc credit, and a savings tax to address unbalanced
usage patterns, where credit regresses back to a baseline over time.
The authors found that the values that users placed on resources
varied over four orders of magnitude, validating the market-based
approach. Such differences in user valuations cannot be captured
by traditional utility oblivious scheduling and resource allocation
techniques.

There are a number of restrictions in the above systems. These
systems are isolated markets, controlled by a single entity. It is un-
clear how these allocation techniques would operate within multi-
ple linked marketplaces. The algorithms themselves are highly cen-

tralised, with authentication, auction clearing and resource reserva-
tion all handled by a central body. Clearing combinatorial auction
bids is an NP-hard problem, which is not appropriate for systems
with even a moderate amount of bids. As such, sub-optimal ap-
proximation algorithms must be used to clear these auctions.

Many utility aware scheduling and admission control algorithms
have been proposed in recent years, such FirstPrice/FirstReward [8],
and FirstProfit/FirstOpportunity [11]. However, these approaches
tend to be user centric with less consideration to the utility and
behaviour of the brokers and service providers in market-driven
distributed systems. In these approaches, processing delays incurs
an immediate cost to provider. Tasks are also assumed to be pre-
emptible and resumed with negligible or no cost. However, this is
not valid for many data and memory intensive applications. These
algorithms generally model only one broker and market at a time,
where optimal schedules and admission control are computed cen-
trally rather than in a distributed manner.

In the last 3 years there has been an increased research focus on
the notion of applying Austrian economist F.A. von Hayek’s notion
of a ‘Catallaxy’ and applying it to market-driven grid computing.
The idea of ‘Catallactics’ considers markets where prices evolve
from the actions of economically self-interested participants. Each
participant tries to maximise their own gain whilst having limited
information available to them.

Eymann et al. have investigated the issues and requirements
of implementing an electronic grid market based on the concept
of ‘Catallaxy’ [7], a ‘free market’ economic self-organisation ap-
proach. However, they found that solving this problem is a com-
plex multi-attribute allocation problem, found to be NP-complete
in previous work by other researchers in the field. The authors
note that in interrelated markets, the allocation of resources and
services in one market invariably influences the outcomes in the
other market. These interactions should occur without relying on
a traditional single centralised broker. Instead, participants should
be self-organising and follow their own interest, maximising their
own utility. A catallaxy approach works on the principle that there
are autonomous decentralised agents, which have constant nego-
tiation and price signalling occurring between them. Indeed, we
concur that changing conditions (availability, competition) on the
resource market should be reflected by cascading ‘pressure’ (via
price changes or other signals) that reflect the respective scarcity
and demand for a resource. Participants need to constantly read
these signals and react accordingly to maximise their own utility.

3. MARKET-BASED DISTRIBUTED COM-
PUTING MODEL

We choose to represent the market-based distributed computing
system as a graph G = (N , E), depicted in Figure 2. The set of N
nodes consists of source nodes, intermediary nodes and sink nodes.
The set of E edges represent the links over which job streams are
transferred for eventual processing at the service providers. In our
problem domain, the source nodes map to users that submits a job
stream to the system, denoted by the subset of nodes Ns. The in-
termediary nodes consist of brokers and service providers, with the
subsets denoted by Nb and Np respectively. The broker can for-
ward jobs to one or many service providers that it is connected to.
The service provider nodes process job streams received from the
brokers, and pass the resulting output to sink nodes (denoted byNt)
that act as a collection point. We note thatN = Ns∪Nb∪Np∪Nt.
Each node n ∈ N has constrained computational resources Rn.
Each pair of connected nodes (u, v) joined by edge (u, v) ∈ E has
constrained bandwidth Bu,v .

The job streams generated by each client are denoted as unique
commodities. There are K commodities, each originating from a
unique source node sk and collated at a unique sink node tk, where
k = 1, ..., K. These job streams arrive at a rate of dk per time
unit, and have a service requirement of rk per job unit. We can
model both data intensive and compute intensive workloads by sim-
ply varying the value of rk, with a high value (>> 1) representing
a compute intensive job stream and a low value (<< 1) represent-
ing a data intensive job stream.

sks1

bBb1

pPp3p2p1

tkt1

G Ns

Nb

Np

Nt

Figure 2: Graph Representation

4. STATIC PROBLEM FORMATION

4.1 Node Responsibilities and Behaviour
Each node in the system acts in a self-interested manner, and

seeks to selfishly maximise its own utility at all times subject to the
limited computational and bandwidth resources it has available to
it.

4.1.1 User Nodes
There are K user nodes in the system, with each user node sk ∈

Ns generating a unique job stream (or commodity) of type k, where
k = 1, 2, ..., K. The node sk has no predecessors in the graph
G, and we denote O(sk) as the set of all successor (downstream)
nodes of node sk. These user nodes are analogous to source nodes
in traditional multi-commodity flow systems. We denote xk

s,b as the
number of jobs submitted to downstream broker node b ∈ O(sk)
from user node sk. A user k has a private valuation vk

s that they
place on each successfully processed job unit by a broker. This is,
in effect, the true value they place on that particular job stream. A
specific broker node b charges the user a value of vk

b per job unit to
co-ordinate the actual processing. A user will attempt to maximise
their own utility Uk

s , where Uk
s = vk

s − vk
b , by directing jobs to

brokers that minimise the cost where possible.

4.1.2 Broker Nodes
There are B broker nodes in the system, with each broker node

b (where b = 1, 2, ..., B) receiving job streams from its connected

predecessor (upstream) customers, denoted by I(b). The broker
node b directs these jobs to the set of successor (downstream) ser-
vice providers for which it has a relationship with (represented by a
connected edge in the graph G), and denoted as O(b). The number
of jobs processed at broker b for submission to downstream pro-
cessing node p for user k is denoted as xk

b,p, where p ∈ O(b).
These nodes perform minimal processing on the incoming job st-
ream, rather they simply direct them to provider nodes. As such, the
processing requirements are modelled as rb,p = 1 for all jobs pass-
ing through, representing the nominal effort required to direct job
streams to downstream providers. A broker b has finite bandwidth
on the edges connecting to upstream nodes I(b) and downstream
nodes O(b). Each successfully provisioned job unit for user node
sk generates a revenue of vk

b for the broker, paid by the user node.
As the broker must pay the service provider p ∈ Np an amount
of vk

p per job unit to perform the actual processing, the utility (i.e.
profit) generated for the broker is Uk

b = vk
b − vk

p .

4.1.3 Service Provider Nodes
There are P service provider nodes, where each service provider

node p (where p = 1, 2, ..., P) processes jobs assigned to them
from predecessor (upstream) broker nodes, denoted as I(p). The
number of jobs processed at service provider p for collection at
downstream collection node c for user k is denoted as xk

p,c, where
c ∈ O(p). Each job unit for user k at node p requires rk

p,c resources
to process for downstream collection node c ∈ O(p). Processing
on service provider nodes is constrained, with each node p having
Rp processing resources available. Each successfully processed
job unit for user k generates a value of vk

p for the service provider,
which is paid by the broker. Therefore, the utility generated by the
broker is Uk

p = vk
p .

4.1.4 Collection Nodes
The collection node tk collects flow for each commodity k ∈ K

from the upstream service providers I(tk). As no actual processing
occurs here, we model this as a node with unlimited processing
resources, where Rc = ∞. These collection nodes are analogous
to sink nodes in traditional multi-commodity flow systems.

4.1.5 Bandwidth Nodes
To model bandwidth costs, we utilise an extended graph repre-

sentation as described in prior work on distributed multi-commodity
flow algorithms adapted to stream processing systems [14]. That
is, for any two connected nodes u and v, a bandwidth node nu,v

is introduced to model the transfer of flows. Given (u, v) ∈ E
with bandwidth Bu,v , in the new expanded graph G′ = (N ′, E ′)
this bandwidth constrained edge is now represented by directed
edges (u, nu,v) and (nu,v, v), and bandwidth node nu,v . Band-
width node nu,v has constrained resources Ru,v = Bu,v . This
technique unifies the problem at each node from two resource con-
straints (compute and bandwidth) to a single generic resource con-
straint problem. Each node, be it a user, broker, provider, collection
or bandwidth node, processes jobs that maximise its utility subject
to its specific role-based resource constraint. We will refer to the
expanded graph G′ = (N ′, E ′) exclusively from now on.

4.2 Linear Program Formation
We now formulate the problem as a static linear program. Using

the expanded graph representation described previously, we denote
I′(n) as the set of all predecessor nodes and O′(n) as the set of all
successor nodes of a given node n ∈ G′. We denote xk

n,n′ as the
amount of job units from user k to be processed at node n ∈ N ′,
generating output to downstream node n′ ∈ O′(n).

A feasible solution must satisfy these conditions:

xk
n,n′ ≥ 0, ∀k; n, n′ ∈ N ′ (1)X

k

X
n′∈O′(n)

xk
n,n′rk

n,n′ ≤ Rn, ∀n ∈ N ′ (2)X
n′∈O′(n)

xk
n,n′ −

X
n′′∈I′(n)

xk
n′′,n =

8<: fk, if n = sk

−fk, if n = tk

0, otherwise
∀k; n ∈ N ′.(3)

Condition (1) specifies that the flow of job units must be non-
negative. Given that the graph is directed, all flows must move
downstream. Condition (2) ensures that the resource constraints at
each node (regardless of it’s role) are respected. Condition (3) en-
sures that flow balance occurs, such that jobs enter each node at the
same rate they leave for each user.

4.2.1 Maximum Feasibility Problem
As a baseline, we first consider the basic feasibility problem,

where each user k has a demand dk, k = 1, 2, ..., K.

fk = δdk, ∀k; and (1)-(3).

In this scenario, we simply want to find the maximum fraction
δ of each users demand dk to be simultaneously satisfied without
consideration of the utility gained by any participant in the system.

4.2.2 Maximum Utility Feasibility Problem
In the maximum utility feasible flow problem, we can find the al-

locations that will maximise the overall utility in the system, whilst
still satisfying all feasible demands.

max

KX
k=1

X
n′∈O′(n)

Uk
n,n′xk

n,n′ s.t. fk = δdk, ∀k; and (1)-(3).

where δdk is the maximum feasible input rate of job units by user
k found in the feasibility problem. This represents the maximum
utility that could be generated by a system if all nodes co-operated,
but is unlikely to be achieved given all nodes act in a self-interested
manner, maximising their own individual rather than global utility.

5. DISTRIBUTED PROBLEM FORMATION
We assign both output and input queues for each user k’s jobs at

the tail and head of each edge e ∈ E ′. We denote the correspond-
ing queue heights as qk(et) and qk(eh) respectively. These queue
heights are normalised by demand, where q̄k(eh) = qk(eh)/dk

and q̄k(et) = qk(et)/dk are the relative heights. This avoids un-
fairness in the system that could be caused by one user flooding the
system with jobs and dominating the resources.

We define a potential function Φ(q̄) associated with each queue,
where the potential function is twice-differentiable and convex. For
analytical convenience, in this paper we utilise the potential func-
tion Φ(y) = y2

2
. More aggressive potential functions could be

used such as the exponential function, that could allow faster con-
vergence, but they complicate the problem formation. We define
Φk(e) = Φ(q̄k(et)) + Φ(q̄k(eh)), for any edge e and commod-
ity k. The potential of a given node n ∈ N ′ is defined as Φ(n) =PK

k=1

P
n′∈O′(n) Φk(en,n′), where en,n′ denotes edge (n, n′).

The potential of the entire system, Φ, is simply Φ =
P

n∈N ′ Φ(n).

The algorithm will then decide locally the optimal xk
n,n′ values,

representing the amount of job units from user k to move across
edge (n, n′), with the aim to minimise the potential of the entire
system and maximise the utility-weighted flow processed.

0 - s_2

6, R=25

67

8, R=73

7

9, R=94

38

11, R=38

36

12, R=57

92

14, R=67

71 95

13, R=32

6882 84

1 - s_4

7, R=76

70

88 72 34

2 - s_3

2432

5, R=17

17

10, R=67

29

3 - s_0

25 7329

4 - s_1

62 29814

15 - t_0

54

16 - t_3

63

17 - t_4

27

18 - t_1

12

19 - t_2

97 72 7955 61 48 24 3632 4 849 288 19 90 56 1721 15 97

Figure 3: An example scenario with 5 users, 5 brokers and 5
service providers

The algorithm is continuously executed in a sequence of rounds
performed at each node simultaneously and independently. In each
round, four phases are performed as described in the next section.

5.1 Distributed Solution

1. For each commodity k, inject dk job units at its corresponding
source sk.

2. At every node n ∈ N ′, balance the queues for each commodity
(∀k) to equal heights.

3. For every node n ∈ N ′, push xk
n,n′ ≥ 0 amount of commod-

ity k job units across edge (n, n′) for all n′ ∈ O′(n), (let
en,n′ denote the edge (n, n′)), so that

min
X

k

X
n′∈O′(n)

Uk
n,n′

h
Φ(q̄k(et

n,n′)− x̄k
n,n′)

+Φ(q̄k(eh
n,n′) + x̄k

n,n′)
i

(4)

s.t.
X

k

X
n′∈O′(n)

dk · x̄k
n,n′ · rk

n,n′ ≤ Rn, (5)

where x̄k
n,n′ = xk

n,n′/dk. If n′ = tk, we set the second term
in (4) to be zero as the potential at sink node tk is always
zero.

4. Absorb job units that have reached its collection point.

5.2 Per-node Utility Optimal Resource Allo-
cation

The most important stage of the distributed solution is Phase
3, where the local optimisation problem defined by (4) and (5) is
solved at each node n. As such, every node n will allocate its re-
sources so as to minimise the utility weighted potential at node n
subject to the resource constraint Rn. Using Lagrangian multipli-
ers, the optimal solution must satisfy

x̄k
n,n′ = max{

∆k(en,n′)−
sdk·rk

n,n′

Uk
n,n′

2
, 0},

where ∆k(en,n′) = q̄k(et
n,n′) − q̄k(eh

n,n′), and s(≥ 0) is the
Lagrangian multiplier. The optimal value of s is the minimum s ≥
0 such that (5) is satisfied. That is,

X
k

X
n′∈O′(n)

dkrk
n,n′ max{

∆k(en,n′)−
sdk·rk

n,n′

Uk
n,n′

2
, 0} ≤ Rn.

The solution can then be obtained by modifying the reverse ‘water-
filling’ method described in previous work [14] to consider the lo-
cally optimal resource allocation that maximises a participants util-

ity, where hk
n,n′ =

Uk
n,n′∆

k(en,n′)

dkrk
n,n′

, and ak
n,n′ =

(dkrk
n,n′)

2

2Uk
n,n′

.

6. RESULTS
In this section we present a subset of the results we have ob-

served from our network flow simulator, implementing the algo-
rithm described in Section 5. Our simulator allows us to generate
arbitrary random graphs with K users, B brokers and P service
providers. We set the probability of connectivity between users and
brokers, and brokers and service providers to equal log n

n
. Demands

dk and resource requirements rk are uniformly generated, and user
valuations are generated from a highly variable Bounded Pareto
distribution, BP (k, p, α), to reflect the variation of valuations that
participants place on jobs, that is not necessarily correlated with the
service and bandwidth requirements [6]. We allow job valuations
to vary over three orders of magnitude, from 1 to 1000, with an α
parameter of 1 to reflect this. The available resources at each node
n and the bandwidth on the connecting edges (u, v), denoted as Rn

and Bu,v respectively, are drawn from a uniform distribution.
For each scenario generated, the Feasibility Problem described in

Section 4.2.1 is solved using a Linear Program solver [10], obtain-
ing the maximum concurrent demands (δdk) that can be feasibly
met by the system. The distributed solution described in Section 5.1
is then executed, for both the Feasibility Problem and the Maxi-
mum Utility Feasibility problem. In the case of the former, for the
purpose of calculating flows at each node (described in Phase 3. of
the distributed algorithm), all utilities (∀

PK
k=1

P
n′∈O′(n) Uk

n,n′)
are equal to 1. For the latter, the actual utilities are utilised to cal-
culate flows in a utility-effective manner. In both cases, utility is
generated at the same rates for flows moving over the same edge,
for a given user’s job stream. In both algorithms, all feasible de-
mands dk are met for each user k.

In Figure 3 we show one example scenario with 5 users, 5 bro-
kers and 5 service providers. Figures 4 and 5 show the execution of
the standard feasible algorithm and the utility-aware feasible algo-
rithm respectively. In both cases we can see that for each demand
dk (represented by the horizontal lines), a feasible flow fk = dk

has been found. However, despite both algorithms finding a feasi-
ble flow, the utility aware algorithm generated approximately 20%
more utility overall, highlighted in Figure 6.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10000 20000 30000 40000 50000 60000 70000 80000

Cu
rre

nt
 A

ve
ra

ge
 F

lo
w

Rounds

d0f0d1f1d2f2d3f3d4f4

Figure 4: Feasible (fair) resource allocation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20000 40000 60000 80000 100000 120000 140000 160000

C
u

rr
e

n
t

A
v
e

ra
g

e
 F

lo
w

Rounds

d0
f0

d1
f1

d2
f2

d3
f3

d4
f4

Figure 5: Utility-driven Feasible resource allocation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20000 40000 60000 80000 100000

Ut
ilit

y
G

en
er

at
ed

Rounds

U-util
U-fair

Figure 6: Comparison of utility generated in the system

Table 1: Utility increase
Users Brokers Providers Utility Gained Global Utility

5 5 5 16.2% 62%
10 5 5 18.7% 60%
20 5 5 42.5% 61%

We now consider the effect that increased competition for re-
sources has on the utility generated in the type of market-based
systems we are concerned with in this paper. Whilst keeping the
number of brokers and service providers fixed (at 5 each), we in-
crease the number of users competing for resources. We explore
the scenarios where 5, 10 and 20 users are competing for resources,
and examine the increase in utility gained by our utility-aware al-
gorithm compared to a standard, ‘fair’ flow balancing algorithm, as
well as the percentage of global utility (defined in 4.2.2) achieved
by our selfish participants. In each instance, we generate 100 ran-
dom problem scenarios, and look at the average utility gain for each
scenario. In both scenarios, all feasible demands dk must be met in
all problem scenarios generated, and the algorithms execute until
this is the case. Despite increases in competition, in all instances
there exists feasible paths to satisfy demands.

A summary of these results is presented in Table 1. In the case
of 5 user nodes, there is only minimal contention at the brokers and
service providers, allowing user’s job streams to find paths through
the system relatively easily. Due to the nature of flow balancing
algorithms, the utilities only have a minor impact in the absence
of significant competition and contention at broker and provider
nodes. Despite this, a small overall improvement of 16.2% is ob-
served. As the number of user nodes increases to 10 there is a
further increase in the utility generated by the utility-aware algo-
rithm over the standard feasible (fair) flow algorithm. We double
the number of nodes again, to consider a scenario of 20 user nodes.
In this case we observe a more significant increase in utility, as
the utility functions of users, brokers and service providers are in-
creasingly utilised to allocate resources in the face of constrained
resources. As such, all participants will favour job streams that
increase their own utility, forcing low utility streams to take an al-
ternate path through the system. An overall utility gain of 42.5% is
observed in this scenario. In all scenarios, the percentage of global
utility satisfied remains constant at around 60%.

7. CONCLUSION & FUTURE WORK
In this paper we considered the problem of maximising utility in

linked market-driven distributed and Grid systems. We modelled
this system as an adaptation of the classical multi-commodity flow
problem to the market-based, utility driven distributed systems. For
systems under high contention, we observed significant increases
in utility gained by utility-aware resource allocation, where finite
resources are allocated with consideration to the utility generated
for processing specific job streams. However, we note that the
percentage of global (optimal) utility could be improved signifi-
cantly. Under low contention, the utility functions have a lower
impact on resource allocation decisions, with the resulting utility
generated tending toward that of a standard feasible flow balance
algorithms. Examining the appropriateness of adapting min-cost
multi-commodity flow algorithms (i.e. max-cost, ‘max-utility’) is
a priority, to ensure maximum utility paths are utilised even in the
absence of any competition. We also intend to examine the effect
of a managed virtual economy on the behaviour of utility-aware
flow algorithms, with users only having a fixed pool of currency to
spend in order to increase the utility associated with their job, with
currency allocated to users at fixed or variable intervals.

8. ACKNOWLEDGEMENTS
This work is supported under the Australian DEST funded Inter-

national Science Linkage project, “Utility Grid”.

9. REFERENCES
[1] Amazon.com, Inc. Amazon Elastic Compute Cloud (Amazon

EC2), 2007. Available at http://aws.amazon.com/ec2.
[2] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource

allocation in federated distributed computing infrastructures.
In Proc. of the 1st Workshop on Operating System and
Architectural Support for the Ondemand IT InfraStructure,
October 2004.

[3] B. Awerbuch and T. Leighton. A simple local-control
approximation algorithm for multicommodity flow. In Proc.
of 34th Annual Symposium on Foundations of Computer
Science, pages 459–468, November 1993.

[4] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear
programming and network flows (3rd ed.). John Wiley &
Sons, Inc., New York, NY, USA, 2005.

[5] R. Buyya, D. Abramson, and S. Venugopal. The grid
economy. Proc. of the IEEE, 93(3):698– 714, March 2005.

[6] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes,
J. Shneidman, A. Snoeren, and A. Vahdat. Mirage: A
microeconomic resource allocation system for sensornet
testbeds. In EMNETS 2005: Proc. of the 2nd IEEE Workshop
on Embedded Networked Sensors, May 2005.

[7] T. Eymann et al. Catallaxy-based grid markets. Multiagent
Grid Systems, 1(4):297–307, 2005.

[8] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing risk and
reward in a market-based task service. In HPDC ’04: Proc.
of the Int. Symp. on High Performance Distributed
Computing, pages 160–169, Washington, DC, USA, 2004.

[9] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A.
Huberman. Tycoon: An implementation of a distributed,
market-based resource allocation system. Multiagent Grid
Systems, 1(3):169–182, 2005.

[10] R. Lougee-Heimer. The common optimization interface for
operations research. IBM Journal of Research and
Development, 47(1):57–66, January 2003.

[11] F. I. Popovici and J. Wilkes. Profitable services in an
uncertain world. In SC ’05: Proc. of the 2005 ACM/IEEE
conf. on Supercomputing, page 36, Washington, DC, USA,
2005. IEEE Computer Society.

[12] A. Sankar and Z. Liu. Maximum lifetime routing in wireless
ad-hoc networks. In INFOCOM 2004: Proc. of Twenty-third
Annual Joint conf. of the IEEE Computer and
Communications Societies, volume 2, pages 1089–1097,
March 2004.

[13] S. Venugopal, R. Buyya, and L. Winton. A grid service
broker for scheduling distributed data-oriented applications
on global grids. In MGC ’04: Proc. of the 2nd workshop on
Middleware for grid computing, pages 75–80, New York,
NY, USA, 2004. ACM Press.

[14] C. H. Xia, J. A. Broberg, Z. Liu, and L. Zhang. Distributed
resource allocation in stream processing systems. In DISC
2006: Proc. of 20th Int. Symposium on Distributed
Computing (LNCS 4167), pages 489–504, 2006.

[15] C. S. Yeo and R. Buyya. A taxonomy of market-based
resource management systems for utility-driven cluster
computing. Software Practice and Experience,
36(13):1381–1419, 2006.

