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Abstract. Provisioning extra resources is necessary when the local re-
sources are not sufficient to meet the user requirements. Commercial
Cloud providers offer the extra resources to users in an on demand man-
ner and in exchange of a fee. Therefore, scheduling policies are required
that consider resources’ prices as well as user’s available budget and dead-
line. Such scheduling policies are known as market-oriented scheduling
policies. However, existing market-oriented scheduling policies cannot be
applied for Cloud providers because of the difference in the way Cloud
providers charge users. In this work, we propose two market-oriented
scheduling policies that aim at satisfying the application deadline by ex-
tending the computational capacity of local resources via hiring resource
from Cloud providers. The policies do not have any prior knowledge
about the application execution time. The proposed policies are imple-
mented in Gridbus broker as a user-level broker. Results of the experi-
ments achieved in real environments prove the usefulness of the proposed
policies.

1 Introduction

In High Performance Computing (HPC), providing adequate resources for user
applications is crucial. For instance, a computing center that a user has ac-
cess to cannot handle the user applications with short deadlines due to limited
computing infrastructure in the center [2]. Therefore, to get the application
completed by the deadline, users usually try to get access to several computing
centers (resources). However, managing several resources, potentially with differ-
ent architectures, is difficult for users. Another difficulty is optimally scheduling
applications in such environment.

User-level brokers work on behalf of users and provide access to diverse re-
sources with different interfaces. Additionally, existing brokers such as Gridway
and Gridbus broker [10] optimally schedule user application on the available
resources. User-level brokers consider user constraints (such as deadline and
budget) and user preferences (such as minimizing time or cost) in their schedul-
ing [10].

Recently, commercial Cloud providers offer computational power to users
in an on-demand manner and in exchange of a fee. These Cloud providers are



also known as Infrastructure as a Service (IaaS) providers and charge users
in a pay-as-you-go fashion. For instance, in Amazon Elastic Compute Cloud
(Amazon EC2) [1], which is a popular IaaS provider, users are charged in an
hourly basis for computational resources. In this paper, we term this charging
period as “charging cycle”.

The computational power offered by IaaS providers can compensate for the
limited computational capacity of non-commercial local resources when they are
not enough to meet the user deadline. However, as mentioned earlier, getting
access to this extra computational power incurs cost for the user. In fact, there
is a trade-off between spending budget to get resources from IaaS providers and
running the application on local resources.

Therefore, the problem we are dealing with is how scheduling policies inside
the broker can benefit from resources supplied by the IaaS providers in addition
to the local resources to get the user application completed by the requested
deadline and provided budget. Furthermore, we assume that the end user does
not have any knowledge about the application execution time. The problem is
more complicated when we consider the user preference in terms of time min-
imization or cost minimization in addition to the budget and deadline limita-
tions. Such scheduling policies are broadly termed market-oriented scheduling
policies [3].

Buyya et al. [3] propose scheduling policies to address the time minimization
and cost minimization problem in the context of Grid computing. They term
their proposed policies DBC (Deadline Budget Constraint) scheduling policies
and define them as follows:

– Time Optimization: minimizing time, within time and budget constraints.
– Cost Optimization: minimizing cost, within time and budget constraints.

However, Buyya et al. do not consider the mixture of non-commercial and
commercial resources. Moreover, there are some differences in hiring resources
from IaaS providers and assumptions in mentioned DBC policies. One difference
is that in the policies proposed by Buyya et al., the user is charged when a job
is submitted to a resource. Nevertheless, IaaS providers charge users as soon
as a resource is allocated to the user regardless of being deployed by the user
or not [9]. Another difference is that current IaaS providers charge users in an
hourly basis, whereas in these policies [3] user is charged in cpu-per-second basis.
These differences raise the need to propose new DBC scheduling policies to meet
the user constrains by hiring resources from IaaS providers.

In this work, we propose two scheduling policies (namely Cost Optimiza-
tion and Time Optimization) to increase the computational power of the local
resources and complete the application by the given deadline and budget.

In summary, our work makes the following contributions:

– We propose the Cost Optimization and the Time Optimization scheduling
policies that increase the computational capacity of the local resources by
hiring resources from IaaS providers to meet the application deadline within
a budget.



– We extend Gridbus broker (as a user-level broker) to hire resources from
Amazon EC2 (as an IaaS provider).

– We evaluate the proposed policies in a real environment by considering dif-
ferent performance metrics.

The rest of this paper is organized as follows. In Section 2, related works in
the area are introduced. Proposed scheduling policies are described in Section 3.
Details of implementation are described in Section 4. Then, in Section 5, we
describe the experiments for evaluating the efficiency of the new policies. Finally,
conclusion and future works are provided in Section 6.

2 Related Work

A number of research projects have been undertaken over the last few years on
provisioning resources based on IaaS providers. The approach taken in these re-
search projects typically consists of deploying resources offered by IaaS providers
in two levels. One approach is using resources offered by IaaS providers at re-
source provisioning level, the other approach deploys resources offered by the
IaaS provider at broker (user) level. In this section, a review of these works is
provided.

2.1 Deploying Cloud resources at resource provisioning level

The common feature of these systems is that they do not consider user constrains
such as deadline or budget in hiring resources from IaaS providers. In other
words, in these works resources offered by IaaS providers are used in order to
satisfy system level criteria such as handling peak load.

Table 1. Comparing different aspects of resource provisioning mechanisms from IaaS
providers

Proposed Policy Use Non-
Cloud Re-
sources

User con-
strains

User Trans-
parency

Scheduling
Level

Goal

OpenNebula [5] Local No Yes System-level Handling peak load

Llorenete et al. [6] Local and
grid(Globus
enabled)

No Yes System-level Provision extra resources to
handle peak load

Assunção et al. [4] Local Yes (Budget) Yes System level Handling peak load

Vazquez et al. [2] Local and
grid(Globus
enabled)

No No User level Federating several providers
from Grid and Cloud

Silva et al. [8] No Yes (Budget) No User level Run Bag-Of-Task applica-
tion on Cloud

Time and Cost Opti-
mization (this paper)

Local Yes (Budget
and Deadline)

Yes User level Minimizing completion time
and incurred cost within a
deadline and budget

OpenNebula [5] is a system that can manage several virtualization platforms,
such as Xen, inside a cluster. OpenNebula is able to hire resources from IaaS
providers, such as Amazon EC2, in an on-demand manner. In OpenNebula hiring
resources from Amazon happens when the capacity of local resources is being



saturated. Llorente et al. [6] extend OpenNebula to provision excess resources
for high performance applications in a cluster or grid to handle peak load.

Assunção et al. [4] evaluate the cost-benefit of deploying different scheduling
policies, such as conservative backfilling and aggressive backfilling for an orga-
nization to extend its computing infrastructure by allocating resources from an
IaaS provider. However, our work proposes cost and deadline aware scheduling
policies for user application.

2.2 Deploying Cloud resources at broker (user) level

Vazquez et al. [2] propose dynamic provisioning mechanism by federating grid
resources from different domains with different interfaces along with resources
from IaaS providers. The federation is achieved through GridWay.

In this solution all the resources have to support Globus Toolkit (GT). Even
in the case of resources from IaaS providers, Gridway can just awake resources
with the Globus adapter. Since this work takes advantage of resources from IaaS
providers in the user-level broker, it is similar to our work. However, GridWay
neither considers the user constraint in terms of budget nor the user preferences
in terms of time or cost minimization. In the mentioned work [2], it is stated that
investigating cost-aware scheduling policies for resources from an IaaS provider
is required and, in fact, our work addresses this requirement.

Silva et al. [8] propose a mechanism for creating optimal number of resources
on Cloud based on the trade-off between budget and speedup. This work con-
siders Bag-of-Tasks applications where the run times are not known in advance.
In fact, heuristics proposed by Silva et al. [8] focus on predicting the workload.
Nonetheless, our work focuses on providing scheduling policies to satisfy user
preferences and we do not deal with workload prediction issues.

In Table 1 different systems that provision resources from IaaS providers are
compared from different aspects. This table also reveals the differences of our
proposed policies with similar works in the area.

3 Proposed Policy

Scheduling applications is complex when a user places constraints such as exe-
cution time and computation cost. Satisfying such requirements is challenging
specifically when the local resources are limited in computational capacity and
the execution time of the application is not known in advance. In this situation,
scheduling policies need to adapt to the changing load in order to meet the dead-
line and cost constraints. Moreover, the scheduling policy should consider the
user preference in terms of time or cost minimization.

To cope with the challenge, our solution relies on supplying more resources
from IaaS providers. Therefore, we propose two scheduling policies namely, Time
Optimization and Cost Optimization. In this section, details of these policies are
described.



3.1 Time Optimization Policy

The Time Optimization policy, as mentioned before, aims at completing the
application as quickly as possible, within the available budget. Therefore, ac-
cording to the pseudo code presented in Algorithm 1, the scheduler spends the
whole available budget for hiring resources from the IaaS provider (steps 1 to 3).
Available budget is defined according to equation (1) and indicates the amount of
money the scheduler can spend per hour. However, the number of hired resources
should not be more than the number of remaining tasks.

There is a delay between the time the request is sent to the IaaS provider and
the time resources become accessible1. After getting accessible, hired resources
are added to the list of available servers (step 4) and the scheduler can dispatch
tasks to them (steps 6, 7). AddAsServer() is a thread that keeps track of the
request sent to the IaaS provider to get accessible. To attain the minimum exe-
cution time, hired resources are kept up to the end of execution. At the end of
execution, all resources from the IaaS provider are terminated (step 8).

BudgetPerHour =
TotalBudget

dDeadline− CurrenrtT imee
(1)

Algorithm 1: Time Optimization Scheduling Policy.
Input: deadline, totalBudget,resourceCost

1 budgetPerHour =totalBudget / (deadline −currentTime);
2 reqCounter =budgetPerHour / resourceCost;
3 RequestResource(reqCounter);
4 availResources + = AddAsServer();
5 DoAccounting();
6 while TaskRemained() = True do
7 SubmitTask(availResources);

8 Terminate(reqCounter);

3.2 Cost Optimization Policy

The Cost Optimization policy completes the application as economically as pos-
sible within the deadline. According to the pseudo code presented in Algorithm 2,
In each scheduling iteration, a set of tasks are submitted to available resources
(step 4). Available resources refer to local resources plus resources hired from
IaaS provider so far. Then, in step 5 the scheduler estimates the completion
time of the remaining tasks based on the time taken for the tasks that have got
completed so far.
1 The delay is actually because of the time taken to make (boot) a virtual machine

from machine image. For more details see [9].



However, since we are not dealing with the workload prediction issues in
this work, we assume that all tasks of the high performance application have
the same execution time. Therefore, EstimateCompletionTime() in step 5 is a
function that estimates the completion time based on equation (2).

Estimation = TasksRemained ∗ TaskRunTime (2)

If there is not any available resource (step 6), then a default initial estimation is
assumed (step 7) to make the policy hire one resource from the IaaS provider.

In each scheduling iteration, if it is realized that the deadline could not be
met and there is enough budget available (steps 9, 10), then just one resource is
hired from the IaaS provider. AddAsServer() add the hired resource to available
resources as soon as it becomes accessible.

Thus, in the Cost Optimization policy resources are requested from the IaaS
provider over time. This results in spending more time to get access to hired
resources rather than the Time Optimization policy. We investigate the impact
of this issue in the experiments in more details.

Termination of the hired resources happens when the estimated completion
time is smaller enough than the deadline (steps 15, 16). In fact, to maximize the
chance that the deadline can still be met after terminating one resource, termi-
nation is only done if the estimated completion time is smaller than a fraction of
the deadline (estimation < (deadline ∗ α) where α < 1). In the current imple-
mentation of Cost Optimization policy, we consider α as a constant coefficient
(0.7 in our experiments). However, as a future work, we plan to investigate an
adaptive value for α.

DoAccounting(), in both Time Optimization and Cost Optimization policies,
takes care of budgeting for hired resources and decreases the available budget
base on the price of the hired resources per hour. If there is not enough bud-
get, then DoAccounting() terminates each hired resource before it starts a new
charging cycle.

Note that the implementation of the above policies contains extra steps to
keep track of ordered resources to get accessible, accounting, and terminating
hired resources. All of these processes are done in separate threads to have the
minimum impact on the scheduling performance.

Time Optimization and Cost optimization policies are implemented in Grid-
bus broker. Moreover, Gridbus broker is extended to be able to interact with
Amazon EC2 as an IaaS provider. In the next section, details of extending the
broker to Amazon EC2 are discussed.

4 System Implementation

Gridbus broker mediates access to distributed resources running diverse mid-
dleware. The broker is able to interface with various middleware services, such
as Condor, and SGE [10]. In this work, we extend Gridbus broker to interact
with Amazon EC2 as an IaaS provider. Then, we incorporate the aforementioned
scheduling policies into the broker.



Algorithm 2: Cost Optimization Scheduling Policy.
Input: deadline, totalBudget,resourceCost

1 SetAvailBudget(totalBudget);
2 while TaskRemained() = True do
3 if availResources > 0 then
4 SubmitTask(availResources);
5 estimation = EstimateCompletionTime();

6 else
7 estimation = deadline + 1;

8 if estimation > deadline then
9 availBudget = GetAvailBudget();

10 if availBudget ≥ resourceCost then
11 RequestResource(1);
12 availResources + = AddAsServer();
13 DoAccounting();

14 else
15 if estimation < (deadline ∗ α) then
16 Terminate(1);

In our implemented architecturen (Fig. 1), EC2ComputesManager has a key
role in managing resources from Amazon EC2. EC2ComputesManager initiates
a thread that keeps track of resources requested by scheduling policy on Ama-
zon EC2. When a resource gets accessible, the resource is added to the available
resources as an EC2ComputeServer object and scheduler can submit task to it.
EC2ComputeServer also deals with the pricing model of the Amazon EC2 by
overriding the payment method in isPaid() method. Finally, EC2ComputeServer
terminates resources from IaaS provider when terminate() method is invoked by
the scheduler. EC2Instance contains all related attributes and relevant meth-
ods for managing resources from the IaaS provider. Particularly, isReadytoUse()
method determines if a requested resource from the Amazon EC2 is accessible
or not.

Results of our evaluation on the Time Optimization and the Cost optimiza-
tion policies in Gridbus broker are presented in the next section.

5 Performance Evaluation

5.1 Experiment Setup

The specification of the resources and applications used in the experiments are
described in this section. We use a cluster (Snowball.cs.gsu.edu) as the local
resource. The cluster has 8 Pentium III (XEON 1.9 GHZ) CPU, 1GB RAM,
and Linux operating system. We also use Amazon EC2 as the IaaS provider.



Fig. 1. Class diagram describing the implementation details of extending Gridbus roker
to Amazon EC2 as an IaaS provider.

Amazon EC2 offers resources with different computational power. In the
experiments we use the cheapest resource type which is known as small compu-
tational unit (we call it small instance). Another reason for using small instances
is that, in terms of hardware specification, small instances are the most similar
resource types to our local resources in the cluster. Each small instance is equiv-
alent to 1.2 GHZ XEON CPU, 1.7GB RAM, Linux operating system, and costs
10 cents per hour.

We use a Parameter Sweep Application (PSA) in the experiments. A PSA
typically is a parameterized application which has to be executed independently
with different parameter values (each one is called a task). Pov-Ray [7] is a
popular parameter sweep application in image rendering and it is widely used in
testing distributed systems. In the experiments, we configure Pov-Ray to render
images with the same size. Therefore, we ensure that the execution time is almost
the same for all the tasks.

5.2 Experiment Results

The Impact of Budget Spent on Completion Time. In the first experi-
ment, we measure how the application completion time is affected based on the
different budget allocated by the user.

For this purpose, we consider the situation that the user wants to run Pov-
Ray to render 144 images in two hours (120 minutes) as the deadline. The overall
execution time when just Snowball.cs.gsu.edu cluster is used is 138 minutes and
since no cost is assigned to the cluster, the overall execution time does not vary
by increasing budgets (Baseline in Figure 2). Then, two proposed policies (Time
Optimization and Cost Optimization) are tested in the same situation.
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Fig. 2. The impact of allocating more budget on the application completion time with-
out resources from the IaaS provider (Baseline), with Time optimization policy (Time-
Opt) and with Cost Optimization policy (Cost-Opt).

As it can be understood from Figure 2, in the Time Optimization policy the
application completion time decreases by available budget almost linearly. How-
ever, in the Cost Optimization the completion time does not improve anymore
after a certain budget (100 cents in this case). In fact, this is the point that the
policy does not spend any more money to request more resources from the IaaS
provider even if there is some budget available. Moreover, for the budgets less
than 100 cents, Cost Optimization policy takes more time to complete rather
than Time Optimization with the same budget allocated. This is mainly because
the Cost Optimization policy does not spend all of the allocated budget. This
issue is discussed more in the next experiment in which the efficiency of the two
policies is illustrated. Another reason is that, resources in the Cost Optimization
are added over the time and terminated as soon as the scheduler realizes that
the deadline can be met. However, in the Time Optimization all resources are
requested in the very first moments and kept up to the end of execution.

Efficiency of the Time Optimization and Cost Optimization Policy. In
this experiment, the efficiency of the Time Optimization and the Cost Optimiza-
tion scheduling policies are measured for different amount of allocated budget.
We define the efficiency as follows:

efficiency =
(α− β)

δ
(3)

Where α is the time taken to complete the application just by deploying Snow-
ball.cs.gsu.edu cluster. β is the completion time by using both Snowball.cs.gsu.edu
cluster and resources from the IaaS provider. Finally, δ indicates the budget spent
to hire resources from IaaS providers. Other experiment parameters are the same
as experiment 5.2.
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Fig. 3. Efficiency of Time Optimization and Cost Optimization policies with different
budget allocated.

According to Figure 3, in the Time Optimization policy, the decrease in
efficiency (from 1.4 to 0.77 and from 1.38 to 0.89) happens because of the rapid
increase in spent budget. However, there is a sharp rise in efficiency (from 0.77
to 1.38) when the allocated budget increases to 100. This is mainly because
of the decrease in spent budget. In other words, by hiring five resources from
the IaaS provider, the application gets completed before another charging cycle
for resources from IaaS provider starts. Therefore, the spent budget decreases
sharply (from 80 to 50 cents) and the efficiency increases. We expect more similar
sudden rises in the Time Optimization policy, specifically when the deadline is
long (several hours or days).

Similar behavior happens in Cost Optimization, when the allocated budget is
increased from 40 to 60 cents. In this case, again more resources (three resources
for one hour) are kept for less time instead of fewer resources for more time (two
resources for two hours when allocated budget is 40).

The Impact of the Time Optimization and Cost Optimization Schedul-
ing Policies on the Completion Time of Different Workload Types. In
this experiment, we investigate how the Time Optimization and the Cost Opti-
mization policies behave for different workload types. Doing this experiment, we
consider five workload types. According to Table 2, the number of tasks increase
exponentially whereas the run time for each task decreases at the same rate from
type 1 to type 5. All of these workloads have the same completion time (150 min-
utes) when just Snowball.cs.gsu.edu cluster is used. For all of these workloads,
we use the same deadline and budget (120 minutes and 100 cents respectively)
during the experiment.

This experiment demonstrates the applicability of the proposed policies for
different kinds of workloads. As it is illustrated in Figure 4, both policies can
get the application completed before the deadline. The only deadline violation



0

20

40

60

80

100

120

140

160

180

Type 1 Type 2 Type 3 Type 4 Type 5

Workload

C
o

m
p

le
ti

o
n

 T
im

e
 (

m
in

)

Baseline Cost-Opt Time-Opt

Deadline

Fig. 4. Application completion time for different workload types with the cluster as
local resource (Baseline) and with the resources from the IaaS provider in Time Opti-
mization (Time-opt) and Cost Optimization (Cost-opt) policies.

is in Cost Optimization policy for workload type 1. The reason is that there is
not enough scheduling iteration in which Cost Optimization policy can request
more resources from the IaaS provider, thus that workload get completed just
by two resources ordered from the IaaS provider.

The minimum difference in completion time between Time Optimization and
Cost Optimization is in the workload type 5. The reason is that the execution
time for each task is short (2.34 minutes according to Table 2). This results
in more frequent scheduling iterations. Hence, extra resources from the IaaS
provider are requested in the very first scheduling iteration and these additional
resources can contribute more for running tasks. However, the reason for dif-

Table 2. Different workload types used in the experiment 5.2.

Workload No of Tasks Task Time (minutes)

Type 1 32 38
Type 2 64 18.75
Type 3 128 9.37
Type 4 256 4.65
Type 5 512 2.34

ference in completion time is that in the Cost Optimization resources are not
retained up to the end of execution. Another reason for difference in completion
time is the time taken by the IaaS provider to make the resources accessible.
Since in the Cost Optimization policy resources are requested over time, the
overhead related to preparing resource by the IaaS provider is longer than the
Time Optimization policy in which all resources from the IaaS provider are re-
quested at the same time.



6 Conclusion and Future Work

In this paper, two market-oriented scheduling policies are proposed to increase
the computational capacity of the local resources by hiring resources from an
IaaS provider. Both policies consider user provided deadline and budget in their
scheduling. Time Optimization scheduling policy minimizes the application com-
pletion time. On the other hand, Cost Optimization scheduling policy minimizes
the cost incurred for running the application. We evaluate these policies in real
environment using Gridbus broker as a user-level broker. We observed that in the
Time Optimization policy, completion time reduces almost linearly by increas-
ing the budget. However, in the Cost Optimization the completion time does
not improve after a certain budget (100 cents in our experiments). We can also
conclude that the efficiency of the Time Optimization and Cost Optimization
policies can potentially increase by increasing the budget. Finally, we observed
that different workload types can get completed before the deadline and within
the budget using the proposed policies.

As a future work we plan to extend the current work to a situation that there
are several IaaS providers with different prices for their resources.
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