
J Supercomput
DOI 10.1007/s11227-011-0568-6

Mandi: a market exchange for trading utility and cloud
computing services

Saurabh Kumar Garg · Christian Vecchiola ·
Rajkumar Buyya

© Springer Science+Business Media, LLC 2011

Abstract The recent development in Cloud computing has enabled the realization of
delivering computing as an utility. Many industries such as Amazon and Google have
started offering Cloud services on a “pay as you go” basis. These advances have led to
the evolution of the market infrastructure in the form of a Market Exchange (ME) that
facilitates the trading between consumers and Cloud providers. Such market environ-
ment eases the trading process by aggregating IT services from a variety of sources,
and allows consumers to easily select them. In this paper, we propose a light weight
and platform independent ME framework called “Mandi”, which allows consumers
and providers to trade computing resources according to their requirements. The nov-
elty of Mandi is that it not only gives its users the flexibility in terms of negotiation
protocol, but also allows the simultaneous coexistence of multiple trading negotia-
tions. In this paper, we first present the requirements that motivated our design and
discuss how these facilitate the trading of compute resources using multiple market
models (also called negotiation protocols). Finally, we evaluate the performance of
the first prototype of “Mandi” in terms of its scalability.

Keywords Cloud computing · Utility computing · Market exchange · Market model

S.K. Garg (�) · C. Vecchiola · R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer
Science and Software Engineering, The University of Melbourne, Victoria, Australia
e-mail: sgarg@csse.unimelb.edu.au

C. Vecchiola
e-mail: csve@csse.unimelb.edu.au

R. Buyya
e-mail: raj@csse.unimelb.edu.au

mailto:sgarg@csse.unimelb.edu.au
mailto:csve@csse.unimelb.edu.au
mailto:raj@csse.unimelb.edu.au

S.K. Garg et al.

1 Introduction

Utility computing paradigms such as Clouds and Grids promise to deliver a highly
scalable and efficient infrastructure for running IT applications. As a result, the scien-
tific and industrial communities have started using commercially available infrastruc-
tures to run their applications that can scale up based on demand, rather than main-
taining their own expensive HPC infrastructure.

To ease and control the buying and selling process, there are other players in the
utility grid such as the Cloud market place or the Cloud market exchange [1, 2] which
allow consumers and providers to publish their requirements and goods (compute
power or storage), respectively. The market exchange service provides a shared trad-
ing infrastructure designed to support different market-oriented systems. It provides
transparent message routing among participants, authenticated messages, and logging
of messages for auditing. The market exchange can coordinate the users and lower
the delay in acquiring resources. Moreover, the market exchange can help in price
control and reduces the chances of the market being monopolized.

In addition, with the maturity of utility computing in the form of Clouds, both
consumers and providers have to consider complex parameters for trading compute
resources. For instance, users may have sophisticated Quality of Service requirements
such as deadline, resource availability, and security. Moreover, the providers can trade
using multiple negotiation protocol (auction, commodity market, and one-to-one) and
pricing (fixed, variable), since each of them can enormously affect their utility de-
pending on the current demand and supply. Thus, today’s market exchange needs
to support multiple and concurrent market models to provide flexibility for Cloud
consumers and providers to choose negotiation protocols (market models such as
commodity market, auction) according to their requirements.

Thus, in this paper, we propose the design of a market exchange framework
called “Mandi”1 which specifically addresses the needs of computing consumers and
providers. It support diverse market exchange services [3] including (a) registration,
buying and selling; (b) advertisement of free resources; (c) coexistence of multiple
market models or negotiation protocols such as auctions; and (d) resource brokers
and Resource Management Systems (RMSs) to discover resources/services and their
attributes (e.g., access price and usage constraints) that meet user QoS requirements.

Currently, there is no real service available for trading resources on a market ba-
sis. The common usage pattern of Cloud Computing resources is to directly rent
them from the provider by using a pay as you go model and a fixed price. Just re-
cently, Amazon EC2 introduced the spot pricing market, which allow users to utilize
a virtual machine as long as its hourly price does not exceed a predefined bid. This
new opportunity, demonstrates the interest from the current providers in using more
flexible market models for selling their service, but still does not fully implement the
features envisioned by Mandi, where providers can advertise their services and offer
different models for trading them. Other solutions, such as RightScale, provide sup-
port for transparently using multiple Cloud providers and simplifying the process for
deploying application on different Cloud platforms. This support is mostly concerned

1Mandi is a colloquial term for marketplace in Indian languages.

Mandi: a market exchange for trading utility and cloud computing services

with providing an infrastructure enabling the portability of applications without any
automation for selecting a specific provider on a market basis. Times are mature then,
both from an infrastructure and a market point of view, to establish a global market
where resources providers can advertise their offerings and provide access to them
with flexible negotiation models. In such a market, users should be able to publish
their preferences and also actively initiate processes aimed at comparing and select-
ing the best offering suiting their needs, by means of, for example, auctions. Current
market exchange solutions [1, 2, 4] provide very limited support in this direction es-
pecially for what concerns the selection of models that can be used to trade resources.
In many cases [2, 4], a single type of auction is available. Mandi, is a step toward this
global vision and specifically designed to act as a flexible market supporting multiple
negotiation protocols (such as auctions and commodity market) and pricing models.
It is a virtual market place where users and resource providers can trade to optimize
their revenue.

In addition, Mandi is developed as a light weight and platform independent ser-
vice oriented market architecture whose features can be easily accessed by current
Grid/Cloud systems without many infrastructural changes. Our proposed architecture
distinguishes itself from other meta-scheduling systems by separating job submission
and monitoring (done by the user brokers such as Nimrod/G [5], GridBus Broker [6]
and GridWay [7]) from resource allocation (done by the market exchange). It also
overcomes some of the short-comings of existing systems by allowing coexistence of
multiple negotiations of different types.

In the next section, we discuss requirements for a market exchange. Then in the
subsequent sections, we describe the design and implementation of Mandi with eval-
uation and results. Then we discuss related work on market exchange and their com-
parison with architecture of Mandi. Finally, we present the conclusions and future
directions.

2 Market exchange requirements

The market exchange framework requirements can be divided into two categories:
infrastructural requirements and market requirements.

2.1 Infrastructural requirements

1. Scalability: Since the increase in the number of resource requests can effect the
performance of the ME, thus the scalability of the exchange is an issue. The ex-
change architecture should be designed such that access to market services can be
least effected by the number of service requests. In addition, it should guarantee
the best efficiency in matching the consumer’s demand and provider’s supply.

2. Interface requirements and Grid heterogeneity: The user interface plays an im-
portant role in making the usage of any system easy for a wide variety of users.
Depending on how a user wants to access the market, different types of interfaces
should be provided. In Grids, many market based brokers [6, 7] ease the process
of accessing the Cloud resources. Similarly, on the resource provider side, hetero-
geneous resource brokers [8] with market based capabilities are available. Thus,

S.K. Garg et al.

these brokers should seamlessly access ME’s services whenever required by in-
voking simple platform independent exchange APIs.

3. Fault tolerance: As failure can occur anytime, the ME should be able to resume
its services from the closest point before the failure.

4. Security: To avoid spamming, there should be a security system for user registra-
tion. All the services of the exchange must be accessed by authorized users.

2.2 Market requirements

1. Multiple application models and compute services: The user resource require-
ments can vary according to their application model. For example, to run an
MPI application, users may want to lease all the compute resources from the
same resource provider, which gives much better bandwidth for communicating
processes. Thus, users can have different types of compute resource demands de-
pending on their applications. Similarly, resource providers can advertise different
types of resources such as storage and Virtual Machines (VMs). Thus, the ME
should be generic enough to allow the submission of different types of compute
resource requests and services.

2. Multiple user objectives: Users may wish to satisfy different objectives at the
same time. Some possible objectives include receiving the results in the minimum
possible time or within a set deadline, reducing the amount of data transfer and
duplication, or ensuring minimum expense for an execution or minimum usage of
allocated quota of resources. Different tasks within an application may be associ-
ated with different objectives and different Quality of Service (QoS) requirements.
The exchange should, therefore, ensure that different matching strategies meeting
different objectives can be employed whenever required.

3. Resource discovery: As discussed earlier, users may have different resource re-
quirements depending on their application model and Quality of Service needs.
Thus, the exchange should be able to aggregate different compute resources and
should allow users to access and discover them on demand.

4. Support for multiple market models: In Grids, many market based mechanisms
have been proposed on different trading or market models such as auctions and
commodity market [9]. Each mechanism, such as the English auction and the
Vickery auction, has different matching and pricing strategies and has their own
advantages and disadvantages. Thus, the exchange should be generic enough to
support as many market models as possible.

5. Coexistence/isolation of market models: Similar to real world markets, the ME
should support concurrent trading of compute services by different negotiation
protocols such as auction. For example, double auction and Vickery auction can
coexist simultaneously and users can participate in each of them.

6. Support for holding, joining and discovering auctions: Users can have require-
ments that may not be fulfilled by currently available compute resources, and thus,
may want to hold their own auctions and invite bids. Moreover, any user can dis-
cover these auctions and join them if necessary.

The following sections present the architecture, design, and implementation of
Mandi market exchange that takes into account the challenges mentioned so far, and
abstracts the heterogeneity of the environment at all levels from the end-user.

Mandi: a market exchange for trading utility and cloud computing services

3 Mandi architecture and design

3.1 Design considerations based on requirements

The primary aim of Mandi is to provide a marketplace where the consumer’s resource
requests and the provider’s compute resources can be aggregated, and matched using
different market models. We have summarized how each market exchange’ require-
ment is considered in Mandi’s design in Table 1. The details of some of the main
issues addressed in the design of Mandi are following:

1. Flexibility in choosing market model based on user objectives: As already dis-
cussed, various market models or negotiation protocols can be used by users to
trade compute resources. Each market model has different requirements [9]. For
example, in the commodity market model, consumers search the current state of
the market and immediately buy some compute services. This requires synchro-
nous access to those instances of compute resource. In the case of an auction, there
is a clearing time when the winner selection is done. In addition, any user can re-
quest to hold auctions which require the separation of each auction. Thus, the
components within the Mandi are designed to be modular and cleanly separated
on the basis of functionality. Each of them communicates through the persistence
database that constitutes a synchronization point in the entire system. Different
auction protocols are abstracted as “one-sided auction” and “two-sided auction”

Table 1 Mapping of market exchange requirements to Mandi’s architectural design

Requirements Design consideration Components

Scalability Each auction thread is short lived and
all information is maintained within
database which can be distributed

Database and Auction
Service

Handling heterogeneity Web Service interface is enable Mandi
to interact with heterogeneous user
schedulers/brokers, Mandi itself is im-
plemented with Java to handle plat-
form heterogeneity

Core implementation

Fault tolerance Persistence database for fast recovery Database Service

Security Regular auditing of system, with
authorization and authentication to
check spam users

Accounting Ser-
vice, Authorization/
Authentication Service

Coexistence/isolation of mar-
ket models

Abstraction of Two-sided and One-
side auction, APIs are available to
users to define new auctions

MetaBroker service

Multiple user objectives Auction service allows holding of two
types of objective i.e. response time
and cost

Resource discovery Information and resource repository Resource and Database
service

Support for holding, joining,
and discovering auctions

APIs are provided for users to allow
such functionalities

Auction, Database, and
MetaBroker service

S.K. Garg et al.

which can be extended to add new auction mechanism. Each auction type is char-
acterized by the winner selection mechanism. The reservation of matched services
is separated from the trading mechanisms to allow the flexibility and coexistence
of different trading models such as commodity market and auction.

2. Handling heterogeneity in interaction with compute resources and user bro-
kers: To allow various Resource Management Systems and brokers to access mar-
ket exchange services, Mandi’s architecture needs to provide simple platform in-
dependent APIs. Current market exchanges such as Sorma [2] handle the het-
erogeneity by implementing a plug-in for each resource management system to
allow resource reservation, job submission, execution and monitoring. These spe-
cial plug-ins can restrict the adoption of exchange since APIs of different resource
providers for job submission, execution and monitoring may get updated with
time. Thus, Mandi is designed to handle mainly the allocation of resources to user
applications, while the job submission, monitoring and execution are left to user
brokers. Mandi’s services are available through platform independent APIs imple-
mented using Web Services.

3. Fault tolerance: Mandi can handle failures at two stages: during trading, and dur-
ing reservation. To avoid failures during trading, the resources are not reserved,
unless all the tasks of an application are mapped. To avoid allocation of one re-
source to multiple applications, one compute resource is allowed to be traded only
in one negotiation.

In addition, the persistence database protects Mandi against failures during
trading. The state of Mandi is periodically saved in the database. Thus, Mandi
can resume its work from the point of failure. he failure during reservation can
occur due to network problems, and over subscription of resources. In the case
of a network problem, the failed resource requests will be considered in the next
scheduling cycle. The reservation failure due to resource oversubscription is han-
dled by consumers and providers.

4. Scalability: To address the scalability issue, most of Mandi’s components work in-
dependently and interact through the database. This facilitates the scalable imple-
mentation of Mandi as each component can be distributed across different servers
accessing a shared database. Since Mandi handles only the resource allocation
and delegates the management of job submission and execution to the participat-
ing brokers and providers’ RMS, thus most of the threads in Mandi are lightweight
and short lived.

4 Trading scenario

Figure 1 shows a typical scenario of trading conducted within Mandi. In the exam-
ple shown, Mandi conducted a double auction to match bids of multiple resource
requests to the providers’ ask. First, the providers advertise their resources with their
price (aka asks). Consumers submit their bids to show their interest in leasing the
advertised resources. All the bids and asks are stored in the database which will be
accessed at the end of the auction for calculating the winning bids.

The Meta-Broker, which is the main agent of Mandi, coordinates the matching of
asks and bids, and trading between auction participants. At the end of the auction, the

Mandi: a market exchange for trading utility and cloud computing services

Fig. 1 Trading scenario of Mandi

Meta-Broker decides the winners and sends the reservation requests to the Reserva-
tion Service of Mandi. Then the Reservation Service informs the resource providers
and consumers about the auction result. The information about reservations is stored
within Mandi using the Accounting service.

4.1 Architectural components (services)

The architecture of Mandi is inspired by the concepts of the “Open Market” where
any user can join, sell and buy their compute services. Figure 2 shows the service ori-
ented architecture design of the Mandi and its main services. Mandi is organized into
two main services, i.e., the user services, and the core services. The core services con-
sist of the Meta-Broker Service, the Reservation Service, Accounting service, and the
Database Service. Each of the services can run on different machines independently
by communicating through the database service. The functionality of each service is
described in the following sections.

4.1.1 User services

The user services hide all the internal components of Mandi and implement all the
services visible to market participants. It is implemented using Web Services which
provide the consumers and resource providers platform independent access to the

S.K. Garg et al.

Fig. 2 Mandi architecture

market exchange services. The following market services are provided to users:

1. Registration Service: The users need to register before they can access the ex-
change’s services. The users’ details are maintained in the storage layer, and are
used for authentication and authorization.

2. Auction Service: This service allows a user to join any auction and bid for the
items. The Hold Auction Service allows users to specify the auction types which
they are allowed to initiate. Mandi can conduct two classes of auctions, i.e., one-
sided auction and two-sided auction. In the case of two-sided auctions, multiple
consumers and providers can choose to participate and get matched.

3. Resource Services: Resource Discovery and Reservation Service allow con-
sumers to find services of their requirements and reserve them. This feature is
added to integrate the commodity market model within Mandi. Advertisement
Service allows resource providers to advertise their cloud resources (number of
CPUs and time at which they will be available).

4. Authentication and Authorization Service: This service allows users to login
into the market exchange and authorized them to access other Mandi services.

4.1.2 Core services

These services consist of the internal services of the market exchange.

1. Meta-Broker Service: The initiation of any auction is managed by the Meta-
Broker Service. It conducts the auction and announces the auction winner through
Reservation Service. The auction can either be one-sided or two-sided. Thus, two
components, i.e., Two-Sided Auction and One-Sided Auction are provided to add
customised auction protocols within Mandi.

Mandi: a market exchange for trading utility and cloud computing services

2. Reservation Service: It informs the resource providers about the match, reserves
the advertised (matched) service, and gets the reservation ID that is used by con-
sumer to submit his application.

3. Accounting Service: Stores the trading information of each user. It also stores the
information about the failed and successful transactions.

4. Database Service: This service is the interface between the persistence database
and other services such as the web interface, the advance reservation, and the
meta-broker. Its main objective is to maintain all the trading information such as
transaction history, users’ details, auctions, compute resources for leasing, and
user requests. This enables the recovery of Mandi in the case of unexpected fail-
ures, and is also useful in synchronizing various components of Mandi.

4.2 User interaction phases

To understand the interrelationships between Mandi’s services, it is necessary to see
how they interact in different use cases. There are several important use-cases of
interaction with Mandi. There are two types of users trading in Mandi: a) consumers
who need compute resources to execute their applications, and b) resource providers
who are providing their infrastructure as service. Figure 3 gives a comprehensive
view of the uses cases addressed by Mandi. In particular, it shows the operations
that are performed by the users by differentiating their double role of consumers and
providers of resources. The figure also shows which are the specific components of
Mandi that are in charge of managing the requests associated to the specific operation
displayed. Only the “Initiate an Auction” use case has been reported briefly due to

Fig. 3 Use cases of Mandi

S.K. Garg et al.

its interactions with other components. A complete description of each of these use
cases follows.

1. Registration: Every user needs to register and submit their personal details such
as name, organization address, credit card details and contact phone number. After
registration, users are issued a login id and password to access Mandi’s services.
The user details are stored in the persistence database and used mostly for the
accounting and logging purposes. These details can be accessed by other entities
through the User Catalogue component of the Database Service.

2. Resource Advertisement: Any user can advertise the compute resource available
for leasing. Each resource is assigned a unique identifier that is registered in the
Catalogue Service for discovery purposes. The user is required to give information
such as how many CPUs/VMs are available for processing and what are their
configurations. The user also needs to inform Mandi about the trading model to
use for the these resources. If the user selects the commodity market model, then
the leasing price of the resource should be given while advertising the resource. If
the user selects the auction model, then the auction type is needed to be specified
by the user. All the information is stored in the storage layer that is accessed
by other components of Mandi using Resource Catalogue Service for allocation
purposes.

3. Service Discovery: To discover resources that are advertised in Mandi for lease,
users can use the Service Discovery Service. To find the resource of their choice,
users just need to give the configuration of compute resources they are interested
in and when they want to lease. Mandi will search the Resource Catalogue Ser-
vice for the required resources, and send the matched resources with their trading
protocol information to users. Users can then select the resources of their choice
and use either service reservation or join auction for leasing the resource.

4. Leasing Resources in Commodity Market: To allow the integration of commod-
ity market model in the Mandi market exchange, the Reservation Service is added
to allow users to directly lease the available resources. A user provides the iden-
tifier of the resources to be leased through Mandi. The Reservation Service adds
the user’s lease request in the Lease Request Catalogue Service which is regularly
accessed by the Reservation Service. The reservation service does the final alloca-
tion of resources by informing the resource provider and adding the information
in the persistence database for accounting purposes. After allocation, the leased
resource and request are removed from the respective catalogues.

5. Conducting an Auction: To hold an auction, first a user needs to get the types
of auctions currently supported by the market exchange. Then the user can send
a request to hold the particular type of auction with the relevant details such as
auction item, minimum bid, and auction end time. If the auction item is a com-
pute resource, the user is required to specify the time that the CPU/VM will be
leased. All the auction requests are stored in the database. Depending on the cho-
sen auction protocol, an auction thread (with a unique identifier) is initiated by the
Meta-Broker Service. After the initiation of the auction thread, the unique identi-
fier (AuctionID) is sent back to the user (auction holder). The auction thread waits
until the auction end time is reached. Users who want to bid in the auction need

Mandi: a market exchange for trading utility and cloud computing services

Fig. 4 Mandi Class Design Diagram

to provide the AuctionID that can be discovered using Join Auction Service. De-
pending on the auction rules, the user is also allowed to resubmit updated bids.
At the end of the auction, the auction thread collects the bids, executes the winner
selection algorithm and sends the reservation request to the Reservation Service.
The Reservation Service creates a contract for accounting purposes, and informs
the participants about the auction outcome.

4.3 Implementation details

The Class diagram which illustrates the relationship between Mandi’s Objects is de-
picted in Fig. 4. The objects in Mandi can be broadly classified into two categories -
entities and workers. This terminology is derived from standard business modelling
processes [10]. Entities exist as information containers representing the properties,
functions and instantaneous states of the various architectural elements. The enti-
ties are stored in the database and updated periodically. Workers represent the inter-
nal functionality of Mandi, that is, they implement the actual logic and manipulate
the entities in order to allocate resources to applications. Therefore, workers can be
considered as active objects and the entities as passive objects. The next sections
(Sects. 4.3.1 and 4.3.2) take a closer look at the major entities and workers within
Mandi.

4.3.1 Entities

1. User: The User class is used to store information about the participants (con-
sumers and providers) of Mandi. This information is used for authentication and

S.K. Garg et al.

authorization. From the point of view of the exchange, any user can act as con-
sumer or provider. Thus, there is no special need to differentiate between them in
Mandi. Each user can advertise multiple compute resources, and submit multiple
lease and auction requests.

2. TimeSlot and ComputeResource: The TimeSlot class is used to represent com-
pute resources available for leasing by indicating how many CPUs are available
for how much time. Each “TimeSlot” is associated with one compute resource that
is a representation of a set of CPUs or VM advertised by the resource provider.
If a resource provider has conducted an auction for inviting bids for the Time-
Slot, then the AuctionType and the AuctionID attributes will be used to store the
auction’s information. Each “TimeSlot” can be associated with only one auction.

3. Auction Request: All the information for holding an auction for any commodity
advertised by a user is represented using the AuctionRequest class. Every auc-
tion is identified by a unique identifier, i.e., auctionID. In economics, generally
bids in auctions are considered in the form of monetary value. But in the case of
computing service, a bid can be a more generalized form depending on the require-
ments of an auction holder. For example, a user holds an auction to find a resource
provider who can lease the compute resource with minimum delay and within the
specified budget. Thus, the user can invite bids in terms of the start time of the re-
source lease. Mandi provides facilities to define different types of auctions which
can be implemented by extending the TwoSidedAuction and OneSidedAuction
classes. Each auction mechanism is specified by its winner selection algorithm.

To enable the coexistence of multiple auction based negotiation with different
matching and pricing strategies, the AuctionRequest class contains the “auction-
Type” attribute informing Mandi which auction the user wants to hold.

4. Application: The Application class abstracts the resource requests of the user’s
application that consists of the total number of CPUs required, QoS requirements,
deadline, and budget. The “deadline” attribute represents the urgency of the user to
complete his/her application. The “QoS” is an abstract class that can be extended
to codify special application requirements such as bandwidth. Each application
can consist of several jobs that may differ in their resource requirements such as
execution time. To allow users to submit different application model requirements
such as parameter sweep and parallel application, in Mandi, each application is
associated with the “appType” attribute that will be considered while matching
an application with a resource. The Application object also stores the information
about the auction, in which the user (consumer) has opted to participate in leasing
resources for its application. Each application is allowed to participate in only one
auction.

4.3.2 Workers

1. MetaBroker: The MetaBroker is the first component in Mandi to be started
that instantiates other worker components, and manages their life cycles such as
Scheduler and Monitor. The BrokerStorage is the front end to the persistence sys-
tem and implements interfaces used to interact with the database. Another function
of the MetaBroker is to periodically get the list of current auction requests from
the database and start a scheduling thread for clearing each auction.

Mandi: a market exchange for trading utility and cloud computing services

Fig. 5 Registration process

2. GridExchangeService: The GridExchangeService is a Web Service interface that
enables users to access various services of Mandi. The services that are avail-
able to users are registration, submission of application and time slots, holding
and joining auctions, and discovering services and getting service reservations.
The GridExchange Service interacts with the BrokerStorage class to access the
persistence database. The example sequence of operations for user registration is
shown in Fig. 5. The UserBroker sends a registration request to the exchange using
the GridExchange web service with the preferred login name and password. The
GridExchangeService gets the registered user list from the database and checks
whether the user is registered or not. If the user is not registered, it sends a reply
back to the UserBroker with a “registration success” message.

3. Scheduler: For each market model, the Scheduler matches the user application to
the advertised compute resources and decides the price for executing the appli-
cation. Figure 6 shows the basic steps that are performed by the Scheduler. The
Scheduler gets the auction object (in the form of a time-slot or an application)
from the persistent database and the list of all the bids submitted for the auction.
Then the Scheduler sets the auction status to “closed” to prevent any further bid
submission to the auction. Depending on the auction type and objective, the win-
ning bid is chosen and the trading price is calculated. The status of the winning bid
is changed to “matched” from “unmatched”. The match is saved to the database in
the form a reservation request which will be used by the Monitor to inform and re-
serve resources on the compute resource. The function of the Monitor is described
in detail below.

4. Monitor (aka advance reservation): The Monitor keeps track of all the reserva-
tion requests in the database, as shown in Fig. 7. The Monitor periodically requests
all the reservation requests from the persistent database. It uses Web Services to
send SOAP messages for the resource provider to inform them about the match-
ing of the user application to the advertised time-slot (compute resource). In the
return, the Monitor gets the reservationID from the provider. The reservationID
is used by the consumer to access the compute services offered by the resource
provider. It represents the time-slot reserved and acts as the security key for ac-
cessing the resource. After getting the reservationID, the Monitor will set all the
reservation details in the user application object stored in the persistent database.
The consumers (using brokers) can access the reservation information by using
the GridExchangeService.

S.K. Garg et al.

Fig. 6 Scheduling sequence

Fig. 7 Reservation process

5 Prototype details

In order to evaluate the performance of Mandi and provide a proof of concept of
its architecture, we implemented a prototype and tested it by using Aneka [11] as
a service provider. In this section, we describe the prototype implementation and
discuss its performance results.

Mandi: a market exchange for trading utility and cloud computing services

5.1 Mandi

Mandi has been implemented in Java in order to be portable over different platforms
such as the Windows and Unix operative systems. From the implementation point
of view, Mandi is composed of a collection of services that interact by means of a
persistence layer represented by the HSQL database. The system is accessible from
external components through a Web Service that has been deployed by using Apache
Axis2 on a TOMCAT web server (v.5.5). The Web Service interface makes the inter-
action with Mandi platform independent. The current prototype support three types
of trading mechanisms: i)First Bid Sealed Auction, ii) Double Auction, and iii) Com-
modity market.

5.2 Aneka (for automated advertisement and reservation of resources)

On the provider side, Aneka [11] has been used and extended to support the reser-
vation and advertisement of slots on Mandi. Aneka is a service-oriented middle-
ware for building Enterprise Clouds. The core component of an Aneka Cloud is the
Aneka container that represents the runtime environment of distributed applications
on Aneka. The container hosts a collection of services through which all the tasks
are performed: scheduling and execution of jobs, security, accounting, and resource
reservation. In order to support the requirements of Mandi, a specific and lightweight
implementation of the reservation infrastructure has been integrated into the system.
This infrastructure is composed of a central reservation service that provides global
view of the allocation map of the Cloud and manages the reservation of execution
slots, and a collection of allocation services on each node that keep the track of local
map and ensure the exclusive execution on reserved slots. The reservation service is
accessible to external applications by means of a specific Web Service that exposes
the common operations for obtaining the advertised execution slots and reserving
them.

5.3 Client components

The client are constituted by a simple Web Service client that generates all the re-
source requests to Mandi.

6 Performance evaluation

To evaluate the performance of Mandi, two sets of experiments are conducted:

1. Comparison of Mandi with other approaches discussed in the related works:
We compared Mandi with two approaches used in other market exchanges:

– Continuous Double Auction (CDA): In this market model, the market place
matches the bids and asks from users continuously. If any bid or ask is un-
matched it is queued up unless matched. This market model is a core part of
many Grid market places such as the Sorma project [2].

S.K. Garg et al.

– Commodity market: In this market model, prices are considered to be fixed. This
model is more reliable since users can know more quickly whether he will get
resources or not. GridEcon [1] is based on the commodity market. To compare
the above approaches with ours, we use three metrics: a) number of successful
scheduling, b) delay in scheduling per user, and c) cost incurred per consumer.

2. Stress analysis of the Mandi prototype: In these experiments, we evaluated
the overhead generated by the interaction between the internal components, and
Mandi’s interaction with users requests and provider’s middleware. As discussed
previously, Mandi is designed to handle multiple market models concurrently and
exposes a service oriented interface to handle users’ requests and reservations of
resources. Thus, to evaluate the scalability of Mandi, the first set of experiments
examines CPU and memory load generated by Mandi as the number of simultane-
ous negotiation increases. However, the performance of Mandi is also determined
by how quickly and how many simultaneous user requests can be handled. Hence,
the second set of experiments evaluates the delay in resource request submission
(which is initiated from the client machine) and resource reservation (which in-
volve the negotiation of Mandi with providers).

The experimental setup for this evaluation is characterized as follows:

– An instance of Mandi has been deployed on 2.4 GHz Intel Core Duo CPU and 2GB
of memory running Windows operating system and Java 1.5. The HSQL Database
was configured to run on the same machine. The performance of Mandi evaluated
using the JProfiler [12] profiling tool.

– The Aneka setup was characterized by one master node and 5 slave nodes. The
reservation infrastructure was configured as follows: the master node hosted the
reservation service while each of the slave nodes contained an instance of the allo-
cation service. Each container has been deployed on a DELL OPTIPLEX GX270
Intel Core 2 CPU 6600 @2.40 GHz, with 2GB of RAM and Microsoft Windows
XP Professional Version 2002 (Service Pack 3). As a result, the reservation in-
frastructure can support ten concurrent VMs (one per core). The topology of re-
sources is given in Fig. 8.

6.1 Comparison of Mandi with other market exchange approaches

In this experiment, since our aim is not to evaluate a particular trading protocol but
to evaluate why Mandi like market exchange is much more beneficial, we have used
simple configurations. We consider 5 000 consumers who requests market exchange
for scheduling their jobs. Each job has a deadline constraint. Each user is assumed
to submit their jobs with a delay between one to two seconds. We consider 5 re-
source providers to advertise their resources to market exchange. For simplicity, it is
assumed that each provider advertises similar resources; each of which is assumed
to be capable of all the submitted jobs. The fixed price asked by provider for their
resources is assumed to $2 per second. Since in general, the commodity prices are
higher than auction prices, it is assumed that both consumer and provider’s bids and
asks are uniformly distributed between ($1, $2). The delay incurred in submitting the
request with resource reservation and accounting to market exchange is considered

Mandi: a market exchange for trading utility and cloud computing services

Fig. 8 The topology of testbed

Table 2 Cost incurred to
consumers per job ($) % of tight

job deadlines
Mandi Only CDA Only commodity

market

10% 1.285364838 1.36785296 2

30% 1.293125863 1.37674317 2

50% 1.290176674 1.372885465 2

70% 1.293281083 1.377506229 2

90% 1.290952776 1.373555695 2

to be 10 seconds. In Mandi, we gave each consumer and provider three options: a)
participate in CDA conducted by Mandi, b) buy or sell in the commodity market, or
c) start a new first sealed price auction and invite bids from other market participants.
Thus, several experiments are conducted with varied percentage of jobs with tight
deadline. The results of these experiments are presented in Tables 2, 3, and 4. From
these tables, we can clearly observe that Mandi resulted in minimum cost to its par-
ticipants with minimum delay in comparison to other approaches. CDA resulted in
second best cost for consumers, but due to delay in finding appropriate match many
jobs missed their deadline. The commodity market provides access to resources im-
mediately but does not guarantee the best price for consumers. Thus, this experiment
clearly shows that when users has complex QoS of service requirement such as dead-
line or budget, then a market exchange which provide multiple choices to them is
much more viable.

S.K. Garg et al.

Table 3 Delay incurred to each
consumer in job scheduling
(sec)

% of tight
job deadlines

Mandi Only CDA Only commodity
market

10% 10 10.8694786 10

30% 10 10.93667214 10

50% 10 10.89998991 10

70% 10 10.94208023 10

90% 10 10.90817005 10

Table 4 Jobs missed their
deadline % of tight

job deadlines
Mandi Only CDA Only commodity

market

10% 0 396 0

30% 0 446 0

50% 0 427 0

70% 0 447 0

90% 0 437 0

6.2 Stress analysis of Mandi prototype

In order to provide a global evaluation of our system, we also conducted a stress
analysis. The analysis of the prototype is aimed at investigating the impact on han-
dling multiple concurrent market models in terms of overhead incurred in terms of
memory and CPU usage, and the communication of Mandi components with user
brokers.

6.2.1 Memory usage and CPU load

The main threads running in Mandi are: i) MetaBroker, which initiates other threads
and controls the overall execution of Mandi, ii) Monitoring Thread, and iii) Sched-
uler Threads, which dynamically vary based on the number of auctions. Since the
performance of Mandi is highly dependent on the number of auctions conducted con-
currently, we varied the number of auctions from 10 to 10 000 that are conducted over
a period of 5 seconds. For this experiment, we generated 50 000 resource requests for
matching. Each resource request is mapped to an auction using uniform distribution.
Figure 9 shows the heap size (memory usage) and CPU usage by the broker over a
period of 5 second run. In Fig. 9(b), the variation in CPU usage (load) is about 10%
with the increase in number of auctions. This is because scheduler threads conduct-
ing auctions are short lived and has comparable CPU needs. The little higher value
of CPU usage registered for the case of 10 auctions is due to the large number of
resource request per auction (50 000/10) needed to be matched.

In Fig. 9(a), we can see how the memory usage of Mandi is increasing with the
number of auctions. For instance, the memory usage increases from 32MB to 56MB
when the number of auctions increases from 1 000 to 10 000. Therefore, there is only
a 2 times increase in memory usage for 10 times increase in the number of auctions.

Mandi: a market exchange for trading utility and cloud computing services

Fig. 9 Performance of Mandi for 50 000 clearance requests

This is due to the fact that the auction thread loads resource requests from the data-
base only when a decision for the auction winner needs to be taken. In addition, the
memory is freed for all resource requests participating in the auction as soon as auc-
tion is completed. This reduces the memory occupied by resource request objects
waiting to be matched.

6.2.2 Overhead in interaction with resource provider and consumer

Two experiments were performed; one for measuring the resource request submission
time and the other for free slot advertisement and reservation time by the provider
middleware. All interactions between different entities, i.e., Mandi, consumer, and
provider middleware are using web service interfaces. We used JMeter to generate
SOAP messages for testing the performance of web services. SOAP messages are
generated until no more connections can be initiated with the web service located
at Mandi and the resource provider’s site. To stress test the Mandi’s web service,
about 750 concurrent resource submission requests were generated, while in case of
interaction with Aneka reservation web service about 100 concurrent requests were
generated. Table 5 shows the time taken to serve a request by web service in millisec-
onds. The time overhead due to resource request submission is only 11.75 ms. The
time taken by Aneka web service to locate free resource and confirm the reservation
is much longer because each reservation request can trigger the interaction between
the reservation service on the master node and the allocation service on the slave
node where the reservation is allocated. This interaction involves the communica-
tion between two different containers and varies sensibly depending on the network
topology.

6.3 Discussion

The performance results indicate good scalability for the current prototype of Mandi
which is able to clear about 50 000 resource requests and 10 000 auctions in about
5 seconds. The major bottleneck in the scalability of Mandi’s architecture is the

S.K. Garg et al.

Table 5 Overhead due to
interactions of Mandi Web service request Service time/request (ms)

Resource request submission 11.75

Locating free resources 30

Resource reservation 240

shared database. The database constraints the number of multiple and concurrent ac-
cesses which is also the reason that experiments over 50 000 resource requests are not
conducted. In addition, the database can be the cause of single point failure of whole
system. Distributed databases which use replication and load balancing techniques
can be helpful in increasing the scalability of the system.

7 Related work

As discussed earlier, there are many market solutions proposed for trading grid and
cloud resources both from academia and industries. Various industrial solutions from
companies such as Cloud Market and RightScale more or less act as information
and deployment systems allowing users to search their appropriate resources. While
Mandi is a market place which allows any provider or user to trade using the negoti-
ation protocol of his/her own choice.

Many research projects focused on building a market exchange for Grid and Cloud
infrastructures. Among them, the most prominent, which are related to our work, are
GridEcon [1], SORMA [2], Ocean Exchange [13], Tycoon [8], Bellagio [14], and
CatNet [4].

Many existing systems (such as Bellagio [14] and Tycoon [8]) have restrictive pric-
ing and negotiation policies. Auctions are held at fixed intervals, and only one type
of auction is allowed (e.g., First Price, Second Price [3]). More generic market archi-
tectures such as CatNet, Ocean Exchange, GridEcon, and SORMA also support only
one or two market models such as bilateral negotiation and combinatorial auctions. In
SORMA, automated bidding is provided to participate in an auction or to bargain with
a resource provider that may lead to increased delays for consumers who urgently
need resources. The GridEcon project started with a vision to research into a viable
business model for trading services in an open market. The current implementation
of GridEcon only supports the commodity market model. Ocean Exchange currently
supports the commodity market model, while CatNet supports only the bargaining
and contract/net models. Thus, in the previous work, the choice of market model is
decided by the market itself. On the other hand, in Mandi, we leave the choice of ne-
gotiation and pricing protocols to the consumers and providers in the system. This is
crucial as the choice of the market model (such as the auction and commodity model)
and pricing (fixed, variable) can vary from participant to participant depending on
the utility gained. Even major cloud companies such as Amazon [15] currently offer
multiple services based on commodity using different pricing. Thus, Mandi acts as
a neutral entity or middleman giving the flexibility to participants to use any market
model or negotiation protocol for trading their service. Mandi also allows concurrent
and multiple negotiations between market participants.

Mandi: a market exchange for trading utility and cloud computing services

Table 6 Comparison between Mandi and other market exchanges

Characteristics GridEcon Sorma Ocean-
exchange

Catnet Bellagio Mandi

Negotiation
protocol

Commodity
market and
double
auction

Combinatorial
auction

Bilateral
negotiation

Bargaining Combinatorial
auction

Commodity
market,
one-sided
auction, and
two-sided
auction

Pricing Static and
spot pricing

K-pricing Static Static and
dynamic
pricing

K-pricing Static and
dynamic
pricing such
as spot pricing

User/provider
role

Bidding Bidding Discover
and
negotiate

Bidding Bidding Discover,
initiate or bid
in an auction,
buy in
commodity
market

Job
submission
and
monitoring

yes yes yes yes yes no

Flexibility of
market model

no no no no no yes

Moreover, these systems also handle the management of job execution after
matching it to appropriate resource. Thus, if a new resource provider wants to par-
ticipate in the market, a special plugin is required to be implemented to allow the
management of job submission and execution. In Mandi, the responsibility of actual
job submission and execution is delegated to the user brokers and provider’s resource
management system. In addition, consumers and providers can access Mandi’s ser-
vices using a platform independent Web Service interface. Thus, our main contribu-
tion in this paper is to propose a novel market-exchange architecture which reflects
real-world markets where different participants interact with each other using a trad-
ing mechanism of their choice. The comparison with related work is summarized
in Table 6.

8 Conclusion and future directions

The presence of IT demand and supply in utility oriented Clouds and Grids led to the
need of a market exchange that can ease the trading process by providing the required
infrastructure for interaction. In this paper, we introduced a novel market exchange
framework named “Mandi” for facilitating such trading. We identified the various
technical and market requirements and challenges in designing such an exchange.
We described the architecture and the implementation of Mandi and evaluated it with
two experiments: measuring the effect of design choices on the performance of Mandi

S.K. Garg et al.

and measuring the overhead time incurred in the interaction between the consumer
and the provider through Mandi. The experiments show that Mandi can scale well and
can handle many concurrent trading models and resource requests. We can thus con-
clude that the overhead generated for matching a large number of resource requests
in concurrent auctions is minimal. The only limit to the scalability of the system is
the persistence layer. In order to address this issue, a more efficient database server
and a solid replication infrastructure has to be put in place.

In the current implementation, the accounting and the banking services are not
implemented, thus we aim to implement them in next version of Mandi. In the future,
we would like to consider large scale setups using Mandi. We plan to extend the
GridBus Broker [6] and integrate various resource providers such as Amazon. In
addition, since in reality there will be multiple exchanges, we will research how they
will intercommunicate and trade with one another.

References

1. Altmann J, Courcoubetis C, Darlington J, Cohen J (2007) GridEcon-the economic-enhanced next-
generation internet. In: Proceedings of the 4th international workshop on grid economics and business
models, Rennes, France

2. Neumann D, Stoesser J, Anandasivam A, Borissov N (2007) Sorma-building an apen Grid market for
Grid resource allocation. In: Proceedings of the 4th international workshop on Grid economics and
business models, France

3. Broberg J, Venugopal S, Buyya R (2008) Market-oriented Grids and utility computing: the state-of-
the-art and future directions. J Grid Comput 6(3):255–276

4. Eymann T, Reinicke M, Ardaiz O, Artigas P, Freitag F, Navarro L (2003) Decentralized resource
allocation in application layer networks. In: Proceedings of the 3rd international symposium on cluster
computing and the Grid, Tokyo, Japan

5. Abramson D, Buyya R, Giddy J (2002) A computational economy for grid computing and its imple-
mentation in the nimrod-G resource broker. Future Gener Comput Syst 18(8):1061–1074

6. Venugopal S, Nadiminti K, Gibbins H, Buyya R (2008) Designing a resource broker for heterogeneous
Grids. Softw Pract Exp 38(8):793–826

7. Huedo E, Montero R, Llorente I, Thain D, Livny M, van Nieuwpoort R, Maassen J, Kielmann T,
Bal H, Kola G et al (2005) The GridWay framework for adaptive scheduling and execution on Grids.
Softw Pract Exp 6:1–8

8. Lai K, Rasmusson L, Adar E, Zhang L, Huberman B (2005) Tycoon: an implementation of a distrib-
uted, market-based resource allocation system. Multiagent Grid Syst 1(3):169–182

9. Altmann J, Ion M, Adel A, Mohammed B (2007) A taxonomy of grid business models. In: Proceed-
ings of the 4th international workshop on grid economics and business models, Rennes, France

10. Eriksson H, Penker M (2001) Business modeling with UML: business patterns at work. Wiley, New
York

11. Chu X, Nadiminti K, Jin C, Venugopal S, Buyya R (2007) Aneka: next-generation enterprise Grid
platform for e-science and e-business applications. In: Proceedings of the 3th IEEE international con-
ference on e-science and grid computing, pp 10–13

12. Shirazi J (2003) Java performance tuning. O’Reilly Media
13. Padala P, Harrison C, Pelfort N, Jansen E, Frank M, Chokkareddy C (2003) OCEAN: the open com-

putation exchange and arbitration network, a market approach to meta computing. In: Proceedings of
the 2nd international symposium on parallel and distributed computing, Ljubljana, Slovenia

14. AuYoung A, Chun B, Snoeren A, Vahdat A (2004) Resource allocation in federated distributed com-
puting infrastructures. In: Proceedings of the 1st workshop on operating system and architectural
support for the on-demand IT infrastructure, NV, USA

15. Varia J (2011) Architecting applications for the Amazon cloud. In: Buyya R, Broberg J, Goscin-
ski A (eds) Cloud Computing: Principles and Paradigms. Wiley Press, New York, USA, pp 249–274.
ISBN-13:978-0470887998

	Mandi: a market exchange for trading utility and cloud computing services
	Abstract
	Introduction
	Market exchange requirements
	Infrastructural requirements
	Market requirements

	Mandi architecture and design
	Design considerations based on requirements

	Trading scenario
	Architectural components (services)
	User services
	Core services

	User interaction phases
	Implementation details
	Entities
	Workers

	Prototype details
	Mandi
	Aneka (for automated advertisement and reservation of resources)
	Client components

	Performance evaluation
	Comparison of Mandi with other market exchange approaches
	Stress analysis of Mandi prototype
	Memory usage and CPU load
	Overhead in interaction with resource provider and consumer

	Discussion

	Related work
	Conclusion and future directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

