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Abstract

This paper presents a Grid environment developed
for analysis of MRI brain data on global Grids. In the
current experiment, the MRI data analysis tasks are
composed and formulated as a parameter sweep
application. This application was deployed using the
Gridbus Resource broker. The clusters in our Grid
environment were managed using PBS and SGE. To
execute tasks on remote resources, the Gridbus broker
used SSH services for some resources and Globus
middleware services for others for initiating execution
and management. In this experiment, 16 x 8.1MB
images and 28 x 16.3MB images were processed using
a volumetric analysis method. The total waiting time
was 1800s and the total processing time was 1279.30s.
The broker overhead was 521s. Completing this
analysis on a single machine could take over twenty
hours. This Grid architecture provides a useful time-
saving analysis tool for neuroimaging applications.

1. Introduction

Analyses of Magnetic Resonance Imaging (MRI)
neuroimaging data involve computationally intensive,
high data input/output (I/O) and memory-intensive
tasks. These tasks include: modeling and quantitative
analysis of brain macro-structure including gross brain
shape; degree of gyrification; white matter axonal fibre
tract connectivity; temporal correlations of co-activated

brain regions (functional connectivity); covariance
patterns of brain region networks (effective
connectivity); modeling and analysis of brain
microstructure, including cortical lamination structure;
degree of white matter myelination; shape analysis of
hippocampi; estimation of intracranial volume; and
improved normalisation of functional MRI (fMRI)
image sequences. Performing these analyses on a single
machine for a single subject can take more than twenty
hours. As neuroimaging data sets comprise groups of
many individual subjects, much of the analysis can be
performed simultaneously, with potential for further
parallelization of processing algorithms that will reduce
computation time significantly.

1.1. Background to Grid environment

The lack of computational power and the distribution
of data and algorithms are two major problems in MRI
research [1, 2]. Centralised high performance computing
facilities address these problems by creating local area
networks (LAN) of connected computer systems to solve
computationally intensive problems. However this alone
cannot offer the computational power demanded by MRI
applications.

Geographically distributed computing resources need
to be coupled together logically as a unified resource and
the distributed MRI data and algorithms for data
analysis need to be shared among multiple sites. Grid
computing technology that enables sharing, exchange,
discovery and aggregation of geographically distributed
resources can assist in solving the problems in MRI
research [3, 4].

To meet large-scale resource requirements of MRI
data processing, we propose the development of a Grid
environment, involving partners who bring varied
expertise in MRI image processing, core Grid
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computing, and infrastructure provision. The project
aims to integrate local resources with state and national
resources, which can   interoperate with international
infrastructure such as the Biomedical Informatics
Research Network (BIRN) in the USA.

This paper details the use of a multi-site Grid
computing facility to analyse the volumetric
components of 44 structural brain images. This software
enables grey and white matter and ventricular cerebro-
spinal fluid (CSF) volumes to be calculated directly
from MRI images. However the image processing
operations are computationally intensive and require
large investments of time and computing power for
analysis of large groups of subjects. The following
experiments demonstrate the time saved by distributing
computations into a Grid environment.

2. Grid Architecture for Neuroimaging
Analysis

The Grid environment addresses the problem of
excessive wait time for analyses of large MRI image
data sets, which currently lowers the productivity of
researchers significantly. By targeting this research
bottleneck, research results can be obtained sooner. By
deployment of the Grid facility, other neuroscience
researchers in Australia will have the opportunity to take
part in collaborative research. This will benefit
researchers by providing access to pooled data and
computing resources while increasing collaboration by
enabling sharing of results.

Figure 1 shows the schematic view of the Grid
computing strategy for MRI analysis. This infrastructure
is designed to enable the large-scale exchange of MRI



data, as well as the exchange, development and
evaluation of MRI analysis software tools (algorithms).

To establish a Grid environment, middleware tools
[5] are needed to support services such as security,
uniform access, resource management, scheduling,
application composition, computational economy, and
accounting. One widely used Grid middleware software
is the Globus Toolkit [6,7] which offers resource
management (GRAM), data management (GridFTP),
and information services (MDS).

Although the Globus Toolkit provides the basic
services and libraries needed to build computational
Grids, development and deployment of Grid
applications are often knowledge-specific and therefore
still present challenges for Grid system developers.
Currently it is difficult to reuse software modules
developed and deployed directly on top of the Grid
service layer (core middleware layer) because of the close
integration of application specific code. Therefore, the
implementation of a user level middleware layer will
provide a set of tools to simplify and optimize the
development and deployment of future Grid
applications. In particular the Grid middleware tools we
propose will allow for an abstracted implementation by
hiding Grid resource specific details and providing
application programming interfaces (API) for most of
the generic functions needed by Grid applications. Thus
MRI or any other future Grid applications developed
using proposed user-level middleware services will
require predominantly application specific code. Gridbus
Resource Broker can be used for composition and
formulation of MRI analysis tasks for Grid application
and deployment on multifarious platforms in Global
Grid.

3. Data Analysis Methods

3.1. MRI parameters

MRI image data for forty-four participants were
obtained. MRI scans were performed on a Signa 1.5-T
scanner (General Electric, Milwaukee, WI, USA). T1-
weighted Fast Spoiled GRASS images (TE =2.2ms, TR
=11.3ms, 124 slices, 256 x 256 pixel matrix and 18.6
cm field of view). Images were converted to ANALYZE
format [Mayo Clinic, Rochester, MN], which consists
of two files per image, a meta file and a binary data file.

3.2. Data Analysis

Data was analysed using three software tools
contained in the FSL brain image analysis software
package (Analysis Group, FMRIB, Oxford University,
UK).  First the skull was automatically removed using
the Brain Extraction Tool (BET) [8]. BET firstly

analyses the intensity histogram of the image to find
“robust” lower and upper intensity values and a rough
brain/non-brain surface. This surface is used to calculate
the centre of gravity of the head and approximate head
size. From this centre of gravity a tessellated sphere is
inflated and deformed to find a solution to the brain’s
external surface. This process is re-run with a higher
smoothness constraint if the initial deformation does not
produce a clean result. All extraneous matter is removed
leaving an image of the brain only.

After extraction, the FLIRT linear image registration
program [9] was used to register the skull to a reference
image skull and then normalize the brain using the same
transformation. FLIRT uses voxel intensities and
various user selectable cost functions to produce a
registration solution that is robust to local minima.
Using the skull size as the registration constraint avoids
losing volumetric data from the brain itself.

The FAST segmentation tool [10] was used to
segment the brain into white matter, grey matter, and
CSF and calculate the volumes of each segment. The
FAST algorithm uses a hidden Markov random field
(HMRF) model to create probabilistic maps of
segmented volumes using neighbouring voxel intensity
information in three dimensions. Figure 2 shows the
steps involved in the analysis of a single subject.

 Figure 2. Schematic view of processing
steps involved in volumetric analysis o f
MRI data.



Statistical analyses were performed using SPSS-11
for OS X (Mackiev Software, Kiev, Ukraine). To assess
the determinates of total brain volume, a multivariate
linear regression was used with white matter volume and
grey matter volume as independent variables and total
brain volume as the outcome variable. These results
were then graphed as functions of age and regression
variables calculated.

4.  Application Composition and Analysis
on Global Grids

4.1. Application Composition

The MRI data analysis tasks were formulated as a
parameter sweep and workflow application using XPML
(XML-based Parametric Modeling Language). The
application involved processing of MRI data image
files, represented by a parameter “MRI_ID”. Figure 3
shows the XPML file describing the analysis operation.

A total of 44 MRI images with both image (.img)
and header files (.hdr) were processed in the experiment.
The files were distributed into a directory tree and a
shell script linked the files into one directory with a
standardised naming convention exp_[$N].[img/hdr]
(e.g. exp_22.img and exp_22.hdr).

The five key parts of XPML code shown in Figure 3
are discussed below:

Part 1 defines the parameter-sweep, a variable
MRI_ID that varies from 1 to 44 steps. For each value, a
new job will be created and assigned a task.

Part 2 specifies the memory requirement of each job
which is transformed to platform specific instructions by
the Gridbus broker.

Part 3 comprises several copy commands with the
data source marked as local and destination marked as
node; “local” refers to a resource from which the broker
launches executions and “node” refers a Grid resource
selected by the broker’s scheduling algorithm for job
execution. These copy operations are called stage-in.
The Gridbus broker transfers files from the local node to

the remote execution node according to the stage-in
commands. Note the variable MRI_ID is used with a $
prefixed to indicate a substitution will occur using the
value of MRI_ID for each job.

Part 4 comprises a set of execute commands which
are carried out on the remote execution node. Variable
substitution can also be used. The execute commands are
executed sequentially.

Part 5 is comprised of stage-out commands
responsible for collating results from various Grid
resources and sending them to the user’s workstation.

It requires the final output files of the application to
be transferred back to the local node where the Gridbus
broker sits. It can also be a third party node. Variable
substitution is also used here.

4.2. Resources and Setup

The resources used in the experiments consisted of 3
clusters located in Howard Florey Institute (HFI) in
Melbourne; GRIDS Lab in Melbourne, and the
Australian Partnership for Advanced Computing
(APAC) in Canberra. The Belle Grid server served as a
client running the Gridbus Broker from which the
experiment was launched. Table 1 shows configuration
details of these resources. The APAC cluster was
running Globus middleware, while other clusters were
running Sun N1 Grid Engine (SGE) and Portable Batch
System (PBS) respectively and were accessed via an
SSH channel. The broker is designed to support
management of job execution on remote resources using
SSH-based connection and execution in addition to
Globus-based access. For the SGE or PBS cluster, we
established an SSH channel for staging the input images
to a proper client node and ran the job submission
commands remotely.

For defining the clusters, the user is required to give
the remote hostname, as well as other platform relative
configurations (e.g. the queue setting, using of SSH,
firewall enabled, type of shell…) to assist the Gridbus
broker in submitting jobs correctly.

Table 1: Australian Grid resources used in the experiment.

Grid Resource,
Organisation

Cluster
Details CPU/Memory O S Middleware Queue

l i m i t

Manjra Cluster,
Uni. of Melbourne 16 nodes, x86 Intel P4 2.4 GHz / 512

MB Linux RedHat 7.3 SSH-based Access,
Open PBS 5

Mac Cluster; HFI 12 nodes,
PowerPC

Power G5 2 x 1.8GHz/ 2
GB Mac OS 10.3.9 SSH, Sun N1 Grid

Engine 6 (SGE) 5

APAC, Canberra 154 nodes, x86 Intel P4 2.8 GHz / 1 GB Linux RedHat 8.0 Globus Toolkit 2.4 –
PBS job manager 2

Belle Grid Server,
Uni. of Melbourne

Gridbus broker
client node

Intel Xeon 2.8 GHz * 4 /
2 GB Linux RedHat 8.0 Gridbus Broker 2.2 N/A



Figure 3: XPML-based composition of
MRI image Grid application.

For each resource, a queue limit is defined as the
maximum number of jobs that can be executed on a
particular resource in parallel. This depends on the
resource’s usage policy regulated by the resource
provider. If a queue limit is not given, the broker will

try to discover the resources’ potential availability by
submitting some test/query jobs. The broker will
suspend the job submitting to a resource if the number
of jobs currently executing on that resource has reached
its queue limit.

5. Neuroimaging Results

The results of a multiple linear regression with total
brain volume (TBV) as the dependant variable and white
matter volume (WMV) and grey matter volume (GMV)
as independent variables show that WMV (t= 1342) is
slightly more highly associated with TBV than GMV
(t= 1324). This analysis shows that variations in white
matter and grey matter explain variations in total brain
volume equally in this group.

Figure 4 shows the variables WMV and GMV
graphed as functions of age. All regression parameters
are listed on the graph. As can be seen from the graph,
grey matter makes up a larger part of the total brain
volume than white matter and it appears to follow a
more age related pattern of volume loss than does white
matter. This is reflected in both the R-squared values
(0.51 for grey matter versus 0.01 for white matter)
which are measures of vriability, and the regression
coefficients (-3.32 for grey matter versus –0.39 for white
matter) which are measures of gradient.
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Figure 4: Grey and white matter volumes
for 44 subjects as functions age.

(Regression equations are listed above
each fit line.)

<!--Part 1: parameter definition -->
<parameter name="MRI_ID" type="integer"
domain="range">
<range from="1" to="44" type="step"
 interval="1"/>

</parameter>
<!--Part 2: job resource requirements -->
<requirement type="job">
  <property name="minmemory" value="200"/>
</requirement>
<task type="main">
<!--Part 3: data staging -->
<copy>
<source location="local"
 file="sample/exp_$MRI_ID.img"/>
<destination location="node"
file="exp_$MRI_ID.img"/>

</copy>
<copy>
<source location="local"
 file="sample/exp_$MRI_ID.hdr"/>
<destination location="node"
file="exp_$MRI_ID.hdr"/>

</copy>
<!--Part 4: processing on Grid nodes-->
<execute location="node">
<command value="bet"/>
<arg value="exp_$MRI_ID"/>
<arg value="exp_$MRI_ID_brain"/>

</execute>
<execute location="node">

    <command value="flirt"/>
<arg value="-in"/>
<arg value="exp_$MRI_ID_brain"/>
<arg value="-ref"/>
<arg value="$refimg"/>
<arg value="-out"/>
<arg value="exp_$MRI_ID_brain_reg"/>

</execute>
<execute location="node">
<command value="fast"/>
<arg value="exp_$MRI_ID_brain_reg"/>

</execute>
<!--Part 5: collating results to home node-->
  <copy>

<source location="node"
file="exp_$MRI_ID_brain_reg_seg.hdr"/>
<destination location="local"
 file="exp_$MRI_ID_brain_reg_seg.hdr"/>

</copy>
<copy>
<source location="node"
 file="exp_$MRI_ID_brain_reg_seg.img"/>
<destination location="local"
 file="exp_$MRI_ID_brain_reg_seg.img"/>

</copy>

           



6. Results of Grid computing performance

The maximum throughput of a resource at a certain
time is estimated by TR ≥ Tn - QL / P, where TR refers to
the resource throughput, Tn refers to the processing
ability (on the application) of each computing node
provided by the resource, QL refers to the queue limit,
and P refers to the maximum number of jobs allowed to
be executed in parallel on each computing node. For the
purpose of estimation, P was set to 1 in this
experiment, so TR ≈ Tn - QL.

Tn was discovered for each cluster by running the
stage-in -> bet -> flirt -> fast -> stage-out flow
manually on each resource. The images in our
experiment were divided into 2 sets, one set of 16 x
8.1MB 8 bit images, and one set of 28 x 16.3MB 16
bit images. This reflects the varying size and quality of
neuroimaging data. One image from each set was
selected and the result shown in Table 2.

For the 16.3MB images:

1:01.1:16.1)16.329/1(:)10.323/1(:)61.283/1(          

:: )()()(

=

=GlobusnPBSnSGEn TTT

For the 8.1MB images:

1:03.1:30.1)82.306/1(:)79.297/1(:)92.235/1(          

:: )()()(

=

=GlobusnPBSnSGEn TTT

Figure 5 shows the number of jobs submitted and
finished as functions of time elapsed for each of the
three platforms. Figure 6 shows the total jobs submitted
and finished by different resources at different times.

Figure 7 shows the comparison of the number of
jobs completed by three different resources. Eight jobs
were finished on the Globus platform with queue limit
set to two, while 18 jobs were finished on both the PBS
and SGE platform with both queue limits set to 5.

7.  Analysis of Grid performance

The total waiting time in this experiment was 30
minutes (1800 seconds), from which the broker overhead
can be calculated. Figure 8 shows the scenario that jobs
being scheduled resources. The ideal total waiting time
of the experiment can be estimated to be

},,max{ GlobusPBSSGE TTT , where SGET  can be calculated

by aggregating all the execution time of all jobs
(including the small and large images) together:

∑
∑∑
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Figure 5. A Snapshot of number of jobs
submitted and finished by on the

resources at different time.

Figure 6. A Snapshot of number of jobs
submitted and finished by all resources at

different time.

Figure 7: Number of jobs completed by
different resources at different time.



Table 2: A single node performance
comparison.

Figure 8: Number of small and large jobs
scheduled to different Grid resources.

According to Table 2, we have:

96.10515/)14*47.2784*31.232(          

14*)75.139.3(4*)42.119.2(

=++

+++=SGET

91.11835/)12*26.3196*82.294(          

12*)59.125.2(6*)25.172.1(

=++

+++=PBST

30.12792)/2*318.62+6*(300.44+            

2*3.53)+(7.01+6*2.25)+(4.13

=

=GlobusT

The execution time can be parallelized, while the data
staging cannot, because the stage-in and stage-out shares
the same bandwidth. The estimated ideal waiting time
is:

30.1279}30.1279,91.1183,96.1051max{ ==totalT

Therefore the total overhead is about 1800-1279=521
seconds. This includes the cost of Gridbus broker
startup, scheduling, remote job submission and
monitoring, stdout/stderr transfer, as well as the local
job submission/schedule time of PBS, SGE and
Globus.

8. Conclusion and Future Work

The computational requirements of MRI
neuroimaging data analysis application are presented in
the context of Grid computing. The proposed Grid
architecture develops the necessary mechanisms for
composing MRI data analysis tasks as a Grid
application. Data analysis was carried out on Grid
resources using the Gridbus resource broker and various
distributed clusters accessed using either SSH or Globus
services. Experimental results of Grid time variables and
scientific results derived from the analysis demonstrate
the feasibility of a Grid computing environment for
neuroscience applications that support collaborative
scientific studies by sharing resources.

We plan to enhance the Grid environment by
developing a portal based workflow environment with
virtual organization-based authorization mechanisms at
MRI data level including handling privacy concerns and
curate results automatically. This will be achieved by
making use of Gridbus workflow and Portlets hosted
under GridSphere environment. We also plan to extend
MRI databases access using Web services technologies.
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