
217

Machine Learning-based Orchestration of Containers:

A Taxonomy and Future Directions

ZHIHENG ZHONG, The University of Melbourne

MINXIAN XU, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

MARIA ALEJANDRA RODRIGUEZ, The University of Melbourne

CHENGZHONG XU, University of Macau

RAJKUMAR BUYYA, The University of Melbourne

Containerization is a lightweight application virtualization technology, providing high environmental con-
sistency, operating system distribution portability, and resource isolation. Existing mainstream cloud service
providers have prevalently adopted container technologies in their distributed system infrastructures for au-
tomated application management. To handle the automation of deployment, maintenance, autoscaling, and
networking of containerized applications, container orchestration is proposed as an essential research prob-
lem. However, the highly dynamic and diverse feature of cloud workloads and environments considerably
raises the complexity of orchestration mechanisms. Machine learning algorithms are accordingly employed
by container orchestration systems for behavior modeling and prediction of multi-dimensional performance
metrics. Such insights could further improve the quality of resource provisioning decisions in response to
the changing workloads under complex environments. In this article, we present a comprehensive litera-
ture review of existing machine learning-based container orchestration approaches. Detailed taxonomies are
proposed to classify the current researches by their common features. Moreover, the evolution of machine
learning-based container orchestration technologies from the year 2016 to 2021 has been designed based on
objectives and metrics. A comparative analysis of the reviewed techniques is conducted according to the pro-
posed taxonomies, with emphasis on their key characteristics. Finally, various open research challenges and
potential future directions are highlighted.
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1 INTRODUCTION

Our era has witnessed the trend of cloud computing becoming the mainstream industrial com-
puting paradigm, providing stable service delivery with high cost-efficiency, scalability, availabil-
ity, and accessibility [1]. Existing mainstream cloud service providers, including Amazon Web

Services (AWS) [2], Google [3], and Alibaba [4], prevalently adopt virtualization technologies
including virtual machines (VM) and containers in their distributed system infrastructures for
automated application deployment. In recent years, their infrastructures are evolving from VM
centric to container centric [5].

Containers employ a logical packing mechanism that binds both software and dependencies
together for application abstraction [6]. Unlike VMs that support hardware-level resource virtu-
alization where each VM has to maintain its own operating system (OS), containers virtualize
resources at the OS level where all the containers share the same OS with less overhead. Therefore,
containers are more lightweight in nature with high application portability, resource efficiency, and
environmental consistency. They define a standardized unit for application deployment under an
isolated runtime system. Thanks to these features, we have observed the prevalence of container
technologies for automatic application deployment under diverse cloud environments.

Following this trend of containerization, container orchestration techniques are proposed for
the management of containerized applications. Different from the management of VM lifecycle
via VM orchestration at large-grained control, container orchestration is the fine-grained and au-
tomated management process of a container lifecycle, including resource allocation, deployment,
autoscaling, health monitoring, migration, load balance, security, and network configuration. For
cloud service providers, which have to handle hundreds or thousands of containers simultaneously,
a refined and robust container orchestration system is the key factor in controlling overall resource
utilization, energy efficiency, and application performance. Under the surge of cloud workloads in
terms of resource demands, bandwidth consumption, and quality of service (QoS) requirements,
the traditional cloud computing environment is extended to fog and edge infrastructures that are
close to end users with extra computational power [7]. Consequently, this also requires current
container orchestration systems to be further enhanced in response to the rising resource het-
erogeneity, application distribution, workload diversity, and security requirements across hybrid
cloud infrastructures.

1.1 Needs for Machine Learning-based Container Orchestration

Considering the increasingly diverse and dynamic cloud workloads processed by existing cloud
service providers, it is still unclear how to automate the orchestration process for complex hetero-
geneous workloads under large-scale cloud computing systems [8, 9]. Note that containers bear
a resemblance to VMs from the perspective of orchestration. Machine-learning (ML) has been
applied for orchestration of VMs. For example, early efforts in the use of reinforcement learn-

ing (RL) algorithms for auto-configuration of VMs can be seen in [10–12]. In traditional cloud
computing platforms, Container Orchestrators are usually designed with heuristic policies with-
out consideration of the diversity of workload scenarios and QoS requirements [13]. Their main
drawbacks are listed as follows:
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(1) Most of these policies are static heuristic methods configured offline according to certain
workload scenarios at a limited scale. For instance, threshold-based autoscaling strategies
can only be suitable for managing a set of pre-defined workloads [6, 14, 15]. Such policies can
not handle highly dynamic workloads where applications need to be scaled in/out at runtime
according to specific behavior patterns (details and solutions are discussed in Sections 4.2.1
and 4.3.2).

(2) The performance of heuristic methods could dramatically degrade when the system scales
up. For example, bin-packing algorithms, such as best fit or least fit algorithms, are widely uti-
lized for solving task scheduling and resource allocation [16–18]. However, such algorithms
could perform poorly with high task scheduling delays in large-scale compute clusters (de-
tails and solutions are discussed in Sections 4.3.1 and 4.3.3).

(3) Resource contention and performance interference between co-located applications are usu-
ally ignored. Co-located applications could compete for shared resources, which may cause
application performance downgrade, extra maintenance costs, and service-level agree-

ment (SLA) violations [3, 4, 8] (details and solutions are discussed in Section 4.2.3).
(4) The dependency structures between containerized application components are not consid-

ered during resource provisioning. Although some existing studies [19–22] address this issue
to a certain degree by leveraging machine learning methods, their ML models are only feasi-
ble for traditional cloud-based applications and relatively simple for containerized workload
scenarios. For instance, containerized microservice-based applications are more lightweight
and decentralized in nature, compared with traditional monolithic applications. There are in-
ternal connections between different microservice units within an application. Critical com-
ponents in a microservice architecture are the dependencies of most other microservices and
more likely to suffer from service level objectives (SLO) violations due to higher resource
demands and communication costs [23, 24]. These factors should all be taken into account
during resource provisioning (details and solutions are discussed in Section 4.2.4).

(5) Current container orchestration methodologies mostly emphasize the evaluation of
infrastructure-level metrics, while application-level metrics and specific QoS requirements
are not receiving sufficient consideration. For example, containerized workloads may be at-
tached with stricter time constraints compared with traditional cloud workloads, such as
task deployment delays, task completion time, and communication delays [25, 26] (details
and solutions are discussed in Section 4.2.2).

With such fast-growing complexity of application management in cloud platforms, cloud service
providers have a strong motivation to optimize their container orchestration policies by leverag-
ing ML techniques [27]. Through applying mathematical methods to training data, ML algorithms
manage to build sophisticated analytic models that can precisely understand the behavior patterns
in data flows or impacts of system operations. Thus, ML approaches could be adopted for model-
ing and prediction of both infrastructure-level or application-level metrics, such as application
performance, workload characteristics, and system resource utilization. These insights could fur-
ther assist the Container Orchestrators to improve the quality of resource provisioning decisions.
On the other hand, ML algorithms could directly produce resource management decisions instead
of heuristic methods, offering higher accuracy and lower time overhead in large-scale systems
[28–31].

1.2 Motivation of Research

ML-based container orchestration technologies have been leveraged in cloud computing environ-
ments for various purposes, such as resource efficiency, load balance, energy efficiency, and SLA
assurance. Therefore, we aim at investigating them in depth in this article:
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Table 1. A Comparison of Our Work with Existing Surveys Based on Key Parameters

Ref.

Application

Deployment Unit
Infrastructure Classfication Schemes

Investigated Problem

VM Container Cloud Fog Edge
Application

Architecure

Behavior

Modeling

and

Prediction

Resource

Provisioning

ML-based

Orchestration

Strategies

[32] ✓ ✓ ✓ ✓

How to design effective cloud
orchestration techniques to cope

with large-scale heterogeneous cloud?

[33] ✓ ✓ ✓ ✓

How to apply brownout to support
adaptive management of resources

and applications in cloud?

[34] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

How to employ machine learning techniques
to achieve reliable resource provisioning
in distributed computing environment?

[35] ✓ ✓ ✓

How to develop an autonomic resource
scheduling technique for cloud resources

based on users’ QoS requirements?

[5] ✓ ✓ ✓ ✓ ✓ ✓

How containers are used in high performance
computing, big data analytics and

geo-distributed applications?

[36] ✓ ✓ ✓ ✓ ✓ ✓
How are container-based approaches applied

in cloud activities?

[13] ✓ ✓ ✓

How different container orchestration
systems can offer resources and achieve
specific requirements of applications?

This review ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

How machine learning algorithms can be
applied to optimize resource usage from

container orchestration perspective?

(1) The ML-based container orchestration technologies have shown promise in application de-
ployment and resource management in cloud computing environments. Hence, we aim at
outlining the evolution and principles of ML-based container orchestration technologies in
existing studies.

(2) We recognize the need for a literature review to address the status of ML-based container
orchestration researches in such fast-evolving and challenging scenarios. Furthermore, we
investigate and classify the relevant articles by their key features. Our goal is to identify
potential future directions and encourage more efforts in advanced research.

(3) Although an innovative review is proposed on container orchestration in Reference [13], the
research on this field is growing continually by leveraging ML models. Therefore, there is
a need for fresh reviews of machine learning-based container orchestration approaches to
find out the advanced research challenges and potential future directions.

1.3 Our Contributions

The main contributions of this work are:
(1) We introduce a taxonomy of the most common ML algorithms used in the field of container

orchestration.
(2) We present a comprehensive literature review of the state-of-the-art ML-based container

orchestration approaches, and demonstrate the evolution of ML-based approaches used in
container orchestration in recent years.

(3) We classify the reviewed orchestration methods by their key characteristics and conditions.
(4) We identify the future directions of ML-based container orchestration technologies.

1.4 Related Surveys

As summarized in Table 1, some previous surveys have already explored the field of application
management in cloud computing environments while focusing on different research problems.
Weerasiri et al. [32] introduce a comprehensive classification framework for analysis and eval-
uation of cloud resource orchestration techniques, while this work mainly focuses on resource
provisioning perspectives without discussing ML-based approaches. Xu and Buyya [33] survey
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brownout technologies for adaptive application maintenance in cloud computing systems without
discussing orchestration techniques. Duc et al. [34] look into the research challenge of resource
management and performance optimization under edge-cloud platforms, with emphasis on work-
load modeling and resource management through ML techniques, where container orchestration
is not their focus. Singh and Chana [35] depict a classification of QoS-aware autonomic resource
provisioning under cloud computing environments through the methodical analysis of related re-
search. However, this work is designed for managing general cloud workloads without adequate
analysis of the key characteristics of containerized applications.

Furthermore, some recent studies also investigate different scopes of container orchestration
techniques. Rodriguez and Buyya [13] propose a systematic review and taxonomy of the main-
stream container orchestration systems by classifying their features, system architectures, and
management strategies. This work pays more attention to system modeling and design perspec-
tives rather than detailed orchestration strategies. Casalicchio and Iannucci [5] conduct an exten-
sive literature review of the state-of-the-art container technologies, focusing on three main issues,
including performance evaluation, orchestration, and cyber-security. Pahl et al. [36] present a sur-
vey and taxonomy of cloud container technologies with a systematic classification of the existing
researches. Nonetheless, the research direction of machine learning-based orchestration for con-
tainerized applications has not been explored with systematic categories in any existing survey
and taxonomy.

Compared to them, our article extends the previous surveys by focusing on how machine learn-
ing algorithms can be applied to solve complex research problems from a container orchestra-
tion perspective, such as multi-dimensional workload characterization or autoscaling in hybrid
clouds. We emphasize the diversity and complexity of orchestration schemes under specific ap-
plication architectures and cloud infrastructures. Furthermore, it also specifies the extensive re-
search questions and potential future directions of machine learning-based container orchestration
techniques.

1.5 Article Structure

The rest of this article is organized as follows: Section 2 introduces the background of machine-
learning and container orchestration. Section 3 describes an overview of machine learning-based
container orchestration technologies, followed by the categories and taxonomy of the existing
approaches. A description of the reviewed approaches and their mappings to the categories are
presented in Section 4. Section 5 summarizes a discussion the future directions and open challenges.
Finally, the conclusion of this work is given in Section 6.

2 BACKGROUND

In this section, we present a comprehensive taxonomy of the existing ML models utilized in the
area of container orchestration and a brief introduction of the high-level container orchestration
framework.

2.1 Machine-Learning

Machine-learning is a general concept describing a set of computing algorithms that can learn
from data and automatically build analytical models through data analysis [37]. One of its funda-
mental objectives is to build mathematical models that can emulate and predict the behavior pat-
terns of various applications through training data. Machine-learning has gained immense popu-
larity through the past decades, widely accepted in many research areas such as image recognition,
speech recognition, medical diagnose, and smart building [38, 39]. With the continuously growing
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Fig. 1. Machine-learning taxonomy in the context of container orchestration by optimization objectives.

computational power and adoption of GPUs in warehouse-scale datacenters, the capability and
data scale of machine learning technologies are still soaring [40].

As depicted in Figure 1, we design a machine learning taxonomy through classifying some
of the most popular ML models in the field of container orchestration by their optimization
objectives:

(1) Regression algorithms predict a continuous output variable through analysis of the relation-
ship between the output variable and one or multiple input variables. Popular regression
algorithms (e.g., support vector regression (SVR), random forest, and polynomial regres-
sion) are usually used to explore and understand the relation between different performance
metrics.

(2) Classification methods categorize training data into a series of classes. The use cases of
classification mainly include anomaly detection and dependency analysis. For example, K-
means is broadly adopted for the identification of abnormal system behaviors or components
[41, 42], while support vector machine (SVM) can be leveraged for decomposing the in-
ternal structure of containerized applications and identifying key application components
[24].

(3) Decision making models generate resolutions by simulating the decision making process and
identifying the choices with the maximized cumulative rewards [43]. As the most common
algorithms in this category, RL models, including model-free (e.g., Q-Learning and Actor-
Critic) and model-based RL that belong to the reactive mechanism used to react to the current
environment, have been widely employed for decision making in resource provisioning.

(4) Time series analysis is the predictive approach that achieves pattern recognition of time se-
ries data and forecasts of future time series values or trends from past values. Ranging from
autoregressive integrated moving average (ARIMA) to more advanced recurrent neu-

ral network (RNN) models, such algorithms are useful for behavior modeling of sequential
data, including workload arrival rates or resource utilization.

To be noted, some ML models can be utilized under multiple optimization scenarios. For exam-
ple, artificial neural network (ANN) models can be applied for time series analysis of resource
utilization or regression of application performance metrics [28, 44].
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Fig. 2. A high-level machine learning-based container orchestration framework reference architecture.

2.2 Container Orchestration

Container orchestration empowers cloud service providers to decide how containerized applica-
tions are configured, deployed, and maintained under cloud computing environments [5]. It is tar-
geted at automatic application deployment and dynamic configuration adjustment at runtime for
a diverse range of workloads. Figure 2 demonstrates a reference architecture of machine learning-
based container orchestration frameworks, where the components included are common to most
existing systems. A detailed description of each layer is given as below:

2.2.1 Application Workloads. Workloads are generally defined as the requests submitted by
users to an application or the Orchestrator. Workloads could be classified into many categories
from different perspectives according to their unique features, such as long-running services or
short-living batch jobs (classified by execution time); computation-intensive, data-intensive, or
memory-sensitive workloads (classified by resource usage pattern) [3, 4, 45]. Each workload is
also defined with multi-dimensional resource requirements (e.g., CPU, memory, disk, network)
and QoS requirements (e.g., time constraints, priorities, throughput). The extremely dynamic and
unpredictable feature of heterogeneous workloads greatly increases the complexity of orchestra-
tion mechanisms.

2.2.2 Compute Cluster. A compute cluster is a group of virtual or physical computational nodes
that run in a shared network. As the core component in a containerized cluster, the Container
Orchestrator is responsible for assigning containerized application components to worker nodes
where containers are actually hosted and executed. Its major functionalities involve:
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(1) Resource Allocation assigns a specific amount of resources to a container. Such configura-
tions and limitations are basic metrics in managing container placement and resource isola-
tion control between containers.

(2) Scheduling defines the policy for the initial placement for one or a group of containers,
by considering conditions such as resource constraints, communication costs, and QoS
requirements.

(3) Scaling is the resource configuration adjustment of containerized applications or computa-
tional nodes in response to any potential workload fluctuations.

(4) Migration is designed as a complementary mechanism to prevent severe infrastructure-level
resource overloading or resource contention between co-located applications by relocating
one or a group of containers from one node to another.

(5) Infrastructure Monitoring keeps the track of infrastructure-level metrics of the cluster, such
as the number of nodes, node states, resource usage of each node, and network throughput.
Such metrics are the critical information for evaluating the health conditions of the cluster
and making precise decisions in the above resource source provisioning layers.

(6) Application Monitoring does not only periodically check the application states but also
records their resource consumption and performance metrics (e.g., response time, comple-
tion time, throughput, and error rates). This information serves as the crucial reference data
in anomaly detection and SLA violation measurement.

(7) Load Distribution, as the core mechanism for load balancing under containerized environ-
ments, distributes network traffic between containers evenly with policies such as Round-
Robin [46]. It plays an important role in improving system scalability, availability, and net-
work performance.

(8) Fault Tolerance ensures the high availability of the system through replica control. Each
container is maintained with a configurable number of replicas across multiple nodes in
case of a single point of failure. It is also possible to have multiple Orchestrators to deal with
unexpected node crashes or system overloading.

2.2.3 Infrastructure. Thanks to the high portability, flexibility, and lightweight nature of con-
tainers, it allows containers to be deployed across a multitude of infrastructures, including private
clouds, public clouds, fog, and edge devices. Similar to traditional server farms, private clouds
provide exclusive resource sharing within a single organization based on its internal datacenter
[1]. By contrast, public cloud service providers support on-demand resource renting from their
warehouse-scale cloud datacenters.

Since applications and workloads are all deployed and processed at cloud data centers in tradi-
tional cloud computing, this requires a massive volume of data transferred to cloud servers. As a
consequence, it leads to significant propagation delays, communication costs, bandwidth, and en-
ergy consumption. Through moving computation and storage facilities to the edge of a network,
fog and edge infrastructures can achieve higher performance in a delay-sensitive, QoS-aware, and
cost-saving manner [47, 48]. With the requests or data directly received from users, fog or edge
nodes (e.g., IoT-enabled devices, routers, gateways, switches, and access points) can decide whether
to host them locally or send them to the cloud.

2.2.4 Machine Learning-based Optimization Engine. An ML-based optimization engine builds
certain ML models for workload characterization and performance analysis, based on analysis
of monitoring data and system logs received from the Orchestrator. Furthermore, it can produce
future resource provisioning decisions relying on the generated behavior models and prediction
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results. The engine can be entirely integrated or independent from the Orchestrator. Its major
components are listed as follows:

(1) Workload Modeler is designed for ML-based workload characterization through analyzing
the input application workloads and identifying their key characteristics.

(2) Performance Analyzer generates application and system behavior models through applying
ML algorithms to application and infrastructure-level monitoring data acquired from the
Orchestrator.

(3) Predictor forms forecasts of workload volumes or application/system behaviors, relying on
the models obtained from Workload Modeler and Performance Analyzer. The prediction
results could be sent either to the Orchestrator or Decision Maker.

(4) Decision Maker combines the behavior models and prediction results received from the
above components with certain ML-based optimization methods/schemes to further gen-
erate precise resource provisioning decisions that are fed back to the Orchestrator.

These components are common to most container orchestration systems; however, not all of them
have to be implemented to make the whole system functional. According to different design prin-
ciples, the engine can alternatively produce multi-level prediction results to assist the original
Orchestrator in making high-quality decisions in resource provisioning, or directly generate such
decisions instead of the Orchestrator.

3 TAXONOMY OF MACHINE LEARNING-BASED CONTAINER ORCHESTRATION

TECHNOLOGIES

Figure 3 presents a taxonomic classification of the literature reviewed in our work. Application
Architecture describes the behaviors and internal structures of containerized application compo-
nents that together perform as a whole unit. Infrastructure indicates the environments or plat-
forms where the applications operate. Objectives are the improvements that the proposed ML-
based approaches attempt to achieve. Behavior Modeling and Prediction leverage ML models for
pattern recognition and simulation of system and application behaviors, as well as forecasting fu-
ture trends according to previously collected data. Resource Provisioning specifies the ML-based
or heuristic policies for resource management of containerized applications at different phases in
a container lifecycle under various scenarios.

3.1 Application Architecture

This section presents the most common application architectures that define the composition of
containerized applications and how they are deployed, executed, and maintained. The application
architecture also decides the minimum orchestration unit that the ML-based approaches will op-
erate.

3.1.1 Monolithic. Monolithic applications follow an all-in-one architecture where all the func-
tional modules are developed and configured into exactly one deployment unit, namely, one con-
tainer. Such applications could be initially easy to develop and maintain at a small scale. For ex-
ample, Microsoft Azure [49] still supports automated single-container-based application deploy-
ment for enterprize solutions where the business logic is not feasible for building complex multi-
component models. However, the consistent development and enrichment of monolithic applica-
tions would inevitably lead to incremental application sizes and complexity [50]. Consequently,
the maintenance costs can dramatically grow in continuous deployment. Even modification of a
single module requires retesting and redeployment of the whole application. Furthermore, scal-
ing of monolithic applications means replication of the entire deployment unit containing all the
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Fig. 3. Machine learning-based container orchestration taxonomy.

Fig. 4. Examples of the architectures.

modules [51]. In most scenarios, only a proportion of the modules need to be scaled due to resource
shortage. Therefore, scaling the whole application would lead to poor overall resource efficiency
and reliability. Thus, the monolithic architecture is only suitable for small-scale applications with
simple internal structures.

3.1.2 Microservice. To address the problem of high development and maintenance costs caused
by colossal application sizes, the microservice architecture (MSA) is proposed to split single-
component applications into multiple loosely coupled and self-contained microservice compo-
nents [52]. An example of MSA is given in Figure 4(a). Each microservice unit can be deployed
and operated independently for different functionalities and business objectives. Furthermore, they
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can interact with each other and collaborate as a whole application through lightweight commu-
nication methods such as representational state transfer (REST). Through decomposing ap-
plications into a group of lightweight and independent microservice units, MSA has significantly
reduced the costs and complexity of application development and deployment. Nonetheless, the
growing number of components and dynamic inter-dependencies between microservices in MSA
raises the problem of load distribution and resource management at the infrastructure level. A
well-structured orchestration framework for MSA should be able to maintain multiple parts of
an application with SLA assurance, granting more control over individual components. These
challenges can be addressed by ML-based approaches, for example, utilizing the ML-based ap-
proach to analyze dependencies between different microservices and resource usage of isolated
microservices.

3.1.3 Serverless. The serverless architecture defines an event-driven application paradigm that
undertakes stateless computational tasks, namely, serverless functions. Designed to perform cer-
tain user-defined functionalities, functions are usually short pieces of code hosted in function con-
tainers with specific configurations and limited execution time. To ensure the successful comple-
tion and performance requirements of functions, serverless platforms are responsible for managing
the function execution environments in terms of resource provisioning, energy consumption, SLA
assurance, and security [53, 54]. Compared with the microservice that tends to support continu-
ous requests with long-running lifecycles, the serverless is the event-driven handler for ephemeral
tasks with finer granularity. As depicted in Figure 4(b), a typical serverless application is repre-
sented in the form of a function chain consisting of a workflow of individual functions. Within a
function chain, interactions and transitions between functions are conducted through a centralized
messaging service, such as a message queue or event bus [55]. The orchestration problem under
such context translates into managing the invocation of function chains in terms of function initial-
ization, execution, transition, and data flow control. Several previous studies have proved that the
significant time overhead of function initialization is currently the major performance bottleneck
in function invocation [56, 57]. Therefore, the current research focus of ML-based solutions in this
field is on minimization of function invocation delays and resource wastage [58–60]. Currently, as
there is no prevailing technology (e.g., containers for MSA) to support the handlers in the server-
less platform, the serverless utilizes containers to realize their platform, which may experience
performance slowdown [61].

3.2 Infrastructure

A cloud infrastructure consists of a set of hardware resources and virtualization software to deliver
virtualized resources to users for application deployment. The execution of ML-based approaches
also needs to consume the resources provisioned by infrastructure. In general, we have identified
three types of cloud infrastructures in the context of container orchestration:

(1) A single cloud environment is built on resources from only one cloud service provider (either
a private or public cloud) to host and serve all the applications.

(2) A multi-cloud environment includes multiple cloud services (e.g., private clouds, public
clouds, or a mixture of both). As different cloud service providers may differ in many as-
pects, such as resource configurations, price, network latency, and geographic locations, this
allows more choices for optimization of application deployment.

(3) A hybrid cloud environment is composed of a mixture of private clouds, public clouds, fog, or
edge devices. It is not always efficient to deploy all the applications and data to public/private
clouds, considering the data transmission time and network latency from end users to cloud
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servers. To solve this issue, the hybrid cloud enables applications and data to be deployed
and processed at fog or edge devices that are close to end users.

3.3 Optimization Objectives

In light of the diversity of application architectures and cloud infrastructures, many types of met-
rics have been considered as optimization objectives during the behavior modeling and resource
provisioning of containerized applications. As shown in Figure 3, we group the existing objec-
tive metrics into four major categories. Since an orchestration solution usually needs to achieve
multiple objectives according to specific user requirements, balancing the tradeoff between dif-
ferent optimization objectives remains a key concern in automated application deployment and
maintenance.

(1) Resource Efficiency. Infrastructure-level resource usage metrics are usually treated as key
application performance indicators for energy and cost efficiency. They are the fundamental
data source of most behavior modeling schemes, such as prediction of the resource demands
of coming workloads, or discovery of the relationship between resource usage patterns and
other performance metrics. Such insights could be further applied in decision making of re-
source provisioning to improve the overall resource efficiency and application performance.

(2) Energy Efficiency. Under the continuously growing scale of cloud data centers, the tremen-
dous electricity usage consumed by cloud infrastructures has emerged as a critical concern
in the field of cloud computing [62]. Therefore, various approaches have been proposed to
minimize energy consumption and optimize energy efficiency [33, 41, 58, 63]. As the over-
all electricity usage of a system is estimated as the summation of the consumption by each
physical machine (PM) where its energy usage is directly related to its resource utilization,
an essential way to control energy efficiency is to adjust and balance the resource utilization
of physical machines during resource provisioning.

(3) Cost Efficiency. Following the pay-as-you-go payment model of mainstream cloud service
providers, market-based solutions regard cost efficiency as one of their principal targets
[6, 15, 29, 64]. Through evaluation and selection of diverse cloud services according to their
pricing models and computing capability, an optimized orchestration solution aims at mini-
mizing the overall financial costs while satisfying the QoS requirements defined by users.

(4) SLA Assurance. Containerized applications are mostly configured with specific perfor-
mance requirements, such as response time, initialization time, completion time, and
throughput. These constraints are mostly expressed as SLA contracts, while their violations
could lead to certain penalties. Because of the dynamic and unpredictable feature of cloud
workloads, autoscaling is usually leveraged to automate application maintenance with SLA
assurance [8, 28, 29, 60, 65–67], in response to the frequently changing workloads.

3.4 Behavior Modeling and Prediction

Behavior modeling is a fundamental step in understanding the overall application or system behav-
ior patterns through analysis of application/infrastructure-level metrics. The variety of multi-layer
metrics related to workloads, application performance, and system states significantly complicates
the modeling process. Nonetheless, a well-structured behavior model that can produce precise pre-
diction results based on ML approaches, which is also apparently useful for achieving certain opti-
mization objectives during orchestration. The behavior modeling and prediction can also provide
important information for the decision making in the resource provisioning phase.

(1) Workload characterization captures the key features of application workloads. Because of
the dynamic and decentralized nature of containerized applications like microservices, the
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received workloads may differ in many ways, such as task structures, resource demands,
arrival rates, and distributed locations. These factors make it hard to define a robust method
for characterization and categorization of all the different workloads within an orchestration
system. However, the knowledge of workload behaviors is necessary to improve the quality
of resource provisioning decisions by making precise resource assignments in response to
any incoming workloads.

(2) Performance analysis discovers the relation among infrastructure (e.g., resource utiliza-
tion and energy consumption) or application-level (e.g., response time, execution time, and
throughput) metrics to depict the system states and application performance. These insights
are important in managing the tradeoff between different optimization objectives.

(3) Anomaly detection classifies and identifies abnormal system behaviors, including security
threats, instance failure, workload spikes, performance downgrade, and resource overload-
ing. Such anomalies could severely harm the system availability and reliability. Therefore,
fast and accurate localization of their root causes could prevent SLA violations or system
crashes.

(4) Dependency analysis looks into the graph-based internal dependencies between container-
ized application components. It helps to understand the workload distribution/pressure
among application components and make precise resource configurations. Since the depen-
dencies may be dynamically updated at runtime, it requires an incremental model that can
consistently adjust itself and address the chain reactions of individual components to the
overall application performance.

3.5 Resource Provisioning

Considering the various application architectures, infrastructures, and optimization objectives dis-
cussed in the above sections, resource provisioning for containerized applications has become
much more challenging. The diversity of cloud workloads, resource heterogeneity within hybrid
cloud environments, and complex application internal structures should be all assessed during re-
source provisioning. Therefore, the state-of-the-art resource provisioning strategies are commonly
relying on the decisions on the amount of provisioned resources, which can exploit ML-based
approaches to achieve higher accuracy and shorter computation delays. Based on our investiga-
tion, the Resource Provisioning category in Figure 3 can be classified into more detailed categories,
we provide Figure 5 to complement Figure 3, where the resource provisioning operations can be
further classified into the following categories:

(1) Scheduling decides the initial placement of a containerized task unit, which could consist of
a single task, a group of independent tasks, or a group of dependent tasks in graph-based
structures. Due to the variety of application architectures and task structures, application
deployment policies should consider a wide range of placement schemes. The quality of
scheduling decisions has a direct impact on the overall application performance and resource
efficiency [9].

(2) Scaling is the size adjustment of containerized applications or computational nodes in re-
sponse to any potential workload fluctuations, which ensures the applications supported
with enough resources to minimize SLA violations. Horizontal scaling adjusts the number
of container replicas belonging to the applications or the number of nodes. By contrast, ver-
tical scaling only updates the amount of resources assigned to existing containers or nodes.
Moreover, hybrid scaling combines both horizontal and vertical scaling to produce an opti-
mized solution.
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Fig. 5. Resource provisioning taxonomy.

(3) Migration is the relocation of one or a group of tasks from one node to another. When
resource contention, overloading, or underloading occur between co-located applications
due to poor scheduling decisions, rescheduling is triggered for load balancing through task
migration within a single cloud. On the other hand, computation offloading manages the mi-
gration of computation-intensive tasks that are experiencing resource bottlenecks to devices
with enough demanded resources across hybrid cloud environments. Targeted to improve
the application performance, a refined offloading policy should be able to pick a suitable relo-
cation destination that minimizes the migration costs in terms of execution time, bandwidth,
and energy consumption.

3.6 Evolution of Machine Learning-based Container Orchestration Technologies

The optimization of the objectives and metrics of ML-based approaches for container orchestra-
tion has been investigated and multiple methods have been proposed over the years. To show the
evolution and development of ML-based approaches for container orchestration in recent years.
Figure 6 demonstrates the evolution of ML-based models since 2016, with emphasis on their objec-
tives and metrics. As the research related to machine-learning for container orchestration starts
from 2016, our examination for the evolution falls between 2016 and 2021.

In 2016, the ARIMA [68] and nearest neighbor (NN) [18] algorithms were already leveraged
for resource utilization prediction of containerized applications. ARIMA is a dynamic stochastic
process proposed in the 1970s, which has been used for forecasting time series showing non-
stationarity by identifying the seasonal differences. NN is a proximity search approach that can
find a candidate that is closest to a given point. As ARIMA and NN have been used widely in time
series prediction, they were firstly applied in container orchestration to predict resource utiliza-
tion, such as CPU, memory, and I/O. However, at this stage, the application models were relatively
simple, which only considered the time series pattern of infrastructure-level resource metrics.

In 2017, Shah et al. [69] first adopted the long short-term memory (LSTM) model for depen-
dency analysis of microservices. The LSTM is an approach based on neural network and well suited
to classifying, processing, and forecasting based on time series data. Compared with traditional
feedforward neural network, LSTM also has feedback connections to enhance its performance,
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Fig. 6. Evolution of machine learning-based container orchestration technologies.

which has functioned well in handwriting recognition and speech recognition. The model in [69]
evaluated both the internal connections between microservice units and the time series pattern
of resource metrics. Furthermore, anomaly detection was built on top of the LSTM model for the
identification of abnormal behaviors in resource utilization or application performance. Besides,
Cheng et al. [70] used Gradient Boosting Regression (GBR) that can ensemble multiple weak
prediction models (e.g., regression trees) to form a more powerful model, and applied GBR for
resource demand prediction in workload characterization.

A model-free RL method, namely, Q-Learning, is also used for scaling microservices. Q-learning
works by learning the action-value function to evaluate the reward of taking an action in a partic-
ular state. The benefit of Q-learning is that it can achieve the expected reward without the model
of the environment. Xu et al. [29] leveraged Q-Learning to produce vertical scaling plans. An
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optimal scaling decision was targeted to minimize resource wasting and computation costs under
the assumption of SLA assurance.

In 2018, Tang et al. [71] employed the bidirectional LSTM (Bi-LSTM) model for the prediction
of workload arrival rates and application throughput. Their training module had demonstrated sig-
nificant accuracy improvement over ARIMA and LSTM models in terms of time series prediction.
Ye et al. [44] applied a series of traditional regression methods based on the statistical process
for relationship estimation, including SVR, linear regression (LR), and modern ANN based on
deep learning, to conduct performance analysis of relevant resource metrics. They attempted to
evaluate the relationship between resource allocation and application performance. However, only
single-component applications with limited performance benchmarks were considered within the
scope of their work.

Du et al. [42] designed an anomaly detection engine composed of traditional machine learn-
ing methods including k-nearest neighbors (KNN), SVM, Naive Bayes (NB), and random

forest (RF), to classify and diagnose abnormal resource usage patterns in containerized applica-
tions. Orhean et al. [25] utilized state–action–reward–state–action (SARSA), a model-free RL
algorithm similar to Q-learning, to manage the graph-based task scheduling problem in directed

acyclic graph (DAG) structures, aiming at minimizing the overall DAG execution time.
In 2019, Cheng et al. [72] proposed a hybrid gated recurrent unit (GRU) model to further

reduce the computational costs and error rates of resource usage prediction of cloud workloads.
GRU is considered as an optimized model of LSTM [73], as LSTM models are relatively complex
with high computational costs and data processing time. An LSTM cell structure consists of three
gates, including the input gate, the forget gate, and the output gate. GRU simplifies this structure
and achieves higher computational efficiency by integrating the input gate and the forget gate into
one update gate.

Performance analysis of containerized applications was also explored in depth. Venkateswaran
and Sarkar [16] leveraged the K-means clustering and polynomial regression (PR) to classify
the multi-layer container execution structures under multi-cloud environments by their feasibility
to the application performance requirements. Both K-means and polynomial regression can find
groups that have not been explicitly labeled in the data, which are originally used in signal process-
ing and applied to identify the execution structures of containers. According to workload arrival
rates and resource metrics, Podolskiy et al. [74] applied Lasso regression (LASSO) to forecast ser-

vice level indicators (SLI) in terms of application response time and throughput for Kubernetes
private cloud. LASSO can generate a linear model via variable selection and regularization to im-
prove prediction accuracy. Dartois et al. [75] used the decision tree (DT) regression algorithm
to analyze the solid state drive (SSD) I/O performance under interference between applications.
The DT can break down the dataset into small subsets and an associated decision tree can be in-
crementally generated, which is easy to interpret, understand and virtualize. In addition, DT is
not very sensitive to outliers or missing data, and it can handle both categorical and numerical
variables.

As for resource provisioning, deep reinforcement learning (DRL) was first applied in the
context of task scheduling [26, 31]. Bao et al. [26] designed a DRL framework for the placement
of batch processing jobs, where an ANN model represented the mapping relationship between
workload features, system states, and corresponding job placement decisions. The Actor-Critic
RL algorithm was selected to train the ANN model and generate optimal scheduling decisions
that minimized the performance interference between co-located batch jobs. Compared with tra-
ditional heuristic scheduling policies like bin packing, their solution demonstrated remarkable
performance improvement on the Kubernetes cluster regarding overall job execution time. More-
over, DRL was also employed to solve the problem of computation offloading under fog-cloud
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environments in Reference [31]. On top of a Markov decision process (MDP) model that sim-
ulated the interactions of the offloading process at a large scale, the deep Q-Learning method
optimized the migration decisions by minimization of the time overhead, energy usage, and com-
putational costs. To explore the efficiency of hybrid scaling mechanisms, Rossi et al. [76, 77] lever-
aged model-based RL models to compose a mixture of horizontal and vertical scaling operations
for monolithic applications, aiming at minimizing the resource usage, performance degradation,
and adaption costs.

In 2020, several RL-based scaling approaches were proposed in the form of hybrid ML models
[24, 28, 30]. Qiu et al. [24] adopted the SVM model for dependency analysis of microservices and
recognition of the key components that are highly likely to experience resource bottlenecks and
performance downgrade. To prevent severe service level objectives (SLO) violations, the Actor-
Critic method was utilized to generate the appropriate resource assignment decisions for these
components through horizontal scaling. The approach has been validated and executed on the
Kubernetes cluster with significant performance improvement compared with Kubernetes’s au-
toscaling approach. Besides, Sami et al. [30] combined MDP and SARSA models to build a horizon-
tal scaling solution for monolithic applications under fog-cloud environments. SARAS produced
the optimized scaling decisions through model training relying on the MDP model that simulated
the scaling scenarios with the fluctuating workloads and resource availability in fog taken into
account.

In 2021, Zhang et al. [23] proposed a novel approach composed of a convolutional neural net-

work (CNN) and boosted trees (BT) for dependency and performance analysis of microservices.
Their CNN model did not only analyze the inter-dependencies between microservice units for
system complexity navigation, but also the time series metrics related to application performance.
Furthermore, the BT model is responsible for the prediction of long-term QoS violations. To further
improve the speed and efficiency of RL-based scaling approaches for microservices under hybrid
cloud environments, Yan et al. [78] developed a multi-agent parallel training module based on
SARSA and improved the horizontal scaling policy of Kubernetes, supported by the microservice
workload prediction results generated by Bi-LSTM.

Overall, diverse ML algorithms have been utilized in the context of container orchestration,
ranging from workload modeling to decision making through RL. However, there are not many
new ML models adopted in the area of container orchestration in recent years. To further im-
prove prediction accuracy and computational efficiency, the emerging trend of hybrid ML-based
solutions targets to combine multiple existing ML methods to form a complete orchestration
pipeline, including multi-dimensional behavior modeling and resource provisioning. The evolu-
tion of ML models also contributes to the extension of various application architectures and cloud
infrastructures.

4 STATE-OF-THE-ART IN MACHINE LEARNING FOR ORCHESTRATION

OF CONTAINERS

In this section, we introduce a literature review of machine learning-based container orchestration
approaches. To stress the key features in the evaluated studies, we use the taxonomy in Section 3
to outline the key characteristics of the approaches designed for behavior modeling and prediction,
as well as resource provisioning.

4.1 Article Selection Methodology

In this subsection, we introduce the approach we followed to reach the articles. The relevant ar-
ticles have been broadly searched in the mainstream academic sources, including ACM Digital
Library, IEEEXplore, Springer, Elsevier, ScienceDirect, Wiley Interscience, and Google Scholar. We
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Table 2. Summary of Workload Characterization Approaches

Ref. Mechanism Infrastructure
Application
Architecture

Methods Objectives Advantages Limitations

[58]
Time series
analysis

Single cloud Serverless LSTM
Request arrival rate
prediction

High prediction accuracy Simplicity of application models

[8] Classification Single cloud Monolithic K-means++
Resource demand
prediction

High scalability
Limited accuracy under high load
variance

[28]
Time series
analysis

Single cloud Monolithic ARIMA
Request arrival rate
prediction

Capability of large data scales Inaccuracy under trend turning

[79]
Time series
analysis

Single cloud Monolithic ARIMA-TES
Multi-dimensional
workload prediction

High robustness, accuracy,
and anti-interference

Higher time overhead

[80]
Time series
analysis

Single cloud Monolithic
LSTM,
Bi-LSTM

Resource demand
prediction

High prediction accuracy
Lack of consideration for anomaly
detection

[72]
Time series
analysis

Single cloud Monolithic GRU-ES
Resource demand
prediction

Low error rates
Ignorance of potential resource
allocation strategies based on
the prediction model

[18] Regression Single cloud Microservice TSNNR
Resource demand
prediction

Improved prediction accuracy Limited workload scenarios

[70] Regression Single cloud Microservice GBR
Resource demand
prediction

High prediction accuracy Limited workload scenarios

[81]
Time series
analysis

Single cloud Microservice LSTM
Request arrival rate
prediction

Low time overhead High computational expense

[82]
Time series
analysis

Hybrid cloud Microservice IGRU-SD
Resource demand
prediction

Low error rates
Unclear demonstration of the
relationship between resource
allocation and energy efficiency

[67]
Time series
analysis

Single cloud Microservice
AR, LSTM,
HTM

Request arrival rate
prediction

Multi-model optimization High computational costs

[71]
Time series
analysis

Single cloud Microservice Bi-LSTM
Prediction of request
arrival rate and
application throughput

Improved prediction accuracy Implicit time overhead analysis

[78]
Time series
analysis

Hybrid cloud Microservice Bi-LSTM
Task arrival rate
prediction

Performance improvement Inaccuracy in long-term forecasts

focus the search criteria on titles and abstracts, starting with the following keywords: container
orchestration, application component, microservice, serverless, machine-learning, deep learning,
characterization, dependency analysis, anomaly detection, classification, prediction, monitoring,
scheduling, scaling, migration, and load distribution. As there are many irrelevant articles in the
search results, we further refine the results through secondary filtering and reviewing based on
relevance and quality.

Eventually, 44 research articles are selected in the field of machine learning-based container
orchestration technologies. The study distribution by publication sources includes 64% conference
papers, 24% journal articles, and 12% symposium articles. The articles discussed in each class
are key representative works selected from literature by several evaluation criteria, including
robustness of application models, coverage of critical challenges in the field, accurate depiction of
real-world orchestration scenarios, high scalability under complex cloud environments, novelty of
orchestration approaches, refined combinations of ML-based models, and extensibility to hybrid
clouds.

4.2 Behavior Modeling and Prediction

This section presents the approaches related to behavior modeling and prediction.

4.2.1 Workload Characterization. The knowledge of workload characteristics and behavior pat-
terns offers important reference data for the estimation of resource provisioning and load distribu-
tion. Table 2 shows the existing studies that leverage ML techniques in workload characterization.

Many previous studies have tried to model the time series pattern of request arrival rates in
containerized applications through various algorithms. ARIMA, as a classic algorithm for analyz-
ing time series data, was utilized in Reference [28]. Compared with other linear models that are
mainly suitable for linear datasets such as autoregressive (AR), moving average (MA), autore-

gressive moving average (ARMA), and exponentially weighted moving average (EWMA),
ARIMA enjoys high accuracy for large-scale datasets and even under unstable time series by using
a set of lagged observations of time series. However, as the workload scenario of ARIMA is limited
to linear models, it is usually referenced as a baseline approach by many studies included in our
literature review.
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To further speed up the data training process, LSTM models are adopted in References [58, 67, 81]
to predict the request arrival rates under large dynamic variations and avoid unnecessary resource
provisioning operations. Unlike general feedforward neural networks, LSTM has a more compli-
cated structure with feedback connections that can improve prediction accuracy. It produces pre-
diction results by analyzing the whole data sequence and is more accurate at identifying new
patterns. However, LSTM models only train the data in one direction. Bi-LSTM models can over-
come this limitation by processing the data sequence from both forward and backward directions.
Therefore, Bi-LSTM models are proposed in References [71, 78] to capture more key metrics and
improve the prediction accuracy.

Another direction in ML-based workload characterization is resource demand modeling and
prediction. Zhong et al. [8] leverage the K-means++ algorithm for task classification and identifi-
cation based on the resource usage (e.g., CPU and memory) patterns of different workloads. This
advantage of K-means based approach is scalable for multiple types of tasks; however, the accu-
racy is undermined under loads with high variance. Zhang et al. [18] introduce the Time Series

Nearest Neighbor Regression (TSNNR) algorithm for prediction of future workload resource
requirements by matching the recent time series data trend to similar historical data, which can
improve the prediction accuracy compared with simple NN approach due to the consideration of
time series. However, it is constrained to limited workload scenarios. To enhance the ARIMA model
in the analysis of the nonlinear relationship and trend turning points within data sequences, Xie
et al. [79] apply ARIMA with triple exponential smoothing (ARIMA-TES) in the prediction
of container workload resource usage with multi-dimension, which can achieve high robustness
and accuracy but bring higher time overhead compared with ARIMA.

Besides, A hybrid association learning architecture is designed in Reference [80] through
combining the LSTM and Bi-LSTM models. A multi-layer structure is built to find the inter-
dependencies and relationship between various resource metrics, which are generally classified
into three distinct groups, including CPU, memory, and I/O. To further reduce the error rates of
resource usage prediction and data training time, GRU-based models are utilized due to their high
computational efficiency and prediction accuracy. Lu et al. [82] develop a hybrid prediction frame-
work consisting of a GRU and a straggler detection model (IGRU-SD) to predict the periodical
resource demand patterns of cloud workloads on a long-term basis. Likewise, Cheng et al. [72]
propose a GRU-ES model where the exponential smoothing method is used to update the resource
usage prediction results generated by GRU and reduce prediction errors. Generally, these hybrid
solutions can improve the performance of a single technique; however, due to the complex archi-
tecture, it is more difficult to analyze the contributions of different variables.

In summary, the majority of the reviewed articles in workload characterization have focused
on the analysis and prediction of request arrival rates and resource usage patterns through time
series analysis or regression models. The researchers can benefit from the investigation in this
section by selecting specific techniques according to their objectives and techniques’ advantages.
For example, given one research work aims at predicting resource demand with low error rates,
it can utilize GRU-based approach in [58], and it can improve the existing work by using more
comprehensive application models. If another work plans to forecast requests arrival rate with high
accuracy, the Bi-LSTM approaches in [71] and [78] can be the candidates. However, the researchers
need to overcome the inaccuracy in long-term prediction.

4.2.2 Performance Analysis. Performance analysis captures the key infrastructure and
application-level metrics for evaluation of the overall system status or application performance.
A summary of the ML-based performance analysis approaches is given in Table 3.
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Table 3. Summary of Performance Analysis Approaches

Ref. Mechanism Infrastructure
Application

Architecture
Methods Objectives Advantages Limitations

[59]
Time series
analysis,
regression

Single cloud Serverless LSTM, LR
Prediction of function
invoking time

Online prediction of
function chains

Additional resource consumption
for model training

[83] Regression Hybrid cloud Serverless GBR
Prediction of costs and
end-to-end latency

High prediction accuracy High computational expenses

[84] Regression Hybrid cloud Serverless BO
Prediction of costs and
execution time based on
function configurations

High prediction accuracy High computational complexity

[16]
Classification,
regression

Hybrid cloud Monolithic K-means, PR
Classification of cloud
service providers and
container clusters

High prediction accuracy
and effectiveness

Simplicity of application models

[28]
Time series
analysis

Single cloud Monolithic ANN
Resource utilization and
response time prediction

Incremental modeling Long model training time

[63]
Time series
analysis

Single cloud Monolithic ARIMA
GPU resource utilization
prediction

Discovery of the peak of
resource consumption

Implicit accuracy and time
overhead evaluation

[44] Regression Single cloud Monolithic
SVR, LR, and
ANN

Prediction of application
performance based on
resource metrics

Low error rates High computational expenses

[85] Regression Single cloud Microservice ANN
Performance modeling
of microservice workflow
systems

Sample complexity
reduction

Randomness due to boundary
effects

[86] Regression Multi-cloud Microservice SVR, ANN
Performance modeling
of microservice response
time

Time saving for route
searching

Dependency on offline training
of historical data

[87] Regression Hybrid cloud Microservice
LR, PR, RF, and
SVR

Prediction of offloading
execution time

High prediction accuracy High computational costs

[66] Regression Single cloud Microservice GP
Prediction of end-to-end
latency

High prediction accuracy High computational complexity

[74] Regression Single cloud Microservice
LR, RF, and
LASSO

Prediction of SLI
High prediction accuracy
by removing anomalies

High computational complexity

[23]
Time series
analysis,
regression

Single cloud Microservice CNN, BT
End-to-end latency and
QoS violations prediction

Online prediction with high
resource efficiency

Overfitting and misprediction

[75] Regression Single cloud Microservice
DT, MARS,
boosting, and RF

Modeling and prediction
of SSD I/O performance

Short data training time Simplicity of application models

Das et al. [83] design a performance modeler based on GBR for predicting the costs and end-
to-end latency of input serverless functions based on their configurations under edge-cloud envi-
ronments. Such metrics are the key factors in the estimation of the efficiency of function schedul-
ing decisions. Similarly, Akhtar et al. [84] leverage the Bayesian Optimization (BO) function to
achieve the same purpose. The prediction results will be used to estimate the optimal function con-
figurations that meet the time constraints in function deployment with the lowest costs. Both the
GBR and BO can provide high prediction accuracy, where the GBR is through the optimization of
different loss functions and BO is via the direct search based on Bayes Theorem to find the best re-
sults of the objective function. However, both of these approaches suffer from high computational
expenses.

To estimate the cold start latency in serverless computing platforms, Xu et al. [59] propose a two-
phase approach. LSTM is used in the first phase to predict the invoking time of the first function in
a function chain, while the rest of the functions is processed through LR. Although this two-phase
approach consumes additional resources for model training, it achieves a significant reduction of
prediction error rates and resource wasting in the container pool.

Venkateswaran and Sarkar [16] try to classify the cloud service providers and container clus-
ter configurations under multi-cloud environments through a two-level approach. K-means is em-
ployed in the first level to precisely classify the comparable container cluster compositions by their
performance data, while PR is applied in the second level for analyzing the relationship between
container strength and container system performance. The disadvantage of this work is that the
evaluated application model only contains a limited number of microservices.

Some research works have investigated the issue of infrastructure-level resource utilization pre-
diction [28, 63, 75]. Zhang et al. [28] leverage the ANN model to predict the CPU utilization and
request response time by modeling a series of metrics, including CPU and memory usage, response
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Table 4. Summary of Anomaly Detection Approaches

Ref. Mechanism Infrastructure
Application

Architecture
Methods Objectives Advantages Limitations

[41] Classification Hybrid cloud Monolithic
K-means, ensemble, and
hierarchical

Identification of overloaded
or underloaded nodes

Short data training
time

Limited workload scenarios,
high space complexity

[88] Classification Single cloud Monolithic
K-means, KNN, and
self-organizing map

Container vulnerability
detection

High detection
accuracy

Insufficient anomaly cases

[42] Classification Single cloud Microservice KNN, SVM, NB, and RF
Anomaly detection of
microservices according to
real-time performance metrics

Various monitoring
metrics

Insufficient evaluation of
application-level anomalies

[69]
Time series
analysis

Single cloud Microservice LSTM
Anomaly detection and
prediction on application
or infrastructure-level metrics

Improved prediction
accuracy

Static models

[89] Classification Single cloud Monolithic Isolation forest
Identification of abnormal
resource metrics

Improved detection
accuracy

Unstable monitoring delays

time, and the request arrival rates mentioned in Section 4.2.1. Besides, Dartois et al. [75] look
into the research topic of SSD I/O performance modeling and interference prevention with a se-
ries of regression techniques, including boosting, RF, DT, and Multivariate adaptive regression

splines (MARS). As SSDs are prevalently used by large-scale data center for data storage due
to their high performance and energy efficiency, their internal mechanisms could directly impact
application-level behaviors and cause potential SLO violations. Compared with the ANN approach,
these regression-based approaches can obtain results within a shorter data training time, while the
prediction accuracy is not as good as ANN.

On the other hand, some previous studies focus on behavior modeling of application-level met-
rics [23, 66, 74, 85]. RScale [66] is implemented as a robust scaling system with high computa-
tional complexity leveraging Gaussian process (GP) regression for investigation of the inter-
connections between end-to-end tail latency of microservice workloads and internal performance
dependencies. Likewise, Sinan [23], as an ML-based and QoS-aware cluster manager for container-
ized microservices, combines the CNN and BT model for the prediction of end-to-end latency and
QoS violations. Taking both the microservice inter-dependencies and the time series pattern of
application-level metrics into account, Sinan evaluates the efficiency of short-term resource allo-
cation decisions as well as long-term application QoS performance. In most cases, the approach
functions well except overfitting and misprediction may happen occasionally.

Overall, most studies in this section are concerned with prediction of time constraints or re-
source usage patterns through regression or time series analysis techniques.

4.2.3 Anomaly Detection. Anomaly detection is a critical mechanism for identifying abnormal
behaviors in system states or application performance. Table 4 describes the reviewed approaches
regarding anomaly detection.

Due to the application-centric and decentralized features of containers, they are more likely to
experience a wide range of security threats, which may lead to potential propagation delays in con-
tainer image dependency management or security attacks [90]. Tunde-Onadele et al. [88] classify
28 container vulnerability scenarios into six categories and develop a detection model, including
both dynamic and static anomaly detection schemes with KNN, K-means, self-organization map
algorithms, which could reach detection coverage up to 86%. High detection accuracy has been
achieved by this approach; however, the investigated anomaly cases are not comprehensive.

To balance the energy efficiency and resource utilization of a containerized computing system
under hybrid cloud environments, Chhikara et al. [41] employ K-means, hierarchical clustering
algorithms, and ensemble learning for identification and classification of underloaded and over-
loaded hosts. Further container migration operations will be conducted between these two groups
for load balancing and energy consumption reduction. The limitations are that this hybrid solution
leads to a large solution space and only considers limited workload scenarios.
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Table 5. Summary of Dependency Analysis Approaches

Ref. Mechanism Infrastructure
Application

Architecture
Methods Objectives Advantages Limitations

[86] Regression Multi-cloud Microservice BO, GP
Discovery of optimal route
of individual microservice

Load balance
Poor performance under highly
dynamic environment

[24] Classification Single cloud Microservice SVM
Identification of potential
heavy-loaded microservice
units

High accuracy
Implicit explanation of the time
overhead and computational costs

[23] Classification Single cloud Microservice CNN
Dependency analysis of
microservices between
pipelined-tiers

Navigation of
system complexity

Overfitting and misprediction

[69]
Time series
analysis

Single cloud Microservice LSTM
Dependency analysis
among microservice units

Improved prediction
accuracy

Ignorance of dependency updates

Shah et al. [69] extend the LSTM model to analyze the long-term dependencies of real-time
performance metrics among microservice units. Relying on the static models they constructed,
they manage to identify critical performance indicators that support anomaly detection of various
application and infrastructure-level metrics, including network throughput and CPU utilization.

4.2.4 Dependency Analysis. Table 5 summarizes the recent studies in service dependency anal-
ysis of containerized applications. As serverless function chains or workflows are usually pre-
defined by users [91], current ML-based dependency analysis solutions only focus on decomposing
the internal structures of microservice units and monitoring any dynamic structural updates.

SVM is utilized by Qiu et al. [24] to find the microservice units with higher risks causing SLO
violations through analysis of the performance metrics related to the critical path (CP) of each
individual microservice. CP is defined as the longest path between the client request and the un-
derlying microservice in the execution history graph. Since CP can change dynamically at runtime
in response to potential resource contention or performance interference, the SVM classifier is im-
plemented with incremental learning for dependency analysis in a dynamic and consistent man-
ner. However, the relationship between the time overhead and computational costs is not detailed
discussed.

Load balancing between microservices under the multi-cloud environment could be rather com-
plex, because of the unstable network latency, dynamic service configuration, and fluctuating ap-
plication workloads. To address this challenge, Cui et al. [86] leverage the BO search algorithm
with GP to produce the optimal load-balanced request chain for each microservice unit. Then all
the individual request chains are consolidated into a tree structure dependency model that can be
dynamically updated in case of potential environmental changes. This solution can achieve good
load balancing effects, while performance can be degraded under a highly dynamic environment
as the updates are quite time-consuming.

4.3 Resource Provisioning

In this section, we discuss various resource provisioning techniques, including scheduling, scaling,
and migration.

4.3.1 Scheduling. As shown in Table 6, various algorithms have been proposed to solve the
scheduling issue for improving system and application performance.

Most of the reviewed approaches follow a design pattern of combining ML-based Workload
Modelers or Performance Analyzers with a heuristic scheduling Decision Maker, as discussed in
Section 2.2.4. As the system complexity has been navigated by prediction models, bin packing and
approximation algorithms such as best fit or least fit are commonly adopted to make scheduling
decisions with improved resource utilization and energy efficiency [8, 16, 18, 58, 83, 84]. For ex-
ample, Venkateswaran and Sarkar [16] manage to significantly reduce the complexity of selecting
the best-fit container system and cluster compositions under multi-cloud environments, standing
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Table 6. Summary of Scheduling Approaches

Ref. Infrastructure
Application

Architecture
Methods

Task

Structure
Objectives Advantages Limitations

[58] Single cloud Serverless Heuristic
Multiple
independent

Resource utilization
improvement and
energy saving

Reduction of cold start and
response latency

Poor efficiency for tasks
with long lifetimes

[83] Hybrid cloud Serverless Heuristic Single
Cost and latency
minimization

Multi-objective task
placement

Limited accuracy under
high load variance

[84] Hybrid cloud Serverless Heuristic Graph-based Cost minimization SLA assurance
Simplicity of application
workloads

[8] Single cloud Monolithic Heuristic Single
Resource utilization
optimization

Load balance High scheduling delays

[16] Hybrid cloud Monolithic Heuristic Single
Automated task
deployment

Optimized container build
time and provisioning time

High computational
expenses and time
overhead

[63] Single cloud Monolithic Heuristic Single
Resource utilization
and energy efficiency
optimization

QoS improvement
Insufficient analysis of
computational costs and
time complexity

[85] Single cloud Microservice Actor-Critic Graph-based Cost saving
Training time reduction
and accuracy improvement

Limitation caused by
scarce data

[18] Single cloud Microservice Heuristic Graph-based
Resource utilization
optimization

Cost saving High scheduling delays

[25] Single cloud Microservice
Q-Learning,
SARSA

Graph-based
Minimization of
task execution time

SLA assurance Limited scalability

[26] Single cloud Microservice
Actor-Critic,
ANN

Single
Minimization of task
completion time

Performance interference
awareness

Implicit description of
the space and time
complexity

on their prediction model described in Section 4.2.2. To mitigate the resource contention between
co-located tasks deployed at the same host, Thinakaran et al. [63] implement a correlation-based
scheduler for handling task co-location by measuring GPU consumption correlation metrics, es-
pecially consecutive peak resource demand patterns recognized by its ARIMA prediction model.
Generally, although these heuristic-based approaches can achieve acceptable results within a short
time, the results are not the optimal ones.

The rest of the studies choose RL models as the core component in their scheduling engine.
For instance, Orhean et al. [25] choose two classic model-free RL models, namely, Q-Learning and
SARSA, to schedule a group of tasks in a DAG structure. To reduce the overall DAG execution time,
the internal tasks in a DAG categorized by their key features and priorities are scheduled under
consideration of the dynamic cluster state and machine performance. To address the limitation of
high sample complexity of model-free RL approaches, Zhang et al. [85] attempt to handle scientific
workflows under microservice architectures through model-based RL. An ANN model is trained
to emulate the system behavior by identification of key performance metrics collected from the
microservice infrastructure, so that the synthetic interactions generated by ANN could directly
be involved in the policy training process with Actor-Critical to generate scheduling decisions. In
such a way, it simplifies the system model and avoids the time consuming and computationally
expensive interactions within the real microservice environment. In RL-based scheduling algo-
rithms, the states and actions require to be carefully designed, otherwise, the scalability can be
significantly limited due to the large solution space.

In conclusion, heuristic or RL models are applied in most of the investigated works for decision
making in task scheduling, to achieve resource utilization improvement and task completion time
minimization.

4.3.2 Scaling. Scaling can dynamically adjust the system states in response to the changing
workloads and cloud environments. Different from the scheduling introduced in Section 4.3.1, the
target of scaling is for containerized applications rather than tasks. Currently, the dominant scal-
ing mechanisms include horizontal scaling via increasing or decreasing instances of containers,
vertical scaling via adding or removing hardware resources for a single container, and hybrid
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Table 7. Summary of Scaling Approaches

Ref. Mechanism Infrastructure
Application

Architecture
Methods Objectives Advantages Limitations

[59] Horizontal Single cloud Serverless Heuristic
Reduction of execution
latency and resource
consumption

Alleviation of cold starts
Instability under changing
workloads

[60] Horizontal Single cloud Serverless Q-Learning SLA assurance
Reduction of time overhead
of cold starts

Simplicity of training model

[92] Hybrid Single cloud Monolithic Ensemble Resource saving
High resource efficiency
and reliability

Limited flexibility

[8] Horizontal Single cloud Monolithic Heuristic
Resource utilization and SLA
assurance

High resource efficiency Frequent cluster resizing

[28] Horizontal Single cloud Monolithic
SARSA,
Q-Learning

Resource utilization
optimization

SLA violation reduction Inaccuracy due to cold starts

[76] Hybrid Single cloud Monolithic
Model-based
RL

Minimization of application
performance penalty,
adaption costs, and resource
usage

Improved training speed
Simplicity of application
models

[77] Hybrid Multi-cloud Monolithic
Model-based
RL, heuristic

Optimal application
performance and adaption
time

Cost saving
Simplicity of application
structures and QoS
requirements

[30] Horizontal Hybrid Cloud Monolithic MDP, SARSA
Minimization of resource
consumption and response
time

High scalability Limited dimensionality

[65] Horizontal Single cloud Microservice BO, GP SLA assurance
High precision and short
training time

Poor performance and
sub-optimal decisions under
workload spikes

[93] Horizontal Single cloud Microservice RF SLA assurance
Container expansion time
reduction

Limited QoS and workload
scenarios

[29] Vertical Single cloud Microservice Q-Learning
Optimization of resource
configurations and costs

SLA assurance Limited workload scenarios

[70] Horizontal Single cloud Microservice Heuristic Cost minimization
resource utilization
improvement

High time complexity

[81] Horizontal Single cloud Microservice Heuristic Resource efficiency
Avoidance of oscillations
under unexpected workload
spikes

Rigid scaling mechanisms

[66] Horizontal Single cloud Microservice Heuristic SLA assurance
Resource utilization
optimization

High time complexity

[67] Horizontal Single cloud Microservice Heuristic SLA assurance Lower request loss High resource usage

[74] Vertical Single cloud Microservice Heuristic SLO assurance
Improved resource
utilization

Simplicity of application
datasets

[78] Horizontal Hybrid cloud Microservice SARSA
Resource utilization
optimization

SLA assurance
Capability limitation of edge
devices

[23] Horizontal Single cloud Microservice Heuristic QoS assurance
Resource utilization
optimization

Implicit evaluation of
computational costs and
time complexity

[24] Hybrid Single cloud Microservice Actor-critic
Resource utilization
optimization

SLO violation mitigation
Limited scalability and
anomaly detection

scaling by combining horizontal scaling and vertical scaling. The research works related to scaling
are given in Table 7, which summarizes the adopted scaling mechanism, optimization objective,
advantages, and limitations of investigated approaches. The researcher can select the appropriate
approach based on their research goals.

To improve the decision quality and accuracy of RL-based autoscalers for monolithic applica-
tions with SLA assurance, Zhang et al. [28] build a horizontal scaling approach through the SARSA
algorithm, based on analysis of the application workloads and CPU usage predicted by the ARIMA
and ANN models. For addressing the same research questions under fog-cloud environments, Sami
et al. [30] simulate the horizontal scaling of containers as an MDP model that considers both the
changing workloads and free resource capacity in fogs. Then, SARSA is chosen for finding the
optimal scaling strategy on top of the MDP model through online training at a small data scale.
Further considering the possibility of hybrid scaling of monolithic applications, Rossi et al. [76]
propose a model-based RL approach, targeting to find a combination of horizontal and vertical
scaling decisions that meet the QoS requirements with the lowest adaption costs and resource
wastage. Furthermore, the authors extend this model with a network-aware heuristic method for
container placement in geographically distributed clouds [77]. Although the RL-based approaches
mentioned above can improve resource utilization and QoS to a certain degree, their application
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workloads and QoS scenarios are too simple, without enough consideration of the diversity and
complexity of cloud workloads.

Plenty of previous studies [66, 67, 70, 74, 81] have tried to leverage heuristic methods for mi-
croservice scaling, assisted by ML-based workload modeling and performance analysis. However,
such approaches underestimate the inter-dependencies between microservices that are updated dy-
namically. On the other hand, model-based RL algorithms are usually unsuitable for microservice-
based applications for the same reason. As microservice dependencies could potentially change at
runtime, the simulation of state transitions could then be invalid.

Therefore, model-free RL algorithms are more common in the application scaling of microser-
vices, as they do not rely on transition models. Qiu et al. [24] implement an SLO violation allevi-
ation mechanism using Actor-Critic to scale the critical microservices detected by SVM as men-
tioned in Section 4.2.4. The Actor-Critic model produces a horizontal scaling decision to minimize
the SLO violations through evaluating three crucial features, including SLO maintenance ratio,
workload changes, and request composition. To speed up the model training process of RL meth-
ods, Yan et al. [78] design a multi-agent parallel training model based on SARSA for horizontal
scaling of microservices under hybrid clouds. Assisted with the workload prediction results gen-
erated by Bi-LSTM , their elastic scaling approach could make a more accurate scaling decision
of when, where, and how many microservice instances should be scaled up/down. In such a way,
it achieves significant resource utilization improvement and cost reduction under SLA assurance.
However, due to the high computation complexity, this approach is not suitable for edge devices
given their limited capability.

Cold starts during the invocation of serverless functions are a serious performance bottleneck
of serverless computing platforms. Cold starts are defined as the time overhead of environment
setup and function initialization. Xu et al. [59] present a container pool scaling strategy, where
function containers are pre-initialized by evaluating the first function invocation time (predicted
by LSTM as discussed in Section 4.2.2) and the number of containers in each function category.
Similarly, Agarwal et al. [60] introduce a Q-Learning agent to summarize the function invocation
patterns and make the optimal scaling decisions of function containers in advance. A series of
metrics, including the number of available function containers, per-container CPU utilization, and
success/failure rates, are selected to represent the system states in the Q-Learning model. Due to
the nature of model-free RL methods, prior information of the input function is not necessary.
However, the performance is not guaranteed under changing workloads as only simple types of
workloads are considered in these solutions.

In summary, there has been a large body of literature in the area of scaling using diverse solu-
tions, covering all types of application architectures and cloud infrastructures. The majority of the
reviewed works are related to autoscaling of microservice-based applications, with the model-free
RL models as the latest resolution to process the dynamically changing workloads and microser-
vice dependencies [24, 29, 78]. Their common targets mainly focus on SLA assurance and resource
efficiency optimization.

4.3.3 Migration. As depicted in Table 8, Migration is a complementary mechanism for resource
optimization across cloud environments.

Some reviewed approaches manage to bind ML-based behavior models with heuristic migration
algorithms. Zhong et al. [8] develop a least-fit rescheduling algorithm to evict and relocate a set of
lower-priority containers with the least QoS impact when unexpected resource contention occurs
between co-located containers. The rescheduling algorithm readjusts the container configuration
based on runtime performance metrics and selects the node with the most available resources
evaluated by K-means for relocation. Besides, Chhikara et al. [41] introduce an energy-efficient
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Table 8. Summary of Migration Approaches

Ref. Mechanism Infrastructure
Application

Architecture
Methods Objectives Advantages Limitations

[8] Rescheduling Single cloud Monolithic Heuristic SLA assurance
Resource contention
alleviation

Long execution delays

[31] Offloading Hybrid cloud Monolithic
MDP, DNN, and
Q-Learning

Reduction of communication
delays, power consumption

Low migration costs High space complexity

[41] Offloading Hybrid cloud Monolithic Heuristic Energy efficiency improvement Load balance
High time and space
complexity

[18] Rescheduling Single cloud Microservice Heuristic Resource utilization optimization Cost saving SLA violations

[94] Offloading Hybrid cloud Microservice
Q-Learning,
MDP

Reduction of service delays and
migration cost

Optimized performance
Lack of consideration on
load balancing

offloading model with a set of heuristic methods, including random placement, first-fit, best-fit,
and correlation threshold-based placement algorithms. It is aimed at resource load balancing un-
der hybrid cloud environments by migrating containers from overloaded nodes to underloaded
nodes that are identified through classification as described in Section 4.2.3. However, since the
performance metrics are obtained by third-party APIs, these approaches may come with high ex-
ecution delays in large-scale computing systems.

A fog-cloud container offloading prototype system is presented by Tang et al. [31]. The container
offloading process is considered as a multi-dimensional MDP model. To reduce the network delays
and computation costs under potentially unstable environments, the deep Q-Learning algorithm
combines the deep neural network (DNN) and Q-Learning model to quickly produce an efficient
offloading plan. Wang et al. [94] further extends the combination of MDP and Q-Learning in the
context of microservice coordination under edge-cloud environments. The process of microser-
vice coordination is assumed as a sequential decision scheme and formulated as an MDP model.
On top of the MDP model, Q-Learning is used to find the optimal solution for service migration
or offloading, in light of long-term performance metrics, including overall migration delays and
costs. However, the large solution space of these approaches limits the scalability of a large-scale
container-based cluster.

4.4 Observations

In this section, we summarize the observations of the discussed researches based on three im-
portant categories, namely, application architecture, infrastructure, and hybrid machine learning
model.

4.4.1 Application Architecture. As described in Figure 7(a), most of the reviewed articles (68%)
are concerned with modeling and management of microservice-based applications. In light of
the dynamic and decentralized nature of microservices, diverse ML algorithms have been inves-
tigated for capturing the key characteristic of microservice workloads, performance, and inter-
dependencies, such as BGR, LSTM, GRU, SVM, GP, ANN, CNN, and DT [23, 69, 70, 81, 82, 85, 86].
As the inter-dependencies of microservice units could dynamically update at runtime, the key
concern of microservice resource provisioning is the chain reactions caused by microservice unit
scaling operations. By combining ML-based behavior models with heuristic or model-free RL meth-
ods for scaling, the most recent studies manage to achieve high resource utilization optimization,
cost reduction, and SLA assurance [24, 66, 67, 70, 74, 78, 81].

The research works related to the orchestration of single-component containerized applications
hold a study distribution of 22%. As the workload scenarios of these applications are relatively
simple, their core drive of workload/behavior modeling is to predict their resource demands un-
der certain QoS requirements. Assisted with such prediction results, heuristic and RL methods
(both model-free and model-based) are adopted for optimization of the resource allocation process
regarding cost, energy, and resource efficiency [8, 16, 28, 44, 63, 79, 80].
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Fig. 7. Study distribution of (a) application architectures and (b) cloud infrastructures.

Although the serverless architecture is currently having the lowest study distribution (10%), it is
enjoying a growing popularity and becoming a prevalent application architecture in cloud comput-
ing. Most of the existing ML-based researches in this field are trying to alleviate the performance
downgrade caused by function cold starts. LSTM and GBR models have been employed to estimate
the function invocation time in serverless function chains, while the allocation of functions and
scaling of function containers are mainly solved by heuristic methods and Q-Learning [58–60, 83].

4.4.2 Infrastructure. The majority of the included researches (71%) only consider application
deployment under single cloud environments as demonstrated in Figure 7(b). Since single cloud
environments are easier to manage, it is not necessary to raise the system complexity for most
applications. Only 5% of studies have attempted behavior modeling and scaling under geographic-
distributed multi-cloud environments [77, 86], because the interactions under such context are
usually time-consuming and computation-intensive.

As traditional cloud computing commonly causes significant propagation delays, bandwidth and
energy consumption by hosting all the applications and data in cloud servers, edge and fog com-
puting are emerging as mainstream computing paradigms. Therefore, the latest studies have inves-
tigated the possibility of container orchestration under hybrid cloud environments, where the cru-
cial research question is to decide where to host the containerized applications among cloud/edge
devices and the cloud. The proposed solutions for scheduling and offloading of containerized appli-
cations under hybrid clouds, including MDP, RL, DRL, and heuristic methods [16, 30, 31, 41, 78, 83],
aim to reduce end-to-end latency and optimize resource/energy efficiency.

4.4.3 Hybrid Machine Learning Model. Figure 8 shows the study distribution of ML models be-
tween 2016 and 2021, where we can observe a rising trend of hybrid ML models. A single ML
model consisting of merely one ML algorithm is designed to solve a specific container orchestra-
tion problem, either data analysis or resource provisioning. By 2018, only single ML models had
been adopted in this field. As the internal structures of containerized applications like microser-
vices are becoming rather complex and dynamic with continuously growing demands of higher
modeling/prediction accuracy and lower response time, this requires ML models to be more robust
and efficient with even lower error rates, computation costs, and data training time. Therefore,
most studies have been investigating hybrid ML models composed of a mixture of multiple ML
algorithms to solve one or more orchestration problems from 2019 [31, 65, 72, 79, 80, 82, 94].
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Fig. 8. Study distribution of machine learning models between 2016 and 2021.

Table 9. Problems in Containers Orchestration and Potential ML-based Solutions

Problems in container orchestration Potential ML-based solutions

How to characterize workloads by modeling and predicting requests
behavior and resource usage pattern?

LSTM, K-means++, ARIMA, Bi-LSTM, GRU, TSNNR, and GBR

How to analyze inter-dependency between microservices? BO, GP, CNN, and LSTM

How to detect anomalies in container orchestration systems? K-means, KNN, SVM, NB, RF, LSTM, isolation forest, and LASSO

How to analyze dependency of tasks in containerized applications? SVM
How to achieve energy efficient resource scheduling for containers? MDP, Q-learning, and SARSA

How to balance the trade-offs between different metrics during
container orchestration?

Actor-critic, ANN, and RF

How to reduce the communication delay when moving microservices to
edge/fog devices?

DNN, Q-learning

How to alleviate function cold starts in serverless computing? Q-learning, LSTM, and LR

How to make scaling/migration decisions for containers? Model-based RL, and MDP

5 DISCUSSIONS AND FUTURE DIRECTIONS

Tackling the problem of container orchestration based on ML in cloud computing requires address-
ing a set of sub-problems including workloads characterization, microservice inter-dependency
analysis, container anomalies detection, and task dependency analysis. Various ML-based solu-
tions have been proposed and applied to solve these problems. To support the readers to pick up
the solutions to their target problems, Table 9 summarizes the techniques utilized in the surveyed
research work. From the present survey, we can conclude that significant efforts have been made to
address the workloads characterization problem and the dominant ML mechanisms, such as LSTM,
Bi-LSTM, K-means, and ARIMA have been applied. However, for some other problems such as de-
pendency analysis in tasks and communication delays in edge devices, they are worth considering
the adoption of more ML solutions when realizing more efficient solutions to the problems.

Although the existing studies have covered diverse orchestration schemes, application architec-
tures, and cloud infrastructures, some research gaps and challenges are only partially addressed.
In this section, we discuss a series of open research opportunities and potential future directions:

(1) Workload Distribution in Microservices. The current workload characterization meth-
ods are mainly focusing on modeling and prediction of the request arrival rates and resource
usage patterns. Very few works try to address the issue of workload distribution across
microservice units. The changing workload distribution on individual microservices could
potentially cause a chain reaction and further impact the overall application performance.
Therefore, how to simulate and standardize workload distribution between microservices
for load balance and performance optimization remains an unsolved research question. This
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question can be addressed by using efficient and accurate workload distribution prediction
methods based on ML, and the efficiency of the tasks scheduling discussed in Section 4.3.1
can be further improved.

(2) Microservice Dependency Analysis. The dynamic inter-dependencies between microser-
vices is a crucial part of application complexity navigation. Though some works have at-
tempted to predict application performance or identify critical microservice units through
dependency analysis, there is no existing solution to explicitly address the relationship be-
tween the status of individual microservices and overall application performance metrics.
Such analysis models are necessary for scheduling and scaling microservice-based applica-
tions, which can significantly improve performance optimization and SLA assurance. One
promising approach is taking advantage of advanced ML-based approaches to establish com-
prehensive analysis models for microservices.

(3) Systematic Anomaly Detection and Recovery. The current ML-based anomaly detection
methods for containerized applications are mostly based on resource/performance metrics or
security threats. There is a need for a systematic approach for anomaly detection, root cause
categorization, and recovery in a timely and accurate fashion, under different application
architectures and cloud infrastructures. For example, RL-based approach can be applied for
making decision on recovery.

(4) Graph-based Task Scheduling. Batch processing jobs consisting of a group of dependent
tasks in DAG structures are common in containerized applications, but the literature re-
lated to the scheduling problem of such applications is very limited. Some previous studies
manage to resolve this problem under a simplified condition of homogeneous job structures
where each task in a DAG is configured similarly with the same execution time. This kind of
assumption is rather unrealistic considering the complex and heterogeneous nature of DAG
jobs. A sophisticated scheduling strategy should not only consider the overall DAG struc-
ture and different task configurations (e.g., resource demands, execution time, and replica
sizes), but also the runtime performance metrics and fault tolerance. One promising way
is to model these configurations as the states in the RL-based model and the tasks can be
scheduled by the actions in the model to improve performance.

(5) Management of Function Chains in Serverless Architectures. The latest ML-based
studies on serverless architectures are all related to the alleviation of function cold starts,
with many other research directions left to be discovered. As functions are submitted with-
out any prior application-level knowledge, it is tricky to implement a robust and efficient
solution for workload classification, resource demand estimation, and autoscaling. How to
optimize the invocation of function chains in an SLO and cost-aware manner is also a crucial
research question, especially under hybrid cloud environments. As an initial exploration, we
suggest using SVM or KNN-based approaches to conduct some analysis for the invocation
of function chains.

(6) Microservices in Hybrid Clouds. Under the emerging trend of edge and fog computing,
the most recent studies have made efforts to move microservices to edge/fog devices for com-
munication delays reduction and cost saving. However, the extremely heterogeneous and
geographically distributed computation resources within hybrid clouds significantly raise
the complexity of application and resource management. A resource provisioning solution
under such environments must consider the long-term impacts of each microservice place-
ment or adjustment decision, regarding multi-dimensional optimization objectives, such as
costs, energy, and end-to-end latency. Therefore, there is great potential for ML-based solu-
tions to simulate the process of scheduling, scaling, and offloading for microservices under
hybrid clouds.
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(7) Energy-aware Resource Management. Through combing ML-based workload character-
ization and performance analysis models, the overall energy consumption of a system could
be precisely predicted based on the resource utilization of each PM. Accordingly, these in-
sights grant us more options for developing energy-aware orchestration frameworks. For
instance, brownout technologies could be utilized to activate/deactivate optional microser-
vices for energy efficiency optimization, according to the predicted trends in resource utiliza-
tion and SLA violations [33], where the selection of deactivated microservices can be made
by ML-based approaches.

(8) Multi-dimensional Performance Optimization. One of the essential optimization prob-
lems in container orchestration is to manage the tradeoff between different performance met-
rics, especially SLA violations and financial costs. Though some previous studies [58, 63, 83]
address this issue to a certain degree by balancing several optimization objectives during re-
source provisioning, a standard performance analysis benchmark should be designed to ac-
curately decompose the relation between a set of pre-defined key performance metrics. The
relationship of various performance metrics can be analyzed via ML-based solutions, such
as nearest neighbour or decision tree to represent co-relationship. Such knowledge could
be further applied in resource provisioning to produce optimal orchestration decisions with
multiple performance requirements taken into account.

(9) Fully Integrated ML-based Optimization Engine. Considering the long data training
time and large data volumes requested by ML models, a partially integrated ML engine
enjoys high popularity, where existing ML models are only utilized for behavior model-
ing to assist the original Container Orchestrator in online resource provisioning. Following
the reference architecture of ML-based optimization engine in Section 2.2.4, a fully inte-
grated ML engine should be capable of combining multiple ML models, such as integrat-
ing both offline training of behavior models and fast online decision making of resource
provisioning.

(10) Edge Intelligence. Due to the extreme data scales and geographical distribution of edge
devices, data transition to a centralized ML-based Optimization Engine across edge networks
is potentially time-consuming and expensive. Hence, the next-generation edge intelligence
agents should follow a decentralized architecture where each independent agent is deployed
at a distributed location close to end users for data collection, analytical model construction,
and maintenance of serverless or microservice-based applications under low propagation
delays. However, the current researches are mainly conducted with small-scale experiments
and the scalability problem with multiple agents is not well addressed. A promising solution
is to apply the approximate solution based on RL to manage agents that can scale for a
large-scale environment.

(11) Costs Analysis of Applying ML. Based on the current survey, ML solutions have demon-
strated the powerful capacity to address some problems in container orchestration. However,
in some cases, such as the online decision scenario or energy-efficient scenario, the compu-
tational costs of ML-based methods can undermine the algorithm performance or consume
extra energy. Although some researches have aimed at reducing the costs of the online de-
cision based on ML [24], the current research still lacks a comprehensive analysis of the
costs incurred by ML-based solutions of container orchestration. One promising approach
to address this problem is balancing the tradeoffs between offline and online training, for
instance, in the RL-based approach, the more trained decisions based on historical data can
be stored in the knowledge pool, and the online decisions can rely more on it rather than
online training. In addition, the state space should be carefully designed.
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6 CONCLUSION

In this work, we have conducted an extensive literature review on how container orchestration
is managed using diverse machine learning-based approaches in the state-of-the-art studies, with
emphasis on the specific application architectures and cloud infrastructures. The last few years
have witnessed a continuously growing trend of the adoption of machine learning methods in con-
tainerized application management systems for behavior modeling, as well as resource provision-
ing of complicated decentralized applications. Compared with most traditional heuristic methods,
ML-based models could produce more accurate orchestration decisions with shorter computation
delays, under complex and dynamic cloud environments consisting of highly heterogeneous and
geographically distributed computation resources.

We have observed machine learning-based methods applied under a wide range of scenarios, but
there is no systematic approach to build a complete machine learning-based optimization frame-
work in charge of the whole orchestration process. Under the emerging trend of moving microser-
vice and serverless applications to hybrid clouds, such frameworks are necessary to handle the
sustainably growing system complexity and balance multi-dimensional optimization objectives.
This research work will help researchers find the important characteristics of ML-based orches-
tration approaches and will also help to select the most suitable techniques for efficient container
orchestration with the specific requirement under different application architectures. For instance,
researchers can utilize the GRU-based approach to conduct time series analysis of workloads, and
exploit the RL-based approach to make resource provisioning decisions.
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