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Abstract—Mobile cloud computing (MCC) has drawn signif-
icant research attention as the popularity and capability of
mobile devices have been improved in recent years. In this paper,
we propose a prototype MCC offloading system that considers
multiple cloud resources such as mobile ad-hoc network, cloudlet
and public clouds to provide a adaptive MCC service. We
propose a context-aware offloading decision algorithm aiming
to provide code offloading decisions at runtime on selecting
wireless medium and which potential cloud resources as the
offloading location based on the device context. We also conduct
real experiments on the implemented system to evaluate the
performance of the algorithm. Results indicate the system and
embedded decision algorithm can select suitable wireless medium
and cloud resources based on different context of the mobile
devices, and achieve significant performance improvement.

I. INTRODUCTION

In recent years, mobile devices such as smart phones and

tablets have been upgraded into more powerful terminals

with faster CPU, substantial memory, and multiple sensors.

However, the battery lifetime is still a major concern of the

modern mobile devices. From the users’ perspective, they need

better performance of their mobile devices, which reflects on

longer battery life and shorter processing time of any kind of

services. To overcome this obstacle, mobile cloud computing

[1] is introduced.

Mobile cloud computing (MCC) provides services by bring-

ing the abundant resources in cloud computing [2] to the

proximity of mobile devices so as to empower the mobile

applications performance and conserve the battery life. One

of the techniques adopted in mobile cloud computing is code

offloading [3]. It identifies the computing intensive code of a

mobile program and offloads the task to a cloud service via

wireless networks. In the concept of code offloading, cloud

resources used for offloading have many different types. First

and the most common resource is public cloud computing ser-

vices like Amazon, Google and Microsoft Azure that provide

pay-as-you-go services over the Internet. Secondly, a nearby

server named cloudlet [4] is considered as cloud resource

with fast network connection as well as powerful processors.

Cloudlet serves as a middle layer between mobile devices

and public cloud services to reduce the network delay and

accelerates the computing. Third, a local mobile device ad-

hoc network forming a device cloud is another potential cloud

resource, especially when there is no access to the Internet.

Many works have been done in MCC[5], [6], [7] and [8].

They mainly focus on the code partitioning and offloading

techniques, assuming a stable network connection and suffi-

cient bandwidth. However, the context of a mobile device,

e.g. network conditions and locations, changes continuously

as it moves throughout the day. For example, the network

connection may not be available or the signal quality is not

good. Since a mobile device usually has multiple wireless

connections such as WiFi, cellular networks and Bluetooth,

and each connection performs differently in terms of speed and

energy consumption, the way of utilizing wireless interfaces

can significantly impact the performance of the mobile cloud

system and user experience. Moreover, as we described above,

there are multiple options of cloud resources that can be

selected for code offloading under different conditions. For

example, when there is no Internet connection available, a

group of mobile device users can still perform mobile cloud

service by building a local mobile device network, while when

a single user who has no access to local mobile device network

or Internet but a cloudlet can still outsource the computation-

intensive tasks to improve the device performance and save the

battery life. This issue has not been rigorously studied in the

literature as many works only target the public cloud service

as the resource.

To tackle the issues mentioned above and improve the

service performance in mobile cloud computing, we propose a

context-aware MCC system that takes the advantages of both

nearby cloudlet, local mobile device cloud, and public cloud

computing services in the remote to provide an adaptive and

seamless mobile code offloading service. The objective of the

proposed system is to derive an optimal offloading decision

under the context of the mobile device and cloud resources to

provide better performance and less battery consumption. The

main contributions of our work are as follows:

• First, we present the design of an MCC architecture with

nearby mobile cloud, cloudlet and public cloud VMs.

• Second, we provide cost estimation models for cloud VM,

local mobile ad-hoc network, and clone VM running on

cloudlet and public cloud, and devise an context-aware
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decision making algorithm taking into consideration the

estimation results from the models and the mobile device

context to provide offloading policies of where, when and

how to offload for the mobile applications. We present

implementation and evaluation of the performance of the

system and the algorithm. The results show the system

can help reduce upto 70% of the execution cost for heavy

computation applications.

The remainder of this paper is organized as follows. In

Section II, we introduce the design of the system architecture.

In Section III, we explain the details of cost estimation model

and the context-aware offloading algorithm. In Section IV,

we present the implementation of the system and conduct

corresponding experiments to evaluate the performance of the

system, following by a discussion of related work in section

V and finally in section VI we give a conclusion.

II. SYSTEM DESIGN

In this section, we explain the design of the system, the cost

estimation models and the problem formulation in details.

A. System Architecture

The proposed framework adopts client-server communica-
tion model, in which the cloud resources (e.g. mobile device

cloud, public cloud) are servers and the mobile device is the

client to access the services on servers. On the client side, the

framework consists of three components, namely a context

monitor, a communication manager and a decision engine.

On the server side, it includes a server side communication

manager, a program profiler and a task manager. Our system

is build on ThinkAir framework[7], which uses Java reflection

and annotation to perform the offloading on method level,

and ThinkAir also considers scalability of the VMs on the

server. The system architecture is shown in Fig.1. In this

work, the target cloud resources are mobile devices cloud

formed by a wireless ad-hoc network (MANET), and VMs

running mobile clone in nearby cloudlet and public cloud. The

MANET consists of available mobile devices in proximity that

have heterogeneous processing power. It is considered to have

limited computing resource and uncertain number of devices.

Cloudlet is a local surrogate with considerable processing

power and stable connection to the Internet. The public clouds

are considered a resource-rich service with homogeneous VM

running a customized mobile operating system. The system

components design and relations between each component are

described below.

1) Components:
• Context Monitor

The context monitor profiles multiple context parameters

at runtime and passes the values to decision engine. Since

the profiling results have significant effect on the decision

making accuracy, the system includes a program profiler,

a device monitor, and a network monitor.

a) Program Profiler: The program profiler tracks the

execution of a program on method level. The informa-

tion includes 1) the overall instructions executed, 2) the

Figure 1. System Architecture

execution time, 3) the memory allocated, 4 )the number

of calls of this method and 5) the method execution

location(e.g. local, cloud). The profile is updated at every

invocation and store in the mobile database. It is used in

the cost estimation model for prediction. We will discuss

the models in the following section.

b) Device Profiler: The device profiler works with

context monitor to collect the hardware information at

runtime and then passes it to the estimation model for

prediction. The profile includes 1) the average CPU

frequency, 2) the average CPU usage 3) memory and

its usage and 4) battery level. The profiler gathers the

hardware information of all the devices and passes it onto

the cost estimation model.

c) Network Monitor: The context monitor collects the

context information of the mobile device asynchronously

at runtime so that it can record any change in the

context. The data is passed to cost estimation models

when needed. The context being monitored includes: 1)

battery level, 2) cell connection state and its bandwidth,

3) WiFi connection state and its bandwidth, 4) Bluetooth

state, 5) the conjunction level of the connection (RTT) to

VMs on the cloud, and 6) the signal strength of cell and

WiFi connection.

• Communication Manager
The communication manager on both client and server

side handles connections between client mobile device

and the remote execution in either local mobile device

cloud or remote cloud VMs. It consists of a cloud

resource discovery service and a communication handler.

Once the decision engine produces the offloading policy,

the communication manager takes over the task and

executes the policy. In case of remote execution failure,

the communication manager will fall back and execute

the task locally, while reconnecting to the faulty device.

a) Discovery Service: Discovery service at runtime

provides the system with the information of MANET

and VMs in nearby cloudlets and public clouds. For

the cloudlet and public cloud VMs, discovery service

updates the availability, network connection quality and
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hardware information of the cloud resources periodically.

Since we need to reduce the overhead of the decision

making process and the conditions of cloudlet and public

cloud are more stable, we set the updating time as every

one minute. For the MANET, the discovery service is

responsible for searching mobile devices in the proximity,

forming the ad-hoc network and maintaining the network

throughout the application running time. It profiles the de-

vice’s CPU speed, average CPU utilization and available

memory and passes the information to the cost estimation

model in the decision engine.

b) Communication Handler: Communication handler

runs on both the client side and the server side of the

system. It provides functions of communication maintain-

ing service between clients and servers, offloaded code

execution and dealing with the server scaling request. Par-

ticularly, on the client side, the communication handler

serializes the offloading code and the remote execution

policies, such as how many VMs or devices needed to

run the offloading code to the server for execution. On

the server side, the communication handler deserializes

the request from clients, syncs the state between server

operating system and client operating system and starts

the execution. Once the communication handler deserial-

izes the request, it checks if the required files and program

exist on the server side, if so, it then executes the request

and return the result to the server, otherwise, it contacts

the client to fetch the file and related libraries for remote

execution. In case the server fails to conduct the task, the

handler saves the state and passes the task back to the

client for further execution.

• Decision Engine: This is the core component of the

system, consisting of a set of cost estimation models

that predict the offloaded tasks’ execution cost and a

context-aware decision making algorithm to make the

decision of when, where and how to offload the task. In

details, it takes into account all the data collected from

the context monitor and the execution cost estimation

from the models and decides at runtime if the annotated

method should be offloaded and should it be offloaded

to the MANET in proximity, a local cloudlet or a public

cloud.

• Program Profiler (server side): The program profiler

on the server side tracks the instructions executed and

the time taken and passes them back to the client. The

information is stored as part of the program profile in the

client device database.

• Task Manager: The task manager handles the request

and executes the offloaded code after the state between

client and VM is synced.

III. COST ESTIMATION MODEL AND ALGORITHM

In this section, we first explain the system model and the

problem formulation. Then we present the details of our cost

prediction model and the context-aware offloading algorithm.

Table I
NOTATION

Symbol Description

ti the task being offloaded
si the data size of the task to be transferred
wi the number of instructions of the task to complete
vh virtual machine running on cloud
V available clone VM on cloudlet and public clouds
μcpu CPU speed of either device or VM
ri data transferring time for taski
θi the average CPU usage of VMi

M a set of mobile device as a device cloud
mk mobile device k in the device cloud
Pn CPU speed of mobile device
τn link delay between client and local mobile device cloud
T a set of independent tasks being offloaded
α1, α2, α3 weight factors used in the general cost model
ρd coefficient of channel energy consumption reflecting on

execution performance
Bchannel wireless channel bandwidth
P (ti) general overall cost of task i
D(ti) execution time of task i running on cloud resource
E(ti) energy consumption of offloading task i
ΔEchannel the energy consumption of task i under certain bandwidth
βchannel the estimated channel energy consumption per time unit
βtail wireless medium tail time energy per time unit
Ttail wireless channel active tail time

A. System Model and Problem Formulation

The system considers three tiers, namely the local mobile

device cloud, the nearby cloudlet and remote public cloud.

These resources are considered as servers in this system. There

are a set of mobile device users that run applications seeking

opportunities to offload their tasks to the servers. Also, in

the system architecture, the mobile device that initiates the

offloading requests is considered as the client.

1) Task modelling: Different mobile applications have dif-

ferent QoS requirements. Face detection application requires

short processing time while anti-virus applications are usually

delay-tolerant. In this model, we assume the tasks being

offloaded are independent and can be partitioned into subtasks

for parallel execution. Thus, let ti denote the task generated at

time i, si is the file size of the task, and ci denotes the number

of instructions of task ti to execute. Then ti = 〈si, ci〉. All the

symbols used in the models are listed in Table I.

2) Clone VM modelling: Since the local cloudlet and VMs

in the remote public clouds are similar in terms of the process-

ing power and the offloaded task is executed inside the VM, we

model both the cloudlet VM and cloud VM as a general VM

provides computing resources with different communication

delay. In this work we assume that VMs are homogeneous for

analysing. Since in practice the cloud services providers have

multiple types of VMs, our model can be easily modified to

meet the requirement. Thus, let V = { v1, v2,..., vh } denote

the set of h VMs on the cloud and nearby cloudlet. For each

VM vi, μi is the CPU speed, ri is the round trip time from

the client to VM and θi is the average CPU usage.

3) Mobile device cloud modelling: The mobile device cloud

is formed in a mobile ad-hoc network manner. A mobile

ad-hoc network (MANET) is a networking technology that

does not rely on a fixed network infrastructure but a rapid
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configuration of a temporary network formed by devices

themselves [9]. The topology of a MANET is either one-hop

network or multi-hop network with protocols. However, using

multi-hop MANET can cause considerable delay and unstable

network topology and reduce the task completion rate due to

the node mobility. we only consider a one-hop MANET in our

system to obtain short delay and easy management because the

cloud VM outperformed MANET in terms of communication

delay when the number of hops is more than 2 [10]. We

assume that the devices in the network are heterogeneous in

terms of hardware. When considering the node failure caused

by the mobility, we assume that the node movement within the

signal range does not affect the topology of the MANET and

the channel data rate remains the same. Let M = { m1, m2,...,

mn } be the set of mobile devices in the MANET. pn denotes

the CPU speed of node mn. τn denotes the link conjunction

level (e.g. RTT) between node mn and the client device. Then

the mobile device cloud can be modelled as an undirected

weighted complete graph G(V, E, P, τ ), where V is a finite set

of vertices representing the mobile nodes in the network, the

weight P of the vertices is the computing power of that node.

E is a finite set of edges representing the links between nodes.

The weight τ of the edge represents network delay.

4) Problem formulation: Having presented the models of

the system, we formulate the decision making problem as to

find a solution of selecting where to execute the task and

how to offload so that the overall execution time and energy

consumption is the lowest among all the cloud resources

including mobile device cloud (MANET), cloudlet and public

clouds under current context of the client device. Specifically,

given a set of n tasks T = {ti | 1 ≤ i ≤ n }, a set of m cloud

VMs V = {vj | 1 ≤ j ≤ m } and a local MANET with h

mobile devices M = {mk | 1 ≤ k ≤ h }, then the overall cost

of executing a set of n tasks is

Ctotal =
n∑

i=1

ΔE(ti, li, wi) (1)

where li represents the execution location for task ti and wi is

the wireless channel used to offload ti. Thus the problem is to

provide a offloading policy of which cloud resource and which

wireless channel can be utilized when offloading needed for

each task to minimize the overall cost.

B. Cost Estimation Models

The cost model consists of three parts, namely the task

execution time denoted by D, wireless channel energy con-

sumption denoted by E and monetary cost denoted by M when

related. Then the total cost of executing task ti is as follows:

P (ti) = α1 ∗D(ti) + α2 ∗ ρd ∗ E(ti) (2)

where α1, α2 and α3 are weight factors that the system can

adjust the portion of the cost to different scenarios. ρd is a

coefficient reflecting how serious the power consumption on

battery life affects the device performance [11].

1) Mobile device cloud: On the MANET side, given a set

of independent tasks T = {ti | 1 ≤ i ≤ n } and a set of mobile

devices M = {mk | 1 ≤ k ≤ h }, the objective is to find a task

scheduling policy to estimate the earliest finish time (EFT) of

T. Since the tasks are independent and the workload of each

tasks are not uniformed, this problem of optimally mapping

tasks to distributed heterogeneous machines is shown to be

NP-complete. Thus, we adopt Min-Min heuristic to model the

EFT for the set of task T. We choose this heuristic because

under our task model and computing environment condition,

Min-Min gives excellent performance and has a very small

execution time [12]. Then the EFT is modelled as follows:

the Min-min heuristic maps unassigned tasks to available

machines. It firstly calculates minimum completion times.

MCT = [min1≤k≤h(CT (ti,mk)), ∀ti ∈ T ] (3)

Then the task that has the smallest MCT is selected and

assigned to that machine, and it is removed from T, and the

iterations repeat until all tasks are mapped (i.e., T is empty).

Let Bchannel denote the channel data rate, ti = 〈si, wi〉
denote the task where si is the data need to be transferred

and wi is the workload. The channel energy consumption for

transferring data is given as:

ΔEchannel(si, Bchannel) = βchannel ∗ ( si
Bchannel

+

sresult
Bchannel

) + βtail ∗ Ttail

(4)

where βchannel is the power consumption rate related to the

transferring time and βtail is the wireless channel tail time

power consumption rate. Let Mk = 〈μk, rk〉 denote the device

property information where μi is the CPU speed and rk is the

time for transferring data. Tk = (ti|1 ≤ i ≤ n) denotes tasks

scheduled to device k. Then the overall execution cost on the

MANET is as follows:

CMANET = α1 max
k∈M

(
n∑

i=1

wi

μk ∗ θk + rk)+

α2 ∗ ρd
h∑

j=1

ΔEchannel(sj , Bchannel)

(5)

where the first half represents EFT and the second half

represents the overall data transfer energy consumption.

2) Cloud VM cost model: Similar as the MANET cost

model, let T = {ti | 1 ≤ i ≤ n } denote a set of n independent

tasks, V = {vj | 1 ≤ j ≤ m } be a set of remote servers,

where vi = 〈μcpu, θutil, ri〉, ∀vi ∈ V . μcpu is the CPU speed

of remote servers, θutil is the CPU usage, and ri is the RTT

between client and each remote server. Since we assume all

the VMs are homogeneous in this model, the tasks are mapped

to the servers evenly. The cloud VM cost model is as follows:

Ccloud = α1 max
i∈V

(

∑n
j=1 wj

m ∗ μi ∗ θi +
∑n

j=1 sj

Bchannel
+

∑n
j=1 sj result

Bchannel
)

+α2 ∗ ρd
h∑

j=1

ΔEchannel(sj , Bchannel)

(6)
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Table II
IMPORTANCE SCALE AND DEFINITION

Definition Intensity of importance

Equally important 1
Moderately more important 3
Strongly more important 5
Very strongly more important 7
Extremely more important 9
Intermediate 2,4,6,8

where the last part of the model represent the monetary cost of

using wireless channel and public cloud services. This depends

on the type of services used in practice.

For local cost estimation, we use a history data strategy to

reduce the overhead. The local execution time of a method

and energy consumption incurred by the device is stored in

the database and applied later to the general cost model for

comparison. The estimation costs are then used as the input

of the decision making algorithm.

C. Context-aware Decision Making Algorithm

Having shown how to estimate the task execution time and

energy consumption with the related models, we present the

algorithm in this section. From Equation (4), (5) and (6),

it shows that to optimize the overall cost of the model, the

execution time and the data transferring cost both need to be

minimized. The context-aware decision algorithm consider a

set of context parameters, multiple wireless medium and dif-

ferent offloading cloud resources to decide when it is beneficial

to offload, which wireless medium is used for offloading and

which cloud resources to use as the offloading location.

1) Wireless medium selection: The channel used for of-

floading data should be chosen carefully based on the differ-

ent context conditions. An interface selection mechanism is

therefore needed to select the best available access network

that satisfies QoS requirements at the lowest cost and energy

use. In the proposed context-aware offloading algorithm, we

apply Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) for wireless medium selection. The

criteria weight used in TOPSIS is generated by the analytic

hierarchy process (AHP) [4]. TOPSIS provides lightweight

online processing cost and short response time, which helps to

reduce the overhead of the proposed algorithm. Moreover, the

criteria in TOPSIS can be modified and its relative weight can

be set to suit different scenarios to make decision algorithm

scalable. For the proposed framework, the decision making

algorithm considers six criteria related to the performance

when selecting the wireless interface, which are 1) energy

cost of the channel 2) the link speed of the channel 3) the

availability of the interface 4) monetary cost of the channel

5) the conjunction level of the channel (RTT) 6) the link

quality of the channel (signal strength). For the alternatives, the

algorithm considers Bluetooth, WIFI, and 3G in this system,

but more interfaces can be added if new techniques emerge.

First, the relative weights for criteria being considered in

TOPSIS are obtained by using AHP. The pairwise comparison

results are presented in a matrix.

Algorithm 1 Context-aware decision algorithm

1: procedure GETDECISION(context,tasks)
2: para[]← context
3: task[]← tasks
4: programProfile← get method profile
5: start discovery service and gather cloud resources profiles
6: local cost← estimate execution cost on client device
7: manet cost← estimate execution cost on mobile device
8: cloud using MinMin heuristic
9: cloudlet cost← estimate execution coston cloudlet

10: cloud cost← estimate execution coston public cloud
11: check network interface state
12: if only cell network is available then
13: check cloud availability
14: if cloud is available then
15: decision← minCost(local, cloud)
16: return decision
17: else
18: return decision(local execution, null)

19: else if only WIFI is available then
20: check cloud, cloudlet and manet availability
21: decision← minCost(local, cloud,manet, cloudlet)
22: return decision
23: else if only Bluetooth is available then
24: check manet availability
25: if manet is available then
26: decision← minCost(local,manet)
27: return decision
28: else
29: return decision(local execution, null)

30: else
31: interface← TOPSIS(context)
32: if interface is Wifi then
33: decision← minCost(local, cloud,manet)

34: if interface is 3G then
35: decision← minCost(local, cloud)

36: if interface is Bluetooth then
37: if manet is available then
38: decision← minCost(local,manet)
39: else
40: return decision(local execution, null)

The pairwise comparison of N criteria is generated based

on a standardized comparison scale of nine levels shown in

Table II. Then TOPSIS uses A to calculate the weights of

the criteria by obtaining the eigenvector related to the largest

eigenvalue. Since the output of AHP is strictly related to the

consistency of the pairwise comparison, we need to calculate

the consistency index [13]:

CR =
λmax − n

(n− 1) ∗RamdomIndex
(7)

the CR value should be less than 0.1 to have an valid relative

weights output. Then the process of wireless interface selection

is as follows.

After the weights are generated, a evolution matrix consist-

ing of three alternatives and six criteria is created, denoted

by M = (xmn)3×6. The values of the criteria are collected

at runtime by the Context Monitor , and normalized using

Equation 9.

NMmn
=

Mmn∑6
n=1 M

2
mn

(8)
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Then the weights obtained from AHP method are applied

to the normalized matrix N = (tmn)3×6.

Mw = ωn ∗N (9)

where ωn is the weights, which is shown in Table III. The

best solution and the worst solution are then calculated from

the weighted matrix, denoted by S+ = {〈min(tmn|m =
1 . . . 6)|n ∈ J -〉, 〈max(tmn|m = 1 . . . 6)|n ∈ J+〉} and

S - = {〈max(tmn|m = 1 . . . 6)|n ∈ J -〉, 〈min(tmn|m =
1 . . . 6)|n ∈ J+〉}, where J+ is the positive criteria to the cost

and J - is the negative criteria to the cost.

At last, TOPSIS chooses the interface by calculating the

Euclidean distance between each alternative and the best and

worst solution D+
m and D-

m respectively, and ranking the

alternatives by applying a closeness score to the best solution,

Rm =
D-

m

D+
m +D-

m
(10)

to make the selection. However, one drawback of TOPSIS is

its sensitiveness to rank reversal, thus in our system, if a new

alternative appears, the algorithm will be triggered to generate

the new weights and related matrix.

2) Decision making: In the proposed decision making

algorithm, all the context parameters and profiles are collected

from the system components at runtime to provide offload-

ing decision making policies. The algorithm first check the

availability of the cloud resources and the wireless interfaces,

then the cost models gives the prediction of tasks execution

on different cloud resources. If there are multiple wireless

interface available, then we apply TOPSIS model to select

the best interface under current context such as data rate,

workload size to obtain the best data transfer performance

as well as minimum energy consumption. According to the

wireless medium selection result, the algorithm then compares

the estimation cost of the corresponding cloud resources and

the cloud resource with the lowest cost is chosen as the

offloading location. Then the algorithm returns the decision

pair of 〈offloadlocation,wirelessmedium〉. The detail of

the proposed context-aware algorithm is given in Algorithm 1.

In the next section, we present the evaluation of our proposed

cost estimation models and related algorithm performance.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our system

and algorithm by conducting real experiments on multiple

mobile devices. We implement the decision engine, related

profilers, context monitor and communication manager into

a library on Android operating system, which can be added

in Android application for development. Developers can just

simply annotate the potential method being considered to

offload and our decision engine will automatically provide an

offloading policy for this application.

A. Experiments Settings

To the best we know, there are no available workload

benchmarks that are suitable for our system. Thus, to get

insights to the effectiveness of the proposed architecture and

offloading scheme on different kinds of mobile applications,

we implement two android applications for the workload used

in the experiments. The applications represent two different

types of tasks, one is small file size with high computation,

and the other one is big file size with high computation. For the

first type, we implement a calculation application that performs

math operations according to the input data, and for the second

type we implement a face detection application.

Table III
WORKLOAD FOR THE EXPERIMENTS

Workload
Average

data size(byte)
Average

VM instructions (MI)
Number of tasks

S L 725 5.8 500
S H 650 24 500
B H 3000 29.5 500

We deploy the applications on one HTC G17, one Samsung

I997, and one Nexus 5, which form a device cloud for

the experiments. one Android x86 clone are installed within

VirtualBox on an Intel i5 laptop serving as cloudlet, the

emulated cpu speed was adjusted from VirtualBox to match

the processing speed of cloudlet. Two Android x86 clones

are set up in an Amazon EC2 t2.medium instance. We use

PowerTutor [14] to monitor the energy consumption. All the

mobile devices are running in a standalone environment that

unrelated applications and background services are shut down.

The relative weights for criteria in TOPSIS model is gen-

erate based on the system priority. Due to the concern on the

processing delay and energy consumption, we assume that the

priory of importance for the six criteria under consideration

is: resource availability >power consumption >bandwidth

>channel conjunction level >signal strength >monetary cost.

Based on this assumption we calculate the weights from AHP

and the results are shown in Table IV. The consistency index

value is 0.052(less than 0.1), thus the weights are valid.

Table IV
CRITERIA WEIGHTS FOR TOPSIS

Criteria Weight CR

Power Consumption 0.180
Bandwidth 0.130

Cloud Resource Availability 0.514 0.052
Conjunction Level 0.081

Signal Strength 0.062
Cost 0.033

In first scenario, we conduct two sets of experiments under

two different scenarios. In the first scenario, the two appli-

cations are executed in a environment that all the wireless

mediums available and the connection is stable throughout the

experiment, in order to show the performance of the system in

terms of energy saving and execution time. And then compare

them with the baseline of executing in local only, and cloud

only that is performed by plenty of existing work. In the

second scenario, the two applications are executed in unstable

context condition that the wireless mediums are unstable, to
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Figure 2. Total execution time for each workload under different policies

Figure 3. Total energy consumption for each workload under different policies

demonstrate the necessity and advantages of the proposed

architecture and context-aware offloading scheme.

B. System Evaluation Results and Analysis

We run the two implemented mobile applications with 500

input tasks respectively under three priority policies, namely

time sensitive, energy sensitive, and time energy combination.

Then the results are compared with the baseline that runs

workload in local only and cloud only. The characteristics

of the generated workloads is listed in Table III. Workload

S L and S H are generated by the calculation application, and

workload B H is generated by the face detection application.

Each measurement result is calculated by the average of 10

trails. Figure 2 and Figure 3 compare the execution time

and energy consumption respectively of each workload under

three user preference policies, which are time sensitive, energy

sensitive and time energy combination, with two baseline

policy local only and cloud only. Table V lists the proportion

of the tasks allocated to the multiple cloud resources in the

proposed mobile cloud environment.

As shown in Figure 2, for workload S L, the execution time

is reduced by 54.9% under time sensitive policy comparing

to it under local only policy. It also slightly outperformed

the cloud only policy execution time due to the result that

75.4% of the tasks are scheduled by the decision engine to

the cloudlet server (shown in Table V) that has a much lower

network latency than public cloud. In Figure 3, the energy

Table V
PROPORTION OF TASKS MAPPED IN EACH LOCATION UNDER DIFFERENT

POLICIES

Workload Policy Local Manet Cloudlet Cloud

S L
T 1 0 75.4 23.6
E 15.8 84.2 0 0

TE 9.6 0 70.4 20

S H
T 0 0 31.6 68.4
E 0 82.1 17.9 0

TE 0 0 79.3 20.7

B H
T 41.2 0 58.8 0
E 60.8 39.2 0 0

TE 33.5 12.6 53.9 0

Table VI
COMPARISON BETWEEN PROPOSED SYSTEM AND THINKAIR

System Execution Time(s) Energy Consumption (J)

Proposed 841 552
ThinkAir 1152 902

consumption is reduced by 55.6% under energy sensitive

policy, which has the best result among all five policies.

84.2% of the tasks are scheduled to the MANET due to the

low energy consumption on data transferring via Bluetooth.

It also outperformed the policy that only offloads tasks to

the cloud. For the time energy policy, the result shows in

Table V that 9.6% tasks are executed in local, 70.4% tasks

in cloudlet, and 20% in public cloud, with the consideration

of network condition and available cloud resources. We can

also observe similar results that workload S H gives the best

result under time energy policy by achieving 75% of time

reduction and 70% of energy reduction. For workload B H,

the proposed system achieves 25% of time reduction and 30%

of energy reduction on average. The experiment results show

the proposed system is most beneficial to the tasks that have

low data size and high computation. The system can also

outperform the cloud only policy that applied by many existing

works in terms of time and energy saving in mobile devices by

considering the multiple cloud resources and context sensitive

decision engine within the proposed architecture.

We take a further step to analyse the performance when the

Internet is not available. We conduct the experiment using

workload S H in the unstable network condition that the

Internet is unavailable, and we compare the performance with

ThinkAir. The results are listed in Table VI. Due to the

assistance of mobile device cloud and cloudlets, the proposed

system can still provide offloading services when the network

connection is not available.

V. RELATED WORK

Many related works in code offloading for MCC only con-

sidered architecture and offloading decision between mobile

devices and public cloud services. Kosta et al.[7] proposed a

smartphone virtualization framework ThinkAir that provides

method-level computation offloading to the cloud. ThinkAir

focuses on the offloading between the mobile devices and

VM located in public cloud and the scalability of the cloud.
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Developers use the program API provided by the framework

to annotate the potential method to be offloaded. Flores et

al. [15] presented a evidence based offloading framework

EMCO that extract knowledge from code offloading traces

to enhance the decision making process. Ravi and Peddoju

[16] proposed a system architecture that is similar to our

work. The system has three cloud resources: MANET, cloudlet

and cloud. It provides an offloading decision algorithm to

select cloud resources using multi criteria decision making

methodology, and a handoff strategy move the tasks between

different resource based on the energy consumption and the

remaining connection time with the wireless medium. But

the decision is made only based on few parameters. It did

not fully investigate the influence and relationship between

wireless channel and cloud resources. Lin et al. [17] proposed

a context-aware decision engine that can work with various

mobile cloud offloading system in the literature. The decision

engine takes into consideration signal strength, transmission

time, geographical location and the time slots of the offloading

opportunities [17] to make the offloading decisions. However,

it does not consider the multiple cloud resources can be

utilized and the wireless medium availability, and the geo-

information usually is inaccurate when the device is indoor.

Compared to related works, our system considers the impor-

tance of device context such as wireless medium conditions,

and the relationship between wireless medium and multiple

cloud resources and other device context to make the offload-

ing decisions and provide seamless mobile cloud services.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a context-aware offloading decision algorithm

that takes into consideration context changes such as network

condition, device information and the availability of multiple

types of cloud resources to provide decisions on the selection

of wireless medium to utilize when performing code offloading

and the cloud resources to offload at runtime. We also provide

a general cost estimation model for cloud resources to esti-

mate the task execution cost including execution time, energy

consumption. The models can be easily modified for the new

cloud resources. We then design and implement a prototype

system considering three types of cloud resources (mobile

device cloud, cloudlet and public clouds) and a decision engine

that runs the proposed algorithm and related cost estimation

models. We presented the evaluation of the proposed system,

and results showed that the system can provide suitable

offloading decisions based on the current context of mobile

devices to provide the offloading services and lower the cost

of execution time and energy.

As part of our future work, we plan to explore the intercom-

munication between different cloud resources, and improve

the performance of the prototype system by study handover

policies for decision making in terms of device failure toler-

ance. Also we aims to improve the performance of the decision

making algorithm for future work by considering more context

parameters, e.g. context of public cloud to provide an optimal

solution for code offloading decision making process.
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