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A B S T R A C T

With the major advances in location acquisition techniques, deployment of GPS enabled devices and increasing
number of mobile users, substantial amount of location traces are generated from different geographical regions.
It provides unprecedented opportunities to analyze and derive valuable insights of urban dynamics, specifically,
time-dependent mobility patterns and region-specific travel demands. This work proposes an end-to-end mobility asso-
ciation rule mining framework called MARIO, conducive to extract urban mobility dynamics through analysing
large taxi trip traces of a city. The MARIO framework consists of (i) generating mobility-dynamics network by
spatio-temporal analysis of taxi-trips, (ii) finding travel demand variations in different functional regions of the
urban area, (iii) extracting mobility association rules and (iv) predicting travel demands and traffic dynamics
using extracted associative rules. The proposed MARIO framework is implemented in Google Cloud Platform and
an extensive set of experiments using real GPS trace dataset of NYC Green and Yellow Taxi trace, Roma Taxi
Dataset and San Francisco Taxi Dataset have been carried out to demonstrate the effectiveness of the framework.
The performance of the proposed approach is significantly better than the baseline methods in predicting travel
demands (with the reduction of average MAPE value and execution time by 50%).

1. Introduction

The ever-increasing popularity of wireless communications, sen-
sor technologies and GPS embedded devices have motivated extensive
research on analysing the enormous amount of GPS traces and vari-
ous location-aware applications. The location traces of moving agents
(GPS equipped private vehicles, mobile sensors of individuals, public
transportation data etc.) are accumulated easily and effectively leading
to generation of huge amount of location traces. This increasing avail-
ability of human location traces (also may be defined as ‘human trail’)
from various sources has opened up interesting research directions like
human behaviour/activity learning, studying city dynamics, improved
route planning, resource allocation and traffic analysis (Zheng, 2015).

This paper aims to discover overall mobility patterns of a city
analyzing taxi-traces to build a mobility-knowledge base (associative
patterns) which captures the inherent urban-dynamics and utilize the
knowledge to another region for better urban planning. Notably, the
public transportation vehicles provide predictable patterns as they fol-
low fixed routes and regular time schedules. Further, private vehicles
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offer fairly expected routes as the traces depict the pattern of the owner
(say, commuting from home to work). On the other side, GPS enabled
taxi-cabs serve diverse transportation needs of a large population and
contributes improving urban transportation planning and thus acts as
an integral part of intelligent transportation system. However, there
exists a well-known dilemma that trajectory data are rich in terms of
volume but activity information poor (Gong et al., 2016). This gap
can be mitigated if contextual information such as functional regions
or landmarks of the taken route, activities at stay points are consid-
ered instead of analysing raw GPS log (timestamped latitude, longitude
data). As the pattern is likely to be dependent on start and destination
functional regions of the cities, more specifically on travel purposes,
this paper incorporates the ‘POI’ information (ex., industrial, residential
etc.) of the trips along with the spatio-temporal attributes. In summary,
our framework generates mobility knowledge base by extracting preva-
lent mobility association rules from city taxi-trips and predicts possible
travel demand spikes.

Motivating example: Fig. 1 shows a motivating example for the
proposed MARIO framework. Each POI (point-of-interest) or functional
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Fig. 1. Example scenario: Different mobility events, like road-closure, high travel demand effect other regions.

region depicts travel demand pattern in different temporal scales. Var-
ious mobility events effect other neighboring regions in a temporal
sequence and subsequently it helps to predict travel demand and travel
time efficiently.

Our framework generates mobility knowledge base by extracting
prevalent mobility association rules from city taxi-trips and predicts
possible travel demand spikes. For a given city, the proposed MARIO
framework may explore the rules like (R1): When the region A1 of a
city experiences traffic congestion, then with 80% probability the traffic
density of region A2 will be higher after 𝛿 time-period and consequently
high travel-demands in the spatial-neighborhood region of A2. R1 reflects
both the spatial and temporal neighborhood traffic states and the asso-
ciative flow-patterns among different regions of the city. The mobility
association rule mining problem becomes quite challenging for several
spatio-temporal resolutions, i.e, an infrequent item-set for the entire region
or large time-interval may be a frequent item within a part of the region
or a relatively small time-quantam. Furthermore, mobility state of one
region effects the neighboring regions in a temporal sequence. There-
fore, there is a strong need to learn the traffic-flow inter-dependencies
of the regions in different temporal scales and partition the city-network
into smaller regions.

Contributions: To address the above mentioned challenges and
issues, we propose mobility rule miner MARIO framework which
involves

1. generation of mobility dynamics network by segmenting the large
city road network and sub-graph decomposition to discover traffic-
flow in different regions of the city

2. proposing a variant of Apriori algorithm utilizing frequency tree and
deep learning architecture to extract prevalent mobility rules by
analysing spatio-temporal neighborhood effects

3. extracting mobility rules, namely, region-specific mobility associa-
tion rules, i.e. mobility dynamics (crowd behaviour, traffic flow and
travel-demand) of different functional regions of a city, taxi-trip spe-
cific or individualized mobility patterns to capture the overall urban
dynamics

4. predicting travel demands effectively and timely manner in different
regions of the city

In summary, we have implemented an end-to-end trajectory anal-
ysis service over Google Cloud Platform (GCP) by creating interfaces
with varied cloud services and vCPUs to explore the mobility dynamics
of a city. The remainder of this article is organized as follows. Section
2 presents a review of recent studies in this direction. A few prelimi-
nary concepts of the work and different modules of the framework are
presented in section 3 and 4 respectively. Section 5 depicts the experi-
mental set-up and detailed discussion and evaluations of the proposed
method. Finally, section 6 summarizes the study and discusses some
avenues of future research direction.

2. Related work

Understanding and discovering mobility patterns facilitate better
urban planning and traffic resource management. In this section, we
brief the existing works on spatio-temporal association rule mining and
applications of mobility trace analysis.

In short, spatial data mining aims to extract patterns which are pre-
viously unknown but potentially useful. Spatial association rule mining
(Koperski and Han, 1995) discovers the frequent co-occurrences of spa-
tial predicates, such as adjacent_to, nearby and objects, namely, highway
and house. The existing works follow two strategies to extract spatio-
temporal patterns: transaction-based strategy and transaction-free strat-
egy. In transaction-based strategy, spatio-temporal data is transformed
into a format of transactions such that traditional association rule min-
ing technique can be deployed. These transactions are created by par-
titioning the study regions into different sub-regions, where the sub-
regions are transactions and features in these sub-regions correspond
to items (Lee, 2004; Appice et al., 2003). In the transaction-free strat-
egy, spatial points are considered as Boolean spatial features (Huang et
al., 2004) i.e, the presence or absence of spatial phenomenons. Another
strand of research in this domain focuses on spatio-temporal events, such
as state-based events, location-based events and change-based events
(Liu et al., 2016). In location-based events (Mohan et al., 2011), spatial
locations are analysed where events, such as vehicle collision, typhoon,
flood occurred. Spatio-temporal association pattern reveals the connec-
tion between two such events. However, the temporal dynamics (tempo-
ral relation between two such correlated events) of the events can not be
extracted from the existing approaches. We have not found any consen-
sus regarding the definition of spatio-temporal events and further, no such
existing works delineate events related to mobility behaviours of people or
vehicles. There are very few works which explore associative patterns in
human movement traces. Yang et al. (Ye et al., 2009) present a frame-
work to extract association rules from individual mobility traces. For
instance, they extract rules like “In 70% of the days, person X visits
POI Y; or visits shopping mall once in a week”. In our previous works
(Ghosh and Ghosh, 2016; Ghosh and Ghosh, 2017), we present the asso-
ciation rule mining technique from individuals’ trajectory traces, how-
ever, these approaches are not suitable for extracting aggregate move-
ment patterns city-wide. In our present work, we study the mobility
patterns thoroughly and detail the mobility event definition to deploy
the mobility rule miner (MARIO) framework. All of the existing works
mainly focus on relationships among diversity of spatial data-types (Dao
and Thill, 2016; Mohan et al., 2011) and finding spatial autocorrela-
tion (Barua and Sander, 2013). A variant of Apriori algorithm named
T-Apriori is proposed to discover association rules in interval based data
in Chen and Wu (2006). There is existing work in protecting the privacy
of users’ data (Shen et al., 2017). The work considers location semantic
diversity and randomness of query behaviour to protect the trajectory
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privacy. Cao et al. (2018) present a classification model for location pre-
diction based on user check-in patterns. Rosen Ivanov (2012) presents
a novel algorithm for real-time GPS track simplification, which in turn
helps outdoor navigation of visually impaired people. There are a broad
range of applications on GPS data - a systematic survey (Pirozmand et
al., 2014) on human mobility discusses the mobility features and predic-
tion techniques. There are also works on effective forecasting of traffic
flows (Zhang et al., 2017; Zhang et al., 2019). The authors (Zhang et
al., 2017) propose a deep learning approach to forecast crowd flows
in different regions of a city using several factors such as weather and
intra-region traffic. A multi-task deep learning framework is proposed
in Zhang et al. (2019) where both the node flow and edge flow are
predicted. The authors consider the fact that flow at a node and tran-
sitions between nodes (edge flow) are dependent to each other. How-
ever, this work does not explore the spatial and temporal neighborhood
effects of such crowd flows. Zhang et al. (2015) formulate a new prob-
lem of mining spatial co-evolving patterns from several geo-sensory
data. The authors explore different sensor-records such as air-quality,
bike/vehicle data; and finds out co-evolving patterns by assembling the
individual sensors’ patterns into a single pattern. Our problem set-up is
quite different from this work, where instead of finding co-evolving pat-
terns from several sensory information, the patterns are extracted and
analysed only from GPS trajectories. Discovering the spatio-temporal
dynamics is one of the most challenging issue in our mobility analy-
sis work. It is useful to predict the traffic condition apriori to build an
effective traffic recommendation system. Most of the studies (Akbari
et al., 2015; Verhein and Chawla, 2006) model the geographical phe-
nomenon (air-pollution or typhoons) as simple point-events. However,
in our framework, dynamic characteristics of the moving agents and
their interrelationships need to be extracted efficiently.

Table 1 summarizes the features of MARIO and other most rele-
vant existing works. To the best of our knowledge, there are few works
on spatio-temporal association rule mining but none have reported for
extracting mobility association rules from taxi-trips. Further, the index-
ing scheme of MARIO, mobility-dynamics network based on traffic flow
dynamics and analysing sptio-temporal neighborhood by deep LSTM
architecture are novel propositions. In summary, MARIO provides an
end-to-end framework to model mobility dynamics, extract mobility
association rules and predict travel demand efficiently.

3. MARIO framework: workflow

Fig. 2 depicts the workflow of the MARIO framework which discov-
ers varied spatio-temporal association rules of taxi-trips. The problem
definition of this paper can be summarized as:

- Given a spatial region r and the taxi-trips (Ty) of r, extract mobil-
ity association rules (MARs). The mobility association rules (MARs)
are extracted from the mobility database by deploying proposed
mobility-rule miner framework.

- Given r and Ty of r, generate the mobility dynamics network to represent
the overall urban dynamics. This network captures the overall mobil-
ity dynamics of the geographical region by analysing varied sources
of movement data.

- Predict the travel demands in different regions of the city effectively.
Finally, based on the historical movement log and spatio-temporal
analysis, the travel demand in different regions of a city is com-
puted.

The framework has three main modules: (i) trajectory trace pre-
processing module: takes the mobility database consisting taxi-trips of
a region (r) and road-network of r as input and generates the item-set
or transactions from the mobility data by following application-specific
mobility rule templates, (ii) Spatio-temporal analysis module: analyses
taxi-trip database to discover correlation among different entities, such
as time, place and moving objects (vehicles, people etc.) and (iii) Mobil-
ity association rule mining module: shows how mobility association rules
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Fig. 2. Workflow of MARIO framework.

can be extracted to understand the urban dynamics for better traffic
resource management.

We consider a set of moving agents M, say, taxis, set of POIs in
a 2D space or region r. Each moving agent m ∈ M is associated
with sequences of location information (x, y). In this work, we study
taxi-trajectory dataset to explore varied movement patterns in a city
region. As shown in Table 2, the acquired taxi trips cover divergent
types of trip-information, such as Type I stores the pick-up and drop-off
locations along with passenger count, trip distances etc whereas GPS
sequences of complete trip are stored in Type II trace database. These
taxi-trip database facilitate different interesting patterns, namely, cor-
relations of pick-up and drop-off locations in different time-instances,
frequent-path followed by the trajectories, and even, taxi-specific (or
taxi-driver specific) movement behaviours. To start with, few prelimi-
naries are defined as follows.

1. GPS Log or Trace or Trajectory: GPS log is a collection of time
stamped GPS points P = {p1, p2, …., pn}. Each GPS point pi ∈ P
contains latitude (pi, Lat), longitude (pi, Lngt) and timestamp (pi, ti)
of the moving agent (Zheng, 2015). In this paper GPS log, trace or
trajectory are used interchangeably.

Geotagged Point: Each GPS point is associated with most appropri-
ate land use information. Here, each GPS point pi contains (pi, place)
along with latitude, longitude and timestamp information (Ghosh and
Ghosh, 2019). For example, pi is associated with residential building or
the nearest landmark of pj is supermarket.

2. Road Network: Road network of a region is represented by a
directed graph R = (VR,ER) where VR represents all intersecting
points of the road-segments, i.e., either starting or ending points
of each such road-fragment and ER is the set of edges or roads in the
map. It may be noted that in real-life scenario, direction of the roads
ER = {vRi

t
←←←←←←←←←→vRj

|(vRi
, vRj

) ∈ VR} may depend on particular time-slot
of a day and the variation of direction based on temporal slot has
been considered in the road network graph construction.

3. Trajectory Slider: It contains the route followed by the
taxi within a specific distance (D) and time threshold
(T). Trajectory Slider contains a set of GPS points or

traces within a specific distance and time-window bound-
ary. Traj_Slider = {(x1, y1, t1), (x2, y2, t2),… , (xn, yn, tn)} iff
max(dist((x, y), (j, k))) < = D ∀ (x,y) and (j,k) pair ∈ P and
diff(tn, t1) < = T

4. Taxi-Trip Trajectory: We define two types of taxi trajectories,
Ty1 = (< ppi, tpi >,< pdr , tdr >, |C|,DT , FT) and Ty2 = (< ppi, tpi >,<

pi, ti >,< pi+1, ti+1 > ,…, < pdr , tdr >), where T1 consists of start and
end point of the taxi-trip. T2 consists of all GPS points of the trajec-
tory segments between the start and end point [Table 2].

Mobility traces offer huge opportunities to discover multi-states
information, such as past, present and future states (travel demand,
traffic congestion etc.) of a city road-network. For example, knowing
the recurrent effect of traffic congestion of neighborhood region allows
one to avoid the probable congested regions apriori. To be more spe-
cific, it is important to capture the evolution of events in neighboring
regions over time and space.

Association rule mining techniques (Agrawal and Srikant, 1994) are
utilized to discover the unknown dependencies among the data-items
to reflect the correlations among varied item-sets. In this paper, we aim
to discover spatio-temporal association rules, or to be more specific,
mobility association rules from taxi traces of a geographical region.
Typically, it depicts that if a spatio-temporal event takes place, a resul-
tant event is likely to occur within a defined spatio-temporal neighbor-
hood. The challenges in finding mobility association rules are following:

- Unlike traditional relational databases, mobility information are not
explicitly encoded as transactions but are rather embedded within
the spatial framework of the geo-referenced data (Shekhar and
Chawla, 2003). Therefore, it is required to generate transactions
from the spatio-temporal dataset such that association rule mining
techniques can be deployed to discover mobility association rules.

- Conventional association rule mining works with categorical data
and not with numeric data such as metric distance.

- To extract spatio-temporal association rules, huge amount of data
needs to be analysed in varied spatial and temporal scales. There-
fore a computationally efficient approach is required to generate the
effective association rules in timely manner.
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Table 2
Taxi-trip description.

Taxi-trace type Attributes

Type I:GPS points of pickup and drop-off locations ∗ Pattern: Travel demand GPS: <pickup, drop off location, timestamp>Others: Passenger count, Trip distance, Fare amount
Type II:GPS log of the complete trip ∗ Pattern: Frequent path GPS: < lat1, lon1, time1 > … < latn, lonn, timen >Others: Running status (Vacant, Occupy)

In this direction, we propose a novel framework which is capable
to discover the spatio-temporal interrelationships from mobility traces
and utilize the association rules to predict travel demand.

3.1. Mobility-flow: spatio-temporal event

Spatio-temporal database captures events which represent the
chronologically ordered instances of timestamp-geometry pair. Typi-
cally, geometries are used to represent space and can be depicted by
set of grid cells or spatial region, such as polygon. The instances are
application-specific and illustrate the type of the spatio-temporal event.
For example, “Forest fire always occurs at region R1 prior to the occur-
rence of haze in nearby region R2” (Wang et al., 2004) - where Forest
fire and Haze are two instances of spatio-temporal events occurring at
two different spatial locations (R1 and R2) and temporal sequence is
represented by prior. The definitions used in this paper are defined as
follows:

1. Definition 1. Spatio-temporal event: A spatio-temporal event or sim-
ply event, denoted as, e(r, t, v), represents a spatial feature e (namely,
rain, haze) in the spatial region r at time t with an intensity value v.
- r represents co-ordinates (latitude, longitude) or a polygon geom-

etry (denoted by bounding-box) or nodes of a spatial network
- v represents measurement of e, which may be estimated by specific

unit (10 mm of precipitation) or linguistic variables (high, medium).
- t represents either a particular time-stamp (1529496160 epoch) or

a time-interval pair ([ti, ti+1])

According to our problem set-up, we consider e as a mobility event
which helps to model traffic-flow and travel demand of a region r in a
given time-interval t.

2. Definition 2. Mobility event: A mobility event is a specific type of
spatio-temporal event, denoted as, M(r, t, v), illustrates movement
dynamics of vehicles in a region r. In this work, we consider three
types of mobility events:
- Pick-up event: The number of pick-ups or starting of trips is vpi

from the source region r in the time-interval t
- Drop-off event: The number of drop-offs or completion of trips is

vdr in the destination region r in the time-interval t
- Moving: The count of trajectory-segments of vehicles passing

region r in t time is vm
3. Definition 3. Spatio-temporal Association Rule (SAR): Spatio-

temporal association rule is defined as SAR = (ri, [ta, tb]) ⇒
(rj, [tx, ty]), with s support and c confidence, where objects appearing
in region ri during time-interval [ta, tb] either
(i) appear in region rj for the first time or by (at or before time)
(ii) be in region rj during the [tx, ty] time interval (Verhein and

Chawla, 2006).

Our paper primarily considers the movement behaviours of taxis
and aims to analyze the patterns by mining mobility events. We define
mobility association rule as follows:

4. Definition 4. Mobility Association Rule (MAR): Mobility asso-
ciation rule is expressed as: MAR = M1(ri,Γ = [ta, tb], vi) ⇒
M2(rj,Γ + 𝛾, vj), which depicts that objects (such as taxis) contribut-
ing in a mobility event, M1 also partake another mobility event

M2 after 𝛾 timestamp of the former events’ time-interval. There are
nine possible correlations or direct MARs from three mobility events
(pick-up, drop-off and moving). Few such MARs along with their
notations are given below.
- Notation: Mpick−up(ri,Γ, vi) ⇒ Mdrop−off (rj,Γ + 𝛾, vj): Objects par-

ticipating in a pick-up mobility event in a region ri in the time-
interval Γ subsequently completes the trip in region rj within the
time-window [ta + 𝛾, tb + 𝛾]. This type of mobility association
rules help to correlate two spatial-regions, namely, source (ri) and
destination (rj) within a specific time-window. It may be noted
that 𝛾 is essentially different for different trips, however, the goal
of our work is to extract such 𝛾 value so that the support and con-
fidence of the rules maximize.

- Notation: Mmoving(ri,Γ, vi) ⇒ Mmoving(rj,Γ + 𝛾, vj): Objects passing
through region ri in the time-interval Γ also pass through region
rj within the time-window [ta + 𝛾, tb + 𝛾]. This MAR discovers
frequent paths in different time-stamp. The entities, namely, ri, rj
of the rule vary with different time-windows and given a specific
time-interval and time-window our approach is capable to extract
varied correlated regions having grater support and confidence
than the minimum threshold.

- Notation: Mdrop−off (ri,Γ, vi) ⇒ Mpick−up(rj,Γ + 𝛾, vj): Objects com-
pleting trips in region ri in the time-interval Γ start trips from
region rj within the time-window [ta + 𝛾, tb + 𝛾]. This rule assists
the drivers to find out next probable pick-up regions and subse-
quently helps to reduce the waiting time.

The above mentioned MARs can be directly extracted by mining
taxi-trip database. However, to predict the travel-demands efficiently
and understand the overall mobility dynamics of a city-region, it is
required to discover derived mobility association rule. The derived
mobility association rule’s templates will be discussed in the later
section of the paper.

5. Definition 5. Travel demand: Travel demand (d) of a region ri at
time interval Γ is the aggregated count of pick-up mobility event in
ri at Γ.

f (ri,Γ[ta, tb]) =
tb∑

t=ta
v where Mpick−up(ri, t, v = vi) (1)

Travel demand may also include the number of trip requests from the
citizens in a region. Since only taxi-trips are available as experimen-
tal purpose, we consider the travel demand of a region as the number
of pick-ups in that region at a given temporal scale. However, the pro-
posed approach is scalable enough to incorporate this value as a param-
eter along with the count of pick-up events in case it is available.

4. MARIO framework: algorithms and implementation

MARIO framework exploits varied type of taxi trip related infor-
mation and utilizes the attributes to come up with the mobility rule
template. It analyzes the spatial neighborhood effects of travel demand
variation using Long Short Term Memory (LSTM) architecture where
the temporal quantitative relationships of passenger count at differ-
ent places are utilized as input feed. Moreover, we propose variant of
temporal-apriori algorithm to discover the mobility association rules.
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Table 3
Predicates of mobility rule template.

Predicate Description

timeVal(t) Timestamp (time-interval or time-slot of a day)
POI(p) point-of-interest of ‘p’ type
locTraversal(dis, S,D) Traveled dis distance from S source to D destination
timeTraversal(t, S,D) Time spent t to travel from S source to D destination
TravelD(c, r, t) Travel demand (number of pick-ups) in a region r at time-interval t is c
footPrint(c, r, t) Number of GPS footprints in a region r at time-interval t is c

4.1. Trajectory trace pre-processing

This work uses GPS trajectory data of taxis in cities. Two different
types of taxi-trace (ref. Table 2) have been utilized in this purpose. This
GPS trace only includes < latitude, longitude > ;< time > of pick-up and
drop-off locations (trace type I) or < latitude, longitude > after a partic-
ular time-interval (say, 30 s) of the complete trip (trace type II). Prior to
analyzing the GPS log, appending other semantic information, such as
underlying road-network structure or nearby landmark is important for
discovering intrinsic patterns of movement behaviour of a geographical
region.

4.1.1. Enriching taxi-trip log with semantic information
Primarily in this step, GPS error is removed followed by appending

semantic information, namely, geo-tagged points, road-network struc-
ture. The GPS traces of the taxis of the mobility database are segmented
where each such fragments are denoted as trajectory-segment or T_Seg.
Initially, the pre-processing guarantees that all GPS points are strictly
ordered on timestamps in the T_Seg. For example, if there are more than
one GPS point with same timestamp, then only the first occurrence of
the GPS point is kept and rest points are removed.

p1(x1, y1, t1) > … > pn(xn, yn, tn) and T_Seg = {p1,… , pn}

where, t1 > t2 >… > tn,∀(p1,… , pn) ∈ P
(2)

Here, GPS log is fragmented such that each T_Seg represents a sin-
gle taxi-trip, i.e., p1 and pn are pick-up and drop-off points of a taxi-
trip. Then, GPS errors, which are relatively large, in scale of 100 m
(due to GPS capturing device failure or poor satellite signals) are
removed deploying Kalman filtering (Krakiwsky et al., 1988) technique.
To address the issue of different sampling rates of various GPS-trackers
of the taxis the analysis is carried out by segmenting the trips into var-
ied trajectory sliders which store path followed by the taxis bounded by a
specific distance and time thresholds. In the next step, geo-tagged infor-
mation for each pick-up and drop-off points are extracted and appended
to enrich the semantic information of the raw traces. To augment
the nearest landuse information, iterative reverse geocoding(IRG) (Ghosh
and Ghosh, 2019) is used. Additionally, we maintain a POI-database
where < latitude, longitude,POI > are stored for any subsequent com-
putation.

Finally, road network structure of the region is extracted from OSM1

to semantically enrich the mobility traces. This information contributes
in the semantic enrichment process by appending geometric infor-
mation of the road network (such as length and width of the road-
segments), the connectivity and continuity (like, intersection of roads)
of the road network. Since we aim to utilize the MARIO framework in
both urban (dense road-segments) and non-urban regions, an efficient
map-matching process with high-accuracy is required. It may be noted
that our framework works in two phases:

Phase-I: Firstly, it generates the knowledge base of movement
dynamics from historical mobility records by discovering the inher-

1 OpenStreetMap: https://www.openstreetmap.org/.

ent patterns,
Phase-II: It applies the extracted knowledge from the first phase to
predict travel demand in different places. For the first phase, map-
matching is a one-time phenomenon and could be performed offline.
However extracting the position of the vehicle in the road net-
work in phase two requires online-strategy to reduce pre-processing
time. To map the raw taxi-trips onto the digital map we have used
AntMapper matching (Gong et al., 2017) which utilizes both topo-
logical information and global similarity measurement and provides
result within a relatively short running time. The map-matching for
phase-II of the framework exploits the advantages of mobility-index
and map-matched trajectory data of phase-I.

To complement the missing values, two-step procedure is followed
in the MARIO framework. In the first step, map-matching process is
deployed. The map-matching process maps the GPS points into the
underlying road-structure. The features of the road-segments: length,
width, connectivity and continuity (like, intersection of roads) are
extracted in this step. The map-matching algorithm named AntMap-
per assigns each GPS point to the appropriate road-segment. In the
next step, for more refinement of the GPS points, all the GPS points
are smoothened using Kalman filtering technique to reduce the error
of the measurement/data collection. Using kalman filtering, in case the
outlier/missing value is detected, it is replaced by other intermediate
points as returned by the filtering technique. This step takes the output
of the previous step (map-matching process), and finds out interme-
diate points to complement the missing values. The road-network and
POI information are stored in Cloud Big Query Storage of Google Cloud
platform. The map-matching and semantic enrichment algorithms are
implemented using the compute engine, which calls Google Place API
service and stores the data in a database [Oracle Spatial and Graph] with
spatial extension.

4.1.2. Mobility association rule (MAR) template and GPS transactional
database construction

The definitions of spatio-temporal event, association rule and mobil-
ity association rule are discussed earlier in section 3.1. In this section,
we explore varied types of derived MAR templates and the construc-
tion procedure of GPS transactional database. The key-idea of exploring
such MAR template is to facilitate a framework capable to effectively
model mobility dynamics and discover interesting movement patterns.
Given a database of mobility traces, we aim to define a language L con-
ducive to express spatio-temporal properties of the entities in terms of
mobility events. The intuitive meaning of any association rule X → Y
is that transactions containing set of X items tend to contain set Y of
items (Agrawal and Srikant, 1994). Similarly finding GPS records con-
taining set of spatio-temporal entities X and Y as well, is the main idea
of discovering mobility association rules. The language L is complex
and there may be huge number of possible sentences of this language.
In this work, we are interested to mine travel-demand specific patterns.
Therefore, a set of specific rules (or sentences), which are a sub-set of L
are considered.

To represent mobility association rule template, we primarily intro-
duce few predicates [refer Table 3] with parameters which help to con-
struct the basic structure of the rule-templates. It may be noted that all
three mobility-events (pick-up, drop-off and moving) are also considered

6

https://www.openstreetmap.org/


S. Ghosh et al. Journal of Network and Computer Applications 164 (2020) 102692

Table 4
Mobility Rule template (MAR).

Rule Id Rule template

MAR1 M1(r1 , t1, v1) ⇒ M2(r2, t2, v2) ∶
Mobility event M1 is followed by mobility event M2

MAR2 timeVal(t) ∧ POI(p) ⇒ travelD(c, p, t) ∶
The travel demand of a region largely depends on the timestamp value and the place type information

MAR3 travelD(ci, ri, ti) ⇒ footPrint(cj, rj, tj) ∧ travelD(ck, rk, tk) ∶
Travel demand in a particular region impacts footprint density and generate travel demand in other regions

MAR4 locTraversal(dis, S,D) ⇒ context ∧ timeVal(t) ∶
Location specific information of a taxi trip effects the context information, such as fare amount and trip time

as predicates which take region, time and count of the event-instances as
parameters. Based on the set of predicates (Pre) we form derived mobil-
ity association rules with spatio-temporal variables (region: r, time: t)
and possible annotations. The basic syntax of such rule is:

𝜙1, 𝜙2 …𝜙n ≔ Pre(r, t) s.t. 𝜙1 ⟹

𝜙2|𝜙1 ∧…𝜙i ⟹ 𝜙2 ∧…𝜙j|𝜙1 ∨…𝜙i ⟹ 𝜙2 ∨…𝜙j

(3)

Given such rules, a selection function finds out how many transactions
or records in the mobility database satisfy the implies condition. This
selection function measures the support and confidence of the rule and if
the count is above the threshold values of support and confidence then
that particular rule is included for mapping movement dynamics of the
region.

The city dynamics can be modelled by (i) exploring travel demands
in different regions and in different time-slots, (ii) how the travel
demand of one region impacts the GPS footprints of other regions, and
(iii) movement behaviour of taxi-drivers based on region and time. In
other words, we aim to reflect peoples’ movement dynamics through
the above-mentioned factors. Four generic rule-templates have been
designed, and we argue that the rule template is complete consider-
ing our application to model city-dynamics. Table 4 represents varied
types of mobility association rules that help to model the overall mobil-
ity dynamics, such as travel demand, traffic flow, individual drivers’
movement patterns in a region. MAR1 is the template of direct mobil-
ity association rule which can be extracted from three mobility events
directly. There are nine possible MARs under rule template MAR1. We
have extracted and illustrated such MARs with real-life data in the
experimental section. Travel demand variation at different POIs can
be extracted from MAR2. It may be noted that rules are fully depen-
dent on space and temporal values, i.e., variation in region and time
change the count (or in other word, support and confidence measure)
of the records which satisfy that rule. Therefore the proposed frame-
work works in two ways, (i) extracts frequent patterns and (ii) given
a rule template, region and timeslot finds out the correlated mobility
event, effected region and timestamp value. The impact of the change
of travel demand on other regions are represented by MAR3 and finally,
movement behaviour of taxi-drivers are depicted in MAR4.

Given such rule template and mobility database, the next step
is to construct the transactional mobility database such that MARs
can be extracted. It is obvious that transactional database must be
created before mobility association rule mining algorithm can be
deployed. From the conventional definitions of item-set and transac-
tion, we know that, I = {I1, I2 … In} set of items and transactional
database contains T = {T1,T2,…,Tm} set of transactions, where each
transaction T ⊆ I. In this work, from the raw GPS log, first we con-
struct transactional database where each transaction (T) consists of
< tId, spatialIn, event, temporalSpan, context > tuple. It may be noted that
we have considered spatial database (Oracle Spatial and Graph) with
spatial data-types, such as point, polygon, polyline etc. Therefore spatialIn
field stores the spatial information, namely, polygon for a region and
polyline for movement trace. Table 5 shows an example of such trans-
actional database, where the last column represents additional infor-

Table 5
Transactional Spatial database to store mobility traces.

tId spatialIn event temporalSpan context

Ty1a point_geom pick-up 08.00–08.05 |C| − 2
Ty1b

point_geom drop-off 08.40–08.50 Ft − 50
Ty2a polyline_geom moving 10.00–10.25 O

mation, such as |C| − 2: count of passengers, Ft − 50: fare amount or
O: occupy status. All the GPS records are converted to such spatial
database transactions and further, mobility index is generated on such
records.

In this regard, the measurements of such MARs need to be quanti-
fied. It is obvious that support and confidence calculations of traditional
association rules do not hold for this case. These measurements need
to be extended in spatio-temporal domain. The spatial coverage of a
rule defines the sum of the area referenced in the predicates of the rule.
Temporal coverage of a rule represents the time window for which rules
must be valid. The temporal coverage of different mobility rules are dif-
ferent. We deploy a scaling for both temporal and spatial coverage of
the rules which is represented by the ratio of spatial or temporal validity
of the rule and spatial and temporal information of the complete study
period. Huang et al. (2004) define participation index to measure the
strength or frequency of a co-location pattern. MARIO utilizes similar
measure to define the spatio-temporal support and confidence. Given
a mobility association rule MAR(𝜙i ⇒ 𝜙j) containing spatio-temporal
features f1,…, fk, the following measures are described.

• Spatio-temporal Support (𝜙i(ri, ti) ⇒ 𝜙j(rj, tj)): It is the scaled spatial
coverage and the total length of the time-intervals in the rules.

STsupp = |I(𝜙i, [f1,… , fk])||I([f1,… , fk])| ×
N∑

t=1

[𝜙i]t
N × t

(4)

where |I[f1,…, fn]| represents the number of transactions in the
database containing the spatio-temporal features and the next term
denotes the temporal scaling parameter where N is the total time-
scale of the study period.

• Spatio-temporal Confidence (𝜙i(ri, ti) ⇒ 𝜙j(rj, tj)): It is measured as
the conditional probability of the predicate 𝜙j is true given that 𝜙i
is already true.

STconf =
STsupp(𝜙i(ri, ti) ∧ 𝜙j(rj, tj))

STsupp(𝜙i(ri, ti))
(5)

Our framework attempts to discover mobility rules that have spatio-
temporal support above a threshold, minSTSupp, and confidence above
minConf.

4.1.3. Mobility index construction
To achieve the easy and quick access of time-series data, an efficient

storage scheme is required for the computation speed up. To store the
trajectory data, we propose a hashing based mobility indexing scheme
which is beneficial in terms of space allocation and easy accessing
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Fig. 3. K-Level temporal hashing for the storage of significant trajectory patterns of a region.

of significant trajectory-patterns in different time-slots. Fig. 3 depicts
the structure of the K-level temporal hashing table where k temporal
sequences of the trajectory traces are stored in different temporal buck-
ets.

• The 1st level hash table contains trajectory-ids (Traj) of different
taxi-trips starting at varied time-intervals. The keys of the table are
time-slots of 15 min each for a day.

H(trajid) = B,where [B.t1 < trajid.tpickup < B.t2) (6)

where B.t1, B.t2 represent the time-intervals of the keys in the hash-
table. Trajectory-id (say, Traja,b) maintains the taxi-id (a) and the
trip-id (b).

• From the next level, sequences of the trajectory-segments are main-
tained in different levels along with the place-id (type and location),
frequency of visit and time-slots. The hashing technique considers
the spatial-locality information, i.e., the nearby places are stored in
consecutive buckets. The following pairing function is used as the
hash-function:

H(px, py) = (px + py)(px + py + 1)∕2+ py (7)

• Frequency plays an important role in the hashing scheme. When a
new entry comes in the storage, a search function is deployed and if
similar entry is already present, then frequency is incremented and
the new entry is inserted in the list. This frequency attribute helps to
minimize the redundant entries and also can be used as a feature to
find out most followed trajectory sequence.

MARIO deploys the k-level temporal hashing scheme to store
trajectory-sequences of a region into k layers. This hashing scheme is
beneficial for extracting movement information efficiently and in timely
manner. For example, the most followed route of a region can be dis-
covered by analyzing the k-sequences and frequency. On the other side,
traffic states of a place can be explored by interpreting the GPS foot-
prints of the taxi-ids in different time-slots. We have implemented this
schema using BigTable and BigQuery of Google Cloud Platform (GCP) as
storage platform. Cloud DataProc of GCP is used to maintain the index
and insertion of records in the storage. Cloud Spanner of GCP is used to
store these information which supports horizontal scalability.

4.2. Spatio-temporal analysis

In this section, we discuss about movement dynamics in the study
region and how to model the variation of mobility events in varied
space and temporal dimension. We have presented how mobility events
of one region effect other regions after a particular time-interval. We
have introduced trajectory graph to model and store varied mobility fea-
tures in different temporal scale.

4.2.1. Trajectory graph
Trajectory graph is a labeled directed graph where the properties of

the graph change as a function of time. The graph evolves by append-
ing or deleting nodes and links over time. This graph helps to char-
acterize information flow in a network, namely, travel demand varia-
tion or mobility events on the underlying road-network structure of the
region. Formally, trajectory graph is defined as G = (V,E,Υ, 𝜏) where
V represents the set of vertices or nodes and E ⊆ V × V is the set of
edges. The other two parameters Υ and 𝜏 depict node labeling func-
tion and edge labeling function over time respectively. The time-evolving
nature of the graph is conceptually expressed by a series of directed
graphs Gt1 (Vt1 ,Et1 ,Υ, 𝜏),… ,GT(VT ,ET ,Υ, 𝜏) at different time-instances
t1,…,T. Based on the labels assigned by Υ and 𝜏 there are three possi-
ble types of trajectory-graphs in our analysis.

The node labeling function assigns V → Σ a label to each node in the
graph from an alphabet Σ. The labels illustrate the properties of the
nodes in the graph. The node properties may represent static informa-
tion (such as G1: intersection of roads or G2: POI-placements do not
change with time) or may vary in different temporal scale (such as G3:
mobility-events). The trajectory graph with mobility events as nodes is
constructed as follows:

- Sources and destinations of the taxi trips are converted to
nodes of the graph and labeled as < Pick − up, ti > and <

Drop − off, tj > respectively
- If the traces are available from source to destination of the

trip, then after 𝜁 time-interval one GPS point (p) is selected
from the trace and p is converted to a node of the graph with
label < Moving, (tj + 𝜁) >

8
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Table 6
Trajectory graph information.

ID Node(V) Edge (E) Υ 𝜏

G1 Intersection of roads Road segments Location information (latitude, longitude) Direction
G2 POI Road segments POI-type information Direction
G3 < Mobility event, location, timeInterval > Sequence (After/Before relation) Types of mobility events Time taken from one event to another

- The edges of the graph are generated from taxi trip’s nodes and
ordered on increasing timestamp. The label of the edges are the
time-differences between two nodes < ti+1 − ti > .

The detailed procedures to construct trajectory graph, namely,
mobility event graph are noted in algorithm 1. The tabular representa-
tion of trajectory graph is shown in Table 6. For road graph construc-
tion, we deploy a nested adjacency list structure to store the direction of
the roads in different time-intervals. It may be noted that two different
road graph structures have been maintained for weekdays and week-
ends. It is observed that in most cities traffic directions vary typically
in weekdays and weekends. The algorithm 1 constructs the mobility-
event graph from the historical movement traces of a region. Let us
assume, the number of taxis in the dataset is M. The average number
of trips by each taxi is n. Therefore, it takes O(M × n) to find out the
pick-up and drop-off points in the complete dataset. The time taken to
construct the vertices of G3 is O(c1 × M × n), where c1 is a constant
[line no. 3–10]. Next, the algorithm finds out the moving objects (GPS
points between pick-up and drop-off points) of the complete path. Let
us assume, the average length of the taxi-trips is: L. The average time-
duration of the trip: dur. The time-offset (or sampling rate) parameter
is: 𝜁 . Therefore, the number of intermediate (moving) points = (dur∕𝜁).
The time complexity to generate the moving edges and nodes (line
no 11–26) is = O(n ∗ L ∗ dur∕𝜁) = O (n × L × c2). Therefore, the over-
all time-complexity of the algorithm 1 is = O

∑M
k=0 n × L × c2 + n × c1,

which is a polynomial time algorithm.

Algorithm 1 Trajectory graph (Mobility event graph)
construction.

Input: Taxi-trip trajectory (Ty1,Ty2) log
Output: Mobility event graph G3(V,E,Υ, 𝜏)
1: function GENERATEG3(Ty) ⊳ Where Ty1
- taxi trajectory log with pick-up and
drop-off points, Ty2
- taxi trajectory log with all intermediate
points
2: G3(V[],E[]) ← NULL ⊳
2-D matrix where each row, column is of < id,
location, label > data-type
3: for i = 1 to length(T) do
4: Create_node(G3.Vi ← (id, location, label))
5: Υ ∶ G3.Vi[id] ← p ⊳ p - pick-up
6: G3.Vi[p][label] ← T[i].tpick−up
7: Create_node(G3.Vi ← (id, label))
8: Υ ∶ G3.Vi[id] ← d ⊳ d - drop-off
9: G3.Vi[d][label] ← T[i].tdrop−off
10: end for
11: for j = 1 to i do
12: t ← Vj.label
13: for k = 1 to length(T[j]) do
14: if length(T[k]) > 2 then ⊳ Ty2
trajectory trace type
15: m ← 1; l ← length(T[k]);

(continued on next page)

Algorithm 1 (continued)

16: while m! = l do
17: p ← Select GPS point after(t + 𝜁 )time − interval from(T[k])
18: Create_node(G3.Vj ← (id, label))
19: Υ ∶ G3.Vj[id] ← m ⊳ m - moving

20: G3.Vj[p][label] ← p.timestamp
21: t ← p.timestamp;
22: 𝜏 ∶ Create_edge(em ← (Vk[p],Vk[m]))
23: end while
24: end if
25: end for
26: end for
27: end function

4.2.2. Modelling travel demand variation
Discovering the effects of a mobility phenomenon, such as traffic

blockage and road closure, on a different region after specific time-
interval is the most challenging task in travel demand analysis. For
example, “If there is a road closure in region 1, then region 2 experi-
ences higher travel demand in a particular time-interval”. Here, region
1 is effecting the mobility patterns of region 2 and prior prediction of
such effects may help in effective resource management. Therefore, the
main objective is to find out such relations among spatial regions from
the historical movement log. Next, the framework aims to find out the
temporal relations among the events’ effect, i.e., “traffic congestion of
region 1 is propagated to region 2 after Δ time period” - where the range
of Δ value needs to be discovered. In this work, the regions which are
effected by a mobility event at other regions are termed as neighbor.

Typically, spatial neighbors are formed with points of a grid or
nodes of a graph those are close to one another. The neighborhood
definition largely depends on the denotation of close, where close
generally represent adjacent or within some threshold range of dis-
tance. However, in our analysis, distance measure is not well-suited
for analysing the underlying correlations among varied regions. Here,
we define neighborhood function and few related terms.

Region: A region R = (V′,E′) is a sub-graph of the trajectory graph
(G), where V′ ∈ V represents the nodes (intersection point or POI)
and E′ ∈ E depicts the roads between two such nodes. For the ease of
visualization any region is denoted by a rectangular bounding box.2

Source: A region is denoted Source (S) if the count of moving objects
entering (ne) in the region is much lesser than the objects leaving (nl)
the region in a particular time-slot.

|nl − ne| ≥ minthresh (8)

Sink: A region is denoted Sink (S′) if the count of moving objects enter-
ing (ne) in the region is greater than the objects leaving (nl) the region
in a particular time-slot.

|nl − ne| ≤ minthresh (9)

The pick-up and drop-off events are considered while counting ne and
nl.

Flow distance: Flow distance (F) between two regions (r and r′) is

2 To avoid the ambiguity of the definition of region, the paper uses R as
the underlying network and r as the bounding box (polygon geometry) of any
geographical space.
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defined as a time-series arraylist of (nl, ne) pairs:

F(r, r′)[ti, tj] = {|ne − nl|ti,…,tj , |n′e − n′l |ti,…,tj} (10)

In the next step, MARIO explores the travel demand variation of dif-
ferent regions based on functional area and time-slots. In section 4.1.1,
we describe the method of augmenting geo-tagged information with
the GPS log. The functional area or geo-tagged information is crucial to
model the travel demand, since citizens mostly follow similar temporal
rules for their social activities. The complete study region is divided into
12 social functional areas, residential, commercial, government organiza-
tion, industrial region, school or university, entertainment, area of historical
interests, religious place, tourist spots, railway, airport region and highway
region. Each day is divided into 15 min slot where slot 0 starts from
0800 in the morning. The study-area is divided into n = 12 functional
regions where each region is considered as the bounding box of a sub-
graph of the trajectory graph. The number of pick − up, drop − off
and moving mobility events in region Ra during different time-slots
(t0,…, tm) of a day (say, L1) are represented as:

PRa
L1

= (P1,a
t0
,P1,a

t1
,… ,P1,a

tm
)

DRa
L1

= (D1,a
t0
,D1,a

t1
,… ,D1,a

tm
)

MRa
L1

= (M1,a
t0

,M1,a
t1

,… ,M1,a
tm

)

(11)

Next, for each region 3 matrices are formed for all GPS logs (L1,…, Ld)
of d days.

M = (Ma,Mb,… ,Mn)t =

⎛⎜⎜⎜⎜⎜⎜⎝

MRa
L1

MRb
L1

… MRn
L1

MRa
L2

MRb
L2

… MRn
L2

… … … …
MRa

Ld
MRb

Ln
… MRn

Ld

⎞⎟⎟⎟⎟⎟⎟⎠

t

(12)

where M shows the distributions of moving taxis in n regions for a
particular time-slot (t) of d days. Similarly, other two matrices namely
pick-up distribution (P) and drop-off distribution (D) are formed. Next,
we deploy autoregressive integrated moving average (Lee and Tong, 2011)
to find out the values of pick-up, drop-off and moving events in different
time-slots from the historical movement traces. Although the method
can effectively model non-linear time-series, however, the impact or
effect of other regions are not considered. Therefore, in the next step,
MARIO aims to find out effect of one region to other from spatio-
temporal context.

Two regions (r and r′) are neighbors of each other in a time-slot
T = [ti, ti+1] if the flow distance between two regions are within
a threshold and the regions are edge-reachable in T. Edge-reachable
defines that no other neighboring region in the same time-slot T is
present in the connected path of r and r′.

fneighbor(r, r′, ti, tj) =
⎧⎪⎨⎪⎩

1 if (tj − ti) < tth ∧ edge − reachable(r, r′) = 1

∧ F[ti, tj](r, r′) < dth

0 otherwise

(13)

fneighbor returns whether two regions are neighbor of each other in a
given time-slot. Typically, it checks whether the flow-distance and time-
differences are within the threshold range.

4.2.3. Modelling the impacts of mobility events using LSTM
The mobility events occurring in one region impact mobility phe-

nomenon of other regions. These patterns do exhibit a high degree of
spatio-temporal correlation. It happens due to the road-structure, social
functional areas (POI) and people’s movement regularity. To this end,
MARIO deploys Recurrent Neural Network to capture the effects of one
regions’ mobility variation to other regions. To be more specific, LSTM

(Long Short Term Memory) (Sak et al., 2014) - a type of RNN is suitable
to learn the long term dependency of the time-series data and determine
the correlated regions.

Problem Formulation: Let us assume, the set of GPS trajectories of
all vehicles (v ∈ V) is Tr, and the set of all locations in the study area
is Reg, where Trv ∈ ℝd and Regl ∈ ℝd represent the latent vectors of
trajectory-segments of vehicle v and each location l respectively. Here,
each l ∈ Reg refers to a particular grid, and represented by a grid-id3

(gr[i ∈ I, j ∈ J]).4 The grids are associated with GPS locations. The
trajectory-history of the vehicles are presented as Regv = {lvt1 , l

v
t2
,…},

when the v vehicle is present at lvti at time ti. The trajectory-segments
of all vehicles can be aggregated as RegV = {Regv1 ,Regv2 ,…}. In this
work, the travel demand (integer value) is represented by the number
of pick-up (npickup) and number of moving vehicles (nmove) in different
parts of the city. From the trajectory segments of all vehicles a differ-
ent locations, we can find out the npickup and nmove of all locations at
different time-stamp. Therefore, a matrix TDI×J can be formed where
two such values (npickup, nmoving) are stored for each location over time.
TD ∈ ℝ2×I×J represent the travel demand at any time. Given the histori-
cal observations {TDt |t = 0,1,…, n − 1}, the objective of this model is
to predict TDn. Learning Objective: In the training phase, MARIO learns
how to estimate the travel demand of the locations based on the histor-
ical spatio-temporal patterns, and other mobility events (sudden traffic
blockage, accident etc.). The framework typically works in two phases.
Given the real-time mobility event information (location and timestamp
of accident/blockage), it finds out the neighbor5 locations of the event.
Next, it predicts the travel demand of the location incorporating any
effects due to the mobility events.

Typically, LSTM overcomes the vanishing gradient and exploding
gradient problems of conventional RNN and conducive to learn the
mobility events’ patterns with long time spans and automatically pre-
dict the mobility events of other regions as an effect of the present.
Fig. 4 shows the snapshot of LSTM network, which maps an input
sequence to an output sequence by computing the network activations
in different time-instances. The basic equations of a typical LSTM archi-
tecture are as follows:

it = 𝜎(wi[ht−1, xt] + bi); ft = 𝜎(wf [ht−1, xt] + bf );

ot = 𝜎(wo[ht−1, xt] + bo)

ct = ft · ct−1 + it · tanh(wc[ht−1, xt] + bc);

mt = ot · h(ct)

(14)

where input gate, output gate and forget gates are represented by i, f
and o. The scalar product between two vectors are represented by ·
whereas 𝜎(·) denotes the logistic sigmoid function. The activation vec-
tors for each cell is c and m are memory blocks. wx and bx are the
weight matrices for neurons and bias vectors for respective blocks.
MARIO uses tanh for cell input, output activation functions and soft-
max as network activation function. The two-layer deep LSTM network
has a linear recurrent projection layer in each LSTM layer stack. Based
on the features such as, velocity, change of position, timestamp etc., the
moving behaviour sequences are generated. Next, this sequences are fed
into the LSTM blocks, which converts the inputs into fixed-length rep-
resentations. The mobility event information (type of mobility event,
location, timestamp) is fed as another input into the LSTM stack. There
are 6 types of mobility event: Accident, Congestion, DisabledVehicle,
PlannedEvent, RoadHazard, Construction with 4 severity level (Low-
Impact, Minor, Moderate and Serious). Since these are categorical val-
ues, we have used an embedding method (Gal and Ghahramani, 2016)

3 The process of partitioning of the whole network into grids is presented in
section 4.2.4.

4 The set of grids are represented by a I × J matrix.
5 see equation (13) for the definition of neighbor.
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Fig. 4. MARIO: Deep LSTM architecture.

to transform these values to a low-dimensional vector. The input of
the LSTM architecture is region along with mobility states and road-
network structure. MARIO aims to model the mobility states jointly
with road network structure and POI-placements since the correlations
with other regions inherently depend on these aspects. Sak et al. (2014)
demonstrates that two-layer deep LSTM architecture outperforms other
existing methods where each layer has a linear recurrent projection
layer. The model is trained using 100 epochs. In the input observa-
tion, each location (grid) has an average of 10 road-segments. In the
output, the predicted travel demand is the number of pick-up and mov-
ing events at a particular region. The number of regions depend on
the scale of the grid and area of the road-network. In the experiment,
we have tested up to 10,000 regions (or grids of size 10). Firstly, it
learns the effect of road-network connectivity among different regions
and then extracts the regions showing variation of mobility events as a
consequence of mobility event in the input region. The deep learning
architecture of MARIO consists of an encoding and decoding layer and
two hidden layers. The loss function is the mean squared error between
predicted travel demand and actual travel demand.

The road-network is extracted from OpenStreetMap where incom-
plete information is present making the graph sparse in nature. To
tackle this issue, we have used network embedding method to extract
the structural information of the underlying road network. The embed-
dings of the road network has been learned from the traffic interaction
of the vehicles. The process requires a set of vehicle trajectories which
cover the road segments in the network to learn the missing values
of the sparse network. The deep learning architecture is implemented
using Google Tensorflow.6 The implementation is done on the top of
the Google App Engine, including DataStore and Task Queues. Two
Cloud SQL instances are created, where one is executed from Google
App engine. The other instance has the database access permission. To
add storage capacity, automatic storage increase is enabled.

4.2.4. Movement dynamics network
Movement dynamics network is used to illustrate the interrelation-

ship among spatio-temporal features of mobility data. Intuitively, move-
ment dynamics of a region is correlated to city-infrastructure (road-
network and POI placements) and the movement behaviour of mobile
objects, such as people and vehicles. The modelling and analysis of
movement behaviour is quite challenging since it varies dynamically

6 Tensorflow: https://www.tensorflow.org/.

with temporal value.
The movement dynamics network is constructed by hierarchically

assembling trajectory-graphs of a region. Fig. 5 shows a snapshot of
movement dynamics network in three levels. Firstly, the grids are gen-
erated on the road-graph of the region such that the sub-graph within
each grid has nearly similar cardinality (number of edges). The grid
information help to correlate the location and other contextual infor-
mation, such as POI placement, mobility events etc. Next, road graph
is placed on the created grids. In level 2, mobility event graph is cre-
ated based on the spatial transactional database containing taxi-trips.
Finally, level 3 consists of the unusual mobility phenomenon, such as
traffic congestion (when velocity of the vehicles are less than a thresh-
old value), traffic blockage (velocity is nearly zero) or road-closure and
travel-demand changes. This level specifically helps to understand the
real-time movement dynamics of a region while level 2 provides fre-
quent movement patterns and travel demands in various time-slot. The
major steps are as follows:

• Grid construction: The study area is divided into n grids such that
differences of |E|∗∑e∈|E|length(e) in grids are within a threshold
value. We start the partitioning task in a top-down fashion, where
the complete road graph is divided into n connected sub-graphs.

• Aggregated mobility event graph construction: This process takes
the mobility event graph as input and deploying a label propagation
clustering generate region-clusters having same mobility events.

• Mobility phenomenon: We have considered mobility phenomenons:
traffic congestion, traffic blockage and travel demand variation. First,
from the level 2 the matrix is created with the features, GPS foot-
prints in each edge of the grids, travel-demand in the regions and
average velocity of the vehicles in the road-segments.

Algorithm 2 provides the procedures of grid construction by graph
partitioning. Firstly it computes the geo-hash codes of the study-region
and divides the complete region into several uniform grids. Then it
analyses the cardinality of road-network graph within each such grids
and aims to minimize the differences between cardinalities of the sub-
graphs. Finally, the algorithm outputs the geo-hash codes of generated
grids having more or less similar cardinality of graph information. Let
us assume, the number of edges and nodes of the road-graph (R) is
|E| and |V| respectively. Time taken to partition the region into n uni-
form grid: O(n∗E). Time to compute the geo-hash code of the region:
O(c1 × n), where c1 is a constant. Time to compute the cardinal-
ity (size of edge-set) of all such grid: O(c2 × (|V| + |E|)), where c2
is a constant (since the number of edges of all n grids will be equal
to the number of edges of the road-graph). Let us assume the opti-
mal number of partitioned graph is: a and a <= n. The number of
edge set in each such partitioned graph is: b and a × b < = |E|
[line no 5–13]. Therefore, the overall time-complexity of the algo-
rithm 2 is = O(n × E + c1 × n + c2 × (|V| + |E|) + a × b) < =
O(n × E + c1 × n + c2 × (|V| + |E|) + |E|) = O(c3 × n × E + c4 ×
(V + 2E)), since, a <= n and a × b < = |E|. Again, n < < V, the
worst-case time complexity is O(c3 × V × E + c4 × (V + 2E)) < =
O(V × E).

Algorithm 2 Grid construction by graph partitioning.

Input: Road graph (R(V,E)), min, max
Output: List of Grids (Grid[geo − hash])
1: function GRIDCONSTRUCT(R(V,E),min,max) ⊳ Where
R is the road-graph of the study region,

(continued on next page)
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Fig. 5. Snapshot of Movement dynamics network.

Algorithm 2 (continued)

min and max represent the minimum and

maximum number of grids

2: geo − hashR ← generate geo − hash code(R)
3: subG[] ← Uniform − grid(geo − hashR,min); n ← min
4: diff [ ] ← ∑

connectedComp(subG[]) ×∑
subGi,j

‖E|subGi
− |E|subGj

|
5: while n < = max do
6: m ← computemindiffn ⊳ Solution using simplex method

7: for i = 1to m do
8: G1 ← mergeSubgraphs(subG, i)
9: diffL[ ] ← ∑

connectedComp(G1[]) ×
∑

Gi,j
‖E|Gi

− |E|subGj
|

10: diffn ← diffL; subG ← G1
11: end for
12: end while
13: Grid[geo − hash] ← compute geo − hash(subG)
14: end function

4.3. Mobility rule mining

In this section, we demonstrate the process of extracting mobility
association rules from the taxi-trips by deploying a variant of tem-
poral apriori (Chen and Wu, 2006). Furthermore, we aim to predict
travel demand in different places based on the extracted mobility rules.
The mobility miner method consists of two major steps, namely, cap-
turing the prevalent candidate items of the rules in different spatio-
temporal resolution and extracting the rules having support and con-
fidence greater than the threshold values. A M-flow or mobility-flow
represent any sub-graph of level 3 of mobility dynamics network, i.e.,
the effects of mobility phenomenon to other neighboring region. With
the help of mobility rules, we aim to analyze the spatio-temporal neigh-
borhood effects and predict the mobility characteristics of the regions
along with predicted travel demand. Here frequency tree is utilized and
the GPS trace of different time-intervals have been used as the input
feed.

Spatio-temporal property 1: M-flow follows Apriori Property: Any
sub-set of infrequent spatio-temporal event-set (sequential pattern) is also
infrequent

To this end, we can formulate the mobility-rule extraction problem
as: Given a database (Ty) of spatio-temporal events, a specific loca-
tion and time window, a mobility rule template MAR, and a minimum
support threshold, the problem of extraction of mobility rules is equiv-
alent to discovering set of frequent item-sets among a set of items in a
transactional database. Extracting spatio-temporal mobility rules is not
a trivial process because space and time can not be analysed in same
dimension, time is an increasing sequence of small temporal-quantam
while such sequence is not present in 2D space.

We consider another situation: Spatio-temporal property 2: An
infrequent item-set of M-flow for a time-range T and spatial region R, may
be frequent item-set for a smaller region R −𝛥 and a time-interval T − 𝛿. It
depicts that numerical attributes (trip-length, trip-duration etc.) depend
on the spatial and temporal coverage of the rules.

Formally, mobility association rule is defined as e1 ∧ l1 ∧ c1 → dp,
where a conjunction of literals e1, l1, c1, i.e., edge information, loca-
tion information and other contextual information are associated with
a specific travel demand. A tuple t satisfy a rule if and only if it satis-
fies every possible literals (space, time) in the rule. If t satisfies the rule,
travel demand of the region at the particular time can be represented by
the value of dp. This leads to the former research question “Using taxi-
trajectories, how mobility dynamics of a region can be captured and repre-
sented as mobility-association rules and help to predict the travel demand?”
The extracted mobility association rules of a region will help to under-
stand the travel demands accurately and predict the traffic flow. The
next process involves extracting mobility flow of a region by analysing
taxi-trips. The first step of the proposed method is to discover all fre-
quent spatio-temporal event-sets followed by finding co-related events
analysing spatio-temporal neighborhood of the events.

The key observation is any temporal relationship between the
antecedent and consequent of the rules must follow higher order
sequences. Hence, any infrequent item-set within the same temporal
resolution but in a reverse order is discarded apriori. An Iterative Deep-
ening based enumeration method has been proposed where different
item-sets are inserted based on the temporal occurrences. In the next
step, a frequency tree has been generated, where,
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• Each node at height k, stores sequence of event-sets, and possible
travel-demand at different time-resolution

• The travel demand is initialized as 1 in the beginning phase
• After each iteration, the frequency of the events are modified and

different granularity of spatio-temporal information are maintained
[to satisfy spatio-temporal property 2]

The rule mining algorithm is a variant of T-Apriori method which
consists of a number of passes depending on the time-slots. The algo-
rithm finds out i-itemsets (i.e., itemsets with i items having at least
the minimum support) at pass i. It generates the set of candidate of i-
itemsets and computes the count by scanning the database. Finally it
finds out the MARs by inspecting the spatio-temporal support of all the
candidate itemsets. The algorithm is terminated when no large item-
set is discovered after a pass. Furthermore, the MAR template is used
as an input feed. The algorithm only finds out the item-sets which are
present in the rule-template. It significantly reduces the search time.
The algorithm works in a bottom-up fashion where small temporal scale
is used in the first phase followed by grouping larger time-slots given
that spatio-temporal support and confidence are larger than the mini-
mum threshold. Given the four rule-templates, MARIO extracts MAR1
type rules by analyzing the spatio-temporal neighborhood method pro-
posed in section 4.2.3 and deploying temporal apriori method. MAR2
and MAR3 type rules are extracted by computing M,P and D matrices
[see section 4.2.2] followed by executing temporal apriori algorithm.
Finally, the individualized movement patterns MAR4 can be extracted
by grouping unique taxi-ids and then performing rule mining process.

Our proposed rule mining algorithm differs from T-Apriori (Chen
and Wu, 2006) which is used to discover temporal pattern for interval-
based events. However, the impacts of one regions’ mobility events can
not be incorporated using only T-Apriori. MARIO exploits the extracted
spatial-neighborhood effects of mobility events while extracting the
mobility rules. The patterns of effecting other regions’ mobility states
are extracted by deep LSTM architecture and associated with the rule
mining algorithm.

5. Performance evaluation

All experimental evaluations are carried out on VM instance of
Google Cloud Platform7 having 4 vCPUs, 15 GB memory and Ubuntu
16.04, Linux as the OS. The algorithms are implemented in Python, R
and all the experiments are performed on three real datasets of taxi
trajectories.

5.1. Dataset

The dataset8 (Type I) is collected by the NYC Taxi and Limousine
Commission (TLC). It contains trip records from all trips completed in
Yellow and Green taxis in NYC from 2009 to present, and all trips in
for-hire vehicles (FHV) from 2015 to present. It contains over 750 mil-
lions taxi-trips and the storage of over 190 GB. We have also evaluated
MARIO with Roma taxi traces9 and San Francisco (SF) taxi data10

(Type II). The Roma dataset contains mobility traces of taxi cabs in
Rome, Italy consisting GPS coordinates of approximately 320 taxis col-
lected over 30 days. The SF dataset contains mobility traces of taxi cabs
in San Francisco, USA consisting GPS coordinates of approximately 500
taxis collected over 30 days in the San Francisco Bay Area. Both the
Rome and SF dataset contain GPS points of the taxi-trips in a particu-
lar time-interval (10–15 s). As depicted earlier, two types of taxi-trip

7 https://cloud.google.com/.
8 NYC Taxi Trace: http://www.nyc.gov/html/tlc/html/about/trip_record_

data.shtml.
9 ROME Taxi Trace: https://crawdad.org/roma/taxi/20140717/.

10 SF Taxi Trace: https://crawdad.org/epfl/mobility/20090224/.

data have been analysed (see Table 2), where type I dataset has only
pick-up and drop-off points, and GPS traces of complete trip have been
logged in the type II dataset. The missing values of logging occur in
type II dataset. It is observed that among 320 taxis, there are 6 taxis
with less than 5 days trip-history. These 6 taxis are eliminated from
the data-set. Amongst other 314 taxis, the locations are logged in 12 s
offset. Total number of trajectory segments are 44,286. The number of
trajectory segments consisting missing values is 2795, which is around
6% of the complete trajectory dataset of Rome. On the other-side, the
total number of trajectory-segments in SF dataset is 56,920 and the
missing values are found in 5467 segments, which is around 10% of the
SF dataset. These missing values are replaced by intermediate points by
map-matching and Kalman filtering techniques.

To depict the effectiveness of the proposed framework, we have car-
ried out the experimental evaluations in two aspects: evaluating the
system performance of MARIO framework and extracting varied mobil-
ity rules, predicting travel demand in different part of the city network.

5.2. Performance evaluation of MARIO: indexing scheme

One of the major contributions of MARIO is facilitating an end-
to-end framework which is conducive to resolve user travel related
queries. We propose k-level temporal hash based schema to store the huge
amount of data and reduce the information extracting time. To depict
the efficacy of the storage along with indexing scheme of MARIO, we
compare it with five baseline methods namely R-tree (Guttman, 1984),
extended historical R-tree (HR + tree) (Deng et al., 2011), Scalable and
Efficient Trajectory Index (SETI) (Chakka et al., 2003), TrajStore (Cudre–
Mauroux et al., 2010) and R2-D2 (Zhou et al., 2013). A multiversion
structure is proposed in HR + tree where entries of different times-
tamps are placed in the same node leading to reduction of space. All of
these methods are implemented and tested with NYC taxi-trip dataset.
Chakka et al. (2003) propose a two-level index structure to decouple the
index of spatial and temporal information. Trajstore (Cudre-Mauroux et
al., 2010) maintains an optimal index and dynamically co-locates and
compresses spatially and temporally adjacent segments on disk. A grid
based index is proposed in Zhou et al. (2013) where the area of interest
is divided into a set of rectangular cells with fixed size and trajectories
are indexed in the cells they pass.

The comparisons have been carried out for index-size, and query-
time. We have considered R-query and T-query (Deng et al., 2011)
and report the average query-response time for all methods. Figs. 6
and 7 demonstrate the evaluation results of MARIO with other base-
line methods. It has been shown that MARIO has less query execution
time compared to other methods. Here, the proposed k-level tempo-
ral hashing scheme has outperformed other baselines in a huge margin
(almost 50% less execution time in average). The key reason is that
the trip-sequences of a region are stored into k-temporal levels and
in consecutive buckets following the hash-function based on latitude
and longitude information. It helps to extract the range and T-query
in an efficient manner compared to other methods. Furthermore, with
the increasing data size, MARIO maintains a reasonable rate of index
size, since it avoids to maintain any duplicate entry using the frequency
attribute of the hashing-scheme. In summary, although there are several
indexing methods for spatio-temporal data-set, however they fall short
in maintaining large mobility database and providing timely access of
trajectory information.

5.3. Extracted mobility rules, measurements

Table 7 shows a subset of extracted mobility rules along with
average scaled spatio-temporal support and confidence. The minimum
threshold of spatio-temporal support and confidence are set to 0.10 and
0.75 respectively from [0,1] range. The number of extracted mobility
rules in this range are 120, 356 and 288 for NYC, ROME and SF respec-
tively. The average spatio-temporal confidence of these rules lie in the
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Fig. 6. Performance evaluation of MARIO: Index Size.

Fig. 7. Query execution time.

range of (0.78–0.84), (0.82–0.88) and (0.85–0.89) respectively for the
three study-areas.

It may be observed two types of mobility rules have been extracted.
The former rules (MR1 − MR5) are based on travel demand in different
POIs at varied timestamps while other rules are generated depending on
mobility behaviours of taxi-drivers. For example, it has been noted that
few taxi-drivers start their trips at early morning and typically travel
in the residential and commercial area, while another set of taxi-trips
are mainly from airport region to residential region and of large time-
duration. Variation of trip-distance, taxi-fare along with varied times-
tamps have been reflected by the extracted mobility rules. These rules
then are utilized to predict travel demand in different regions. Apart
from the rules shown in Table 7 the other types of rules considered
in MARIO (rule template MAR1) are neighborhood effects. These type
of rules are the highest numbers of rules that have been extracted.
Although this can not be shown in the tabular format however these
rules significantly help to predict travel demand and GPS footprints in
different regions of the city.

Based on the trip’s pattern, taxi-drivers may be grouped into three
different categories, (i) G1: Starts trip early in the morning slot and
typically moves around residential area, academic area and railway or
bus stops. The number of trips are fairly large in a day. (ii) G2: Trips are

initiated in late afternoon from commercial and entertainment places.
There are also fair amount of trips from areas of historic interests or
tourist places. (iii) G3: These taxi-trips mainly cover movements from
airport area and railway stations and bus-stop. The trip-duration is large
and subsequently less number of rides are covered by the taxi-drivers.

5.4. Prediction accuracy: travel demand

Based on the MARs, we compare the performance of MARIO with
nine baseline methods to predict travel demand in different regions
of a city. The baseline methods are historical average (HA), ARIMA,
SVM, Linear regression, GBDT, VAR, ST-ANN, DeepST (Zhang et al.,
2016b) and ST-ResNet (Zhang et al., 2017). The HA model predicts the
demand using average values of historical events whereas ARIMA com-
bines moving average and autoregressive components for modelling
time series. We have compared MARIO with ordinary least squares
regression. The kernel function is used in SVM model for prediction
and a gradient boosting method is used in the GBDT model to improve
the prediction accuracy. These all are broad range of classical machine
learning algorithm. We have also compared it with deep-learning mod-
els, VAR, ST-ANN, DeepST and ST-ResNet, to illustrate the efficacy
of the proposed deep LSTM model of MARIO. VAR or Vector Auto-
Regressive explores the pair-wise relations among all flows, however,
the model has high computational cost. ST-ANN model finds out the
spatial and temporal features of nearby 8 regions, and fed into an ANN
network. Here, we have considered nearby 8 regions’ (nearest 8 grids)
data and 8 previous time-intervals. We have used the DeepST-CPT vari-
ant of DeepST model where periodic, temporal and seasonal sequences
are considered for crowd-flow forecasting.

The evaluation is carried out by using two metrics: Mean Average
Percentage Error (MAPE) and Rooted Mean Square Error (RMSE). We
have carried out the comparisons for number of pick-up events and mov-
ing events and report the average RMSE and MAPE values. Table 8 and
Table 9 demonstrate the RMSE values for travel demand and moving
mobility events for MARIO and five baselines. Fig. 8 and Fig. 9 show the
MAPE values for moving and pick-up events. It has been observed that
MARIO achieves a lowest 7.016 and 0.1251 RMSE and MAPE respec-
tively. Amongst all the baselines based on deep-learning, DeepST and
ST-ResNet show better performances. Next, we manually select 10 days
from all three datasets when specific events (accident, road-blockage,
crowd due to social event) occurred and evaluate the travel demand in
different places of the cities. The results of the deep learning models are
shown in Fig. 10 and Fig. 11. It is observed that MARIO performs sig-
nificantly better than other deep learning models in these 10 days when
any event occurs. The key reason of this performance is that MARIO not
only models the spatial and temporal travel demand patterns, it is also
capable to model the variation of travel demand occurring due to some
events.

MARIO provides significant reduction in RMSE and MAPE over the
baseline methods. It may be noted that the existing methods fall short
especially in predicting moving events, however MARIO provides signif-
icantly better results both in pick-up and mobility event predictions.

5.5. Discussions

1. This work aims to extract mobility association rules from taxi-trips
of a city. These rules consist of underlying mobility patterns of a city
road network, namely, travel demand of a region (say, residential or
commercial) in different time-slots of a day, taxi-drivers’ movement
behaviours and finally how the variation of travel demand effects
other regions. These rules are effective for early prediction of travel
demand spikes such that several ridesharing companies, individual
taxi-drivers can schedule the trips and as well as to provide a better
transportation to citizens.
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Table 7
Mobility Rules and Evaluation Metrics. S:Spatio-temporal Support, C: Spatio-temporal Confidence, T1: 0800–1000, T2:
1000–1600, T3: 1600–2100, T4: 2100 - 0800, R1: Residential area, R2: Commercial and entertainment region, R3:
Academic area, R4: Areas of historic interest, R5: Railway station and Bus-stops, R6: Airport region.

M-Rule S C

MR1: TimeStamp(T1 ∧ T3) ∧ Weekday ⇒ travelDemand(High,R1) 0.28 0.867
MR2: TimeStamp(T1 ∧ T2) ∧ Weekday ⇒ travelDemand(High,R3) 0.21 0.785
MR3: TimeStamp(T3 ∧ T4) ∧ Weekday ⇒ travelDemand(High,R2) 0.182 0.843
MR4: TimeStamp(T1 ∧ T2 ∧ T3) ∧ Weekday ⇒ travelDemand(High,R5) 0.145 0.874
MR5: TimeStamp(T1 ∧ T2 ∧ T3) ∧ Weekend ⇒ travelDemand(High,R4) 0.128 0.902
MR6: Trip − duration(small) ∧ TimeStamp(T1toT3) ⇒ noOfTrips(high) ∧ Region(R1 ,R3,R5) 0.23 0.821
MR7: Trip − duration(small) ∧ TimeStamp(T4 ∧ T3) ⇒ noOfTrips(high) ∧ Region(R2) 0.24 0.876
MR8: Trip − duration(large) ∧ TimeStamp(T1 ∧ T4) ⇒ noOfTrips(small) ∧ Region(R5,R6) 0.206 0.743
MR9: Trip − duration(large) ∧ TimeStamp(T1 ∧ T3) ⇒ noOfTrips(small) ∧ Amount(High) ∧ Region(R6 ∧ R4) 0.32 0.870
MR10: Trip − duration(small) ∧ TimeStamp(T1toT3) ⇒ noOfTrips(large) ∧ Amount(Medium) ∧ Region(R1 ∧ R2 ∧ R3) 0.217 0.817

Table 8
RMSE Comparison (travel demand) with baselines.

Dataset HA GBDT SVM Linear Regression ARIMA VAR ST-ANN DeepST ST-ResNet MARIO

NYC dataset 14.182 10.091 13.96 11.12 12.89 12.52 11.86 11.02 9.58 8.02
Rome dataset 13.215 10.03 11.910 10.08 11.561 11.03 10.42 9.93 8.07 7.408
SF dataset 12.803 9.608 12.07 10.012 11.867 11.65 10.26 9.42 7.96 7.016

Table 9
RMSE Comparison of moving mobility events with baseline methods.

Dataset HA GBDT SVM Linear Regression ARIMA VAR ST-ANN DeepST ST-ResNet MARIO

Rome dataset 18.801 14.706 17.913 15.702 16.810 16.09 15.21 14.64 13.05 11.862
SF dataset 17.103 13.02 15.526 13.87 14.531 14.07 13.68 12.04 10.85 9.098

Fig. 8. Average MAPE value of moving mobility events in ROME and SF cities.

2. The key challenges to extract mobility association rules are two-
folds, (i) Firstly the statistical analysis to predict travel demand in
near future is time and computation extensive, since it requires a
huge amount of taxi trips to be analysed. (ii) Further, this anal-
ysis may fall short to extract underlying dynamics of the mobil-
ity features. Mobility association rules are extracted from historical
log and utilized for demand prediction without the need to analyze
enormous amount of taxi-trips. Moreover, the rules are capable to
reflect mobility features of a typical city network. Further, the index-
ing scheme of MARIO has outperformed other baseline methods in
terms of quick access of time-series data [refer Figs. 6 and 7].

Fig. 9. Average MAPE value of travel demand in 3 cities.

3. Categorization of taxi-drivers has been done based on their mobility
behaviours. For example, few taxi drivers cover only small (trip-
length) trips, while others take long trips from airport to residential
area and vice versa. These varied mobility behaviours also effect the
total amount of payment in a day. These analysis may help to show
which types of trips in a given region and timestamps are useful to
reduce vacant time (no passenger) of a taxi.

4. The spatio-temporal neighboring effect is crucial to predict any vari-
ation of travel demand and re-route the trips. Our proposed method
finds out the interrelationships of neighboring areas using a deep
LSTM architecture [refer Fig. 4] and thus outperforms other existing
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Fig. 10. Average MAPE value (10 days) of travel demand in 3 cities.

Fig. 11. Average RMSE value (10 days) of travel demand in 3 cities.

methods to predict travel demand and variation of travel demands.
The proposed framework has achieved better RMSE value, MAPE
values [refer Figs. 8 and 9] for predicting total passenger count,
number of originating trips in a region and how travel demand vari-
ation of one region impacts other neighboring regions.

6. Conclusions and future work

Exploring city dynamics from mobility traces facilitates several loca-
tion based services, such as traffic resource management and improved
route planning. The mobility association rules play an important role
to summarize such travel patterns, variation of travel demands and
finally modelling the overall movement dynamics. However, extract-
ing mobility association rules are challenging for time and extensive
computation complexity. In this work, we present a mobility-rule miner
framework named MARIO which is capable to extract spatio-temporal
mobility association rules from taxi-trip dataset. Furthermore, with the
help of the proposed methods, we discover mobility patterns and finally
predict the spatiotemporal distribution of travel-demands for different
functional regions of a city. The mobility association rules predict the
travel demand of different regions of a city which may improve taxi
drivers’ profits and passengers’ travel experience. MARIO is not only
limited to find interesting patterns from trajectory database, but incor-
porates how the effect of any mobility event evolve over longer periods
and on different spatial scale. The experimental evaluations on three
real-life taxi traces demonstrate the efficacy of MARIO. We strongly

believe that our framework can be utilized as an end-to-end system to
model mobility dynamics of a city and subsequently predicting travel
demands. MARIO has outperformed other existing methods for predict-
ing travel demands in terms of RMSE and MAPE measures significantly.

In future, we will extend MARIO by incorporating other contex-
tual information such as weather information to model the effects of
these features on overall mobility dynamics. Furthermore, we will aim
to develop an intelligent trip planner using the MARIO framework for
resolving users’ queries. It has been shown that the proposed approach
may facilitate the development of a context-aware trip recommendation
system.
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