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Latency-Aware Application Module Management for Fog

Computing Environments
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The fog computing paradigm has drawn significant research interest as it focuses on bringing cloud-based

services closer to Internet of Things (IoT) users in an efficient and timely manner. Most of the physical devices

in the fog computing environment, commonly named fog nodes, are geographically distributed, resource con-

strained, and heterogeneous. To fully leverage the capabilities of the fog nodes, large-scale applications that

are decomposed into interdependent Application Modules can be deployed in an orderly way over the nodes

based on their latency sensitivity. In this article, we propose a latency-aware Application Module management

policy for the fog environment that meets the diverse service delivery latency and amount of data signals to

be processed in per unit of time for different applications. The policy aims to ensure applications’ Quality of

Service (QoS) in satisfying service delivery deadlines and to optimize resource usage in the fog environment.

We model and evaluate our proposed policy in an iFogSim-simulated fog environment. Results of the simula-

tion studies demonstrate significant improvement in performance over alternative latency-aware strategies.
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1 INTRODUCTION

Due to rapid advancements in communication and hardware technology, it is expected that by 2020

there will be over 50 billion Internet of Things (IoT) devices with many real-time latency-sensitive

applications (Vermesan and Friess 2014). In this context, clouds can be used as infrastructure for

hosting IoT applications. However, as cloud data centers are geographically centralized in nature,

it is difficult for them to support applications dealing with a large number of highly distributed

IoT devices. In the long run, this inconvenience causes unacceptable high latency in service
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delivery and congestion in networks. Therefore, to overcome these obstacles, fog computing was

introduced (Bonomi et al. 2012).

Fog computing refers to a hierarchically distributed computing paradigm that bridges cloud data

centers and IoT devices. The fog computing environment offers both infrastructure and a platform

to run diversified software services. Hence, fog computing extends cloud-based facilities to the

edge network, reduces service delivery latency and network congestion, and improves Quality

of Service(QoS) (Dastjerdi et al. 2016). At different hierarchical levels of the fog environment, the

physical devices are commonly called fog nodes. Traditional networking devices like set-top boxes,

gateway routers, smart switches, and proxy servers, equipped with computational resources, can

be used as potential fog nodes. Fog nodes are generally heterogenous in terms of resource capacity

and application execution environment. Unlike cloud data centers, most of the fog nodes are heav-

ily resource constrained due to their inherent physical structure and can be deployed distributively

across the edge (OpenFog Consortium 2017; Mahmud et al. 2018). To align large-scale applications

in such fog computing environments, the applications are modeled as a collection of lightweight,

interdependent Application Modules (Taneja and Davy 2017; Gupta et al. 2017).

Typically, different IoT applications carry out some common activities such as receiving data

from IoT devices, preprocessing and analysis of the received data, and handling events of interest

(Gubbi et al. 2013). An Application Module contains necessary instructions so that one of these

aspects for the respective application can be attained. For a given input, an Application Module per-

forms some specific operations to generate corresponding output. Later, based on data dependency,

the output is sent to another module as input. In order to process input within a fixed time frame,

each module requires a certain amount of resources, e.g., CPU, memory, bandwidth, and so forth.

Hence, Application Modules together with their allocated resources constitute the data processing

elements for different applications. This sort of decomposition is effective for distributed develop-

ment of large-scale applications. In the literature, a similar concept is used to divide component-

based applications into multiple Application Components (Yangui et al. 2016). However, while

executing applications in a distributed manner, latency-related issues such as node-to-node com-

munication delay, application service delivery deadlines, and service access frequency often be-

come predominant and influence Quality of Service (QoS) and resource utilization. In different

computing paradigms, although various latency-aware management strategies for distributed ap-

plications are proposed (Kang et al. 2012; Nishio et al. 2013; Ottenwälder et al. 2013; Takouna et al.

2013), the aforementioned latency issues have not been addressed simultaneously. Besides, due to

dependency toward centralized management and lack of latency-sensitive application prioritiza-

tion, the existing policies often get interrupted in meeting the challenges of IoT-enabled real-time

interactions (Afrin et al. 2015). Therefore, in this article, we propose a latency-aware Application

Module management policy for the fog computing environment that considers different latency

aspects of distributed applications in a body with decentralized coordination. The objective of the

policy is to manage latency-sensitive and latency-tolerant IoT applications in different ways so

that deadline-driven QoS provision can be ensured for all types of applications while optimizing

resources in fog computing. The main contributions of this article are:

• A latency-aware approach is proposed for placing Application Modules on distributed fog

nodes that ensures deadline-satisfied service delivery for different types of applications.

• The latency-aware Application Modules forwarding strategy is explored that relocates mod-

ules in order to optimize the number of computationally active fog nodes.

• Our proposed latency-aware policy is applied in an iFogSim-simulated fog environment and

compared with other latency-aware policies from different perspectives. The performance

results show significant improvement in favor of our policy.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 9. Publication date: November 2018.



Latency-Aware Application Module Management for Fog Computing Environments 9:3

The rest of the article is organized as follows. In Section 2, we highlight several relevant research

works. In Section 3, different event-driven IoT application scenarios are discussed with a general

application model. Section 4 provides the system overview, assumptions, and problem description.

The proposed latency-aware Application Module management policy is presented in Section 5.

Section 6 reflects the simulation environment and the performance evaluation. Finally, Section 7

concludes the article.

2 RELATED WORK

Famaey et al. (2009) propose a dynamic and latency-aware distributed service placement policy

over multiple homogeneous servers. The services can be assigned with a priority value based on

their utility. A server applies the policy to determine whether it can execute a request with the ser-

vice placed within it or should forward the request to another service hosted in the nearby servers.

While forwarding the service, server-to-server latency is taken into account. The proposed algo-

rithm shuffles active services within a server so that resources can be accommodated to execute

the request and the latency incurred due to service forwarding can be avoided.

Kang et al. (2012) propose an Iterative Sequential codeployment algorithm for distributed

services. Based on the user’s proximity, the algorithm at first generates some virtual random

placement for the services and then performs iterative re-placement to improve the user’s

service access and interservice (nodal) communication time. The algorithm deals with both

latency-sensitive and latency-tolerant services in the same way. After deployment of services,

to handle dynamic changes of users and their access pattern, authors recommend rerunning the

deployment process periodically.

Takouna et al. (2013) indicate toward communication latency and energy-aware placement of

parallel applications in virtualized data centers. The proposed policy dynamically identifies the

bandwidth demand and communication characteristics of the distributed applications and real-

locates the applications through migration if the current placement fails to handle the issues. A

migration manager supervises the operations at the time of migration. The migration manager

sorts the virtualized instances based on their current traffic and selects an appropriate instance as

a migration target by checking the resource availability.

Gupta et al. (2016) propose a transfer-time-aware workflow scheduling policy for the multicloud

environment. It prioritizes interdependent tasks for scheduling to the multiclouds based on the

computation cost and communication time. Within the clouds, the tasks are mapped considering

the earliest start and finish time. The policy aims to enhance service delivery time. The relevant

operations of the proposed policy are handled by a global cloud manager.

Fan et al. (2018) discuss data placement in geo-distributed multiclouds. The proposed Energy-

Efficient Latency-Aware Data Deployment Algorithm (ELDD) sorts data chunks in nonascending

order according to the collective access probability from all the users and merges them into larger

data segments based on the capacity of the servers. Later it iteratively searches for appropriate

servers where the placement cost of such data segments gets reduced. The placement cost is cal-

culated centrally considering service access latency and energy consumption of the servers and

the network. The algorithm also iteratively turns off the free servers.

Based on the requirements during development, deployment, and management of component-

based IoT applications, Yangui et al. (2016) propose a Platform as a Service (PaaS) architecture to

facilitate application provisioning in a hybrid cloud-fog environment. Being a centralized coordi-

nator, the PaaS architecture allows developing applications according to the target domain; dis-

covering, initiating, configuring, and scaling resources for deploying and executing the application

components; managing execution flow between the components; monitoring SLA and component
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migration; and providing resource and component management interfaces. In evaluation, different

component placement scenarios are discussed based on the end-to-end latency.

Taneja and Davy (2017) present a Module Mapping Algorithm to place distributed applications

in a cloud-fog environment. The work aims to ensure proper resource utilization. The algorithm

is aware of the network issues. It sorts both the nodes and application modules according to the

available capacity and requirements and maps the modules when the constraint is satisfied. In one

sense, it prioritizes the modules based on the resource expectation. The policy reflects the way to

reduce resource underutilization for distributed IoT applications. It also highlights how fog-cloud

interoperation can minimize end-to-end latency compared to the cloud-based approaches.

Ottenwälder et al. (2013) propose a plan-based operator placement and migration policy for

Mobile Complex Event Processing (MCEP) applications. It supports mobility of the users and cre-

ates a time-graph model to identify possible migration targets. Considering the shortest path from

the data source, it selects the appropriate target instance from the time-graph model. On the se-

lected instance, the policy applies coordination to accommodate the migrating operator. The main

intentions of the proposed policy are to reduce network overhead and end-to-end delay.

Nishio et al. (2013) discuss latency-aware application deployment for Mobile Cloud Computing

(MCC). In the proposed system, a coordinator manages all incoming requests and resources in or-

der to meet service latency for different applications. While sharing resources, smaller amounts of

tasks are forwarded from one node to another node under supervision of the coordinator. Policies

running in the system trade off utility gain and energy consumption for resource optimization.

A cost-optimized offline and online service placement policy for the Mobile Micro Cloud (MMC)

is discussed by Wang et al. (2017). The policy determines an optimal configuration of service in-

stances that minimize the average cost over time. A centralized controller predicts the cost and

computes the service instance configuration for the next time slots. The cost function can include

resource consumption, service access latency, and other monetary issues. The policy supports mo-

bility of the entities and migration of the services accordingly. The authors also consider the errors

while predicting the cost and develop a method to identify the optimal look-ahead window size.

Chamola et al. (2017) consider Software-Defined Network (SDN)-enabled communication of

multiple cloudlets to place services at the proximity of the mobile users. The task assignment

solution can improve the QoS with respect to service delivery and service access time. According

to the proposed policy, if a cloudlet gets overloaded, the tasks offloaded to it are processed on an-

other relaxed cloudlet of the network. Necessary operations to conduct the policy are supervised

by a central cloudlet manager.

To facilitate latency-aware scheduling of applications in virtual machines, Xu et al. (2012) intro-

duce a scheduler named vSlicer. vSlicer nurtures the concept of differentiated-frequency microslic-

ing. Unlike traditional schedulers, vSlicer divides a CPU slice into many microslices, and according

to microslices, it schedules applications in higher frequency. By doing so, it increases the CPU ac-

cess probability of applications.

Table 1 provides a brief summary of the state of the art for latency-aware application or ser-

vice placement in distributed server, multicloud, mobile-cloud, and cloud-fog environments. Com-

pared to the existing works, the unique aspect of our work is that we have considered service

access delay, service delivery time, and internodal communication delay simultaneously while

placing and forwarding interdependent application modules over distributed fog nodes. Besides,

the proposed policy decentrally coordinates the placement and forwarding operation to overcome

the constraints of centralized supervision, for example: application management overhead, single

point of failure, additional communication and decision-making delay, and so forth. Our policy

can place the modules both horizontally and vertically and in order to facilitate low energy usage,

and can optimize resources by forwarding all the modules from one node to the others. Moreover,
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Table 1. Summary of the Literature Study

Work

Distributed

Application

Meets Latency

Forwards

Application

Optimizes

Resources

Decentralized

Management

Prioritized

Placement

Service
Access

Service
Delivery

Inter-
nodal

Famaey et al. (2009) � � � � �
Kang et al. (2012) � � � �
Takouna et al. (2013) � � � �
Gupta et al. (2016) � � � �
Fan et al. (2018) � � � �
Yangui et al. (2016) � � � �
Taneja and Davy (2017) � � � �
Ottenwälder et al. (2013) � � � �
Nishio et al. (2013) � � � �
Wang et al. (2017) � � �
Chamola et al. (2017) � � �
Latency-aware (this work) � � � � � � � �

it enhances the priority of latency-sensitive applications to place them closer to the data source

by deploying latency-tolerant applications in the upper-level fog nodes. Simulation results sup-

port the applicability of our policy in terms of QoS satisfaction, resource optimization, module

placement, and forwarding time.

3 APPLICATION SCENARIOS

3.1 IoT-Enabled Systems

In advanced healthcare and smart-home-based systems, the structure of different IoT applications

is reflected through some common operations. Two such application scenarios and their basic

operations on the received data can be described as follows.

3.1.1 Patient Respiratory Monitoring System. In order to monitor breathing and oxygen levels

of asthma patients, pulse oximeters are widely used at hospitals. Usually pulse oximeters are con-

nected to the bedside monitors and continuously show oxygen levels carried in the body, heart

beat rate, and changes in blood volume of the skin (Addison et al. 2015). The bedside monitors

provide the interface for authentication, aggregate data signals, and usually forward the sensed

data to the cloud or other computational entities for further processing to detect hypoxemia, hy-

percapnia, and sleep apnea of the patients. Since some pulse-oximeter-generated data signals can

be irrelevant, incomplete, and diverse in format, data filtering techniques are applied in this con-

text. Later, different data analytics with respect to hypoxemia, hypercapnia, and so forth operate

on the filtered data. Sometimes the analyzed outcome can indicate an emergency situation. Based

on the outcome, required actions, for example, ventilation, injection, medication, and so forth, are

triggered at the patient’s bedside actuators. For critical asthma patients, a corresponding appli-

cation has to perform the aforementioned operations in real time that cloud-based placement of

the application often fails to deal with. In addition, placement of such large-scale applications in

distributed and heterogeneous fog nodes is not as simple as the cloud-based placement.

3.1.2 Visitor Identification System. To identify a visitor in a smart-home-based system, usually

entrance-side cameras take the pictures of the visitors and send them to the cloud or other com-

puting entities for image processing (Sahani et al. 2015). Sometimes due to weather conditions

and other external effects, the taken pictures get a lots of noise. In this context, image filtration

techniques are required to apply for selecting the most appropriate picture and reducing its noise.
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Fig. 1. Application model.

Image analytics with respect to face and gesture recognition, object detection, and so forth are also

applied to the filtered pictures for identifying the visitor and the handheld objects. Once the visitor

is identified and the handheld objects are found allowable, necessary information is parsed from

the respective databases. The information can include contact number, address, and access rights

of the visitor. If the visitor is authorized to enter the house, entrance-side actuators open the door;

otherwise, a notification to the residents is created containing the details of the visitor. During

the urgent period, a corresponding application of the Visitor Identification System is required to

coordinate the aforementioned operations within a reasonable time that may not be possible if

the application is placed in a distant cloud. Besides, necessary resources to execute this kind of

compute-intensive applications in resource-constrained fog nodes are often difficult to manage.

3.2 Application Model

Based on the aforementioned scenarios and data operations, we have considered the following

application model for the associate event-driven applications. We assume that each application is

composed of a Client Module (provides initial application interface), Data Filtering Module (applies

data filtering techniques), Data Analyzing Module (executes data analytics), and Event Handler

Module (generates appropriate response to the event). Data dependency exists among the modules

of the same application, which can be expressed through a sequential unidirectional data flow

as shown in Figure 1. After placement of an Application Module, from the respective data flow

the next module is identified for placement. To foster concurrency, the modules can be replicated.

Besides, if a module is allocated resources according to its requirements, it is expected that the

module will execute its operation within a fixed time.

The Client Module is the entrance module for each application. Application initializing infor-

mation such as authentication, data signal sensing frequency, service delivery deadline, metadata

of subsequent modules, and their interdependency are notified to the system through the Client

Module. After deployment of all modules, the Client Module of a particular application directly

communicates with respective IoT devices to grab the data signals and forwards in the form of

aggregated data to the subsequent modules for further operations. If the ultimate analyzed out-

come of a forwarded data signal invokes any event of interest, the Event Handler Module sends a

corresponding response toward the Client Module. This response is eventually considered as the

final application service for an IoT data signal. Based on the response, the Client Module triggers

action in the actuators.

Since the Client Module plays the role of root module for the applications and closely associates

with the IoT devices and the actuators, this particular module for every application is expected to

be placed at the proximity of the users.
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Fig. 2. Organization of fog.

4 SYSTEM MODEL AND ASSUMPTIONS

4.1 Organization of Fog Layer

In this work, the cloud is considered as a standalone computational platform and IoT devices only

generate data signals without further processing due to resource and energy constraints. In this

circumstance, fog computing acts as an intermediate layer in between the cloud and IoT devices.

Within this layer, nodes are organized in a hierarchical order as shown in Figure 2.

Lower-level fog nodes are closer to the IoT devices. As the level number goes higher, the distance

of fog nodes from IoT devices increases, which can be reflected in lower-level to higher-level uplink

latency and delay in service delivery. Compute, storage, and networking capabilities of lower-level

fog nodes are less compared to that of higher-level nodes (Ashrafi et al. 2018). Each node in a par-

ticular level is directly associated with a node of the immediate upper level. Fog nodes can form

clusters among themselves and rapidly communicate with each other through Constrained Appli-

cation Protocol (CoAP), Simple Network Management Protocol (SNMP), and so forth. (Slabicki and

Grochla 2016). Therefore, maximum nodal communication delay ϵC within a fog cluster C is neg-

ligible and does not impact service delivery time extensively. We assume that at lower fog levels,

if two nodes from the same level are connected with an identical uplink node and experience an

approximately equal amount of uplink latency, the nodes can belong to the same cluster. Besides,

in a reliable IoT-enabled system, it is expected that the fog infrastructure providers have applied

efficient networking techniques to ensure persistent communication among the nodes through

less variable internodal latency (Kempf et al. 2011).

4.2 Fog Node Architecture

In order to define the architecture of fog nodes for distributed application management, we have

extended the concept of the OpenFog-consortium-proposed fog reference architecture (OpenFog

Consortium 2017). We assume a fog node is composed of three main components: Controller Com-

ponent, Computational Component, and Communication Component, as depicted in Figure 3.
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Fig. 3. Fog node components.

The Computational Component provides resources to execute Application Modules. Inside the

Computational Component, modules are assigned to Micro Computing Instances (MCIs) where re-

sources, e.g., CPU, memory, bandwidth, and so forth, are allocated according to the requirements.

Due to resource constraints, each fog node can configure a certain number of individually working

MCIs at a time. In a fog node when no MCIs are running, its Computational Component is turned

off. In this case, the node only serves networking functionalities like routing, packet forwarding,

and so forth through its Communication Component. If the load of applications increases in the fog

layer, the Computational Component of that node can be turned on again to handle the event. The

Controller Component of a fog node monitors and manages the operations of the Computational

and Communication Components.

Moreover, the Controller Component maintains several data structures. Among them, the Mod-

ule Sleeping Block (MSB) contains nonexecuting Application Modules. When an Application Mod-

ule has no input to process, it is withdrawn from the assigned MCI and placed to the MSB. Ap-

plication Modules forwarded from another node also reside inactively in the MSB while they are

waiting for scheduling. In addition, a fog node tracks the Application Modules that are deployed

within it using the Placement List (PL) and stores route-related information of other Application

Modules in its Routing List (RL). After the execution of a module, to determine the host (both

node and MCI) of the next module, either the PL or RL of the corresponding fog node is referred

to. Besides, a fog node preserves metadata of the placed modules even when they are no longer

associated with it and the context information of other nodes in a Data Container.

The relevant notations and definitions used in modeling the system are listed in Table 2.

4.3 Latency Model

Due to data dependency, the generated output of an Application Module is sent to another module

as input. The tolerable intermodule data dependency delay δm′m
a of module m in application a

refers to the maximum amount of time that the module can wait without affecting the application’s

service delivery deadline to get the input from the previous modulem′ for a particular data signal.

For any application a, the service delivery deadline can be set according to
∑
δm′m

a ;∀m ∈ Ma .

Here, δClientFilter
a + δ

FilterAnalysis
a + δ

AnalysisEvent
a < δEventClient

a is assumed so that tolerable intermod-

ule data dependency delay-aware placement of the Data Filtering, Analyzing, and Event Handler

Module can spontaneously justify placement of the Client Module.

However, an intermodule data dependency delay of modulem placed in node n can be estimated

(γm′m
a ) based on the input processing time ϕm′

n′ of the previous modulem′ placed in node n′ and the

internodal communication delay Δn′n between their host nodes. In some cases, an input scheduling

delay of the previous module can also contribute to the estimated intermodule data dependency

delay of the respective module.
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Table 2. Notations

Symbol Definition

N Set of all fog nodes

A Set of all applications

M Set of all Application Modules

R Set of all resources (e.g., CPU, memory, bandwidth, etc.)

Ma Set of all Application Modules that belong to application a ∈ A; Ma ⊂ M
Mn Set of all Application Modules placed in node n ∈ N ; Mn ⊂ M
γm′m

a Estimated intermodule data dependency delay of module m from its

previous modulem′ on the data flow of application a;m′,m ∈ Ma

δm′m
a Tolerable intermodule data dependency delay of module m from its previous

modulem′ on the data flow of application a; m′,m ∈ Ma

Δn′n Internodal communication delay between node n′ and n; n,n′ ∈ N
f m Input receiving frequency of module m;m ∈ M
Tm

n′n Required time to forward modulem ∈ M from node n′ to n; n′,n ∈ N
ϕm

n Input processing time of module m ∈ M in node n ∈ N
rm

r eq Requirement of resource r ∈ R for modulem ∈ M
ψnr Capacity of node n ∈ N for resource r ∈ R
rn

avail
Available resource r ∈ R in node n ∈ N

Cn Cluster to which node n ∈ N belongs

ϵC Maximum communication delay within cluster C of fog nodes

tnow Current timestamp

t last
m Timestamp when modulem ∈ M received last input

μm
n Assigned MCI to module m ∈ M in node n ∈ N

yn ∈ {0, 1} Equals 1 if node n ∈ N is computationally active, 0 otherwise

xmn ∈ {0, 1} Equals 1 if modulem ∈ M is mapped to node n ∈ N , 0 otherwise

x ′mn ∈ {0, 1} Equals 1 if modulem ∈ M was earlier deployed in node n ∈ N , 0 otherwise

In addition, the service access rate of data signals for an application and replication number

of the previous module plays an important role in the input receiving frequency of a particular

Application Module. The input receiving frequency fm of a module m itself helps to identify the

possible idle period of modulem. For example, if fm = 2/ms and ϕm
n = 0.2ms in node n, then it can

be expected that after processing an input, modulem in node n will remain idle for the next 0.3ms.

Within this idle period of module m, its assigned MCI μm
n can be allocated to other modules for

input processing.

4.4 Module Management Problem

Usually lower-level fog nodes are not resource enriched like upper-level nodes, although place-

ment of applications on lower-level nodes facilitates faster service access and delivery. Besides,

not all applications show identical response to latency-related issues. For latency-sensitive

applications, the service delivery deadline to the module’s tolerable data dependency delay is

stringent compared to latency-tolerant applications. In this case, placement of latency-tolerant

applications in a limited number of lower-level fog nodes can obstruct many latency-sensitive ap-

plications to meet their requirements. Conversely, by considering the lower fog level scalable, if all

applications are placed there, upper-level nodes will remain underutilized. Therefore, an efficient

module placement policy is required that can prioritize applications to place them in closer
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proximity of the data source, meeting necessary latency-related issues. More precisely, the policy

should identify which applications (modules) should be placed at the lower fog level and which

are required to move toward the upper level.

Moreover, to minimize energy usage and expenses in the fog environment, the number of com-

putationally active nodes can be optimized. In this case, some modules are required to forward

from one node to another. The selection of source and destination node for such module forward-

ing is very crucial. In addition, while forwarding modules, constraints on nodes’ capacity, service

delivery deadline, and forwarding cost (e.g., forwarding time) should be observed simultaneously.

In a distributed environment like fog, if the decisions regarding application management are

taken decentrally, both application placement time and overhead from the centralized controller

will be reduced. Thus, application management can be done without relying on a single entity,

although it will be very difficult to coordinate the nodes.

5 PROPOSED APPLICATION MODULE MANAGEMENT POLICY

Our proposed latency-aware Application Module management policy runs on the Controller Com-

ponent of each fog node without supervision of any external entity. This management policy ba-

sically targets application module placement to ensure deadline-satisfied QoS and resource opti-

mization in the fog layer.

5.1 Assurance of QoS

To initiate any application a in fog, the corresponding IoT devices subscribe with a fog node. This

node acts as the Application gateway node for application a. Usually during subscription, the Client

Module of application a is by default placed on its Application gateway node. Therefore, Applica-

tion gateway nodes of different applications are located at the lower fog level. However, placement

of the module next to the Client Module also initiates from the Application gateway node. In order

to initiate placement of a module, the fog node executes the PlaceAppModules procedure given in

Algorithm 1.

The PlaceAppModules procedure takes the to-be-placed Application Module, m; its previous

module, m′; and observed network delay, ω, as arguments.

As shown in Algorithm 1, the PlaceAppModules procedure basically consists of four steps:

At first, the procedure inquires about the context of the current node (line 2). If the current

node is cloud, the rest of the unassigned modules will be placed there; otherwise, the procedure

inquires about the context of the corresponding uplink node and host node ofm′ (line 3–7). Then

the following steps are executed:

(1) Sum of the input processing time of previous module m′, observed network delay from

host node ofm′ to the current node and the current node’s uplink latency is checked with

tolerable inter-module data dependency delay of the to be placed Application Module, m
(line 9). If it is feasible to route modulem to the uplink node, the current node updates its

RL for the module. At the uplink node, deployment process of the module is re-initiated

by invoking its PlaceAppModules procedure with an updated value of observed network

delay, ω (line 10–14).

(2) If it is not efficient to route module m to the uplink node, the current node intends to

place the module within itself. In order to do so, the resource availability of the current

node is checked with the requirement of module m. If the resource availability supports

requirements of module m, the current node update its PL for module m (line 15–16).

However, as the module is deployed in a computationally active node, boolean variableη is

set to true (line 17) and availability of the resources in the current node is updated (line 18).
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ALGORITHM 1: Module placement algorithm

1: procedure PlaceAppModules(m, m′, ω)

2: p ← this node

3: if p = Cloud then

4: place rest modules in cloud

5: return

6: q ← p .uplinkNode

7: z ←m′.hostNode

8: if m � null then

9: if ϕm′
z + Δpq + ω < δ m′m

a then

10: ω ← ω + Δpq

11: p .RL.add (m, q )
12: q .PlaceAppModules(m, m′, ω )
13: else

14: η ← false

15: if r m
r eq < r

p

avail
, ∀r ∈ R then

16: p .P L.add(m)
17: η ← true

18: p .update(r
p

avail
)

19: else

20: for u := Cp .activeNodes do

21: if r m
r eq < r u

avail
, ∀r ∈ R then

22: p .RL.add(m, u )
23: u .P L.add(m)
24: η ← true

25: u .update(r u
avail

)

26: break

27: if η = f alse then

28: select node v ∈ Cp .inactiveNodes

29: p .RL.add(m, v )
30: v .P L.add(m)
31: v .update(r v

avail
)

32: m′ ←m

33: m ←m′.getNext

34: p .DeployAppModules(m, m′, ϵCp )

35: else

36: return

(3) Another computationally active node from the same cluster as the current node is se-

lected to place the module m if available resources at the current node do not meet the

module’s requirements. This selection is also conducted based on the resource availability

of other cluster nodes. In this case, current node updates its RL and the selected cluster

node updates its PL, resource availability for modulem (line 20–25).

(4) If all computationally active cluster nodes fail to allocate resources for deploying module

m, an arbitrary computationally inactive node from the cluster will be selected to place

the module. RL and PL of the respective nodes will be updated for the module (line 27–31).

Step 2–4 of the algorithm operate on the same cluster. Therefore, placement process of the next

Application Module can be initiated from any node of the cluster. In this algorithm, current node

is selected to do so as it simplifies management of routing information. Since, Fog nodes residing

in same cluster are connected with faster networking protocols (e.g. CoAP, SNMP, etc.), observed

network delay ω in this case is considered negligible and set equal to ϵ of the Cluster.
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Algorithm 1 can be extended to handle the scenario when there exist no inactive nodes to host a

module within a cluster. In this case, the module can be bypassed to the proximate clusters provided

that the tolerable inter module data-dependency delay is not violated. If still the module is failed to

deploy, it can be sent either to the uplink nodes or to the proximate cluster nodes where tolerable

inter module data-dependency delay gets less violated. It is done so that even if the deadline cannot

be meet, service delivery time remain as low as possible. However, if the Fog computing platform

is unable to allocate resources for all the modules of an application, it notifies the user through

Application gateway node to flexible the deadline so that it can be placed to the Cloud.

In a reliable IoT-system where the requirements of modules assist them to process input within

a fixed amount of time, The proposed Algorithm 1 helps the applications to meet their service

delivery deadline. It implicitly deals with latency-sensitive and tolerant applications in different

way. According to the policy latency-tolerant applications (modules) are placed vertically whereas

latency-sensitive applications (modules) are placed horizontally across the cluster and in lower Fog

level resources are preserved for future latency-sensitive applications.

5.2 Optimization of Resources

Generally, if all deployed Application Modules of a particular Fog node are re-located to other

nodes for further execution, Computational Component of that node can be turned off. Hence, the

number of computationally active Fog nodes can be reduced. In Fog, this sort of optimization can

be handled in terms of both Linear Programming and heuristic based approaches.

5.2.1 Formulation of a Linear Programming Problem. A constrained Linear Programming (LP)

problem is formulated in Equation (1) to minimize the number of computationally active Fog nodes.

It helps to identify possible target Fog node n for re-locating Application Module m through a bi-

nary decision variable xmn . Binary variables x ′mn and x ′mn′ tracks whether module m had been

available in node n or n′ since the last placement. The constraints ensure that a module will not

be mapped to multiple nodes Equation (2), resources of the target node satisfy the module’s re-

quirements Equation (3), placement of the module to target node does not affect the tolerable

inter-module data dependency delay of the next module Equation (4) and the required time to

forward the module from source node to target node fits within the input arrival interval of that

module Equation (5).

min
∑

n∈N

yn (1)

subject to, ∑

n∈N

xmn = 1;∀m ∈ M (2)

∑

m∈M

r
r eq
m xmn ≤ ψnryn ;∀n ∈ N ,∀r ∈ R (3)

xmnγ
mm′′
a ≤ δmm′′

a ;∀n ∈ N ,∀a ∈ A,∀m ∈ Ma (4)

Tm
n′nx

′
mn′ (xmn − x ′mn ) ≤ 1

f m
;∀n,n′ ∈ N ,∀m ∈ M (5)

This LP problem is required to be solved periodically to optimize the number of computationally

active nodes. Any integer programming solver e.g SCIP (Achterberg 2009) can be used in this case.

However, based the solution of LP problem, modules can be re-located in optimal number of nodes

and Computational Component of other active nodes can be turned off.
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5.2.2 Proposed Heuristic Solution. In a Fog environment with large number of computationally

active nodes, the aforementioned LP problem takes much time to be solved. As a consequence, in

making real-time forwarding decisions the LP-based solution will not be acceptable. Therefore,

here we propose a heuristic based solution to the problem.

In the heuristic approach, we consider that after latency-aware Application Module placement

of any application a, Fog nodes belonging to the same cluster share their context (e.g. PL, RL,

Data container information, etc.) with each other. This sort of context sharing among the nodes

is conducted within Ts amount of time which is termed as context sharing period. After context

sharing period, different Fog nodes are found hosting different number of Application Modules.

Based on a predefined threshold percentage of allocated resources, some nodes are identified as

highly-occupied while others are considered under-occupied.

Due to step 2 and 3 of Algorithm 1, the number of under-occupied nodes in a cluster is com-

paratively less than highly-occupied nodes. Moreover, to make an under occupied node compu-

tationally inactive, only a few Application Modules will be required to re-locate. For example, let

us assume, there is a cluster of four nodes, each of them can host up to three Application Mod-

ules with similar resource requirements. At a particular time, two of them are occupied with two

modules each and rest are occupied with one module. The resource allocation threshold for each

node is set to 60%. In this case re-location of two Application Modules from a highly-occupied

node to other nodes make only one node computationally inactive whereas re-location of Appli-

cation Modules from two under-occupied nodes can make two nodes computationally inactive.

Taking this concept into account, the proposed heuristic approach aims at re-locating modules

from under-occupied nodes to other highly-occupied cluster nodes.

In order to conduct re-location of Application Modules from an under-occupied node,nu to other

highly-occupied cluster nodes, at first nu forwards the modules in non-executing form to each of

the nodes. Within the highly-occupied cluster nodes, forwarded modules reside in MSB. If a highly-

occupied node accommodates any of the forwarded modules in its Computational Component, the

RL of nu is updated for that module. In this case, other cluster nodes discard the module from their

MSB. Otherwise, at highly-occupied cluster nodes, forwarded modules are required to be scheduled

in MCIs of other Application Modules.

After forwarding non-executing form of all placed modules, an under-occupied node nu usually

tries not to execute the modules in its Computational Component. In this case, if nu receives input

τ for modulem of application a, it either routes the input to new host node of the respective mod-

ule or asks a suitable highly-occupied node to schedule the module through ForwardAppModules

procedure (Algorithm 2).

Algorithm 2 is consisted of two basic steps. After finding the context of current node (line 2),

the following steps are executed:

(1) In the RL of current node, if reference of new host node for module m is found, input τ
will be sent to that node (line 3–6).

(2) To identify a suitable host module and its assigned MCI for scheduling Application Module

m, Algorithm 2 takes each highly occupied cluster nodes into account (line 10–11), parse

relevant information (line 12) and checks the following conditions:

i. host module is not currently processing any input (line 13). It ensures that, m will be

scheduled in MCI of host module only when it is idle.

ii. host module will not receive any input until module m finishes input processing

(line 14). This condition ensures that re-location process will not discard any input of

host module.

iii. the assigned MCI to host module meets the resource requirements of modulem(line 15).
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iv. Placement and execution of module m on the host node will not affect the tolerable

inter-module data dependency delay of its next module (line 16).

v. no other under-occupied nodes have selected the MCI assigned to host module for

scheduling their Application Modules (line 17). For any host module,m′ this condition

is observed through boolean variable λm′ . After identifying the host node, necessary in-

formation are updated (line 18–21). As soon as scheduled Application Module finishes

input processing, λm′ is set to false again.

Here, Algorithm 2 employs first fit solution to schedule Application Module m. However, after

re-location of modules from under-occupied nodes to highly-occupied nodes, there will be an

observation period. Within this period if no anomaly (e.g. failure in scheduling forwarded modules,

QoS degradation, etc.) is detected, soon after the observation period, Computational Component of

under occupied nodes will be turned off. Hence, the number of computationally active nodes from

the Fog can be reduced. Besides, the proposed policy dynamically determines host node and host

module for the forwarded modules which helps to deal with sudden changes in input receiving

frequency (e.g. due to add new replica) of the modules.

Our proposed heuristic based resource optimization through latency-aware Application Mod-

ule forwarding operates within clusters. In this approach, usually a small number of Application

Modules from under-occupied nodes are forwarded to highly-occupied cluster nodes. Since highly-

occupied cluster nodes contain many potential host modules, there will be always a possibility

of finding suitable MCI to schedule less amount of forwarded modules. Moreover, cluster nodes

are connected with each other with faster communication protocols. Therefore, communication

ALGORITHM 2: Module forwarding algorithm

1: procedure ForwardAppModules(m, a, τ )

2: p ← this node

3: q ← p .RL.дet (m)
4: if q � null then

5: send τ to m on node q

6: return

7: m′′ ←m .getNext

8: hostn ← null

9: hostm ← null

10: for n′ := Cp .highNodes do

11: for m′ := Mn′ do

12: n′.getInfo(m′)
13: if t now > t l ast

m′ + ϕm′
n′ then

14: if t l ast
m′ +

1
fm′
− t now > ϕm

n′ then

15: if r m′
r eq ≥ r m

r eq, ∀r ∈ R then

16: if xmn′ = 1&γ mm′′
a ≤ δ mm′′

a then

17: if λm′ = f alse then

18: hostn ← n′

19: hostm ←m′

20: λm′ ← true

21: n′.updateInfo(m′)
22: break

23: if hostn && hostm � null then

24: break

25: if hostn && hostm � null then

26: schedule m in μhostm on node hostn
27: send τ to m on node hostn
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latency during module forwarding is negligible and does not obstruct application QoS. However,

for a forwarded module if no suitable host node and host module is found, the module will be

executed in its initial placement. In that case, there will be no further scope of forwarding data

signal endlessly without being accepted.

6 PERFORMANCE EVALUATION

The performance of the proposed Application Management policy is evaluated in two phases; At

first, the proposed latency-aware module placement is compared with the approarches mentioned

in Kang et al. (2012) and (Nishio et al. 2013). In Kang et al. (2012), a latency-aware iterative al-

gorithm is introduced to place applications whereas in (Nishio et al. 2013), a centralized resource

coordinator supervised service oriented resource sharing (SORS) is discussed. In this phase, de-

ployment time of modules, percentage of deadline satisfied data signals are considered as the per-

formance metrics.

Later, the proposed heuristic based solution for resource optimization is compared with the

solution of LP problem. In solving the LP problem, SCIP solver (Achterberg 2009) is used.

The proposed latency-aware Application Module forwarding is also compared with MigCEP

(Ottenwälder et al. 2013) and Peer VMs Aggregation (PVA) (Takouna et al. 2013). In MigCEP, to for-

ward applications time-graph models are generated, algorithms for shortest path and co-ordination

are executed whereas in PVA, a migration manager handles necessary steps to forward applica-

tions. In this phase, number of reduced Fog nodes, required time for identifying the target nodes

and forwarding the modules are considered as performance metrics. Moreover, when scheduling

of forwarded modules are required at the target nodes, the performance of the proposed approach

in reducing the number of context switching is compared with vSlicer (Xu et al. 2012) and earliest

start time-based scheduling (Gupta et al. 2016). Increasing number of context switching can incur

high service waiting time and cost.

In addition, the performance of the proposed policy is discussed in terms of varying application

contexts such as variable input processing and communication time of the modules along with

sudden changes in application service access rate.

6.1 Simulation Environment

To evaluate the performance of the proposed policy, a Fog environment is simulated in iFogSim

(Gupta et al. 2017). iFogSim is built upon CloudSim (Calheiros et al. 2011) framework that is used

widely for simulating different computing paradigms (Lin et al. 2014; Mahmud et al. 2016). The

simulation parameters are summarized in Table 3.

In the modeled environment, we assume that Fog layer consist of three levels e.g. lower level

(LL), mid level (ML), higher level (HL) and every node is heterogeneous to each other in terms of

resource capacity and application execution environment. To conduct the experiments, we have

used synthetic workload as compatible real workload for the proposed Application Management

policy is not currently available. The value of simulation parameters within a specific range is

determined by a pseudo random number generator. Here, application initiation request can be

originated from any location at any time. We consider that due to incompleteness of data, de-

ployed applications discard 2–3% of received signals during data filtration and 65% of the placed

applications are comparatively more latency-sensitive than the rest.

6.2 Performance in Application Module Deployment

In Iterative algorithm, at first modules are deployed temporarily in different nodes. Then, for

reducing service latency, modules are gradually re-located to suitable nodes through iterations.

As the application number increases, required time for iteration also gets high. In SORS policy,
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Table 3. Simulation Parameters

Parameter Value

Simulation Duration 120-240sec

Status sharing and observation period 10sec

Uplink latency:

IoT device to LL nodes 10-15 ms

LL nodes to ML nodes 30-40 ms

ML nodes to HL nodes 60-80 ms

HL nodes to Cloud 140-160 ms

Processing time:

Client Module 20-40 ms

Filter Module 10-20 ms

Analysis Module 150-200 ms

Event handler Module 20-40 ms

Applications service delivery deadline 350-750 ms

Delay to connect with centralized manager at ML 45-60 ms

Maximum nodal communication delay within Fog cluster 3-5 ms

Applications data receiving frequency 3/sec-7/sec

Fig. 4. Application Module deployment time vs number of applications.

to place modules, each time resource coordinator is required to be asked for suitable nodes. In

the proposed module placement approach, neither iteration nor supervised resource discovery

is applied. Therefore, to place increasing number of applications, the proposed requires less time

compared to others (Figure 4). This experiment also reflects that application placement decisions

taken centrally can linger the placement of the applications in distributed Fog environment.

Figure 5 depicts the percentage of deadline satisfied data signals for increasing number of ap-

plications. Iterative algorithm treats both latency-sensitive and tolerant applications in a similar

way. As a result, in some cases, percentage of deadline satisfied data signals for sensitive applica-

tions degrades. In SORS, for sending input to each modules of an application, resource coordinator

is sent request for finding the host nodes. Additional time is required to conduct this operation

which adversely affects the percentage of deadline satisfied data signals. In our proposed approach,

host nodes send input from one module to another and due to place modules based on latency-

endurance, neither latency sensitive nor tolerant applications are penalized in meeting deadline

for processing the received data signals. This experiment result indicates that when in a system
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Fig. 5. Percentage of QoS satisfied data signals vs number of applications.

Fig. 6. Comparison of LP and heuristic based solution.

diversified applications in respect of latency-endurance exist, it is always a good policy to handle

them separately.

6.3 Performance in Application Module Forwarding

Figure 6 shows the comparison of LP based solution and the proposed heuristic solution in opti-

mizing the number of computationally active Fog nodes. From the experimental results, it is found

that the proposed heuristic solution is very much closer to the optimal. In this experiment, every

after 10 seconds,the LP problem has been solved.

In Figure 7, required time to identify possible target nodes for module forwarding is depicted for

both LP and heuristic based solution. The heuristic based solution can find suitable target nodes

within a cluster by executing a simple threshold comparison. When all clusters in Fog applies

the heuristic approach in contemporary basis, less amount of time will be required to identify

possible target nodes from the whole system. However, in LP based solution, required time for

identifying target nodes exponentially increases as the number of nodes increases. This experiment

result defines that in a system where real-time interactions happen very frequently, solving a time

consuming LP problem for forwarding modules is not very efficient.

A comparative study of the proposed module forwarding approach, MigCEP and PVA is de-

picted in Figure 8. In MigCEP, several operations such as time-graph model generation, shortest

path identification and co-ordination are conducted to forward modules. In PVA, identification
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Fig. 7. Required time for generating LP and heuristic solution.

Fig. 8. Required time for Application Module forwarding vs number of forwarded modules.

of target nodes, competence checking and communication management during module forward-

ing are observed by a migration manager. Due to aforementioned reasons, both approaches require

higher amount of time. In the proposed approach, rather than identifying a suitable node, modules

are forwarded to every competent nodes in the cluster. As cluster nodes are connected with each

other through faster networking standard, this type of module forwarding requires less amount

of time compared to others. Although it brings additional cost for storage, for management of real

time applications, it can be overlooked. Besides, this experiment signifies that formation of high-

speed clusters among Fog nodes can contribute extensively to forward modules so as to optimize

resources.

Figure 9 depicts how input receiving frequency of host module influences context switching

when a forwarded module is scheduled in host module’s MCI. In the proposed approach, if the

host module’s frequency increases, number of context switching decreases whereas in vSlicer
scheduler, this number remains the same (here, 16 context switching per second) and for early ar-

rival time-based scheduling it increases. Rapid context switching increases overhead and waiting

time at the host node node. In the proposed approach, a forwarded module only get access to the

host module’s MCI when the module is idle. Therefore no data signal of both host and scheduled

module waits for long time and additional overhead of context switching is reduced. This experi-

ment highlights that module forwarding decisions in distributed Fog environment should be taken

dynamically based on the context of the nodes.
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Fig. 9. Number of context switching vs frequency of host module.

Fig. 10. Performance of the proposed policy for varying application context.

Figure 10 represents how the proposed policy deals with varying application context. The ap-

plication context can be varied in terms of input processing and communication time of the mod-

ules and the service access rate of the data signals. The experiment result shows that, if the pro-

cessing time of the modules varies with course of time for most of the applications, percentage

of QoS-satisfied data signals will be reduced. However, for varying inter-communication among

the modules (inter-nodal communication latency), this QoS degradation rate is higher compared

to processing time variations of the modules since in distributed placement, inter-nodal com-

munication delay is considered as the dominating factor. Moreover, if the service access rate

of the applications so as to the modules changes dynamically, initially QoS-degrades specially

for the forwarded modules. When the percentage of varying applications gets increased, accord-

ing to the policy, no modules are forwarded. As a consequence, QoS-satisfaction rate increases.

The experiment is conducted by varying one parameter at a time and the results signifies that

the proposed policy works well for reliable IoT enabled system where inter-nodal communication

delay does not vary significantly and all the modules are allocated with resources according to

their requirements.

7 CONCLUSIONS AND FUTURE WORK

The Fog computing paradigm has a great potential to support a wide variety of IoT applications.

We propose a latency-aware Application Module management policy that targets both deadline
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based QoS of applications and resource optimization. The proposed management policy meets

the latency in service delivery for applications having rigorous deadline. Besides, it investigates

how to optimize number of resources without violating QoS of the applications. Two algorithms

have been developed in support of our proposed application management policy. The first is about

Application Module placement and the second one simplifies a constrained based optimization

problem in forwarding modules towards the inactive resources of idle modules. We also conducted

simulation experiments in iFogSim, which shows the potential of the proposed policy.

However, we plan to implement our proposed policy in real-world. Besides, we target to

place Application Modules in Fog according to users customized settings and mobility. Non-

deterministic latency-aware application module placement and run-time requirement adjustment

of the modules can also be explored in future.
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