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Abstract 

One of the main challenges in peer-to-peer based volunteer computing systems is efficient resource discovery 

algorithm. Load balancing is a part of resource discovery algorithm and aims to minimize the overall response 

time of the system. This paper introduces an analytical model based on distributed parallel queues to optimize 

the average response time of the system in a distributed manner. The proposed resource discovery algorithm 

consists of two phases. In the first phase, it selects peers in a load-balanced manner based on QoS constraints of 

request. In the second phase, a proximity-aware feature is applied to select the peer with minimum 

communication overhead among selected peers in the first phase. Two dispatching strategies are proposed for the 

load balancing based on stochastic analysis of routing in the distributed parallel queues. These policies adopt 

probabilistic and deterministic sequences to redirect requests to the capable peers in the system.  Simulation 

results show that the proposed resource discovery algorithm improves the response time of user’s requests by a 

factor of 1.8 under a moderate load.  

Keywords: peer- to- peer computing, volunteer computing, resource discovery, load 

balancing, distributed parallel queue, proximity-aware scheduling 
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1. Introduction 

Volunteer computing (VC) which benefits from idle cycles of desktop computers is an 

attractive cost-efficient platform for running scientific projects with heavy computation 

requirements [1-4]. Some of popular volunteer computing systems are BOINC [5], condor-

like grid system [6-8], Entropia [9], XtremeWeb [10], Aneka [11], SZTAKI [12], QADPZ 

[13], and IPOP/WOW [14]. Peer-to-Peer (P2P) based VC systems represent a decentralized, 

self-organized, and scalable environment for running applications such as PastryGrid [15], 

BonjourGrid [16], ShareGrid [17], Condor-Flock P2P [18], and Self-Gridron [19]. 

 Resource discovery algorithm has a great impact on overall performance of these systems. 

One of the main challenges for designing an efficient resource discovery algorithm is the load 

balancing policy. The objective function of load balancing is minimizing the overall response 

time of the system.  

The main contribution of this work is to propose a proximity-aware load balancing strategy 

in the resource discovery algorithm of P2P-based VC systems. In our previous work [20] a 

distributed proximity-aware architecture for resource discovery in P2P-based VC systems was 

proposed. This architecture is named CycloidGrid, it distributes an incoming load among 

peers based on communication overhead and current load of peers. In CycloidGrid, we have 

shown that if we consider communication overhead among peers in the resource discovery 

algorithm, the average response time of the system decreases. In this research we focus on 

minimizing average response time and decreasing the overhead of resource discovery 

algorithm by stochastic analysis of routing in distributed parallel queues. The proposed 

policies are knowledge-free (i.e. they are not dependent on current load of each peer). Thus, 

they do not impose any overhead on the system. Also, deadline is added to the QoS 

constraints of BoT requests. 

The proposed resource discovery algorithm consists of two parts. In the first part, a number 

of peers are selected fairly by one of the dispatching policies based on stochastic analysis of 

routing in the distributed parallel queues. The dispatching strategies take into account QoS 

constraints of request such as CPU speed and RAM or disk space requirements. In the second 

part, the proposed resource discovery algorithm decreases the communication overhead by 

selecting a peer with minimum communication delay among the advertised peers in the first 

part. Millions of heterogeneous resources are disseminated across geographically distributed 

peers in the P2P-based volunteer computing systems; therefore, running a job on a node with 

lower communication overhead can reduce the communication delay, and increase the overall 

performance. In summary our paper includes the following contributions: 
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• Providing an analytical queuing model for load balancing in P2P-based volunteer 

computing systems based on parallel non-observable queues; 

• Adapting the proposed analytical model for distributed resource discovery policy; 

• Proposing a probabilistic and deterministic dispatch policy for load balancing in the 

system to meet the QoS requirements of each request; 

• Evaluating the proposed policies under realistic workload models and different 

number of peers to show scalability of the system.  

The rest of this paper is organized as follows. Section 2 presents a literature review. Section 

3 discusses CycloidGrid environment including architecture and the resource discovery 

policy. Section 4 presents analytical queuing model for load balancing in P2P-based VC 

systems. This analytical model is based on routing in parallel queues. The proximity-aware 

load balancing policy is presented in Section 5. This section gives a detailed overview of 

applying analytical model for load balancing in the system. Section 6 describes the 

performance evaluation of the proposed policy under a realistic workload model. Conclusion 

and future directions are presented in Section 7.  

2.  Related Work 

There are several research works that have investigated load balancing and QoS constraints 

in the resource discovery algorithm of P2P-based volunteer computing systems. These 

researches can be divided into two categories: the first category is the load balancing based on 

information gathered from the peers on the system (knowledge-based approach). The second 

category uses analytical model for load balancing with the knowledge-free approaches, but 

these works have not considered QoS constraints. In the first category, we highlight the 

following works: 

Kim et al. [21] proposed an approach for load balancing in the resource discovery 

algorithm of P2P-based desktop grid systems. The resource discovery algorithm is considered 

as routing problem in the CAN [22] space. CPU speed, memory, and disk space are 

considered as QoS constraints for each request. It searches a node whose coordinate in all 

dimensions satisfies or exceeds QoS constraints. The matchmaking algorithm distributes jobs 

among capable resources evenly based on aggregated load information along each dimension 

of the CAN overlay network. This method neglected proximity-aware feature. 

Abdullah et al. [23] suggested a dynamic and self-organizing model for resource discovery 

in ad hoc grids. In this work, three types of agents named customer, producer, and 

matchmaker were introduced. The whole identifier space is divided into zones which has a 
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dedicate matchmaker. The matchmaker uses a continuous double auction to perform resource 

allocation, and looks for matches among producers and consumers according to QoS 

requirements of the request. Required resource size, resource availability, deadline, and 

budget were studied as QoS constraints. The authors defined a mechanism to calculate the 

matchmaker workload (TCost) based on the number of request/offer messages to be processed 

in the ad hoc grid. TCost based on threshold is applied for dynamic segmentation and de-

segmentation, and balancing a load among different matchmakers. Moreover, resource 

discovery algorithm ignores proximity of nodes.  

Mastroianni et al. [24] proposed a super-peer based resource discovery algorithm for P2P-

based volunteer computing systems. Their resource discovery algorithm consists of two 

phases: job-assignment and data-download phase. In the job assignment, a job manager 

generates a number of job’s advert based on QoS constraints like characteristics of platform, 

and sends them to the local super-peer and some of other super-peers in the system. Workers 

generate a job query. Then, job query travels the network through the super peer 

interconnections until its time-to-live parameter decreases to zero or the job query finds a 

matching job’s advert. In the data-download phase, the worker sends a data query, and 

downloads a data file from a closest data centre. In this work, load balancing is ignored. 

Lazaro et al. [25] proposed a decentralized resource discovery algorithm that meets QoS 

constraints of request in P2P-based VC systems. The authors used KBR overlay network, and 

the requested number of resources are considered as QoS constraints. Three main agents 

(worker, client, and matchmaker) were defined in the system. A worker sends advertisements 

to multiple matchmakers in the system. When a client needs resources, it asks matchmaker, 

and matchmaker searches among advertisements in order to find possible matches. In this 

work only QoS requirements of request is studied, but load balancing and proximity-aware 

feature are neglected.  

 Di et al. [26] presented a decentralized scheduling algorithm for dynamic load balancing in 

a self-organized desktop grid environment. A dynamic Newscast model [27] is used as 

unstructured P2P overlay. In this research, each peer gathers load information of its neighbors 

based on epidemic gossip protocol. The average load level on participating nodes is used to 

distinguish overloaded and under loaded nodes in the system. A node is in a load balanced 

state if its current load closes to average load level. If it is overloaded or under loaded, it is 

improved by migrating any process into it or out from it. An autonomous scheduler designed 

on each node performs process migration. The system decreases migration overhead by 
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considering process workload and bandwidth between two relative nodes. QoS constraints of 

request are ignored in their work.  

In the second category there are a few research works that use knowledge-free method for 

load balancing in the grid systems. Some of these works are:   

 Di et al. [28] improved a previous work [26] to design a conflict-minimizing load 

balancing algorithm, which can balance uneven workload in dynamic P2P desktop grids. In 

this work, each heavy loaded node selects light loaded node for task migration based on a 

distributed Bernoulli probabilistic model. They argued that asynchronously selecting target 

light node by each heavy loaded node in the competitive circumstances could be regarded as a 

set of Bernoulli trials. By using the decentralized Bernoulli model, decision conflict of task 

migration is decreased, and the efficiency of load balancing method is improved. This work is 

a combination of knowledge-free and knowledge-based method. Because at first any peer 

gathers load information of its neighbors based on epidemic gossip protocol; then, it uses 

Bernoulli model to improve the performance of load balancing algorithm.  

Chatrapati et al. [29] considered the grid system as n heterogeneous computing resources 

connected by a communication network using m users. Each node is modeled as an M/M/1 

queuing system, and all jobs are supposed to have the same size .The communication 

overhead between two nodes is considered independent of the nodes ,and computed by total 

traffic through the network. They used a competitive equilibrium solution for load balancing 

in computational grids. The competitive equilibrium problem of load balancing finds 

equilibrium prices for the computing resources; then, it specifies allocation of user jobs to the 

nodes at these prices such that each user optimizes objective function against budget 

constraints. In this work authors proposed a load balancing strategy based on knowledge-free 

method but in a centralized manner. Also, the resource discovery algorithm ignores QoS 

constraints of each job in the system.  

Table 1 presents a comparison among these studies and the proposed load balancing policy 

in this paper, in terms of platform, QoS constraints, load balancing, and proximity-aware 

feature. 

3.  CycloidGrid Environment 

In this section, a brief overview of CycloidGrid architecture and resource discovery policy is 

provided. Interested readers can refer to [20] for more detail about CycloidGrid. 
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Table 1: comparison among previous studies and proposed load balancing policy  
Studies Platform QoS constraints Load balancing 

policy 

Proximity-aware 

feature 

Kim et al. [21] CAN overlay 

network 

CPU speed, Memory, 

and disk space 

Knowledge-based No 

Abdullah et al. [23] Ad hoc grid Required resource size, 

resource availability, 

deadline, and budget 

Knowledge-based No 

Mastroianni et al. 

[24] 

Super-peer 

overlay network 

characteristics of 

platform 

No Relatively, just 

for downloading 

data file 

Lazaro et al. [25] KBR overlay 

network 

requested number of 

resources 

No No 

Di et al. [26] Unstructured 

P2P overlay 

network based 

on Newscast 

model 

No Knowledge-based Relatively, just 

for load migration 

Di et al. [28] Unstructured 

P2P overlay 

network based 

on Newscast 

model 

No Combination of 

knowledge-based and 

knowledge-free 

method.  

No 

Chatrapati et al. 

[29] 

Centralized 

system 

No Knowledge-free 

based on M/M/1 

queuing system 

No 

The proposed load 

balancing policy 

Cycloid CPU speed, memory/ 

Disk space, and 

deadline  

Knowledge-free 

based on GI/GI/1 

queuing system 

Yes 

3.1 Resource and application models  

Any volunteer resource in VC systems (e.g. desktop, laptop, tablet computers, smart 

phones, and servers) can be assumed as a resource in CycloidGrid [42]. These resources are 

heterogeneous, and have intermittent or permanent Internet connectivity [41]. Resource and 

peer are used interchangeably in this paper. Each job is considered to be a Bag of Tasks (BoT) 

application containing some of independent parallel tasks, which will be run on a single 

resource. Because some of resources in VC systems have less connectivity [41] (e.g. wireless 

connection); thus, many tasks are assigned at once to keep the resource busy until the next 

connection. 



3.2 Architecture 

CycloidGrid is a proximity-aware resource discovery architecture in P2P-based volunteer 

computing systems. It uses Cycloid [30] as a P2P overlay network. Cycloid is a constant-

degree structured P2P overlay with  nodes where l is a dimension. All nodes are 

classified into some clusters. Each node is identified with a pair of indices   

where  is a cubical index identifying its position among  existing clusters. 

Whereas, k is a cyclic index that identifies its position among l nodes in its cluster. 

lln 2.=

)...,( 021 aaak ll −−

021 ...aaa ll −−
l2

Three types of nodes are defined in CycloidGrid. These nodes are called reporting node, 

host node, and client node. The reporting nodes are responsible for keeping resource attribute 

values of peers in the system. These attributes include model, operating system, CPU speed, 

RAM, and available hard disk. Host node can find suitable resource to run a job, when it 

receives a lookup request, and it can run its associated jobs. The client node sends a lookup 

request for running a job. It keeps executable code of the job, input and generated output files. 

Decision tree (DT) is applied to classify resources based on resource attributes into some 

clusters, as it is shown in Figure1. Four attribute values are selected in each level of DT. 

Consequently, the number of clusters in DT is clusters. 102445 =
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Figure 1.  Decision tree for classification of resources based on their attributes. 

 

Each cluster of DT keeps the attribute values of subset of resources with identical operating 

system and processor model, and close CPU speed, RAM, and hard disk size. These clusters 

assign to the first 1024 clusters of CycloidGrid, and they are called reporting clusters. The 

remaining clusters of CycloidGrid are called host clusters. Consequently, we have two types 

of cluster in CycloidGrid: reporting clusters and host clusters. Reporting clusters keep 

reporting nodes, and host clusters contain host/client nodes. Each reporting cluster contains 

three reporting nodes with similar resource attribute values. One of these reporting nodes is 
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called primary reporting node that has the largest cyclic index in the corresponding cluster, 

and the other ones are called replica reporting node. Replica nodes have snapshot of resource 

information of primary node. 

3.3 Resource Discovery Policy  

Each request (job) is served within a single peer in CycloidGrid. It has the following 

characteristics: 

• Number of independent tasks  

• Estimation of each task duration  

• QoS constraints in terms of minimum CPU speed, minimum RAM or disk space 

requirement, and deadline.  

Figure 2 illustrates a scenario in which a resource is selected for running a request. At first, 

client node sends a lookup request for its job to the randomly active host node in the system 

(step 1). The selected host node is called an injection node. The injection node acts as a 

scheduler for this request. This node has two queues such that one queue belongs to the 

lookup request, and another one belongs to the jobs that should be executed on this node. 

Each injection node uses decision tree to find reporting clusters can be useful to search 

according to the QoS constraints of this request. As it was mentioned earlier, every reporting 

cluster has one primary and two replica nodes with the same resource attribute values. In this 

phase, injection node selects a reporting node with minimum communication overhead among 

these three reporting nodes in each selected reporting cluster (step 2). Communication 

overhead in this research is computed by a network model based on queuing theory discussed 

in Section 6.  

Each reporting node searches among its resource attribute values to find a resource that 

satisfies QoS constraints. (step 3). It uses a load balancing policy that is explained in two 

following sections. Finally, the reporting node selects a resource among its resources, and 

sends the address of the selected resource to the injection node (step 4). The injection node 

receives some resource offers for running its request from multiple reporting nodes. If the 

request does not have the deadline, the injection node will select a resource with minimum 

communication overhead to itself and the client node of this request. Whereas, if the request 

has deadline, the injection node will select a resource with higher priority to maximum CPU 

speed and lower priority to minimum communication delay. In order to optimize these two 

parameters, at first a resource with maximum CPU speed is selected; then, a resource with 

minimum communication delay is selected. If the selected resource in these two stages is 



identical, this resource will be selected. Otherwise, the resource with next minimum 

communication delay is selected until half of resources are chosen. If half of resources are 

selected, and they are not identical with the resource having maximum CPU speed; then, the 

resource with next maximum CPU speed is selected. This process continues until these two 

resources are overlapped. The selected resource is called run node (step 5). The injection node 

sends a job profile to the run node (step 6). Finally, the run node puts this request in its queue, 

downloads the source code and input files of this request, and returns generated output files 

(step 7).   

9 

 

Figure 2. Resource discovery policy in CycloidGrid environment. 

4. Analytical Queuing Model 

As we discussed in Section 3.3, each request is received by an injection node; then, it is 

redirected to subset of reporting nodes. Because each reporting node contains subset of 

resource attribute values, and it advertises suitable resource to run a request; therefore, the 

load balancing policy is considered in the reporting nodes of the system. The analytical model 

discussed in this section is applied in each reporting node to balance a load among its resource 

pool. The resource pool of each reporting node is divided into logical clusters. Each logical 

cluster contains subset of resources with close CPU speed. Thus, each reporting node is 

assumed to have a number of logical clusters. The objective function is to find the optimal 

arrival rate of incoming requests to each logical cluster a way that incoming requests are 

distributed evenly among the logical clusters in each reporting node. This section is followed 

by our proposed load balancing policy built upon the analytical model provided in this 

section.  
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The analytical model is based on routing in parallel queues. The queuing model that 

represents the whole system is shown in Figure 3. In this model, it is assumed that the 

requests arrive into the system from all of client nodes with arrival rateλ and variance . 

These requests are sent to the injection nodes; then, they are redirected to a subset of reporting 

nodes. These reporting nodes are selected by a decision tree based on QoS requirements. 

Therefore, each reporting node receives a subset of arrival requests in the system. This subset 

is estimated according to the following formula in each reporting node. 
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where  is a routing probability of incoming requests to reporting node i.  is the number of 

resources in reporting node i ,and 

iP̂ iR

R ,  are average and maximum number of resources 

among all reporting nodes, respectively.

mR

α  is a calibration factor between 0 and 1. For the 

sake of clarity, Table 2 gives the list of symbols that is used in this paper with their 

definitions. 

Based on Figure 3, reporting node i receives incoming requests with arrival rate , 

and its variance can be computed by Wald’s equation [32] as follows: 

λλ ii P̂ˆ =
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By having arrival rate and variance of incoming requests to each reporting node, we aim to 

find the optimal arrival rate of these requests to each logical cluster in order to balance the 

requests in the system. In this analytical model, each logical cluster (LC) can be considered as 

a server with the given service rate. Therefore, by assuming a logical cluster as a single queue, 

and the reporting node as a router that redirect incoming requests to the logical clusters, the 

problem can be considered as a routing in the distributed parallel queues [33, 34]. Each 

reporting node acts as router in front of a number of logical clusters as heterogeneous multi-

server parallel queues. The objective function in each reporting node can be expressed as 

follows: 

                                                                                                     (3) )~(~minˆˆmin
1
∑
=

=
iN

j
jjii TET λλ

10 



Equation 3 aims to find the optimal arrival rate jλ
~  to each LC queue j in the reporting node 

i. However, any reporting node with arrival rate  routes incoming requests to the LC queues 

immediately after its arrival according to the routing probability

iλ̂

jP~ . It is supposed that there is 

no queue in the reporting node, and it is fast enough to do that because each reporting node 

only find capable resources and it is not used for running a job. We model each LC with a 

single server queue. Therefore, in reporting node i LC queue j has the arrival rate ijj P λλ ˆ~~
=  

and its variance can be computed as follows by Wald’s equation [32] as follows:  
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Figure 3. Queuing model for resource discovery in CycloidGrid 

 

Service time of LC queue j follows a given distribution  with mean jS jj xSE =][  and the 

coefficient of variance
j
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= .We consider a general distribution for the inter-arrival time 

as well as the service time for each LC queue in the queuing model. Therefore, each LC queue 

can be modeled as a GI/GI/1 queue. The GI/GI/1 queue is referred to a single-server queue 
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with first-in-first-out discipline and with a general distribution of the sequences for inter-

arrival and service time (GI stands for general independent or general in brief). 

 

Table 2: Description of symbols used in the queuing model. 
Symbol 

 
definition Symbol definition 

λ  Arrival rate of jobs into the system 

 

2
jIC  The squared coefficient of variance for the 

arrival rate on cluster  j at any reporting node 

 
2
Iσ  Variance of arrival rate of jobs into the 

system 

 

2
jSC  The squared coefficient of variance for service 

time on cluster  j  at any reporting   

node 

 

iλ̂  Arrival rate of jobs into a reporting 

node i 

 

jT~  Average response time of incoming requests on 

cluster j at any reporting node 

2
iIσ  Variance of arrival rate of jobs into a 

reporting node i ∑
=

=
iN

j
ji TT

1

~ˆ  
  Average response time of incoming requests at 

reporting node i 

iP̂  Routing probability of arrival rate to 

reporting node i 

 

N  Number of resources  in the system 

 

iN  Number of logical clusters in reporting 

node i 
K Number of reporting nodes in the system 

iR  Number of resources in reporting node 

i 
mS  Maximum average of processing speed among 

all logical clusters at any reporting   

node 

jλ
~  Arrival rate of jobs into logical cluster j 

after load distribution at any  reporting 

node 

 

jS    Average processing speed of cluster j  at any 

reporting node 

jP~  Routing probability of arrival rate of 

logical cluster j  in any reporting node 

 

BoTS  Average of BoT size 

jx  Average service time of jobs on cluster 

j  in any reporting node 

 

BoTE  Average of task execution time in BoT request 

 

jS  Service time distribution of cluster j at 

any reporting node 
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The approximated expected response time of LC queue j is computed by following Equation 

[34]: 
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In Equation 5 we can replace  by the following formula, 2
jIC
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The objective function expresses in Equation 3 is solved by an extended version of the 

approach developed by Li [35] (See Appendix A), so the optimal arrival rate for LC queue j 

will be  
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A closed form solution for Equation 9 is impossible [35]. Therefore, we use a numerical 

solution proposed by Li [35]. A numerical solution uses bisection algorithm and searches z in 

a range of [lb,ub]. From Equation 8. 0~
≥jλ  we can get 
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For all  , Therefore the upper bound of z is iNj ≤≤1
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And in Equation 9 let   
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Therefore, we simplify the Equation 9 as follows: 
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 If we consider Equation 13, we have  
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And lower bound of z can be worked out based on Equation 15. lb can be obtained by 

dividing by 2 ub repeatedly until the following condition is met. 
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5. Proposed Load Balancing Policy 

The proposed load balancing policy in each reporting node is comprised of two parts. The 

first part determines how the analysis mentioned in the previous section is applied in each 

reporting node for job allocation to each logical cluster. In fact, the first part finds optimal 

arrival rate jλ
~  for each logical cluster. The second part concerns the dispatch policies in each 

reporting node among logical clusters based on the routing probability gained by the first part. 

5.1 Job Allocation Policy 

In the analysis of Section 4, we consider several assumptions as follows:  

• Each logical cluster in every reporting node have a GI/GI/1 queue; 

• Each logical cluster queue serves arriving requests in the FCFS fashion; 

• To serve a request, its resource is found by the round robin policy within target logical 

cluster a way that this resource satisfies the QoS constraints of the request; 

• A request (job) has bag of task (BoT) structure.  
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We use general distribution for the service time of each logical cluster. The average service 

time for each request in the logical cluster j can be approximated as follows: 

                                        
j

m
BoTBoTj S

SESx =   iNj ≤≤1                                                         (16) 

In Equation 16 the service time of each request can be approximated as the product of the 

average BoT size and the average execution time of each task. This value is scaled by the 

division of maximum average processing speed of all logical clusters in each reporting node 

by average processing speed of cluster j. The job allocation policy to logical clusters in each 

reporting node is represented in the form of pseudo-code in Algorithm 1. 

In Algorithm 1, the average service time of logical cluster j is computed based on Equation 

16 in steps 1 to 3. In Step 4 ub is calculated based on Equation 11 as the minimum value 

among all computed values for logical clusters in the previous steps. lb is initialized with half 

of ub at Step 5 and halved until the condition in Step 6 based on Equation 15 is satisfied.  

Steps 10-15 show the bisection algorithm mentioned in previous section to find the proper 

value of z. ε is the expected precision at Step 10 and initializes to . Finally, in steps 17-19 

the optimal arrival rate for each logical cluster is determined. 

710−

5.2 Dispatch Policies 

We consider three dispatch policies among logical clusters, namely BilRCDP, BerRCDP, 

and NRCDP. These policies differ in two ways. First, they differ in how they compute routing 

probabilities jP~ (
i

j
jP

λ

λ
ˆ

~
~ = ) for each logical cluster. Second, they differ in how they choose the 

sequence of requests sent to each logical cluster. BilRCDP and BerRCDP use the optimal 

arrival rate that is computed by the proposed load balancing policy; whereas, NRCDP is used 

just for comparison with these two policies. In fact, NRCDP is the simplest way for brokering 

in this case. In this dispatch policy, the routing probability jP~  for any logical cluster is 

considered to be equal, and logical clusters are sorted according to their average CPU speed. 

Within each logical cluster, resources are examined for QoS constraints of request in a round 

robin manner.  

Both BerRCDP and BilRCDP use the same routing probabilities. In these two policies, the 

arrival rate for each logical cluster ( jλ
~ ) is computed by Algorithm 1. The routing probability 
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of these polices for each logical cluster in reporting node i can be computed as 
i

j
jP

λ

λ
ˆ

~
~ = . These 

policies differ in how they choose the sequences of requests sent to each LC queue.  

_________________________________________________________________ 
Algorithm 1: job allocation policy to logical clusters in each reporting node 

_______________________________________________________________________________ 

Input: jIi x
i
,,ˆ 2σλ  for all iNj ≤≤1  

Output: jλ
~

 the optimal arrival rate of requests to different logical clusters, for all iNj ≤≤1   

1 for  to  do 1←j iN

2      
j

m
BoTBoTj S

SESx =  

3 end 

4 )
2

)1(
min(

2
jS

j

xC
xub j

−
−←  for all iNj ≤≤1  

5 
2

ublb ←  

6 while i

N

j

N

j j
j

i i

x
lb λφ ˆ1)(

1 1
−>∑ ∑

= =

  do 

7               
2
lblb ←  

8 end 

9 Find the Lagrange multiplier z to solve Equation 9 by searching z between the range [lb , ub] using the 

bisection algorithm. 

10 while  )( ε>− lbub  do //ε  is the expected precision 

11          )
2

( ublbz +
←  

12         if  ( ∑∑
==

−≤
ii N

j
i

j

N

j
j x

z
11

ˆ1)( λφ )  Then 

13                     ubz ←

14          else  lbz ←
15 end 

16 Compute the optimal arrival rate by Equation 8 for each logical cluster 

17 For  to  do 1←j iN

18          
)(ˆ2ˆ1

ˆ)1(ˆ111~
22

222

zx

xC

xx jiIi

jiSIi

jj
j

i

ji

−+−

−+−
−←

λσλ

λσλ
λ  

19 end 

_______________________________________________________________________________ 
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In the BerRCDP policy, routing probabilities are used without any special sequencing of 

requests sent to each LC queue. Thus, BerRCDP is memory-less that it does not consider 

which request is sent to which LC queue; whereas, the BilRCDP policy takes into account the 

past sequence of routing with a little overhead. BilRCDP is a generalized form of round robin 

manner, and it considers the sequence of routing called the billiard sequence [36]. The 

authors in [36] suggested the method to implement the billiard sequence, and they generated it 

as follows: 

                                                        }{min
j

jj

jb P
YX

j
+

=
∀

                                                          (17)   

Where  is a target queue, and  and  are vectors of integers with size n.  keeps the 

number of requests sent to queue j and  specifies which queue is the fastest. is set to 

one for the fastest queue and zero for other queues [33].  is initialized to zero, and it is 

updated to 

bj jX jY jY

jX jX

jY

1+=
bb jj YY  after selecting the target queue.  is a routing probability of 

incoming requests that are sent to the queue j. 

jP

Algorithm 2 demonstrates BilRCDP dispatch policy. In this algorithm, initially, the fastest 

logical cluster is found based on average service time for each logical cluster in Step 1. jP~ is 

sent to this algorithm based on Algorithm 1, and jx  is computed by Equation 16. 

variables are initialized to zero in steps 2 to 5. One is assigned to the fastest logical 

cluster in Step 6.  shows the number of requests that are dispatched to logical cluster j, and 

initially assigns to zero at Step 4. In Steps 8-14, the value of adapted billiard sequences are 

computed, and the logical cluster with minimum value is selected. Then, of selected logical 

cluster is incremented by 1 at Step 15. In Steps 16 to 20, all resources within selected logical 

cluster are examined for QoS constraints. If one of the resources satisfies QoS constraints, this 

resource will be selected at Step 18; otherwise, other resources on this logical cluster will be 

examined by a round robin manner. The round robin policy within each logical cluster is 

justifiable, because resources that their CPU speed is close are grouped in the same logical 

cluster. If none of the resources satisfies the QoS constraints, another logical cluster will be 

selected and this process continues (Step 21, 22).  

YX ,

jY

jY

The BerRCDP dispatch policy selects the random logical cluster based on routing 

probability computed by Algorithm 1. In this dispatch policy, selection of logical cluster is 
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random, but each logical cluster gives a request based on its routing probability. After 

selecting a logical cluster, each resource in the target logical cluster is examined for QoS 

constraints in the round robin manner. 
_______________________________________________________________________________ 

Algorithm 2: BilRCDP dispatch policy at each reporting node 

_______________________________________________________________________________ 

Input: jj x,~λ  for all logical cluster j ,  iNj ≤≤1  

Output: selected resource ( ) jr

1. )(xustertLogicalClfindFastesusterfastestLCl ←  

2. foreach  logical cluster j  do 

3.         0←jX

4.         0←jY

5. end 

6.  1←usterfastestLClX

7.  Valuemaxmin ←

8.  foreach logical cluster j  do 

9.             
j

jj

P
YX

C ~
+

=  

10.             if  (c<min)    then 

11.                  C←min

12.                 jselCluster ←

13.            end 

14.   end 

15.    1+← selClusterselCluster YY

16.  foreach resource m  in  SelCluster  do 

17.             if (resource m satisfy QoS constraints) then 

18.                    mj resourcer ←

19.            else check another resource in SelCluster based on round robins manner 

20. end 

21. if (none of resources in  SelCluster does not satisfy QoS constraints) then 

22.           goto 7  

23. else  return( ) jr

_______________________________________________________________________________ 

 

Table 2 gives a comparison among three dispatch policies. These policies are compared 

according to the method for computing the routing probability of each logical cluster, the 
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sequence of choosing target logical cluster, and time complexity. The time complexity of each 

dispatch policy is computed in two cases. The first one is for finding target logical cluster.  In 

this case, the time complexity of BilRCDP is higher than the others and it is related to number 

of logical clusters in the reporting node. Whereas, in the second case it is computed for 

finding suitable resource to serve a request within selected logical cluster. The time 

complexity in this case is equal for all three policies as it is related to number of resources in 

one logical cluster.  
Table 2: Comparison among three dispatch policies  

Criteria BilRCDP BerRCDP NRCDP 

How to compute 

routing probability 

for each logical 

cluster 

The routing 

probabilities of logical 

clusters are different 

and they are computed 

by Algorithm 1 

The routing 

probabilities of logical 

clusters are different 

and they are computed 

by Algorithm 1 

The routing 

probabilities of logical 

clusters are equal 

The sequence of 

choosing target 

logical cluster 

Billiard sequence Random Round-robin strategy 

Time complexity of 

finding target 

logical cluster 

)( iNO  )1(O  )1(O  

Time complexity of 

searching within 

target logical 

cluster 

)(
i

i

N
R

O  )(
i

i

N
R

O  )(
i

i

N
R

O  

 

6. Performance Evaluation 

In order to evaluate the performance of proposed policies, we implemented CycloidGrid 

simulator as a discrete event simulator. CycloidGrid is written in Java and it is an extended 

version of Cycloid simulator [30] to emulate the P2P-based volunteer computing systems. 

 Physical network in CycloidGrid is emulated by Brite topology generator [37]. A physical 

network with n computers which are connected by Waxman model and different link 

bandwidth are generated by Brite topology generator. The bandwidth between two nodes is 

between 10Mbps to 1Gbps with uniform distribution [31, 44]. 

Xtremlab trace [38] is used in this research to emulate resources in the CycloidGrid 

simulator. Xtremlab trace is exported from BOINC database where the information is 

collected by client or server in the BOINC.  
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The coefficient of variance (
Mean

StDevCV = ) of the service time within each logical cluster can 

be assumed as 1.1 ( ) to model the performance variability of resources in volunteer 

computing systems according to the Xtremlab traces. 

jSC

The performance metric related to the response time of requests to be considered in all 

simulation scenarios is average response time (ART). The ART of R given requests is defined 

as follows: 

                                                 
R

dw
ART

R

j

l

k
kj

j

j∑ ∑
= =

+
= 1 1

)(
                                                         (18) 

where  is the waiting time of request j, is the number of tasks in request j, and is the 

weighted run time of task k in request j.  The weighted run time of each task is a scaled down 

value of run time on a computer with higher speed. The waiting time of request j is computed 

by the following equation: 

jw jl
jkd

                              )( ,2)max( 222 ∑+++= ′ ririicj LLLw
l

lrc dLMax                                           (19) 

where  is the communication overhead for sending a request between the client node and 

the injection node,  represents the communication delay between the injection node and 

each of selected reporting nodes. The maximum of this time is added to the waiting time of 

the job, because the injection node contacts the selected reporting nodes in parallel.  

represents communication overhead between the injection node and the run node. Also, the 

last term is the maximum of communication delay between the client node and the run node 

( ) for sending input files and the summation of run time for waiting tasks in the run 

node’s queue.   

icL 2

riL ′2

riL 2

rcL 2

A network model based on queuing theory is applied to compute a communication 

overhead between two peers [20]. In this analytical model, each connection between two 

peers is modeled by a GI/GI/1 queue, and it is assumed that each peer receives two types of 

traffic: background traffic of the Internet and a part of workload traffic that is imported into 

the system by the client nodes. Therefore, we have compound distribution with arrival rate mλ  

and variance as input traffic to each peer. Thus, the communication overhead between two 

peers can be computed by the following Equation [20]. 

2
mIσ
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where  is the service time of associated queue to each connection, and it is calculated as 

follows: 

mΨ

                                                       netnetm Fβα +=Ψ 5.0                                                      (21) 

where netα  is the network latency, netβ  is an inverse of bandwidth along the link between two 

adjacent peers based on routing algorithm in the P2P network, and F is a flow size transmitted 

between two peers. The last term of Equation 20 is calculated as a summation of along the 

route between adjacent peer to the source node and destination peer based on routing 

algorithm of the P2P overlay network. Interested readers can refer to our previous work [20] 

for more detail. 

mΨ

6.1 Workload Model 

The workload model for simulations is based on Grid Workload Archive [39].  In this 

model, the inter-arrival time has Weibull distribution, and the request duration follows 

Normal distribution as listed in Table 3. As in the volunteer computing systems the task 

duration is large, the square of task duration is considered. 

Table 3: Input parameters for the workload model. 

Parameters Distribution/Value Reference 

Inter-arrival time Weibull ( 25.4,95 =≤≤ βα ) [39] 
No. of tasks Weibull ( 76.1,11.2 == βα ) [39] 

Task duration Normal ( 1.6,5.873.2 =≤≤ σm ) [39] 
Internet inter-arrival time Weibull ( 15.0,06.0 == βα ) [43] 

Internet flow size Pareto ( 05.1,3 == βα ) [43] 
Inter-arrival time of peer 

churn 
Poisson ( 83.466.0 ≤≤τ ) [21] 

 

Each BoT request can have QoS constraints including minimum CPU speed, minimum 

RAM, disk space requirements, and the deadline. The methodology used by Irwin et al. [45] 

is utilized to assign the deadline to each request. According to this methodology, the requests 

are classified into two classes. These classes are Low Urgency (LU) jobs and High Urgency 

(HU) jobs. A BoT request in HU class has low ratio of deadline to runtime; whereas, a request 

in LU class has high ratio of deadline. In our experiments, the ratio of deadline for HU 
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requests follows normal distribution with mean 4 and variance 2; meanwhile, the ratio of 

deadline for LU requests is three times longer with mean 12 and variance 6.  

We generate the workload for 1 day, where 2.5 hours is considered as the warm-up phase to 

avoid bias before the system reaches steady-state. Each experiment is performed on each of 

these workloads separately. For the sake of accuracy, each experiment is carried out several 

times by using different workloads and average of results is reported. In all the reported 

results, CV is less than 0.01. The number of resources is equal to 1000 and 3000 peers with 

heterogeneous computing speeds. 

In order to generate different workloads, we modified two parameters one at a time. 

Therefore, to change the inter-arrival time, we modified the first parameter of Weibull 

distribution (the scale parameterα ) as shown in Table 3. Thus, the number of jobs increases 

from 10000 (i.e. 9=α ) to 19000 (i.e. 5=α ). Also, to have requests with different duration, the 

mean of normal distribution changes from 2.73 to 8.5 that is mentioned in Table 3. The 

average task duration in BoT changes from 44 to 109 minutes. 

Peer churn is modeled by a Poisson distribution [21] with average inter-arrival time (τ ) 

differentiates from 0.66 minutes to 4.83 minutes that is presented in Table 3. Thus, from 10% 

to 70% of peers leave the system when average inter-arrival time varies from 4.83 to 0.66 

minutes; whereas, some nodes join the system.  

We consider the background traffic of the Internet follows the Weibull distribution [43] as 

shown in Table 3. Also, the Internet flow size follows the Pareto distribution according to 

[43]. The mean of Pareto distribution is considered as the flow size for the Internet traffic. 

Each BoT request is assumed to have an input file. A ratio of communication cost to 

computation cost is applied in various studies on scheduling BoT requests [40]. This ratio is 

called communication-to-computation ratio (CCR). Therefore, we consider the file size of 

each BoT request is CCR times of its computation time. It is worth noting that in this 

research, we focus on balanced BoT application in which computation and communication 

time are important. Thus, a BoT request with CCR=2 is taken into account.  

6.2 Simulation Results 

Figures 4-7 present ART versus inter-arrival time and average task duration for different 

policies. In these figures, average task duration is kept in the medium size (66.55 minutes) for 

ART versus inter-arrival time. Also, the inter-arrival time has kept in the medium size 

(i.e. 86.7=α ) for ART versus average task duration. Each request has minimum CPU speed, 

minimum RAM or disk space requirements as QoS constraints.  
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In Figure 4, we consider 1000 peers in the system where the system is relatively static, and 

no peer joins or leaves during the experiment. As we expected, by reduction of inter-arrival 

time, the ART dramatically increases too. But, BilRCDP policy controls the ART by 

distributing the load evenly in the system. Meanwhile, NRCDP approaches the saturation 

point exponentially.  BilRCDP marginally surpasses the BerRCDP with improvement factor 

of 23%, 19% in Figure 4(a) and Figure 4(b), respectively. The improvement of BilRCDP in 

theses figures with respect to NRCDP is 36% and 29%, respectively. Figure 4(c) and 4(d) 

compares these policies with the CAN policy proposed by Kim et al. [21]. This study is 

selected for comparison because they considered minimum CPU speed, RAM, and disk space 

requirements as QoS constrains of request, and the load balancing policy is implemented in 

their work. As one can see in Figure 4(c) and 4(d), ART of the proposed policies is much 

lower than CAN. However, the overhead of CAN is lower than our proposed load balancing 

policies. The average number of messages sent for each request in CAN is almost 20 

messages; whereas, this average increases to 50 messages per request in our proposed 

policies. The number of messages in the proposed policies is 2.5 times of CAN; meanwhile, 

the improvement factor of BilRCDP is 70% compare to CAN. The most of messages in the 

proposed policies are exchanged among the injection node and selected reporting nodes and a 

small fraction of them are sent for managing churn in the system.  

In Figure 5, the number of peers is the same as the previous experiment, but peers join or 

depart from the system with the average inter-arrival time 38.2=τ  minutes. In this 

experiment, after 1000 nodes initially join the system, some nodes leave; meanwhile, some 

nodes join the system.  
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                                                  (c)                                                                                                                   (d) 

Figure 4. Average response time resulting from different policies with 1000 peers and static environment. The 
experiments are carried out by modifying (a,c) the α  parameter in inter-arrival time, (b,d) the average duration 
of task in BoT. 
 

The departure rate of peers in this experiment is 20% of all peers in the system. In this 

experiment when a node leaves the system, all of assigned job on the leaving node are 

reassigned to another peers. Because the leaving peers are selected randomly, possibly 

selecting the nodes with fewer jobs causes the reduction of ART in some situations such 

6=α  in Figure 5(a) for BerRCDP and NRCDP policies. In this experiment BilRCDP 

surpasses BerRCDP and NRCDP with the improvement factor of 18%, 21% in Figure 5(a) 

and 17%, 22% in Figure 5(b), respectively. 
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                                      (a)                                                                                  (b) 

Figure 5. Average response time resulting from different policies with 1000 peers and dynamic environment. 
The experiments are carried out by modifying (a) the α  parameter in inter-arrival time, (b) the average duration 
of task in BoT. 
 

In Figure 6, we increase the number of peers to 3000 peers in the system, but the system 

keeps in the static state and no node joins or leaves the system during the simulation. As it is 
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shown, the BilRCDP still achieves a better performance with respect to BerRCDP and NRCDP 

with improvement factor of 8%, 10% in Figure 6(a) and 7%, 8% in Figure 6(b), respectively. 

The performance of BerRCDP decreases with increasing number of peers in the system. As we 

explained in Section 5, after selecting a resource by BerRCDP sequence, this resource is 

examined on QoS constraints. If it meets the QoS constraints, it will be selected; otherwise, 

another resource are examined. The QoS constraints have the performance impact on 

BerRCDP policy by changing the recommended sequence in this policy. This impact is less 

effective on the performance of the BilRCDP policy. 
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                                       (a)                                                                                  (b) 

Figure 6. Average response time resulting from different policies with 3000 peers and static environment. The 
experiments are carried out by modifying (a) the α  parameter in inter-arrival time, (b) the average duration of 
task in BoT. 

 

Figure 7 shows the experimental results for 3000 peers in the dynamic environment. In this 

experiment, peers leave or join to the system with average inter-arrival time 38.2=τ minutes. 

The departure rate of peers from the system is 20% of peers similar to the second experiment. 

The BilRCDP has improvement factor of 8%, 14% in Figure 7(a) and 5%, 8% in Figure 7(b) 

with respect to BerRCDP and NRCDP, respectively. 

Figure 8 presents ART for 1000 peers versus the average inter-arrival time of peer churn.  

The average inter-arrival time of peer churn varies from 4.83 minutes to 0.66 minutes. 

However, from 10% ( 83.4=τ minutes) to 70% ( 66.0=τ minutes) of all peers (with step of 

5%) leave the system; meanwhile, some nodes join the system. In this figure, the inter-arrival 

time and average task duration of BoT request are kept in the medium size ( 86.7=α  , avg. 

task duration= 66.55 minutes). As illustrated in this figure, BilRCDP, BerRCDP, and NRCDP 

have similar behavior with decreasing the average inter-arrival time till 1.98 minutes. In this 

point, 25% of peers leave the system. After that, they start to oscillate; whereas, changes of 

ART in NRCDP has bigger step than other two policies. This simulation shows that the 
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system is resistant against the churn. The performance of the system does not decrease, if the 

churn rate increases.  
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Figure 7.  Average response time resulting from different policies with 3000 peers and dynamic environment. 
The experiments are carried out by modifying (a) the α  parameter in inter-arrival time, (b) the average duration 
of task in BoT. 
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Figure 8. Average response time resulting from different policies with 1000 peers. The simulations are carried 

out by modifying the average inter-arrival time of peer churn. 
 

Figure 9 presents the impact of high urgency jobs and arrival rate on the percentage of jobs 

that meet the deadline. In this experiment, the number of peers equals to 1000 peers in static 

environment, and we consider the jobs with deadline, minimum CPU speed, and minimum 

RAM or disk space requirements as QoS constraints. In Figure 9(a), various percentage of HU 

jobs are considered. For example, if the percentage of HU jobs is 40%, the percentage of 
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remaining LU jobs is 60%. Also, the inter-arrival time and average task duration of BoT 

request are kept in the medium size ( 86.7=α , avg. task duration = 66.55 seconds). We 

decrease the average task duration in this workload from minute to second; therefore, the BoT 

execution time is decreased from hours to minutes. The reason is VC requests normally have 

long deadline in order of weeks considering availability of resource because of dynamic 

nature of volunteers [46]; thus, reduction of execution time can simulate the high urgency 

requests with meaningful deadlines in the VC environments. Meanwhile, in Figure 9(b) the 

average task duration and the percentage of HU jobs are kept in the medium size (avg. task 

duration =66.55 seconds, the percentage of HU jobs =40%). As depicted in Figure 9, almost 

99% of jobs meet the deadline by BilRCDP policy, and this policy is robust with respect to 

increase of HU jobs and arrival rate of jobs. BerRCDP has almost stable behavior with 

increase of HU jobs while its performance decreases with increase of arrival rate. It shows 

that BilRCDP distributes the load more evenly than BerRCDP. Because the percentage of 

missed deadline jobs is increased in BerRCDP with increase of arrival rate. The performance 

of NRCDP is increased with the increase of high urgency jobs; meanwhile, its performance is 

decreased with increase of arrival rate. 

 

 
0 20 40 60 80 100

40

50

60

70

80

90

100

% of High Urgency (HU) jobs

%
 P

ec
en

ta
ge

 o
f j

ob
 th

at
 m

ee
t t

he
 d

ea
dl

in
e BerRCDP

BilRCDP
NRCDP

55.566.577.588.59
40

50

60

70

80

90

100

α

%
 P

ec
en

ta
ge

 o
f j

ob
 th

at
 m

ee
t t

he
 d

ea
dl

in
e BerRCDP

BilRCDP
NRCDP

 
                                                        (a)                                                                                                    (b) 

Figure 9.  The percentage of jobs that meet the deadline versus the percentage of high urgency jobs (a) and the α  
parameter in inter-arrival time (b).   

7. Conclusions 

In this paper, we propose an analytical model for load balancing in peer-to-peer based 

volunteer computing systems. We consider the requests are arriving into the system in BoT 

form, and each request has some QoS constraints such as minimum CPU speed, minimum 

RAM or disk space requirements, and deadline.  The proposed policies for load balancing are 
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based on distributed parallel queues and knowledge-free approach; therefore, it does not 

impose any additional overhead on the system. The proposed resource discovery algorithm 

has two phases. In the first phase, it takes into account the load balancing feature in the 

system; whereas, in the second phase the proximity-aware feature is considered and the 

resource with minimum communication overhead is selected. Three dispatch policies namely 

BilRCDP, BerRCDP, and NRCDP are considered to distribute requests to the peers in the 

system. We compared the performance of these policies in different circumstances. The 

results of the experiments indicated that BilRCDP significantly decreases the average 

response time of the system with improvement factor of 13.12%, 18.5% in average with 

respect to BerRCDP and NRCDP, respectively. The proposed load balancing policy is 

proximity-aware, and selects the run node with minimum communication overhead; thus, it 

has better performance for BoT requests with large input/output file and considerable 

communication overhead. Also, the influence of the load balancing policy is highlighted for 

the longer running jobs, and high variations in job execution time.  

As part of future work, we intend to consider data intensive application in the form of 

directed acyclic graph to evaluate the effectiveness of proposed policy on these applications. 

We think that proximity-aware feature can decrease the communication overhead on these 

applications sufficiently.  Another interesting extension would be using Cloud resources in 

some of peers. Some applications have QoS requirements that could not be satisfied by the 

available resources of the VC systems, Clouds resources can be used in order to handle QoS 

requirements of these applications.  
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Appendix 
A. Proof of Equation 8 

To solve the objective function of Equation 3 we extend the approach developed by Li [35], 

since 
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In order to minimize )~,...,~,~( 21 iNZ λλλ  the Lagrange multiplier system is used, 
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We have steady state situation if 
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