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A B S T R A C T

The variety and complexity in cloud marketplaces is growing, making it difficult for cloud consumers to choose
cloud services from multiple providers in an economic and suitable way by taking into account multiple
objectives and constraints. In this paper, we present an extension of CloudSim implementing cloud manage-
ment functionality to enable the assessment of consumer-oriented brokering schemes. The underlying discrete-
event simulation framework allows evaluating their performance in more realistic operating conditions in a
repeatable manner. We integrate brokering mechanisms to support a multi-criteria location-aware selection of
virtual machines in multi-cloud environments by implementing a greedy heuristic and two large neighborhood
search metaheuristics. Based on microbenchmarks of real cloud offerings and a diverse set of scenarios and
workloads, we conduct simulation experiments to assess the performance of our approaches. The results show
that approximately 10 – 12% of the total costs can be saved by using a large neighborhood search approach
compared to the greedy heuristic. Finally, we analyze and discuss the trade-off between costs and latency as well
as the impact of region constraints, showing, e.g., that latency improvements often come at a high price and a
greater regional flexibility can lead to latency improvements while solely optimizing costs. Using real data of
cloud marketplaces, we show that the proposed CloudSim extension can support decision makers as a tool for
assessing cloud portfolios and market dynamics.

1. Introduction

The market of cloud services is rapidly growing and increasingly
attracts new market participants offering and consuming cloud services
(Cisco, 2015). This leads to a wide range of cloud providers and
services entailing various features, pricing models, and service levels,
standing in fierce competition to each other (Do et al., 2016). To
maximize the utility of consumers using cloud services, costs and risks
need to be minimized while business- and application-related require-
ments are met. As one cloud provider may not fulfill all requirements in
the most economic way, the concept of having multiple clouds has been
intensively discussed in the literature. In recent years, research focused
on the federation of cloud providers collaborating and forming an
inter-cloud to maintain all properties of the paradigm, including the
impression of unlimited resources (see, e.g., Assis and Bittencourt,
2016; Toosi et al., 2014). Only some works have studied multi-clouds
from a consumer perspective. That is, consumers simultaneously use
cloud services of different cloud providers to further increase the
business value. The main difference to federated clouds is that cloud

providers not necessarily collaborate with each other and that the
consumer is aware of using services from multiple providers. Although
technological barriers are slowing down the development of multi-
cloud applications in practice, current research approaches are promis-
ing (Petcu, 2013). As the decision making process is already difficult
when adopting different cloud services from one cloud provider, multi-
cloud environments will increase the need for brokers interacting with
cloud providers on behalf of consumers to match consumer require-
ments with available cloud services. According to Gartner (2009),
consumers depend on cloud brokers to unlock the potential of publicly
available cloud services, for example, in terms of costs, quality, and
flexibility.

In the area of cloud computing, one of the first definitions of a cloud
broker is presented in Buyya et al. (2009). According to their definition,
brokers mediate between consumers and cloud providers by purchas-
ing and subleasing capacities to consumers. The role of a broker is not
limited to a third-party organization or platform, but can also appear as
a tool to coordinate and assign various resource requests within
organizations. Classifications of cloud brokering schemes (e.g., pro-
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posed by Gartner in Plummer and Kenney, 2009) pay little attention to
the optimization of cloud service discovery and selection notwithstand-
ing the fact that it is one of the key elements to fully benefit from cloud
marketplace offerings. A recent survey of existing broker solutions
(Verginadis et al., 2014) identifies only a few tools with decision
support capabilities, such as RightScale and DBCE. The business
model of those tools is to solely provide a common platform for
comparing different cloud service options (e.g., capacities, prices)
based on individual consumer requirements. The same applies to real
cloud marketplaces, which may provide tools to roughly estimate costs,
but lack decision support for users aiming to select appropriate
combinations and configurations of cloud services. Solving strategic
and operational decision problems, however, typically involves multi-
criteria objectives and requires efficient optimization techniques
(Heilig and Voß, 2014).

In this paper, we consider a cloud brokering scheme aimed at
optimizing the selection and utilization of virtual machine (VM) types
offered in a cloud marketplace by multiple cloud providers. In this
environment, brokers act on behalf of consumers intending to execute
application and task requests in the cloud. The contributions of the
paper are described as follows.

• We extend the Cloud Service Purchasing Problem (CSPP), proposed
in Heilig et al., 2016, to consider not only costs when assigning
cloud resources, but also the network latency between the locations
of consumers and cloud locations.

• To simulate different brokering scenarios, we propose novel exten-
sions of CloudSim. The extensions provide multi-cloud management
functionality for embedding consumer-centric brokering schemes.

• Given those extensions, we develop an optimization component for
CloudSim to solve the extended CSPP by embedding two large
neighborhood search metaheuristics.

• Using real VM type descriptions and prices of three leading cloud
providers and different workloads, we conduct a number of simula-
tions for evaluating the performance of our approaches. The results
reveal a competitive performance of the large neighborhood search
approaches.

• Finally, we demonstrate and discuss the effects of different decision
making preferences towards costs and latency optimization and
analyze the impacts of region constraints by slightly modifying the
optimization problem.

The paper is structured as follows. In Section 2, we provide a brief
overview on related work focusing on optimization approaches from a
consumer perspective. The extended version of the tackled optimiza-
tion problem is presented in Section 3. In Section 4, we briefly explain
the extensions of CloudSim. The adapted large neighborhood search
algorithms for solving the multi-criteria optimization problem are
described in Section 5. Section 6 first describes the applied methodol-
ogy for data collection as well as the simulation setup. Subsequently,
the results of the conducted simulation experiments are presented and
discussed. Finally, conclusions and directions for future research are
presented in Section 7.

2. Related work

In recent years, only a few optimization approaches have been
presented to facilitate the assignment and scheduling of tasks and
applications in cloud environments from a consumer perspective.
While earlier works focus on a single objective, namely cost optimiza-
tion (e.g., Pandey et al., 2010; Van den Bossche et al., 2010; Chaisiri
et al., 2012), recent works also aim to address performance aspects in
the objective function (e.g., Lucas Simarro et al., 2011; Tordsson et al.,
2012; Coutinho et al., 2015; Heilig et al., 2016).

Pandey et al. (2010) propose a particle swarm optimization (PSO)
approach to optimize execution and data transmission costs of work-

flow applications for a single-cloud environment. Van den Bossche
et al. (2010) consider deadline constrained task workloads in hybrid
cloud environments and propose an integer programming model to
solve the related scheduling problem. Chaisiri et al. (2012) take into
account both on-demand and reservation pricing. They formulate a
stochastic integer programming model to support cloud resource
provisioning decisions that are subject to demand and price uncertain-
ties. The authors further propose Benders decomposition and sample-
average approximation algorithms to solve the problem. Shen et al.
(2013) propose online hybrid scheduling policies that minimize costs
for cloud resources by making use of both on-demand and reserved
pricing.

Tordsson et al. (2012) cover resource provisioning problems in
multi-cloud environments based on integer programming formula-
tions. In their model, the number of VM type instances is limited and
load balancing constraints are used to balance the number of pur-
chased VMs among different cloud locations, besides typical hardware
configuration constraints. The authors emphasize the lack of studies
investigating price-performance trade-offs.

Lucas Simarro et al. (2011) investigate scheduling strategies in
multi-cloud environments taking into account cost and performance
aspects. However, the two objectives are either taken into account
separately or by considering the performance aspect as a restriction.
Besides, the authors consider load balancing constraints as previously
seen in Tordsson et al. (2012).

Coutinho et al. (2013) investigate the Cloud Resource Management
Problem (CRMP) which is a multi-criteria optimization model aimed at
reducing the financial cost and the execution time of consumer
applications when selecting cloud resources. They propose an integer
programming model as well as a heuristic based on the Greedy
Randomized Adaptive Search Procedure (GRASP). This work is
extended in Coutinho et al. (2015), where the authors consider
federated cloud environments by including the communication costs
between tasks deployed in different clouds. The authors take into
account both costs and execution times in a weighted sum objective
function. Heilig et al. (2016) apply a Biased Random Key Genetic
Algorithm (BRKGA) for solving the CRMP in multi-cloud environ-
ments, providing feasible solutions in the millisecond range with an
excellent quality and suitable for being included as a real-time decision
support tool in related deployment processes. In our work, we take into
account the model structure of those previous works and adapt it for
considering network latencies as well as the specific constraints of the
CSPP, proposed in Heilig et al. (2016), such as by differentiating the
application requests, allowing the sharing of VMs, and including
location and operating systems requirements. At this point, it should
be noted that the approaches in Coutinho et al. (2015), Coutinho et al.
(2013) bundle all the requirements of the consumers without differ-
entiating between individual requirements and further limit the
number of available VMs.

In general, none of those optimization approaches has been
integrated into a simulation framework as it is commonly done in
works covering optimization problems of cloud providers. A reason
could be a lack of functionality in the CloudSim framework, which is
the de-facto standard for modeling and evaluating provisioning and
scheduling algorithms in the area of cloud computing research. The use
of a simulation tool may help to better capture the complexity and
stochasticity of cloud environments, such as given by different demand
patterns, price variations, fluctuating resource performances, and
changing preferences of decision or policy makers. In this work, we
present extensions of CloudSim providing a foundation to evaluate
current and future approaches based on brokering functionality and
simulated cloud environments. Due to the popularity of CloudSim
among scholars, the extensions and embedding of a consumer broker-
ing optimization framework may promote future research in this area.

Moreover, the fact that cloud services are offered through different
regions and locations has not been considered by current optimization
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approaches. In this work, we address this aspect by measuring the
latency generated by placing applications and tasks into cloud data
centers (DCs) around the globe. We present a multi-criteria problem
formulation and different heuristics to solve it. As proposed in previous
works, we further analyze the cost-performance trade-off based on a
large number of simulations. Before presenting the numerical results of
the study, we explain the extended problem settings and implemented
CloudSim functionality in the next two sections.

3. Extended cloud service purchasing problem

In this section, we explain the extended Cloud Service Purchasing
Problem (CSPP) representing a multi-criteria optimization problem in
the area of cloud computing. As such, it is an extension of the CSPP
proposed in Heilig et al. (2016) to additionally consider the network
performance between consumers and cloud DCs. Therefore, we refer to
the mathematical model presented in Heilig et al. (2016) and focus on
pointing out the main assumptions, constraints, and differences.

Generally, a broker is able to execute consumer tasks and applica-
tions (i.e., requests) on VMs of different cloud providers. Each request
involves different resource, performance, and legal requirements. The
resource requirements of those requests may vary over time (e.g.,
through different workloads, execution time requirements) and thus
need to be monitored constantly. To model the performance require-
ments of requests or to limit the time an application is executed in the
cloud, for instance in hybrid clouds, a deadline can be defined for each
request. Generally, several approaches have been proposed in literature
to profile, model, and analyze resource requirements of requests, for
instance, using regression analysis and machine learning techniques
(see, e.g., Wood et al., 2008). Regarding mathematical modeling
approaches, the assignment of VMs to requests can be modeled as a
multidimensional vector bin packing problem (MVBPP; Chekuri and
Khanna, 2012), a multidimensional knapsack problem (MKP; Fréville,
2004), or as a multidimensional multiple-choice knapsack problem
(MMKP; Moser et al., 1997), where the knapsacks represent the VMs
and the requests are the items. We consider the model structure of
previous works (in particular, Coutinho et al., 2015, 2013), which is
similar to the MKP, and adapt it for supporting the multi-criteria
optimization of costs and latencies as well as for accommodating
specific constraints given by the CSPP, such as by differentiating
between requests, allowing the sharing of VMs, and including location
and operating systems requirements. In this regard, it should be noted
that Coutinho et al., (2013, 2015) bundle all the requirements of
consumers without differentiating between individual requests.

More formally, we define the following characteristics of requests.

• A set of requests A of cloud consumers is given, where each request
a A∈ has individual resource and system requirements. Namely, the
processing capacity ga in million instructions (MI), hard disk
capacity da, memory capacity ma, and the operating system oa.

• The consumer can specify an execution deadline td and a specific
deployment region ra for each request to guarantee a certain
performance level and to fulfill legal requirements (e.g., place of
jurisdiction), respectively.

• Requests are homogeneous in terms of the computing architecture.

• We further assume that each request can use the full processing
capacity of a VM while being executed.

On the other hand, a diverse set of VM types offered by different
cloud providers can be used to execute the individual requests of cloud
consumers.

• That is, each cloud provider offers a set of VM types V, where each
VM of type v V∈ provides a maximum amount of processing
capacity Gv in million instructions per second (MIPS), a fixed
amount of memory Mv, and storage capacity Dv.

• For each VM of type v V∈ , a set of available regions Lv is defined,
which depends on the available regions the cloud provider of this
VM is offering.

• For each VM of type v V∈ , a set of available operating systems Sv is
defined, which depends on the available operating systems the cloud
provider of this VM is offering.

• Before a VM can be utilized, it must be provisioned with a specific
operating system in a specific region according to the demand. Once
the region and operating system are fixed for a VM, it cannot be
changed during its use.

• A price per time unit of use cvj
i (e.g., hours) is defined for each VM of

type v V∈ dependent on the installed operating system j S∈ v and
deployment region i L∈ v.

• It is possible to execute multiple requests of a consumer on the same
VM. Requests are executed sequentially corresponding to the
allocation order.

To gain a benefit for consumers, the CSPP aims at minimizing the
total costs for purchasing VMs used to execute the given requests, as
formulated in the following objective function.

∑ ∑ ∑minimize c y(CSPP)
v V j S i L

vj
i

vj
i

∈ ∈ ∈v v (1)

where the overall costs of purchasing VMs is the sum of the costs per
time unit cvj

i multiplied by the number of VMs of type v V∈ , denoted by

the decision variable yvj
i . The number of VMs reflects the sum of

purchased time units of respective VMs. That is, the time dimension is
indirectly considered by accumulating the number of VMs over all time
periods, whereby the number is increased by newly purchased VMs as
well as by each additional time unit a purchased VM is used. The
following additional constraints are considered in the CSPP.

• Fixed Assignment: Each request a A∈ must be assigned to exactly
one instance of a VM type.

• Processor Sharing: The overall volume of MIPS resulting from the
sum of purchased VM hours of type v V∈ , determined by yvj

i , and the
processing capacity Gv must be greater or equal to the processing
requirements of assigned requests.

• Memory Sharing: During execution, a request a A∈ can exclusively
use the full memory capacity Mv of the assigned VM.

• Disk Sharing: Available disk capacity Dv of the VM needs to be
shared among assigned requests.

• System sharing: The chosen operating system Ov of the VM must
correspond to the operating system requirement oa of all assigned
requests.

• Region: If specified, a request a A∈ has to be executed in a specific
region ra. Ergo, the chosen deployment region Rv of the VM must
correspond to the region requirements of all assigned requests.

• Deadline: Each request a A∈ must be executed before a given
deadline td to fulfill performance requirements.

In this work, we extend the CSPP by additionally considering the
network latency between consumers and assigned VMs. The network
latency is measured between a consumer-specified location and a cloud
DC of the region (see Section 6.1.2). The latency determines the time
duration necessary to transmit a signal, usually in the form of a data
packet, from a network origin point to a destination point (Liotine,
2003). Basically, it can be defined as the cumulative delay posed by all
network elements in a transmission path (Liotine, 2003). As opposed to
network bandwidth, determining the data throughput, the options to
influence the network latency (i.e., network delay) are very limited. The
total network latency is caused by several non-changeable factors and
elements in the transmission path, including the physical distance
between origin and destination, network components, and routing
queues. Although it is not possible to influence the network latency, a
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dedicated selection of VM types offered through various DC locations
allows to reduce the network latency experienced between consumers
and cloud locations. For this purpose, we extend the objective function
proposed in Heilig et al. (2016) as follows:

∑ ∑ ∑

∑ ∑ ∑ ∑

minimize α c y

α z l

(Extended CSPP) ( ( )

+ ( ))

v V j S i L
vj
i

vj
i

v V a A j S i L
av
ji

ai

1
∈ ∈ ∈

2
∈ ∈ ∈ ∈

v v

v v (2)

where α α( + )1 2 = 1. Compared to the CSPP, the objective function
seeks both the minimization of total costs and overall network latency.

As considered in the CSPP, an additional decision variable z
determines whether a request a A∈ is executed within a VM of type
v V∈ under operating system j S∈ v in region i L∈ v. By measuring the
network latency lai between the consumer-specified location of a
request a A∈ and the deployment region i L∈ v, we are able to
determine the overall network latency. Our approach to determine
the network latency lai a priori is given in Section 6.1.2.

As a multi-criteria decision making method, we apply the weighted
sum approach. That is, we introduce target weights α1 and α2 enabling
the broker to specify the relevance of each objective in a way that
different dimensions can be put into perspective treating them as a
single objective. Thus, for values of α1 close to 1, the broker prefers
low-budget solutions, which may result in higher latencies. For values
of α2 close to 1, on the other hand, the broker aims at placing VMs as
close as possible to the consumer in terms of network latency, which

may result in higher overall costs. To handle the different dimensions
in one objective function, a normalization of objective values is
necessary. In this work, we normalize the objectives to values between
zero and one. Before analyzing the trade-off in Section 6.2, we give an
overview on the implemented CloudSim extensions and optimization
approaches in the next section.

4. Extension of CloudSim

As one of the major research goals is the support of consumer-
centric brokering schemes in CloudSim, this section explains the
implemented extensions for supporting the management of cloud
resources in multi-cloud environments. In general, the CloudSim
toolkit supports modeling and simulation of cloud computing environ-
ments and has been used for investigations by a large part of the
research community (Calheiros et al., 2011). CloudSim contains a
collection of packages and libraries written in Java, which can be used
to configure and run discrete-event simulations. In its current version,
the main purpose of CloudSim is to allow the evaluation of policies and
techniques for cloud resource provisioning and VM placement (see,
e.g., Masdari et al., 2016) by providing various cloud system compo-
nents, workload models, and provisioning algorithms that can be
extended with ease and limited effort (Calheiros et al., 2011). In
practice, it represents a tool for cloud infrastructure providers to assess
new ways for a cost- and energy-efficient management of one or
multiple cloud DCs, such as for organizing the resource management
among different providers in a federated cloud (for an overview on

Fig. 1. Concept of the consumer broker.

Fig. 2. Excerpt of the extensions implemented in CloudSim to support consumer-related decision making in cloud environments.
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resource management in federated clouds, see, e.g., Liaqat et al., 2017).
From the perspective of cloud consumers and related cloud brokers,

however, the management of DCs is of little interest as long as service
level agreements are fulfilled. While the latter can not be strongly
influenced by consumers, they have the power to choose services from
different cloud providers. Having a broad range of cloud services from
different cloud providers, the main aim of the consumer is to maintain
an economic virtual infrastructure setup in a way that a good trade-off
between costs and performance is achieved besides fulfilling important
requirements of users and taking into account the reputation and
reliability of providers.

In this work, we extend CloudSim by implementing another layer
representing the consumers' perspective on cloud environments. As in
real cloud environments, the consumer is able to choose from a range
of preconfigured VM types. As described before, the broker has to select
and start images of those VM types to execute consumers' requests
exposing specific requirements, for example, regarding computing
capacities, execution deadlines, and other constraints. In a pay-per-
use mode, the consumer has to pay per unit of time the VM is used
(e.g., per hour, per minute). However, techniques to manage the on-
going process of decision making and methods to implement decisions
(e.g., in form of deployment processes) in cloud environments are yet
missing in CloudSim. This involves, for example, to shut down a VM
after one billing cycle, if it is not utilized anymore, and to calculate
resulting usage costs. To better grasp the process and broker function-
ality in terms of optimization and management tasks, Fig. 1 illustrates
the main concept and activities of the consumer broker. For a detailed
description of cloud provisioning and deployment processes, the
interested reader is referred to Heilig et al. (2015).

To support the evaluation of related broker decision support
techniques over multiple periods, taking into account, e.g., dynamic
pricing schemes of cloud providers, workloads and requirements, we
have extended CloudSim by several classes and discrete event types. An
excerpt of the class diagram describing the extended version of
CloudSim is shown in Fig. 2 to illustrate the most important extensions
(see Calheiros et al., 2011 for comparison with the initial version). All
extensions have been implemented in Java. In the following subsection,
we explain the relevant classes and parts of the implementation.

4.1. ConsumerBroker class

The class ConsumerBroker is a new type of broker in CloudSim
handling the selection and allocation of VM types for requests on behalf
of cloud consumers. Before the broker is initiated, the simulation
environment and a workload scenario must be configured.

4.1.1. Simulation setup
To simulate cloud environments in CloudSim, DCs have to be

defined. The perception of “unlimited resources” is one of the key
characteristics of cloud computing from the consumer perspective. As
physical layers of cloud environments are hidden for the consumer
broker, it is assumed that physical components, used to simulate the
execution of VMs, are provisioned with enough resources. Instead, the
broker has access to a range of VM types of one (single-cloud) or
multiple cloud providers (multi-cloud), which can be specified using
the new class CloudSpec. Each object of CloudSpec specifies the
available virtual resources, an operating system, and the prices per
region. We furthermore define a network structure to consider the
network performance between consumers and cloud DCs.

Moreover, the workload of requests to be assigned is generated
prior to the simulation using a new class WorkloadGenerator.
Currently, this class generates a number of requests per period
following a Poisson distribution. The number of simulation periods,
the interarrival time, and the parameter λ > 0, defining the Poisson
distribution, can be specified prior to the simulation. Each request
defines its resource requirements, an execution deadline, and the

location of origin given by a city name and geographical coordinates
(e.g., derived from the IP address of the sender).

4.1.2. Simulation process
A new broker is initiated by providing the data of the simulation

setup. In general, the broker integrates the core functionality of
CloudSim by extending and modifying functionality of the class
DatacenterBroker (see Calheiros et al., 2011). That is, we implement
new functionality to manage the process of purchasing and releasing
VM types from different cloud providers and integrate core function-
ality of CloudSim in order to control simulation processes. We add the
following features.

• Decision Points: A discrete-time interval can be defined to indicate
when an allocation of new requests and, optionally, a reallocation of
existing requests shall be performed. As default, the interval
corresponds to the interarrival time of requests.

• VM Creation: In each decision point, the broker creates a new set of
VMs according to the optimization results (see Sections 4.2 and 5).
The requests in form of a CloudSim Cloudlet are assigned to those
machines and submitted to the DC by using the method
handleNewRequests().

• VM Shutdown: By extending the event processing of the
DatacenterBroker, it is possible to shutdown idle VMs during the
simulation. After each billing unit of a VM, the method
shutdownIdleVM() checks the status of cloudlets being executed
on it and sends an event to the DC to shutdown the VM in case it is
idle. After a VM has been stopped, the overall costs of using the VM
are calculated according to the billing cycle.

• Request Reallocation: It is possible to reassign cloudlets that are still
in a waiting queue at the time of a new decision point. The method
removeIdleCloudlets() is used to remove the idle cloudlets from the
previously assigned VM in the DC. The rationale behind this is that it
may be beneficial to assign waiting cloudlets to new VMs, assigned
in this decision point, in case sharing is allowed.

• Cost Assessment: By incorporating real VM type descriptions, prices,
and pricing models, it is possible to mimic and evaluate the cloud
service portfolio of real cloud providers, intended to be helpful in
related decision making processes. Therefore, reports of the differ-
ent results are generated.

Overall, the new extensions of CloudSim provide basic broker
functionality to manage and evaluate automated decision making
processes with respect to the use of virtual cloud resources from one
or multiple cloud providers. The design of the broker follows a modular
structure and can be extended to consider specific aspects found in real
cloud marketplaces. By using existing CloudSim functionality, it is
possible to model and simulate dynamics of the machines’ perfor-
mance, for example, by considering performance statistics from
monitoring tools. The core of the consumer broker lies in the
embedded optimization component, which is explained in the next
subsection.

4.2. OptimizationComponent class

The class OptimizationComponent contains decision support func-
tionalities for consumer-oriented brokers. In the current version, it
implements methods and algorithms to solve the extended CSPP
described in Section 3. The overall concept of the proposed CloudSim
extensions, however, is to support cloud brokers and consumers also
with additional management tasks during operations (e.g., composition
of cloud services, price negotiations, data management, etc.). In this
respect, the extensions leave a door open for other consumer broker
approaches.

In the current version, a greedy heuristic and two large neighbor-
hood search approaches are implemented (see Section 5). A method for
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calculating the latencies between consumers of requests and available
cloud DCs is implemented as described in Section 6.1.2. Besides, it
provides important functions to manage and utilize rented VMs over
time as well as some helper functions. For example, a consumer may
decide to share a VM among multiple requests. Therefore, it must also
be possible to use the VM in subsequent periods if it is still active and
has remaining capacities. Incorporating this option into CloudSim will
allow to evaluate new approaches to improve the utilization of
purchased VM hours.

The main structure being used during the optimization process is
the new class Solution. An object of this class stores the assignment of
requests (i.e., Cloudlets) to VMs, which can be altered during the
optimization to find a best possible solution for the problem. This
particularly involves methods to consistently update the use of VMs in
each iteration. After the optimization is finished, the solution object is
returned to the broker, which is able to read the instructions and
perform related activities. As depicted in Fig. 1, the optimization result
determines the assignment of requests to VM types, which is used to
create new VMs for deploying and executing requests in the cloud
environment of the respective providers (see also Heilig et al., 2015).

5. Optimization approaches

In this section, we explain the implemented large neighborhood
search approaches designed for solving the extended CSPP in
CloudSim. With respect to exact approaches, only small problem
instances of the single objective CSPP could be solved to optimality
(up to 10 requests) in the previous work of Heilig et al. (2016). For
those instances, competitive results are achieved when applying the
large neighborhood search algorithms, where the gap to the optimal
solution is on average 2.88% and 3.85% for the LNS and ALNS,
respectively. For larger problem instances, the general-purpose solver
CPLEX is either not able to provide an optimal solution within two
hours or runs out of memory. This promotes the adaption of those
metaheuristics aimed at reducing the computational time for achieving
feasible solutions. Therefore, we adapt the algorithms to support multi-
period assignment and multi-criteria decision making. In the following,
we explain the adapted and integrated heuristics to make this paper
self-contained.

5.1. Large neighborhood search

The concept of Large Neighborhood Search (LNS), proposed by
Shaw (1998), is to make large changes to current solutions when
exploring the solution space by applying a destroy and repair heuristic
in each iteration. Here, a solution represents the assignment of VMs to
requests, either by purchasing new VMs or reusing existing VMs. The
pseudo-code is shown in Algorithm 1.

The input parameter itermax denotes the maximum number of
iterations without improving a current solution, used in the stop
criterion in line 3. The variable Sbest is the best solution observed
during the search, S denotes the current solution, and S′ is a temporary
solution. To start with the search procedure, a feasible starting solution
is generated by using a construction heuristic (line 1). While the
function destroy(·) partly destroys the copy of the current solution (line
4), the function repair(·) transforms the destroyed solution into a new
feasible solution S′ (line 5). In the context of CSPP, the destroy
heuristic removes VM-to-request assignments while the repair heur-
istic fills missing (i.e., destroyed) assignments. In line 6 the new
solution is evaluated to determine whether to reject or accept it as a
new current solution (line 7). In this regard, we only accept improving
solutions and update the best solution Sbest if necessary (line 8).

Algorithm 1. Large Neighborhood Search.

5.2. Adaptive large neighborhood search

We furthermore implement an adaptive large neighborhood search
(ALNS), which extends LNS by using multiple destroy and repair
heuristics and controls the selection of those heuristics in each iteration
by measuring their performance during the optimization procedure
(Pisinger and Ropke, 2010). The pseudo-code of the ALNS is shown in
Algorithm 2.

The parameters used in the ALNS are the neighborhood size in
percent (ξ), maximum number of iterations itermax, maximum number
of iterations in each search segment segmax, score increments
(σ σ σ, ,1 2 3), and reaction factor (r). For understanding the main
principle of ALNS, we first explain the selection of heuristics during
the search procedure. That is, different destroy and repair heuristics
can be selected in each iteration of the search procedure. For that
purpose, a roulette wheel selection algorithm is implemented, which is
influenced by a roulette weight vector ω ω ω ωΩ = [ , , …, , …, ]j H1 2 | |
representing a measure for the previous performance of each heuristic
j H∈ . In the first iteration, this vector is initialized such that the
probability of selecting one heuristic is the same for all (line 5).
Moreover, a vector Θ θ θ θ θ= [ , , …, , …, ]j H1 2 | | is initialized in line 8 for
counting the number of times heuristic j is selected. The overall search
procedure of itermax iterations is divided into segments of segmax

iterations. During the iterations of a segment, each heuristic j collects
scores that are given dependent on its success of finding a new solution.
A vector Π π π π π= [ , , …, , …, ]j H1 2 | | containing the collected scores for
each heuristic is initialized in line 7. It is differentiated between three
different scores (σ1–σ3). If the heuristic j leads to a new best solution
Sbest in an iteration, the highest score σ1 is added to the heuristic's
score πj (line 20). If the new solution S′ is worse than the current
solution S, but is accepted, the lowest score σ3 is added (line 31). As an
acceptance function accept(·), we hybridize the algorithm and imple-
ment a simulated annealing (SA) algorithm. Score increment σ2 is
added if the new solution S′ is better than the current solution S, but
does not lead to a new best solution Sbest (line 16). After each segment
of iterations, the updated vectors Π and Θ are used to determine new
weights for each heuristic j as described in Eq. (3). The reaction factor r
controls how much the roulette weight depends on the performance of
a heuristic in the last segment. That is, if r=0, the performance measure
is not used to update the roulette weights; otherwise, if r > 0, the
roulette weights can positively influence the selection of well-perform-
ing heuristics in subsequent iterations (Pisinger and Ropke, 2010).
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The remaining parts of the algorithm implement the general
structure of the LNS framework (see Algorithm 1 for comparison).

First of all, an initial solution is generated (line 1), using a constructive
heuristic, and added to a set K storing all accepted solutions (line 2). At
each iteration, one destroy heuristic and one repair heuristic from the
set H are consecutively chosen by applying roulette wheel selection
with the obtained roulette weights (line 11). In line 12, a new solution
S′ is generated by alternately applying the selected destroy and repair
heuristic to the current solution S. If the new solution S′ is better than
the current solution S (line 13) and/or better than the best known
solution Sbest, S′ and Sbest are updated in lines 14 and 21, respectively.
As indicated, we occasionally select worse solutions in order to avoid
being trapped in a local minimum. Following the idea of SA, a worse
solution may be accepted according to a probability that depends on
the deterioration ▵ of the objective function value. The probability of

acceptance is computed as e(− )Temp
▵

, where Temp is used as a control
parameter and decreased by a cooling rate c0 < < 1 during the search
procedure such that Temp Temp c← · . If a worse solution is accepted, the

current solution S is updated in line 29. After a maximum number of
itermax iterations, the best known solution Sbest is returned.

Algorithm 2. Adaptive Large Neighborhood Search for the CSPP.

5.3. Construction, removal and repair heuristics

As explained, the presented algorithms rely on a construction
heuristic to generate an initial solution as well as on destroy and
repair heuristics to generate new solutions in each iteration. As the
construction and repair heuristics generally generate a new feasible
solution, we implement two generic methods in CloudSim, which can
be used to both construct and repair solutions.

• Random Assignment: Iteratively assigns a VM to each open request
at random. More specifically, a VM is randomly selected out of the
pool of existing (i.e., purchased) VMs, in case sharing is allowed, or
purchased as an instance of a randomly chosen VM type given that
all constraints are satisfied.

• Greedy Heuristic: Iteratively assigns the best possible VM – in
terms of the objective function value – to each open request. As it
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might happen that different VM types lead to the same objective
function value, a second decision criterion is involved. That is, the
VM with the better ratio in terms of MIPS, memory, and storage
capacity is selected to achieve a higher cost-benefit.

To destroy solutions, we further implement three different removal
heuristics in CloudSim.

• Shaw Removal: Removes a number of assignments from the
solution sharing similar characteristics (Shaw, 1998). Thus, a
relatedness measure R q q( , )1 2 determines the similarity of VM-to-
request assignments. Assignments are similar if related requests a1
and a2 have similar processing capacity c and deadline requirements
t and are dissimilar if they do not share the same requirements with
respect to the operating system o and deployment region r, as
formulated in Eq. (4) where HV is defined as a high enough value.
Algorithm 3 shows the pseudo-code of the Shaw removal procedure.
The parameter S is the solution to be destroyed, ξ ∈ denotes the
percentage of assignments to be removed, and parameter p with
p ≥ 1 is used to control the randomness of selecting assignments to
be removed. First, the heuristic randomly picks one assignment r
from a given solution S (line 1) and adds it to the set D, initialized in
line 2 to contain all assignments to be removed. Starting with the
currently chosen assignment q, all remaining assignments are added

Table 2
Ranges of request requirements.

Requirement Range

Processing capacity in MI [350,000, 3500,000]
Memory capacity in GB [1, 8]
Disk capacity in GB [1, 200]
Operating system {Windows, Linux}

Table 3
Performance assessment of simulation results for α α= 1, = 01 2 (Config. 1).

Scenario Greedy LNS ALNS

(λ, k) # Req. Cost ($) Lat. (ms.) t (s.) Cost ($) Lat. (ms.) t (s.) Impr. (%) Cost ($) Lat. (ms.) t (s.) Impr. (%)

(5, 5) 24 5.22 4627.96 0.02 5.22 4627.96 5.47 0.00 5.22 4619.70 5.60 0.00
(5, 10) 42 9.73 8176.06 0.00 7.55 8176.06 5.77 22.34 7.55 8176.06 5.98 22.34
(5, 15) 66 14.96 12,665.77 0.01 14.42 12,574.87 4.95 3.61 14.42 12,574.87 5.16 3.61
(5, 20) 88 19.86 16,988.15 0.01 19.29 16,988.15 5.13 2.87 19.29 16,979.88 5.47 2.87
(5, 25) 112 25.43 21,571.53 0.01 24.57 21,571.53 5.30 3.36 24.57 21,550.87 5.54 3.36
(10, 5) 43 9.19 6888.01 0.02 8.84 6921.18 8.37 3.79 8.83 6945.97 9.14 3.85
(10, 10) 91 19.52 15,133.98 0.01 14.85 15,132.55 11.10 23.92 14.85 15,132.55 11.58 23.92
(10, 15) 140 29.77 23,914.26 0.01 28.54 23,972.93 9.35 4.13 28.50 23,956.40 9.37 4.28
(10, 20) 189 40.67 32,326.75 0.01 38.08 32,449.99 9.71 6.38 38.20 32,408.26 10.19 6.08
(10, 25) 247 53.08 42,821.45 0.01 49.51 43,007.14 10.06 6.74 49.66 43,212.73 10.66 6.45
(20, 5) 87 18.38 16,365.37 0.03 17.64 16,334.58 17.24 4.01 17.64 16,326.31 16.77 4.00
(20, 10) 185 40.31 35,052.94 0.02 30.31 35,004.14 22.18 24.79 30.35 34,972.16 22.36 24.71
(20, 15) 293 63.79 55,487.65 0.02 60.07 55358.86 19.00 5.83 59.92 55,316.73 19.66 6.07
(20, 20) 412 90.19 78,126.97 0.03 84.99 77,998.77 21.40 5.76 85.34 78,022.35 21.41 5.38
(20, 25) 534 116.97 101,131.51 0.03 110.14 101,053.49 21.93 5.84 110.35 101,136.13 22.40 5.66
(40, 5) 205 42.35 41,497.90 0.07 39.44 41,479.97 44.01 6.87 39.58 41,494.93 49.05 6.54
(40, 10) 398 82.47 80,126.57 0.05 61.53 80,043.41 54.26 25.39 61.38 80,011.51 50.69 25.57
(40, 15) 606 125.49 122,103.60 0.05 116.71 122,012.70 43.52 7.00 116.54 121,915.67 38.83 7.13
(40, 20) 795 164.76 159,830.71 0.05 152.43 159,764.96 46.02 7.48 153.67 159,637.77 41.19 6.73
(40, 25) 995 204.98 199,720.66 0.05 190.93 199,640.03 48.55 6.86 192.23 199,529.74 43.22 6.22
(60, 5) 306 61.94 61,180.91 0.10 56.33 61,158.93 106.15 9.06 57.51 61,120.34 60.86 7.16
(60, 10) 599 119.22 120,275.50 0.08 88.37 120,244.58 93.61 25.88 90.45 120177.62 73.30 24.14
(60, 15) 939 188.78 188,592.69 0.08 173.16 188,619.60 89.61 8.27 176.94 188,641.36 66.86 6.27
(60, 20) 1223 246.21 245,969.60 0.08 225.93 246,138.59 92.58 8.24 229.56 245,952.21 62.11 6.76
(60, 25) 1534 309.78 308,182.68 0.08 283.53 308,291.30 96.86 8.47 288.69 307,965.41 63.15 6.81
(100, 5) 508 106.54 106,737.62 0.14 93.97 106,848.72 249.30 11.80 100.00 106,823.62 87.58 6.14
(100, 10) 999 210.22 209,298.18 0.13 148.15 209,630.71 238.55 29.53 156.60 209,524.75 116.27 25.51
(100, 15) 1514 321.24 316,202.22 0.13 279.82 316,717.51 234.80 12.90 296.31 316,517.23 87.86 7.76
(100, 20) 2019 430.17 421,429.36 0.13 373.38 422,095.37 233.14 13.20 394.68 421,866.78 88.16 8.25
(100, 25) 2512 534.81 524,657.20 0.13 465.59 525,456.56 231.06 12.94 490.11 525,075.77 95.84 8.36
(200, 5) 1013 211.46 223,275.35 0.27 185.55 223,243.59 521.83 12.26 197.98 223,099.10 178.18 6.38
(200, 10) 2002 426.05 441,600.36 0.26 295.01 441,472.83 471.33 30.76 315.20 441,277.42 228.54 26.02
(200, 15) 3024 649.34 666,196.20 0.26 558.06 665,982.48 455.32 14.06 594.66 665,802.75 177.34 8.42
(200, 20) 4013 860.96 883,792.23 0.26 739.84 883,520.96 439.29 14.07 788.41 883,298.46 173.24 8.43
(200, 25) 5021 1079.71 1,105,762.43 0.26 925.43 1105,503.19 464.90 14.29 990.54 1105,033.49 174.39 8.26
(400, 5) 2020 393.97 459,968.84 0.53 354.87 460,033.39 852.87 9.93 374.69 459,946.53 379.88 4.89
(400, 10) 4005 805.34 910,742.54 0.53 571.29 910,966.14 768.06 29.06 601.58 910,749.58 463.65 25.30
(400, 15) 6037 1221.41 1,371,490.83 0.53 1072.37 1,371,688.00 921.08 12.20 1137.16 1,371,674.58 364.31 6.90
(400, 20) 8022 1632.26 1,821,229.00 0.53 1431.00 1,821,433.40 880.32 12.33 1516.52 1,821,489.62 353.41 7.09
(400, 25) 10033 2046.45 2,279,135.72 0.53 1787.88 2,279,564.77 876.58 12.64 1898.18 2,279,217.83 359.45 7.25
Average 1572.38 325.82 343,506.93 0.14 279.61 343,568.10 218.26 11.97 294.35 343,479.38 101.46 9.77

Table 1
Parameter values for the simulation experiments.

Parameter Values

Number of periods (k) {5, 10, 15, 20, 25}
Average number of requests per period (λ) {5, 10, 20, 40, 60, 100, 200, 400}
Decision point interval in seconds {300, 900, 1800, 2400, 3000}
Maximum number of requests per country 20
Weight of objectives α1 and α2

• Configuration 1 (α1 = 1, α2 = 0)
• Configuration 2 (α1 = 0, α2 = 1)
• Configuration 3 (α1 = 0.5, α2 = 0.5)
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to an array L and sorted in ascending order according to their
relatedness to r (line 7) where the first element represents the one
with the highest relatedness. A random number between zero and
one is used to select one assignment from L (line 8), which is added
to D. By increasing the value of the parameter p, the likelihood of
selecting dissimilar assignments can be reduced. The procedure is
repeated until ξ S⌈ | |⌉ assignments have been selected to be removed.
Note that we use a quickselect algorithm for the sort and select
procedure in lines 7 and 8, respectively.

• Worst Removal: The heuristic follows the idea of the Shaw removal.
Instead of using a relatedness measure, assignments are sorted
based on the additional costs they produce. In this context, we define
the additional costs of an assignment as costdiff q s f s f s( , ) = ( ) − ( )q−
where f s( )q− denotes the total cost of the solution without assign-
ment q.

• Random removal: Removes a number of assignments at random.

⎧
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Algorithm 3. Shaw Removal

In the implemented LNS, we use the Shaw removal as the removal
heuristic and the greedy heuristic as the constructive and repair
heuristic. ALNS uses all three removal heuristics and the greedy
heuristic for constructing and repairing solutions.

6. Performance evaluation

Using the implemented CloudSim extensions, we conduct multiple
simulation experiments to evaluate the proposed algorithms and to

Table 4
Performance assessment with the simulation results for α α= 0.5, = 0.51 2 (Config. 2).

Scenario Greedy LNS ALNS

(λ k, ) # Req. Cost ($) Lat. (ms.) t (s.) Cost ($) Lat. (ms.) t (s.) Impr. (%) Cost ($) Lat. (ms.) t (s.) Impr. (%)

(5, 5) 24 9.38 4110.85 0.02 9.38 4110.85 6.13 0.00 9.38 4110.85 6.20 0.00
(5, 10) 42 16.08 7249.92 0.01 16.08 7249.92 4.80 0.00 16.08 7249.92 5.05 0.00
(5, 15) 66 24.77 11,214.57 0.01 24.77 11,214.57 5.00 0.00 24.77 11,214.57 5.11 0.00
(5, 20) 88 33.54 15,102.47 0.01 33.54 15,102.47 5.22 0.00 33.54 15,102.47 5.49 0.00
(5, 25) 112 42.99 19,210.06 0.01 42.99 19,210.06 5.12 0.00 42.99 19,210.06 5.41 0.00
(10, 5) 43 13.91 6399.18 0.02 13.91 6399.18 9.05 0.00 13.91 6399.18 9.64 0.00
(10, 10) 91 29.43 14,055.00 0.01 29.31 14,055.08 8.99 0.39 29.31 14,055.08 9.53 0.39
(10, 15) 140 46.03 22,274.93 0.01 45.55 22,275.18 8.93 1.05 45.55 22,274.93 9.47 1.04
(10, 20) 189 62.36 30,090.91 0.01 61.04 30,087.64 9.91 2.12 61.05 30,087.33 9.95 2.11
(10, 25) 247 81.69 39,892.99 0.01 79.54 39,885.66 9.88 2.63 79.54 39,885.51 9.94 2.63
(20, 5) 87 27.19 15,221.74 0.03 26.48 15,220.94 16.94 2.59 26.48 15,220.94 19.12 2.59
(20, 10) 185 56.42 32,680.31 0.02 54.67 32,678.29 17.00 3.10 54.71 32,678.29 19.85 3.02
(20, 15) 293 88.45 51,799.00 0.02 85.37 51,795.77 18.46 3.48 85.28 51,795.77 18.59 3.59
(20, 20) 412 123.93 73,186.44 0.03 119.70 73,181.99 21.08 3.41 119.71 73,181.99 21.63 3.40
(20, 25) 534 160.48 94,890.05 0.03 154.98 94,884.38 21.52 3.43 155.36 94,884.38 23.01 3.19
(40, 5) 205 61.84 38,680.35 0.07 56.65 38,681.11 40.31 8.40 56.59 38,684.71 39.70 8.50
(40, 10) 398 119.60 74,710.36 0.05 109.27 74,710.78 40.23 8.63 109.60 74,711.80 36.91 8.36
(40, 15) 606 181.31 113,850.61 0.05 166.54 113,853.05 39.57 8.15 168.84 113,851.77 37.34 6.88
(40, 20) 795 238.72 149,158.63 0.05 219.24 149,162.74 42.19 8.16 221.60 149,162.10 38.32 7.17
(40, 25) 995 295.66 186,437.51 0.05 274.35 186,442.35 40.87 7.21 274.24 186,446.67 38.00 7.25
(60, 5) 306 87.33 56,893.57 0.09 77.53 56,898.77 110.05 11.22 79.46 56,898.77 68.16 9.01
(60, 10) 599 171.41 111,810.68 0.08 153.77 111,820.35 80.15 10.29 157.00 111,822.16 55.22 8.41
(60, 15) 939 266.56 175,418.41 0.08 240.40 175,435.32 85.54 9.81 244.27 175,434.42 57.42 8.36
(60, 20) 1223 347.66 228,844.55 0.08 316.18 228,866.26 84.36 9.05 321.51 228,868.55 57.11 7.52
(60, 25) 1534 433.78 286,629.04 0.08 395.57 286,653.36 83.92 8.81 399.72 286,654.83 54.33 7.85
(100, 5) 508 144.43 99,543.37 0.14 123.89 99,544.45 176.58 14.23 132.86 99,558.52 96.29 8.02
(100, 10) 999 283.74 195,283.47 0.13 246.20 195,286.86 155.80 13.23 258.67 195,310.81 84.43 8.84
(100, 15) 1514 429.63 294,901.71 0.13 376.62 294,910.29 152.16 12.34 393.39 294,940.26 85.25 8.43
(100, 20) 2019 573.61 393,128.12 0.14 502.46 393,143.60 163.44 12.40 522.68 393,182.98 87.05 8.88
(100, 25) 2512 712.41 489,501.70 0.13 625.41 489,519.95 157.38 12.21 647.87 489,565.39 86.43 9.06
(200, 5) 1013 281.46 208,443.72 0.27 238.46 208,446.25 481.78 15.28 252.98 208,462.18 191.09 10.12
(200, 10) 2002 564.30 412,185.58 0.27 473.07 412,198.85 575.95 16.17 509.69 412,218.25 177.80 9.68
(200, 15) 3024 858.53 621,909.24 0.26 712.34 621,922.27 549.68 17.03 772.76 621,947.70 172.70 9.99
(200, 20) 4013 1146.00 824,962.17 0.27 946.54 824,982.87 535.48 17.40 1030.29 825,018.91 173.73 10.10
(200, 25) 5021 1436.18 1,032,132.57 0.26 1186.74 1,032,155.16 591.97 17.37 1292.65 1,032,196.98 170.96 9.99
(400, 5) 2020 531.23 428,268.57 0.54 452.15 428,246.18 1001.35 14.88 492.21 428,278.57 409.74 7.34
(400, 10) 4005 1085.88 848,096.50 0.54 915.39 848,047.93 976.12 15.70 991.63 848,077.96 342.70 8.68
(400, 15) 6037 1648.10 1,277,272.52 0.53 1383.46 1,277,208.81 958.54 16.06 1497.40 1,277,284.76 348.15 9.14
(400, 20) 8022 2205.95 1,696,096.29 0.53 1841.88 1,695,992.81 917.82 16.50 2000.39 1,696,073.03 343.30 9.32
(400, 25) 10033 2763.07 2,122,630.44 0.53 2304.54 2,122,502.45 970.36 16.59 2499.63 2,122,597.62 336.94 9.53
Average 1572.375 442.13 320,104.20 0.14 378.40 320,099.62 229.49 8.48 403.14 320,115.02 94.18 5.96
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explore the trade-off between costs and latency in multi-cloud envir-
onments. In the following, we first briefly describe the methodology for
collecting and preparing input data as well as the configurations and
scenarios that are applied in the different simulation experiments.
Finally, we present the simulation results of the different experiments
and discuss major outcomes.

6.1. Simulation setup

6.1.1. VM type microbenchmarks
The simulations are performed with real datasets collected in

August 2016 from three leading cloud providers: AWS, Microsoft,
and Google.1 Overall, we consider 49 different VM types configured for
general, compute-intensive, memory-intensive, and storage-intensive
purposes (18 VM types of Amazon EC2, 15 VM types of Microsoft
Azure, 16 VM types of Google Compute Engine). These VM types can
be deployed in several regions of respective cloud providers. In our
dataset, we consider 8 AWS locations, 4 Google locations, and 14 Azure
locations. To determine the speed of virtual CPUs in terms of MIPS, we
perform a benchmark experiment using CMIPS v1.0.4,2 a program

written in C++ executing 200 threads performing a fixed number of
operations, for each VM type. Although the provisioning of the
processor can vary between Intel Xeon and AMD Opteron in case of
Microsoft Azure, we focused on Intel processors to better compare the
different providers. In this study, we assume that the performance of
the disk and network is the same for all VM types. We further use real
prices dependent on the selected operating system and deployment
region. In this regard, we use prices per hour of use in our simulation
experiments.

6.1.2. Location and latency measurement
In a real environment, the location of cloud consumers is either

resolved from a respective IP address or specified by the consumers
using geographical coordinates (i.e., longitude and latitude). To
simulate and determine the location of IP addresses of consumers,
we use the free GeoLite23 IP geolocation databases. The location of the
different DCs of cloud providers is determined as accurately as possible
using public available company data and news articles. As proposed in
Grozev and Buyya (2016), we further use PingER,4 an Internet
Performance Monitoring Service (IEPM) maintained by the Stanford
University, to receive network metrics between hundreds of distributed
server nodes that periodically ping each other in a worldwide network.

Table 5
Performance assessment with the simulation results for α α= 0, = 11 2 (Config. 3) and sensitivity analysis.

Scenario Greedy (Config. 3) Config. 3/Config. 1 Config. 3/Config. 2 Config. 2/Config. 1

(λ k, ) # Req. Cost ($) Lat. (ms.) t (s.) Cost (%) Lat. (%) Cost (%) Lat. (%) Cost (%) Lat. (%)
(5, 5) 24.00 12.29 4107.04 0.02 135.61 −11.18 30.99 −0.09 79.87 −11.09
(5, 10) 42.00 20.50 7244.24 0.01 171.49 −11.40 27.50 −0.08 112.94 −11.33
(5, 15) 66.00 32.67 11,204.51 0.01 126.52 −10.90 31.88 −0.09 71.76 −10.82
(5, 20) 88.00 44.12 15,088.68 0.01 128.72 −11.16 31.55 −0.09 73.86 −11.08
(5, 25) 112.00 56.48 19,191.98 0.01 129.85 −10.99 31.39 −0.09 74.93 −10.90
(10, 5) 43.00 20.90 6390.54 0.02 136.55 −7.83 50.20 −0.13 57.49 −7.71
(10, 10) 91.00 42.79 14,038.19 0.01 188.15 −7.23 45.99 −0.12 97.37 −7.12
(10, 15) 140.00 65.55 22,250.89 0.01 129.86 −7.15 43.91 −0.11 59.72 −7.05
(10, 20) 189.00 88.29 30,054.86 0.01 131.47 −7.32 44.62 −0.11 60.05 −7.22
(10, 25) 247.00 116.62 39,843.86 0.01 135.20 −7.58 46.63 −0.10 60.41 −7.48
(20, 5) 87.00 38.37 15,210.74 0.03 117.51 −6.86 44.90 −0.07 50.10 −6.79
(20, 10) 185.00 80.34 32,656.72 0.02 164.89 −6.66 46.91 −0.07 80.31 −6.60
(20, 15) 293.00 126.81 51,761.24 0.03 111.37 −6.46 48.62 −0.07 42.23 −6.40
(20, 20) 412.00 179.88 73,133.54 0.03 111.22 −6.25 50.26 −0.07 40.56 −6.19
(20, 25) 534.00 233.67 94,820.83 0.03 111.96 −6.21 50.59 −0.07 40.75 −6.14
(40, 5) 205.00 85.90 38,657.77 0.07 117.43 −6.82 51.72 −0.06 43.31 −6.76
(40, 10) 398.00 170.29 74,666.76 0.05 177.10 −6.70 55.61 −0.06 78.08 −6.64
(40, 15) 606.00 258.53 113,783.08 0.05 121.68 −6.71 54.17 −0.06 43.78 −6.65
(40, 20) 795.00 337.71 149,070.32 0.05 120.65 −6.66 53.21 −0.06 44.02 −6.60
(40, 25) 995.00 423.86 186,328.16 0.05 121.25 −6.64 54.53 −0.06 43.18 −6.58
(60, 5) 306.00 126.70 56,869.25 0.11 122.59 −6.98 61.40 −0.05 37.91 −6.94
(60, 10) 599.00 246.94 111,764.06 0.08 176.19 −7.03 58.92 −0.05 73.79 −6.98
(60, 15) 939.00 387.90 175,349.51 0.08 121.60 −7.04 60.07 −0.05 38.44 −7.00
(60, 20) 1223.00 506.31 228,753.49 0.08 122.32 −7.03 58.80 −0.05 40.00 −6.98
(60, 25) 1534.00 633.61 286513.63 0.08 121.46 −7.01 59.34 −0.05 38.98 −6.97
(100, 5) 508.00 199.41 99,518.96 0.15 105.60 −6.85 55.33 −0.03 32.36 −6.82
(100, 10) 999.00 395.76 195,234.98 0.13 159.73 −6.84 56.78 −0.03 65.66 −6.81
(100, 15) 1514.00 596.72 294,831.89 0.13 107.15 −6.88 54.99 −0.03 33.65 −6.85
(100, 20) 2019.00 797.34 393,036.52 0.13 107.63 −6.86 55.56 −0.03 33.47 −6.83
(100, 25) 2512.00 992.00 489,385.73 0.13 107.60 −6.83 55.82 −0.03 33.23 −6.80
(200, 5) 1013.00 382.93 208,393.58 0.26 99.69 −6.62 55.84 −0.03 28.14 −6.59
(200, 10) 2002.00 761.00 412,093.03 0.26 149.42 −6.63 54.87 −0.03 61.05 −6.61
(200, 15) 3024.00 1159.43 621,766.64 0.26 101.17 −6.63 56.14 −0.03 28.83 −6.60
(200, 20) 4013.00 1544.80 824,771.22 0.26 102.17 −6.64 56.29 −0.03 29.35 −6.61
(200, 25) 5021.00 1938.15 1,031,895.77 0.26 102.32 −6.64 56.34 −0.03 29.41 −6.61
(400, 5) 2020.00 741.93 428,089.05 0.53 103.39 −6.94 57.13 −0.04 29.44 −6.90
(400, 10) 4005.00 1496.38 847,735.55 0.53 155.17 −6.93 56.93 −0.04 62.59 −6.89
(400, 15) 6037.00 2257.87 1,276,731.59 0.52 104.38 −6.92 56.75 −0.04 30.38 −6.88
(400, 20) 8022.00 3008.03 1,695,380.98 0.53 104.11 −6.92 56.58 −0.04 30.36 −6.89
(400, 25) 10033.00 3773.31 2,121,735.60 0.53 104.73 −6.92 57.08 −0.04 30.33 −6.88
Average 1572.38 609.55 319,983.88 0.14 126.67 −7.40 50.90 −0.06 51.05 −7.34

1 Amazon EC2: https://aws.amazon.com/ec2/instance-types; Microsoft Azure:
https://azure.microsoft.com/de-de/services/virtual-machines; Google Compute Engine:
https://cloud.google.com/compute/pricing.

2 https://github.com/cmips/cmips.

3 https://dev.maxmind.com/geoip/geoip2/geolite2/.
4 http://www-iepm.slac.stanford.edu/pinger/.
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We export those performance measures for one year in the time
between August 2015 and July 2016. The coordinates of each
PingER node are provided, too.

For estimating the network latency between worldwide distributed
consumers and DCs of cloud providers, we take into account the
latency between three pairs of PingER nodes. As depicted in Fig. 3,
those pairs connect adjacent nodes of consumers and DCs. As not all
nodes are linked to each other, we only consider combinations for
which network performance statistics are available.

To determine the geographically closest nodes to consumer and DC
locations (i.e., target locations), we measure the distance between each
pair of coordinates, connecting nodes and target locations, using the
haversine formula. Although the well-known Vincenty's formulae are
more accurate taking into account the ellipsoidal shape of the Earth,
the haversine formula, assuming a simple sphere Earth shape, provides
a sufficient distance approximation in less computational time, which is
more suitable for (near) real-time brokering schemes. Given the
coordinates (ϕ λ,1 1) and (ϕ λ,2 2) and a mean sphere radius of
r = 6371 km, the distance d is measured as follows.
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More formally, the latency between two locations t1 and t2 is
approximated by choosing three possible connections of nodes
n n n n n n( , ), ( , ), ( , )11 12 21 22 31 32 that minimize the distance d for t1 and
t2. The latency between t1 and t2 is approximated using the following
weighted sum.
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where di is the overall distance of a pair i between the chosen nodes ni1,
ni2 and the target locations t t,1 2, respectively (Grozev and Buyya,
2016). The smallest distance among the three pairs is denoted as dmin

and the measured latency between the respective nodes ni1 and ni2 is
represented by li. Using this formula, the latency between a consumer
and all available cloud DC locations is estimated. In the example shown
in Fig. 3, the links between adjacent nodes of a customer t1 and a DC t2
are shown (dashed line). While in the first case the three closest nodes
can be used to connect t1 with t2, it is not possible to use all of the
closest nodes adjacent to DC3 as one is not directly connected to a node
adjacent to t1.

6.1.3. Algorithm parameter settings
By taking into account the indications provided in Pisinger and

Ropke (2010) and preliminary simulation runs, we identified the
following parameters for LNS and ALNS (see Section 5):
ξ seg iter p σ σ σ

r

= 0.3, = 300, = 2000, = 4, = 33, = 13,

= 9, = 0.1
iter max 1 2 3.

6.1.4. Simulation settings and workload scenarios
In this work, we assume that the resource requirements of the

requests are known a priori through means of statistical analysis.
Therefore, we generate a large set of different scenarios to comprehen-
sively assess the performance of the proposed multi-criteria decision
making approaches and the cost-latency trade-off for multiple periods.
First of all, we define different parameter values that are used in each
simulation experiment (Table 1). Consequently, one simulation experi-

Fig. 4. Comparison of results of the extended CSPP with and without region constraints: cost optimization (first row) with α α= 1, = 01 2 and latency optimization (second row) with

α α= 0, = 11 2 .
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ment consists of several simulations by combining the given parameter
values.

As we could not find workloads fitting our purposes in the
literature, we generate a suite of 40 different workloads for each
combination of the number of periods and average number of requests
per period. For this purpose, we generate a random number of requests
per period from the Poisson distribution with a given mean λ. For each
request, we generate resource requirements in terms of processing,
memory, and disk capacity. Moreover, an execution deadline, required
deployment region, and the location of origin are defined. Table 2
contains the ranges of values used for generating the requirements
based on a uniform distribution. The location of origin is generated by
randomly choosing a country and by randomly selecting a location in
this country using data from GeoLite2 (see Section 6.1.2). The deadline
of a request is a uniformly distributed value between a minimum
reflecting the time it takes to execute the request with the smallest VM
type and a maximum denoting the required time with the largest VM
type in terms of the processing capacity. To better compare the
different scenarios, dynamic aspects are not yet considered and are
left for future research.

6.2. Simulation results

In this section, we present the results of the simulation experiments
and compare the performance of the presented algorithms based on the
different simulation settings and workload scenarios (see Section
6.1.4). We analyze the simulation results with regards to two main
aspects:

• Experiment 1: Assessment of computational performance of the
different algorithms and implications of multi-criteria simulation
scenarios.

• Experiment 2: Assessment of the region constraints impact in the
decision making process.

To put the focus on primary results, we show only the results for
decision point intervals of 1800 s (0.5 h) as it exhibits comparatively
better results for nearly all scenarios.

6.2.1. Experiment 1: performance assessment
Using the implemented CloudSim simulation framework extension,

proposed in Section 4, we conduct several simulations and simulation
runs devoted to assessing the presented algorithms for the extended
CSPP. To ensure comparability among the simulations, we execute
each simulation on the same machine, which is equipped with an Intel
Xeon E5-2667 3.3 GHz and 128 GB of RAM. Each scenario has been
executed ten times.

In Tables 3–5, we present the average simulation results pertaining
the objective function values in terms of both cost and latency. Overall,
we assess 40 different scenarios as described in Table 1. Moreover, the
tables show the average computational time per simulation period t(s.)
and the percentage of improvement Impr. (%) provided by the large
neighborhood approaches compared to the greedy approach. Table 3
presents the results of a sole cost optimization with (Config. 1:
α α= 1, = 01 2 ), whereas results of a sole latency optimization with
(Config. 3: α α= 0, = 11 2 ) are presented in Table 5. Regarding the
latter, we do not include the results of the LNS and ALNS algorithms.
The rationale behind is that the greedy approach already chooses the
best possible location, also for a higher price, when costs play no role.
In Table 4, we consider the cases where weights are specified for the
different objectives. Namely, we consider the case where equal weights
(Config. 2: α α= 0.5, = 0.51 2 ) are specified to treat the two objectives
equally. Given the region constraints, this implies that the algorithms
search for a compromise between a close DC in terms of the network
latency (within the given region) and a low price. In this work, the two
objectives are normalized due to their distinct range by dividing the
objectives by the maximum costs and maximum latency times the
number of assigned requests, respectively, so that both objective values
are always between 0 and 1. Note that we use these values to evaluate
solutions during the optimization and only present the corresponding
real values in terms of costs and latency, respectively.

Given the computational results, we first observe that the results of
the greedy approach can be significantly improved by using the
presented large neighborhood search approaches. The average im-
provement over all scenarios lies approximately between 10% and 12%
regarding the cost optimization (Config. 1; Table 3) and between 6%
and 9% when both objectives are taken into account (Config. 2;
Table 4). In this regard, the results of LNS exhibits a slightly better

Fig. 5. Extended CSPP without region constraints: example of multi-criteria decision making visualization with LNS for 25 periods, λ= 60. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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solution quality. This indicates that a more complex removal heuristic,
without the option of accepting worse solutions, is preferable for the
selected settings. Moreover, we observe that the percentage of im-
provement is increasing the more requests are handled. This is due to
the fact that the potential of bundling requests, if the consumer allows
sharing VM hours among requests, is higher. Moreover, the results
slightly indicate that the potential for improvements is growing by the
number of periods. This emphasizes that a more frequent planning is
highly beneficial for better utilizing idling VMs.

With regards to the multi-criteria case (Config. 2; Table 4), we
observe that the greedy approach already finds a good compromise
between costs and latency for a small number of requests so that it is
not possible to further improve the results. This can be explained by the
fact that for smaller problem instances, it is more likely that most of the
requests are assigned to a dedicated VM type. Since the capacities are
provided and charged on an hourly basis, remaining requests are
assigned to booked VMs without changing the overall costs in one case
when solely optimizing the costs (see Table 3, λ k= 5, = 5). This effect
is intensified when the latency is equally considered in the objective
function since it gets more difficult for the large neighborhood
approaches, or becomes even impossible, to find better assignments
when an additional objective is considered. However, we see that,
especially for an increasing number of requests, there is a large
potential to improve the assignment even if the region is restricted.
In Section 6.2.2, the effects of the region constraints are covered more
specifically. Compared to the results of the cost optimization (Config.
1), we see that the costs are considerably higher while the latency is
lower, providing an indication of the compromise for decision makers,
which is further analyzed in the following part.

Regarding the third configuration of preferences (α α= 0, = 11 2 ;
Table 5), we analyze the impact of solely optimizing latency on the
overall costs and latency. For this purpose, we compare the results of
the greedy algorithm, providing optimal results for minimizing the
latency, with the results of the other two weight configurations (Config.
1 and Config. 2). Moreover, the table includes the comparison between
those two configurations (Config. 1/Config. 2). Thereby, the general
impact of the α weights can be assessed. It should be noted that we
average the results of LNS and ALNS per problem instance to perform
the comparison.

In general, it can be observed that the latency improvements come
at a high price. By comparing the results with the ones of the sole cost
optimization (Config. 1), we observe that the costs are more than
doubled. The latency improvement of 7.4%, on average, leads to an
increase of costs by 126.67%. Comparing the results to the second
configuration (α α= 0.5, = 0.51 2 ) indicates that removing the cost
objective (α = 01 ) only leads to a slight improvement in terms of
latency. While the latency can be improved by only 0.06% on average,
the overall costs increase by 50.90%. In this regard, the comparison
between Config. 1 and Config. 2 shows that the improvement of the
latency is particularly achieved by incorporating latency as a second
objective in the objective function. As reported in the table, the average
improvement of 7.35% still comes at a high cost increase of 51.05%. In
particular for smaller problem instances, we can observe considerable
differences between the weight configurations. This can be again
explained with the individual requirements of requests. As the percen-
tage of requests using a dedicated VM is usually higher for smaller
problem instances, changes regarding the assignment towards a lower
latency consequently have a higher impact on the latency.

The overall explanation for the huge sensitivity partly lies in the
considerable price differences of VM types offered by the various cloud
providers in different regions. Considering the region constraints, the
brokering mechanism assigns requests to the cheapest VM type
deployed in a DC within the allowed region. By incorporating the
latency objective in the objective function, a compromise is achieved by
assigning requests to DCs within the allowed region, where the
required VM types might be more expensive. Removing the cost

objective completely (Config. 3) allows to assign the requests to the
DCs implying the lowest latency. This leads to the fact that each request
is assigned to a dedicated VM type in the closest DC within the
predefined region. While this leads to a high cost increase, the latency
is not markedly improved. Thus, we see that the compromise already
provides a good solution if decision makers aim to economically reduce
network latency.

Finally, we analyze the computational time of the algorithms. In
general we see that, given the relatively small number of requests per
period, an initial solution can be found very quickly by the greedy
approach. Both large neighborhood approaches need approximately
between 94 and 230 seconds per period on average for providing a
solution. For the smaller scenarios, e.g., 5 – 40 requests, the solution is
provided in less than one minute. As the CSPP is an -hard problem
(see Heilig et al., 2016), it can be stated that both algorithms exhibit
satisfying computational times that can be accepted in real cloud
deployment processes. While providing almost the same solution
quality, ALNS greatly outperforms LNS in terms of computational
time, in particular for an increasing number of requests. This is mainly
due to the complex removal heuristic used in LNS, as indicated above.

6.2.2. Experiment 2: impact of region constraints
As the deployment region is an important aspect in cloud-related

decision processes, not only because of legal constraints, but also
because of performance issues, we separately assess the impact of the
region constraints in this suite of experiments. That is, we compare the
simulation results considering the region requirement of each request
with the results of the extended CSPP by removing related constraints.
That means that the algorithms are free to choose any region (and DC)
for executing requests. Thereby, it is possible to evaluate the impact of
the region specification on both costs and latency.

In Fig. 4, we compare the results of the extended CSPP with and
without region constraints for a cost optimization problem
(α α= 1, = 01 2 ) and for a latency optimization problem
(α α= 0, = 11 2 ). In all cases, we see that the region constraints have a
huge impact on the costs, on average 29.01% for the cost optimization
problem (using LNS) and 15.29% for the latency optimization problem
(using the greedy approach). Regarding the latency, we observe an
interesting pattern considering the cost optimization problem. While
the latency is, due to the larger cost-saving potential, coming with a
greater flexibility, higher than before for a small number of requests (5
– 10 per period), we observe that the latency improves for scenarios
with a larger number of requests (λ ≥ 20). This is due to the fact that
with a greater flexibility, it is also possible to bundle more requests with
similar locations of origins (i.e., closeness), which, even though latency
is decreasing, leads to better cost results.

In case of a sole latency optimization, the results show that, besides
the cost improvement of 19.83%, latency can be significantly reduced
by 59.63% on average. Thus, the impact of removing the region
constraints is larger in the latency optimization than in the cost
optimization due to the fact that it allows to choose always the closest
locations in terms of latency. However, as consumers need to act
economically, the truth usually lies somewhere in between, emphasiz-
ing the importance of multi-criteria decision support.

Overall, our simulation results illustrate the importance of analyz-
ing the regional requirements of requests, in particular whether the
deployment region needs to be restricted to a particular region – those
decisions have a major impact on cost and experienced latencies. In
this sense, a higher awareness will postulate to make a clear distinction
between requests (e.g., processing non-sensitive and sensitive informa-
tion) instead of simply restricting a bunch of requests to a particular
region without reviewing legal requirements and privacy concerns.

6.3. Multi-criteria decision support visualization

The presented multi-criteria optimization approaches support
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location-aware multi-cloud brokering from the consumer perspective.
Depending on the requirements and preferences of consumers, re-
quests can be automatically assigned to cloud DCs of different cloud
providers around the globe. To reduce the complexity of those results, a
visualization helps to better understand implications of solutions.
Fig. 5 depicts an example of a visualization for comparing different
locations with respect to optimization preferences for the extended
CSPP without region constraints. In the figure, the red dots depict
requests and their size the total amount of requests. The blue squares
indicate the locations of DCs of different cloud providers. For each
location that has been used for deploying VMs, a bar chart shows the
number of requests that have been assigned to this location with
respect to the different preferences. For problems with a sole cost
preference (α α= 1, = 01 2 ), it can be observed that most of the requests
are allocated to DCs in middle and southern regions of the United
States. We see that this is changing when the preference goes towards a
compromise solution taking into account both cost and latency, or even
more drastically, when considering only the latency. In those cases, the
visualization shows that geographically closer DCs, which were not
selected before, are more often considered.

In this sense, optimization approaches and visualizations may help
to better control current deployments and to understand the dynamics
in cloud marketplaces, e.g., by additionally analyzing the impact of
price changes, performance variations, and demand patterns. The
proposed extension of CloudSim as well as the optimization approaches
build a common foundation to establish such a decision support tool
for consumer-related multi-cloud brokering schemes.

7. Conclusions and future directions

With the rapid adoption of cloud computing and the growing range
of cloud marketplace offerings of different cloud providers, consumer-
oriented brokering schemes supporting an economically viable selec-
tion and utilization of suitable cloud services have become essential. In
this paper, we present novel extensions of CloudSim allowing to model,
simulate, and evaluate brokering schemes that support cloud consu-
mers in selecting and utilizing cloud resources in multi-cloud environ-
ments. Thus, the extensions allow to evaluate approaches aiding the
use of cloud computing from a consumer perspective. In this regard,
one of the core new components is an optimization module containing
decision support functionality for multi-cloud brokers acting on behalf
of the consumer. Given a recent optimization problem, referred to as
the Cloud Service Purchasing Problem (CSPP), we propose a multi-
criteria problem formulation extension. That is, besides costs for using
VM types of different providers, we consider the network latency
between consumers and cloud DCs. To solve this problem, we integrate
a greedy heuristic and two large neighborhood search approaches in
CloudSim. By conducting VM performance microbenchmarks, collect-
ing real VM type descriptions and prices of leading cloud providers,
and generating different workloads, we provide a well-defined set of
simulation scenarios. Using these scenarios, we conduct a large
number of simulations to evaluate the performance of our approaches
and to assess the trade-off between costs and latency as well as to
analyze the impact of region constraints on both objectives.

The results demonstrate a promising performance of our large
neighborhood search approaches, both in terms of solution quality and
computational time. Approximately 10 – 12% of the costs can be saved
compared to the greedy approach. Comparing the two large neighbor-
hood search heuristics, LNS exhibits a slightly better solution quality
for the tested settings and scenarios, while ALNS implies a better
scaling behavior in terms of the computational time, solving all tested
scenarios in less than two minutes per period. An explanation of this
outcome is that LNS only uses a sophisticated and complex removal
heuristic and does not allow to accept worse solutions, which seems to
be particularly important in the beginning of the search process. The
results further indicate that the potential cost and latency benefits

increase by the number of requests to be handled by the broker.
Moreover, we analyze the relationship between cost and latency
preferences and discuss the conflicting nature of these two objectives.
In this sense, the results demonstrate that improvements of the latency
usually come at a high price. When solely optimizing the latency by
7.4%, the costs increase by over 126%, on average, for the tested
scenarios. We further demonstrate that removing the cost objective
from the objective functions leads to undesirable cost increases as the
latency cannot be drastically improved compared to the compromise
solution where both costs and latency are considered. Moreover, we
analyze the impact of region constraints as the deployment location is a
major concern of cloud adopters. The results strongly indicate the cost
and latency benefits of removing the region constraints. A particularly
interesting pattern has been observed within cost optimization scenar-
ios. Whereas the latency usually increases when solely optimizing costs,
indicating the conflict of those objectives, for a larger number of
requests, we see that the latency is improving. This results from a
greater flexibility to bundle requests in more adjacent cloud DCs. We
furthermore provide an example how results can be visualized to better
understand the dynamics in cloud marketplaces. Overall, the simula-
tion experiments emphasize the importance of multi-criteria decision
analysis, where decision makers need to analyze the effects of their
preferences, as well as the need for corresponding decision support
functionality, such as in form of the proposed algorithms and visualiza-
tions. In this context, the proposed CloudSim extensions provide a
foundation to develop and evaluate novel static and dynamic optimiza-
tion approaches. Consequently, our approach may promote research
activities in the business-oriented direction of cloud computing re-
search.

Several important aspects have been left for future research. First,
we aim to further extend the functionality of CloudSim to consider
additional characteristics of cloud marketplaces and multi-clouds. This
includes modeling specific aspects such as additional pricing models
(e.g., reservation pricing and bidding) and tools for rating and
considering the performance of cloud providers based on user-gener-
ated feedback and statistics. Moreover, we intend to extend simulation
experiments by considering dynamic aspects, such as performance
variations as well as different workload distributions in order to better
analyze the scaling behavior and resulting economic and performance
implications.
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