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SUMMARY

In this paper, we present a Grid computing platform that provides experimental scientists and analysts with
access to computational simulations and knowledge databases hosted in separate laboratories around the
world involved with human and animal kidney research. No single laboratory can develop these resources
in isolation, and the community of users should no longer need to be dependent upon the specific
programming environment in which applications have been developed. This work aims at exploiting the
power of high-bandwidth communications networks for collaborative research and for shared access to
knowledge resources. This platform is developed within a specialist community of renal scientists but
will be transferable to any other field of research requiring interaction between published literature
and databases, theoretical models and simulations and the formulation of effective experimental design.
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1. INTRODUCTION

Mathematical modeling has been used successfully in analyzing the huge volume of biomedical
data resulting from such ventures as cardiac modeling. In particular, the approach has been very
successful in modeling heart physiology, and mathematical modeling has always played a key role
in research on kidney physiology. A large number of mathematical models and resources describing
aspects of kidney physiology exist, in different formats and simulation environments around the
world; however, they are generally proprietary and incompatible with each other, making access and
integration of models and resources extremely difficult and time consuming. A Grid computing-
based approach to integrating and representing distributed renal models and resources will provide
researchers with ready access to a collection of interactive models and resources that minimize
the requirement for specialist programming or computational modeling expertise on the part of
the experimenter. A variety of legacy kidney models [1–10] exist in the research community,
representing many different implementation techniques (different modes of interaction—command
line, graphical interface, command file driven) and they run on several different platforms. It is very
difficult to (i) accelerate the development process for each model since they are distributed among
diverse computing platforms and geographical areas, and (ii) manage the community of users and the
information provided by the models. Grid computing [11] not only provides powerful computation
facilities as a means for researchers to do existing research faster but also promises them a number
of other facilities such as working in collaborative environments, reducing costs and gaining access
to an increased number of resources and instruments, allowing for more advanced research to be
carried out by a wider community of users. Furthermore, many of the complexities arising with
Grid computing have been isolated and solved by technologies including Grid middleware [12],
resource schedulers [13], virtual organization [14], data management [15] and resourcemanagement,
and information services. Advanced integration of these technologies generates the basic services
of community infrastructure for life science and other e-Science/e-Research areas, as shown in
Figure 1.
In this paper, we describe the development and deployment of an interactive Web-based portal for

quantitative renal physiology modeling at the international level, with the primary aim of providing
general access to a repository of legacy renal models at all scales and to the published measurements
that underpin the parameter values needed for the development of such models. Specifically, we
are able to provide an infrastructure with the following features:

• Additional functionality through Web-based access to published quantitative measurements on
all aspects of renal physiology and anatomy (QKDB) [16] and to the legacy of hypothesis-based
mathematical models based on these data.

• A collaborative environment to encourage and assist the entry of new workers into modeling,
particularly those with less well-developed skills and expertise in programming and compu-
tational biology.

The infrastructure includes an interactive Web interface to a collection of distributed legacy
models at all levels of kidney physiology, with, for each model, documentation, physio-
logical context, easily interpreted output, a statement of model limitations, interactive exploration
and user-customization of selected parameter values. A 3D kidney virtualization graphi-
cal user interface is used to facilitate interaction with the resource. This project is part of the
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Figure 1. Typical e-Science/e-Research platform.

larger IUPS Physiome Project, an internationally collaborative open-source project to provide a
public domain framework for computational physiology, including the development of modeling
standards, computational tools and Web-accessible databases of models of structure and func-
tion at all spatial scales, namely interactions, protein pathways, integrative cell function, tissue
and whole organ structure–function relationships, and finally the integrative function of the whole
organism [17].
The remainder of the paper is organized as follows. In Section 2, we describe related work in the

e-Science and life science areas. The design issues of our infrastructure are introduced in Section 3
and in Section 4 we present details of the design and implementation of our KidneyGrid. The
evaluation of one scenario we have developed, which integrates a legacy model of renal medulla
called kidney simulation (KSim) under our environment, is described in Section 5. Finally, a brief
conclusion and plans for future work are presented in Section 6.

2. RELATED WORK

Many efforts have been made to develop e-Science platforms and infrastructure in the Grid
environment. A portal for Grid-enabled physics, in particular astrophysics and high-energy
particle physics, was proposed and implemented in [18]. It was able to host user-level services
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such as simulation, or handling analysis of job configuration, job submission and monitoring. The
Australian BioGrid Portal [19] was another portal-based solution enabling bio-scientists to per-
form drug-lead exploration in an efficient and inexpensive manner on national and international
computing Grids [20]. It provides a complete molecular docking e-Science platform for the use
of docking software, from user management to experiment composition, execution and monitoring
over Grid resources, and finally visualization of simulation results. A Grid platform for distributed
analysis of neuroimaging data was introduced in [21], which was able to compose and formulate
magnetic resonance imaging (MRI) data analysis as a parameter sweep application and perform
the experiments on the Grid resources. It substantially reduced the total time needed to analyze
MRI data compared with previous solutions. As reported in [22], a chemistry portal was developed
for Grid-enabled molecular science and, similar to the BioGrid [19], also adopted a portal-base
solution for executing experiments over Grid resources for quantum chemistry code. Importantly,
the solution [22], unlike [18,19,21], did not utilize a user-level Grid middleware such as a resource
scheduler [13]. The advantage of utilizing the user-level resource scheduler is that it decouples the
system and underlying Grid middleware such as Globus [12] and makes the system applicable for
other Grid resources without the support of Globus. In this work, we take an approach similar to
that described in [18,19,21,23], but focus heavily on the utilizing Web services-based technologies
to enhance interoperability with other resources/ platforms.

3. SYSTEM OVERVIEW

3.1. Architecture

We aim to develop a life science infrastructure and collaborative computing environment that
enables: (a) formation of a distributed community of developers of kidney models, resources
and users as a virtual organization; (b) integration of distributed kidney models provided by
different development communities; and (c) Web portal-based interaction between various mod-
els allowing aggregation and advanced visualization. A service-oriented Grid-based architecture
for realization of this life science environment for distributed kidney modeling is shown in
Figure 2. The entire infrastructure helps in overcoming many of the limitations we faced in our early
proof of concept of the Web-based portal for kidney models, in which all interactions with remote
models were manual and hard-coded; communication was mediated through specific protocol calls
(e.g. scripted telnet sessions), or results files were simply uploaded to the portal server using HTTP
or FTP, and new resources and users were added manually. To this end, the proposed development
of a Grid-based infrastructure for managing the distributed components enables a vastly simplified
interaction mechanism for both model ‘suppliers’ and users of the system.
High-level interactions between various entities, components, resources, and human participants

and the channels of control (shown in Figure 2) are described below:

1. User initiates session with portal by selecting modeling resources required and ‘planning’
experiment with the resources.

2. User obtains authorization through VO and authorization service.
3. Portal contacts Grid broker to request resources (remote/local kidney database or remote

simulations).
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Figure 2. A Grid-based e-Research architecture for integration of distributed kidney models.

4. Grid broker queries the registry to identify resources for certain kidney model. Registry returns
list of resources required by the broker to schedule the simulations.

5. Broker opens communication channel to remote resource and sets up experiment information.
Note that resources may be locally based (e.g. in the local mirror of the kidney database) or
remote.

6. More commonly, simulations will be hosted on remote sites, running on proprietary systems.
The Grid broker will manage communications with the remote resource through a combi-
nation of communications and/or implementation of service-based wrappers at the remote
resource. A basic assumption of our system is that as little as possible should be required to
be implemented on the remote resource; hence, communication brokering will most likely be
tailored to individual model resources with most data processing of result sets occurring at
the portal.

7. User session state, including current state of experiment, is saved to local database.
8. Results are visualized on the users’ desktop through the Web browser.
9. Alternatively, for complex data sets we will make use of external visualization resources, in

particular the VPAC Advanced Visualization Facility in Melbourne.

3.2. Issues to be addressed

In the long term, we aim to develop a platform for ‘plug and play’ modeling, with a standard
basis of representation for all models (preferably an XML-based open modeling markup language
such as CellML [24]) and with similarly standardized data representation. We have made initial
proof-of-concept progress toward this goal by developing a CellML-based implementation of a
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published model (although the input and output data formats are still ‘proprietary’ to some extent)
and rendering the results in an open standards-based 3D interface [25]. The implementation is based
on the model described in [1]; currently, we have two cell types working with advection–diffusion
spatial modeling and have demonstrated agreement of the published numerical output [25]. Outputs
of this model, including solute concentrations along the length of the distal tubule, are rendered
on a browser-based 3D nephron representation derived from real microCT data, which we intend
to develop into the primary graphical interface for interaction with the KidneyGrid resources data
representation.
It is important to include sufficient material for the site to be interesting and useful once it is

opened to the general community. The models we will implement in the initial core collection cover
a wide range of scales and represent some of the classic studies in the field. The list includes:

• distal tubule reabsorption [1];
• proximal tubule reabsorption [2,3];
• tubulo-glomerular Feedback [4,5];
• glomerular filtration [6];
• medullary models of the urine-concentrating mechanism:

◦ simple central core model [7,8];
◦ multi-individual-nephron flat model [9];
◦ shunted-multi-nephron flat model [10].

It should be noted that the listed legacy kidney models and resources represent many different
implementation techniques (different modes of interaction—command line, graphical interface,
command file driven) and they run on several different platforms. There are currently no standards
for data representation, interaction or communication.
The issues of standards and interoperability could be addressed by recoding all the models in

a common format as discussed above, but this long-term and resource-intensive solution is not
feasible without direct and significant input by each of the model developers. A more practical ap-
proach is to develop interaction ‘wrappers’ around the current model implementations and within
the central portal convert the output so that diverse result sets can be rendered on a common inter-
face. This preferred approach requires infrastructure ‘middleware’ to manage the communication
channels, data transfer channels, user session state and user authentication within the context of
a portal.
The basic principle is to create a Web page that presents the user (i.e. the visitor to the Web

site; also called the ‘client’) with an annotated list or a visual interface for selection of one of
the available models. The user is then presented with a more detailed description of the chosen
model, including literature references, and is given the opportunity to either look at the results
of some pre-configured simulations to ‘get the feel’ of the model, or to alter particular parameter
values (within a constrained range representing physiologically reasonable values) in order to run
the model as required. Upon submitting the new parameter values, the user will be served (after
a wait that depends on the execution time of the model calculations) with the results and may
choose among several styles of presentation, such as a simple table, graphical output, or in some
cases more visually meaningful presentations, or may request to download the results as a table for
post-treatment in a spreadsheet or graphing program of their own.
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4. DESIGN AND IMPLEMENTATION

The primary design principle of our KidneyGrid is to maximize the reuse of existing software
components, tools, services and frameworks provided by the open-source community for generic
tasks, while concentrating our efforts on the integration of those technologies as well as providing
the service wrapper for legacy kidney models. Table I provides details on key technologies used
in the development of our KidneyGrid environment. Thus, we are able to leverage various existing
Grid technologies and build on our experience in the development of Grid-based platforms for
e-Science applications in the life sciences area.

4.1. Portal development

Gridsphere was chosen as the portal development framework because (i) it is an open-source and
JSR 168 compliant, which means we could easily reuse the components in other portal containers
supporting this standard; (ii) it supports the Java Server Facers (JSF) standard, which could poten-
tially be used within a visual page editor tool to accelerate the development of Web pages; (iii) it
contains common portal components such as user management and localization support, which we
could reuse directly; and (iv) it is mature and widely used by other Grid portal-related projects.
In our portal, we have reused the user management and authentication module provided by

the Gridsphere. We have developed a project management module that allows multiple users to

Table I. Key technologies chosen.

Component Technology used Comments

Portal Gridsphere Reusable Web components. JSR 168 portlet
framework [26] standard compliant. Open source and widely

used for Grid portal development

Virtual organization MyProxy [27] VO-based authorization and
(user authorization) VOMS [14] application scheduling

Grid resource Gridbus broker Provide ability to support Web service
broker V3.0 [13] resource framework (WSRF), various

scheduling algorithms and resources such as
Globus and Alchemi

Service wrapper Web service WSRF provides stateful Web service which is
for legacy resource framework able to be deployed on the Globus toolkit 4 (gt-4)
kidney model (WSRF) [28] container

Visualization VPAC Advanced Provide Java applet that can be easily
Visualization Facility integrated into Web portals
in Melbourne

Core Grid Globus Toolkit 4, Provide supports for integration of Grid
Middleware Alchemi, UNICORE resources accessible through different low-level

Grid middleware
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manipulate their own projects and kidney model simulations. The resource management module has
also been developed for administrator to manage the available Grid resources. Furthermore, in order
to include the new kidney models that can be executed with the portal, a kidney model registration
module has been developed that allows the administrators to add new kidney models into the portal
environment. Users can also manage their credentials through the credential management module
we have developed. For each kidney model, we have developed different experimental preparation
modules, that are specific to that model with certain parameter settings. It is highly configurable
through the JSF XML configuration file to add the preparation modules for new introduced kidney
models in the portal. For invoking the remote kidney models, we have used the portlet-based job
execution management on Grid resources provided by the Gridbus broker. The execution monitor
module that has been used in this portal is derived from the Gridbus broker execution monitor
portlet and we extended the monitor portlet using the JSF technology. Other modules in the portal
include the visualization module, which is also designed to be highly configurable for various
kidney models, and the repository module, which allows users to store their experimental results
into the local repository for their future comparison with the latest experiments.

4.2. Legacy application integration

The most important feature of our KidneyGrid is the integration with legacy kidney models de-
veloped by different programming languages and platforms. The simplest approach is to allow
the clients to explicitly upload the executable command, program arguments and data files to
the resources they are using. The user takes full control of the process to run the application on
the server and is effectively responsible for using the middleware to Grid-enable the application.
However, it assumes the client who runs the application has an existing account on the remote
resources and it also substantially increases the dependencies between the client and the service
implementations. Our approach is to provide both language and platform neutral and interoperable
service wrappers for each model with those wrappers, being responsible for the inter-communication
between our infrastructure and the legacy models. The application that performs the service is hid-
den from the client and there is no need for the user to have an account on the service provide
site. Furthermore, the wrapper should be able to be deployed inside a Grid environment such as
Globus [12] and Alchemi [29]. The wrapper should also be capable of storing the states of the
input, output and execution information as some of the model simulations may continue over long
time periods.
TheWeb service resource framework (WSRF) [28] provides a service-oriented architecture (SOA)

solution to keep state as separate resources called WS-Resource, which do not require the Web ser-
vices to keep track of the resource identifier explicitly by passing it as a parameter each time.
The complete separation of Web services and state information as WS-Resources retains the rel-
atively similar scalability of stateful Web services compared with plain stateless Web services,
and fulfills the requirement for keeping state information of Grid applications. WSRF relies on a
set of specifications, including WS-ResourceProperties, WS-ResourceLifetime, WS-ServiceGroup,
WS-BaseFaults, WS-Notification and WS-Addressing.
The wrapper service for the legacy kidney models utilizes WSRF, implementing one kidney WS-

Resource for each model representing the state information such as input and output parameters, and
execution outcomes. Since a given simulation of the kidney modeling may not respond immediately,
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we also utilize the notification mechanism inWSRF provided byWS-Notification to notify the client
once the simulation has finished and to collect the result. For each wrapper service, we implement
a factory service that is responsible for creating the kidney resources and returning the handler of
the actual service that performs the modeling simulation. As mentioned, the legacy kidney models
use various programming languages. We therefore implement an executor written in Java for each
model, which simply creates a runtime process for the modeling program and passes the parameters
or composes the input files at runtime. The wrapper service actually utilizes the executor and passes
the required parameters.

4.3. Grid resource broker

Consider the scenarios where some of the legacy models are only compatible with the UNIX
environment and some are only executable under Windows. In these cases, we require different
Grid host environments, for example, Globus [12] for UNIX and Alchemi [29] for Windows and it
is very important to utilize a user-level middleware to decouple the management work such as job
composition, scheduling, monitoring and result collection from the underlying Grid middleware.
Gridbus Broker [13] is a user-level meta-scheduler that mediates access to distributed resources
and provides facilities for all the aspects of the application, credential and service management.
The broker includes appropriate plug-ins for most user systems and provides such a seamless way
for clients to schedule their applications on heterogeneous resources such that they do not need
to be concerned with underlying systems. An economic-based administration of modeling is also
supported by the broker such that users can specify budget and deadline for their application. In
addition, various scheduling algorithms have been provided to fulfill the quality of service (QoS)
requirements. We adopt version 3.0 of the Gridbus Broker, which works with remote services
that are compatible with WSRF-based Web services. It supports various commonly used low-level
middleware such as Globus 2, Globus 4, Alchemi, UNICORE, and SSH-based connection to PBS
and SGE. The broker services can be invoked as Web services via SOAP, meaning that broker can
be deployed separately on other servers instead of the same server on which our portal is running.
The system scalability can be substantially increased by running the broker as a WSRF service on
another server or multiple servers and the reliability of the portal is also enhanced as the failure
rate of the broker is potentially much higher compared with the portal itself.

4.4. VO-based authorization and scheduling

As the kidney models may come from different universities, research institutions or industries, a
virtual organization (VO), which is an abstract entity grouping users, institutions and resources in
a same administrative domain, could be assigned to each kidney model. By applying VO concepts,
we could have multiple VOs that are mapped to various kidney models. As the user may belong
to several different VOs or have multiple roles in the same VO, authorization based on the user
information in each VO becomes very important. We have addressed this requirement by imple-
menting a module including a VOMS client and a VO policy engine through which our platform
can query an existing VO system (VOMS [14]) and extract policy information inside each VO to
authorise the client and then schedule the application according to the policy set by our resource
broker.
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Figure 3. VO-based authorization and scheduling components architecture.

As shown in Figure 3, the VOMS client is responsible for contacting the VOMS server to issue
the VOMS proxy certificate to the end user. We assume that the end users only have their normal
X509 proxy certificates and in order to obtain the VOMS proxy certificate they need to contact the
VOMS client and provide their proxy certificates to it. The VOMS client will then ask the VOMS
server for the VOMS proxy certificate with the user’s proxy certificate. After the execution of voms-
proxy-init, the VOMS proxy certificate, which contains the VO information, will be issued by the
VOMS server to the clients. As soon as the clients receive their new certificates, they can submit
jobs to the remote resources via the resource broker. The broker has been extended to validate the
new certificates and parse the VO information including the VO name, user’s role, group and their
capabilities. Then the broker is responsible for querying the VO policy engine about the user’s
policy and resources based on the VO information. The VO policy engine obtains the user policy
and resource list from the VOMS repository according to the conditions in the queries from the
resource broker. Once the user policy and resource information have been sent back to the resource
broker, it can schedule the jobs based on the user policy defined by the VO and distribute the work
unit to the various resources belonging to that VO.

4.5. Experiment preparation and execution

Preparation of a virtual experiment is managed via a Web page that allows the user to select
and adjust various parameters including specified values and permitted ranges of values for their
selected kidney models. The information is parsed and the Grid jobs are created dynamically for the
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broker to dispatch to the resources. Once users submit their experimental plans, the Gridbus Broker
is responsible for scheduling the submission of those jobs generated by different parameters and
monitoring their execution on remote Grid resources. We have implemented a generic monitoring
service that extends the monitoring service in BioGrid [19] and is compatible with the Gridbus
Broker 3.0 API.

4.6. Visualization

For users to gain a better understanding of modeling simulation outcomes, visualization facilities
are crucial and essential for almost every life science application. In our KidneyGrid, we utilize
existing visualization facilities provided in Victoria Partnership for Advanced Computing (VPAC),
Melbourne, which is designed to extend mozCmgui [30] to render a 3D kidney image by reading
an XML file conforming to a standard XML schema. As various kidney modeling programs are
used it is not always possible to generate standard XML files. We therefore need to transform the
diverse result formats to the standard that the visualization tool can read. XSLT [31] can be used
as the transformation engine to accomplish the task and for each kidney model a stylesheet will be
created to specify the rules for conversion to the standard format.

5. EVALUATION

We have successfully implemented a wrapper service for KSim, an implementation of a medullary
kidney model implemented in the FORTRAN language [10]. Figure 4 shows the basic workflow
required by users performing virtual experiments with this model. The KSim Factory Service
and KSimService are two WSRF services deployed in the Globus Toolkit 4.0 (GT-4) container.
To access the portal, authentication and authorization are required for obtaining the credentials
for users utilizing the remote computing resources from the VO system. Single sign-on has been
achieved by utilizing the MyProxy service via the Grid portlet. Once the user logs in into the
portal with the username and password, the authentication module provided by the Grid portlet
contacts the MyProxy server where the user’s certificate has been stored during the user registration
phase and manages the user’s X509 proxy certificate. As an alternative, we have also developed a
module that accepts the normal proxy certificate and issues a VOMS proxy certificate by contacting
the VOMS server. We have considered the VOMS server as a single point of failure that may
not always be available, and have allowed that the user can still choose to use the normal proxy
certificate without changing any system behavior. Once users have gained the access to the portal,
an experiment plan page is rendered for them, in which the user can change the parameters accepted
by KSim, as demonstrated in Figure 5. The user can specify values for each parameter or make
generic choices for parameters to simulate a range of values for that parameter at one time, and
the KSim model itself allows users to modify up to three parameters for a new run. As soon as the
user submits the experimental plan, the Gridbus Broker commences scheduling and managing the
jobs generated from different parameter settings. Since an experiment is unlikely to be completed
immediately, the user is able to check the status of the simulation using the execution monitor, as
shown in Figure 6. This is a user-friendly facility to provide feedback of the simulation run on
the remote Grid resources. It provides not only the current status of each job (simulation) on the
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Figure 5. KSim parameter settings.

remote resources but also the resource information as well as the time and budget spent for the
experiment if applicable (user has specified the QoS parameters). The time remaining field shows
the remaining time to the current deadline set by the user and the budget spent field illustrates the
budget usage. Furthermore, any failed jobs can be reset by the user and rescheduled to available
resources again. The user can then interact with the simulation results using the visualization applet
shown in Figure 7, which was adopted from an applet developed for KSim [32]. The applet loads
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Figure 6. Execution monitor.

Figure 7. KSim visualization applet.

the chosen set of simulation results in the form of an XML file and permits the user to display them
as x–y plots or as a color-gradient diagram of the medullary structures.
As KSim accepts four basic types of parameter including solute, tube, region and factor, and

extra special cases with factors, the possible simulation cases can be expressed as the equation

T = C1
s × C1

t × C1
r × C1

f n + C1
x × C1

f x
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(b)

(c)

(a)

Figure 8. Evaluation of Grid jobs over resources: (a) job completion rate; (b) average job
execution time; and (c) total job execution time.

where T is the total number of cases; s, t , r , x stand for solute, tube, region and extra parameter,
respectively; fn and fx are the acceptable factors for basic and extra simulation. Depending on
the value for each parameter specified in KSim, the experiment described in this example may
generate a total of 513 simulation cases. To test the system when performing multiple simulations,
we deployed the KSimWSRF wrapper service onto three computer servers each of which has a GT-
4 container installed on each server. As our portal is only capable of generalizing one parameter per
experiment, we have conducted six experiments producing values for one parameter at a time, thus
generating 53 simulation cases in total. The Gridbus Broker then scheduled 53 jobs (one for each
simulation) over three Grid resources.
Figure 8(a) demonstrates the jobs completed in each of the three servers. Two of the servers,

‘horowitz’ and ‘ngtest’, have a similar proportion of jobs completed (28% each) compared with the
third server ‘manjra’, which has completed 44%. This is because we have configured a working
queue with a limit of four jobs on ‘manjra’, which means there were four jobs running in parallel
on ‘manjra’ once scheduled. According to Figure 8(b), we have conducted six parameter sweep
simulations, the average execution of each simulation using our KidneyGrid infrastructure over six
simulation cases was about half of the execution time expected if we had run the simulation se-
quentially on one machine. This result demonstrates that the parallel, distributed approach reduced
by over 50% the time for computation of the selected KSim simulation. Figure 8(c) also shows
that the total execution time has been decreased by about 50% using our approach. The execution
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time in our experiment includes all the aspects of network latency, broker overhead and actual job
execution on the resource. The overall time can be further reduced by (i) running the job man-
ager system such as PBS with queueing supports; (ii) reducing the overhead (10–12 s for each
job) of the broker to schedule and (iii) adding more Grid resources that can host the simulation
models. Our experiment shows that our KidneyGrid provides improved throughput from experi-
ment plan to result visualization by distributing kidney modeling simulations over Grid resources
that have substantially reduced the complexity of the usage and the computation time for batch
experiments.

6. CONCLUSION AND FUTURE WORK

In this paper, a life science infrastructure to Grid-enable distributed legacy applications and resources
utilizing SOA is presented as part of a larger international project, the ‘Renal Physiome’. We focus
on Grid-enabling various kidney models within this infrastructure, demonstrating the ability to
compose, schedule, monitor and visualize the result of the application. The use of the Grid resource
broker not only simplifies the development of application, credential and resource management but
also decouples our platform from the underlying Grid middleware. WSRF makes the state-oriented
Web services applicable for Grid application, which provides a lightweight solution to integrate
legacy applications by implementing service wrappers for them. We have successfully implemented

Figure 9. 3D kidney visualization tool.
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the KSim model on top of our infrastructure and deployed the KSim services on several remote
resources including servers located within Australia and also four overseas workstations located
in Japan. We have also extended the original Gridbus broker to support VO-based authentication
and scheduling on top of the VOMS. In addition, the 3D visualization facility mozCmGUI [30], as
shown in Figure 9, was investigated and extended by VPAC to support the KSim model.
It should be noted that the project is still in the early stages of development, and much still

needs to be accomplished. Wrappers are required for the kidney models on our list so that the
successful development and deployment of the wrapper service for the KSim model can be applied
to other kidney models. We also need to create stylesheets to format each model result into the
standard representation and the existing 3D visualization tool, after user evaluation is integrated
into the platform. As XSLT only works with XML input, we will utilize other transformation tools
to handle non-XML input generated by the legacy kidney models. Other ongoing work includes
the investigation of the complex scheduling algorithms for the broker based on the VOMS service
and user policy we have implemented within our platform.
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