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O ver the past decade, the dis-
tributed computing field has 
been characterized by large-

scale grid deployments, such as the 
Enabling Grids for E-science project 
(EGEE; http://public.eu-egee.org) and 
Grid’5000.1 Such grids have given the 
research community an unprecedented 
number of resources, which it’s used 
for various scientific endeavors. Sev-
eral efforts have been made to enable 
grids to interoperate — for instance, by 
providing standard components and 
adapters for secure job submissions, 
data transfers, and information que-
ries (see http://forge.ogf.org/sf/projects/
gin). Despite these efforts, software 
and hardware heterogeneity has con-
tributed to the increasing complexity 

inherent in deploying applications 
on these infrastructures. Moreover, 
recent advances in virtualization tech-
nologies2 have led to the emergence of 
commercial infrastructure providers, 
a concept known as cloud computing.3 
Handling distributed applications’ ever-
growing demands while addressing 
heterogeneity remains a challenging 
task that can require resources from 
both grids and clouds.

In previous work, we presented 
an architecture for resource sharing 
between grids4 inspired by the peering 
agreements established between ISPs, 
through which they agree to allow 
traffic into each others’ networks. 
Here, we look at the realization of this 
architecture, which we call the Inter-

The InterGrid system aims to provide an execution environment for running 

applications on top of interconnected infrastructures. The system uses virtual 

machines as building blocks to construct execution environments that span 

multiple computing sites. Such environments can be extended to operate on 

cloud infrastructures, such as Amazon EC2. This article provides an abstract 

view of the proposed architecture and its implementation; experiments show 

the scalability of an InterGrid-managed infrastructure and how the system can 

benefit from using the cloud.
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Grid. Our architecture relies on InterGrid gate-
ways (IGGs) that mediate access to participating 
grids’ resources. It also aims to tackle hardware 
and software heterogeneity within grids. Using 
virtualization technology can ease the deploy-
ment of applications spanning multiple grids 
because it allows for resource control in a con-
tained manner. In this way, resources allocated 
by one grid to another can help deploy virtual 
machines (VMs), which also let InterGrid use 
resources from cloud computing providers.

Background and Context
With the recent advances in multicore technolo-
gies, virtualization has become more adoptable 
and provides solutions for interconnecting het-
erogeneous distributed infrastructures. (See the 
“Related Work in Interconnecting Infrastruc-
tures” sidebar for more about this topic.)

Virtualization Technology  
and Infrastructure as a Service
VM technologies’ increasing ubiquity has 
enabled users to create customized environments 
atop physical infrastructure and has facilitated 
the emergence of business models such as cloud 
computing. VMs’ use has several benefits: 

•	 server consolidation, which lets system 
administrators place the workloads of sev-
eral underutilized servers in fewer machines;

•	 the ability to create VMs to run legacy 
code without interfering with other appli-
cations’ APIs;

•	 improved security through the creation of 
sandboxes for running applications with 
questionable reliability; and

•	 performance isolation, letting providers 
offer some guarantees and better quality of 
service to customers’ applications.

Existing VM-based resource management sys-
tems can manage a cluster of computers within a 
site, allowing users to create virtual workspaces5 
or clusters.6 Such systems can bind resources 
to virtual clusters or workspaces according to a 
user’s demand. They commonly provide an inter-
face through which users can allocate VMs and 
configure them with a chosen operating system 
and software. These resource managers, or vir-
tual infrastructure engines (VIEs), let users create 
customized virtual clusters by using shares of the 
physical machines available at the site.

Virtualization technology minimizes some 
security concerns inherent to the sharing of 
resources among multiple computing sites. 
Indeed, we use virtualization software to real-
ize the InterGrid architecture because existing 
cluster resource managers relying on VMs can 
give us the building blocks — such as avail-
ability information — required to create virtual 
execution environments. In addition, relying on 

Related Work in Interconnecting Infrastructures

Existing work has shown how to enable virtual clusters that 
span multiple physical computer clusters. In VioCluster, a 

broker is responsible for managing a virtual domain (that is, a 
virtual cluster)1 and can borrow resources from another bro-
ker. Brokers have borrowing and lending policies that define 
when a broker requests machines from other brokers and 
when they’re returned, respectively.

Systems for virtualizing a physical infrastructure are also avail-
able. Rubén S. Montero and colleagues investigated the deploy-
ment of custom execution environments using OpenNebula.2 
The authors investigated the overhead of two distinct models for 
starting virtual machines and adding them to an execution envi-
ronment. A.J. Rubio-Montero and colleagues used GridWay to 
deploy virtual machines on a Globus Grid3; jobs are encapsulated 
as virtual machines. The authors showed that the overhead of 
starting a virtual machine is small for the application evaluated.

Researchers have investigated several load-sharing mecha-
nisms in the distributed systems realm. Alexandru Iosup and 
colleagues proposed a matchmaking mechanism for enabling 

resource sharing across computational grids.4 Sonesh Surana 
and colleagues addressed the load balancing in distributed 
hash-table-based peer-to-peer networks.5
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VMs eases the deployment of execution envi-
ronments on multiple computing sites; user 
applications can have better control over the 
software installed on the allocated resources 
without compromising the hosts’ operating sys-
tems at the computing sites.

Virtualization technologies have also facili-
tated the realization of cloud computing ser-
vices. Cloud computing includes three kinds 
of Internet-accessible services: software-as-a-
service (SaaS), platform-as-a-service (PaaS), 
and infrastructure-as-a-service (IaaS). Here, 
we consider only IaaS, which aims to provide 
computing resources or storage as a service to 
users. One major player in cloud computing is 
Amazon’s Elastic Compute Cloud (EC2; http://
aws.amazon.com/ec2/), which comprises several 
data centers worldwide. Amazon EC2 lets users 
deploy VMs on-demand on Amazon’s infra-
structure and pay only for the computing, stor-
age, and network resources they use.

InterGrid Concepts
In this article, we’ll examine the InterGrid’s 
realization, but let’s first look at its overall 
architecture; more details are available in our 
previous work.4

Figure 1 depicts the scenario InterGrid con-
siders. InterGrid aims to provide a software 
system that lets users create execution envi-
ronments for various applications on top of the 
physical infrastructure participating grids pro-
vide. Peering arrangements established between 
gateways enables the allocation of resources 
from multiple grids to fulfill the execution 
environments’ requirements.

A grid has predefined peering arrange-
ments with other grids, which IGGs manage and 
through which IGGs coordinate the use of Inter-
Grid’s resources. An IGG is aware of the peer-
ing terms this grid has with other grids, selects 
suitable grids that can provide the required 
resources, and replies to requests from other 
IGGs. Request redirection policies determine 
which peering grid InterGrid selects to process 
a request and a price for which that grid will 
perform it. An IGG can also allocate resources 
from a cloud provider. Figure 2 illustrates a sce-
nario in which an IGG allocates resources from 
an organization’s local cluster to deploy appli-
cations. Under peak demand, this IGG interacts 
with another that can allocate resources from a 
cloud computing provider.

Although applications can have resource 
management mechanisms of their own, we pro-
pose a system that creates a virtual environ-
ment to help users deploy their applications. 
These applications use the resources InterGrid 
allocates and provides as a distributed virtual 
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Figure 1. InterGrid software layers. InterGrid aims to provide a 
software system that lets users create execution environments for 
(a) various applications on top of (b) physical infrastructure that 
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cloud computing provider.
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environment (DVE) — that is, a network of VMs 
that runs isolated from other networks of VMs. 
A component called the DVE manager performs 
resource allocation and management on the 
application’s behalf.

InterGrid Realization
To realize our system, we’ve implemented the IGG 
in Java; Figure 3 depicts its main components.

The communication module receives mes-
sages from other entities and delivers them to 
the components registered as listeners for those 
types of messages. It also lets components com-
municate with other entities in the system by 
providing the functionality for sending mes-
sages. Message-passing helps make gateways 
loosely coupled and able to build more failure-
tolerant communication protocols. In addition, 
senders and receivers are decoupled, making 
the entire system more resilient to traffic bursts. 
One central component, the post office, handles 
all the communication module’s functionalities. 
When the post office receives an incoming mes-
sage, it associates the message to a thread and 
then forwards it to all listeners. Threads are 
provided by a thread-pool, and if the pool is 
empty, the post office puts messages in a queue 
to wait for available threads. Listeners are mes-
sage handlers and deal with messages. All lis-
teners are notified when a new message arrives 
and can individually decide to process the mes-
sage. Because messages are asynchronous and 
sent or served in parallel, no order or deliv-
ery guarantees are possible by default. Rather, 
communicating components are responsible 
for handling those properties. For instance, the 
scheduler (described later) uses unique message 
identifiers to manage request negotiations.

InterGrid uses Java Management Extensions 
(JMX) to perform management and monitoring. 
JMX is a standard API for managing and moni-
toring resources such as Java applications. It 
also includes remote secure access, so a remote 
program can interact with a running application 
for management purposes. Via JMX, the gate-
way exports management operations such as 
configuring peering, connecting or disconnect-
ing to another gateway, shutting down the gate-
way, and managing the VM manager. All these 
operations are accessible via JConsole, a graphi-
cal Java client that lets an administrator (for 
instance) connect to any application using JMX. 
Moreover, we provide a command-line interface 

that interacts with components via JMX. 
Persistence relies on a relational database for 

storing the information the gateway uses. Infor-
mation such as peering arrangements and VM 
templates are persistently stored in the data-
base, which the Apache Derby project (http://
db.apache.org/derby) provides. This database is 
implemented entirely in Java.

The scheduler component comprises several 
other components — namely, the resource pro-
visioning policy, the peering directory, request 
redirection, and the enactment module. The 
scheduler interacts with the virtual machine 
manager (VMM) to create, start, or stop VMs 
to fulfill scheduled requests’ requirements. The 
scheduler also maintains the availability infor-
mation the VMM obtains. 

Virtual Machine Manager
The VMM is the link between the gateway and 
the resources. As we described, the gateway 
doesn’t share physical resources directly but 
relies on virtualization technology for abstract-
ing them. Hence, the actual resources it uses 
are VMs. The VMM relies on a VIE to man-
age VMs on a set of physical resources. VMM 
implementation is generic so that it can connect 
with different VIEs. Typically, VIEs can cre-
ate and stop VMs on a physical cluster. We’ve 
developed VMMs for OpenNebula, Amazon EC2, 
and Grid’5000. At present, we use OpenNebula 
(www.opennebula.org) as a VIE for deploying 
VMs on a local infrastructure. The connection 
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Figure 3. InterGrid gateway components. The core component 
is the scheduler, which implements the provisioning policies and 
peering with other gateways. The communication component 
provides an asynchronous message-passing mechanism, and 
received messages are handled in parallel by a thread-pool.
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with OpenNebula uses the Java client (http://
opennebula.org/doku.php?id=ecosystem#java 
_api) to submit and stop VMs and transform 
our VM template (described later) to the format 
OpenNebula recognizes. OpenNebula runs as a 
daemon service on a master node, so the VMM 
works as a remote user. It lets users submit VMs 
on physical machines using different kinds of 
hypervisors, such as Xen (www.xen.org), which 
enables running several operating systems on 
the same host concurrently. A hypervisor gives 
guest operating systems privileged access to the 
hardware. The host can control and limit guests’ 
use of certain resources, such as memory or CPU.

The VMM also manages VM deployment on 
grids and IaaS providers. We’ve implemented a 
connector to deploy VMs on IaaS providers, but 
so far, InterGrid supports only Amazon EC2. The 
connector is a wrapper for the command-line 
tool Amazon provides. The VMM for Grid’5000 
is also a wrapper for its command-line tools 
(that is, the OAR scheduler and Kadeploy virtu-
alization). In addition, we’ve developed an emu-
lated VIE for testing and debugging purposes. 
The emulator provides a list of fake machines 
where we can set the number of cores for host-
ing VMs.

To deploy a VM, the VMM needs a description 
of it, or template. Figure 4 shows the interaction 

between the gateway, the template directory, 
and the VMM.

VM template. OpenNebula’s terminology can 
help explain the idea of templates for VMs. A 
template is analogous to a computer’s configu-
ration and contains a description for a VM with 
the following information:

•	 the number of cores or processors to be 
assigned to the VM;

•	 the amount of memory the VM requires;
•	 the kernel used to boot the VM’s operating 

system;
•	 the disk image containing the VM’s file sys-

tem; and
•	 (optionally) the price of using a VM over one 

hour.

This information is static — that is, it’s described 
once and reusable; the gateway administrator 
provides it when the infrastructure is set up. 
The administrator can update, add, and delete 
templates at any time. In addition, each gate-
way in the InterGrid network must agree on the 
templates to provide the same configuration on 
each site. 

To deploy an instance of a given template, the 
VMM generates a descriptor from the informa-

Public API
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Interface

VM manager service

vmInstance.shutdown()

EmulatorOAR/KadeployOpenNebula

Grid’5000Local physical
infrastructure

IaaS
VMVM

VMInstance vm = vmms.submit(vmTemplate, host)

ubuntu; 1 core; 128 Mbytes

fedora; 2 cores; 256 Mbytes

opensuse; 1 core; 512 Mbytes

...

Convert the generic template
to the virtual infrastructure

engine format

VMVM

Amazon
EC2

VM VM

Figure 4. Design and interactions within the virtual machine (VM) manager. The manager provides 
a public API for submitting and controlling VMs. This API is abstract, and we provide a few 
implementations for deploying VMs on different types of resources.
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tion in the template. This descriptor contains the 
same fields as the template and additional infor-
mation related to a specific VM instance, such as

•	 the disk image that contains the VM’s file 
system;

•	 the address of the physical machine hosting 
the VM;

•	 the VM’s network configuration; and
•	 the required information on the remote 

infrastructure (for deployment on an IaaS 
provider), such as account information for 
the provider.

Before starting an instance, the scheduler 
gives the network configuration and the host’s 
address; it then allocates MAC and IP addresses 
for that instance. The template specifies the disk 
image field, but this field can be modified in the 
descriptor. To deploy several instances of the 
same template in parallel, each instance uses a 
temporary copy of the disk image the template 
has specified. Hence, the descriptor contains the 
path to the copied disk image.

The descriptor’s fields are different for 
deploying a VM on an IaaS provider. Network 

information isn’t mandatory for using Amazon 
because EC2 automatically assigns a public IP 
to the instances. In addition, EC2 creates cop-
ies of the disk image seamlessly to run sev-
eral instances in parallel. Before running an 
instance, an InterGrid administrator must 
upload the disk image to Amazon EC2, thus 
ensuring that the template has its correspond-
ing disk image.

VM template directory. The IGG works with a 
repository of VM templates — that is, the gate-
way administrator can register templates to the 
repository to let users find and request instances 
of specific VMs. In addition, the gateway 
administrator must upload the images to Ama-
zon if the gateway uses the cloud as a resource 
provider. Users currently can’t submit their own 
templates or disk images to the gateway.

Distributed Virtual Environment Manager
A DVE manager interacts with the IGG by 
making requests for VMs and querying their 
status. The DVE manager requests VMs from 
the gateway on behalf of the user application 
it represents.

Gateway
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VM ...VM VMVM
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DVE manager

VM manager
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4 Find resources
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resource requests

1 Submit an application
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...T5T4T3T2T1
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Figure 5. The main interactions among InterGrid components. On the user’s behalf, the distributed virtual environment 
(DVE) manager requests resources to a gateway. The gateway then tries to serve the request locally or starts 
negotiating with other gateway to fulfill it. Once a gateway can serve the request, the virtual machine manager (VMM) 
deploys the resources on top of the infrastructure and returns the access information about the VM to the requesting 
gateway. Finally, the DVE manager fetches the VM access from the gateway and deploys the user’s application.
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When the reservation starts, the DVE man-
ager obtains the list of requested VMs from the 
gateway. This list contains a tuple of public IP/
private IP for each VM, which the DVE man-
ager uses to access the VMs (with Secure Shell 
[SSH] tunnels). With EC2, VMs have a public IP, 
so the DVE can access the VMs directly with-
out tunnels. Then, the DVE manager deploys 
the user’s application.

InterGrid Gateway at Runtime
Figure 5 shows the main interactions between 
InterGrid’s components. When the user first 
requests a VM, a command-line interface 
handles the request. Users must specify which 
VM template they want to use; they can also 
specify the number of VM instances, the 
ready time for the reservation, the deadline, 
the walltime (that is, the time the user esti-
mates the job will take), and the address for 
an alternative gateway. The client returns an 
identifier for the submitted request from the 
gateway. Next, the user starts a DVE man-
ager with the returned identifier (or a list of 
identifiers) and its application as parameters. 
The application is described via a text file in 
which each line is one task to execute on a 
remote VM. (The task is indeed the command 
line that runs with SSH.) The DVE manager 

waits until InterGrid has scheduled or refused 
the request. The local gateway tries to obtain 
resources from the underlying VIEs. When 
this isn’t possible, the local gateway starts a 
negotiation with any remote gateways to ful-
fill the request. When a gateway can fulfill 
the request — that is, can schedule the VMs 
— it sends the access information for connect-
ing to the assigned VM to the requester gate-
way. Once this gateway has collected all the 
VM access information, it makes it available 
for the DVE manager. Finally, the DVE man-
ager configures the VM, sets up SSH tunnels, 
and executes the tasks on the VM. In future 
work, we want to improve the description of 
applications to allow file transfer, dependen-
cies between tasks, and VM configuration.

Under the peering policy we consider in this 
work, each gateway’s scheduler uses conser-
vative backfilling to schedule requests. When 
the scheduler can’t start a request immediately 
using local resources, then a redirection algo-
rithm will take the following steps:

1.	Contact the remote gateways and ask for 
offers containing the earliest start time 
at which they would be able to serve the 
request, if it were redirected.

2.	For each offer received, check whether the 
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request start time a peering gateway pro-
poses is that given by local resources. This 
being the case, the algorithm redirects the 
request; otherwise, the algorithm will check 
the next offer.

3.	 If the request start time that local resources 
have given is better than those the remote 
gateways have proposed, then the algorithm 
will schedule the request locally.

We previously proposed and evaluated this 
strategy in a smaller environment that included 
a local cluster and a cloud computing provider.7

Experiments
We conducted two experiments to evaluate our 
InterGrid architecture. The first evaluates the 
performance of allocation decisions by mea-
suring how the IGGs manage load via peering 
arrangements. The second considers InterGrid’s 
effectiveness in deploying a bag-of-tasks appli-
cation on cloud providers.

Peering Arrangements
For our testing, we used the French experimen-
tal grid platform, Grid’5000, as both a scenario 
and a testbed. Grid’5000 comprises nine sites 
geographically distributed across France, and 
currently features 4,792 cores.

Each gateway created in this experiment 
represents one Grid’5000 site; the gateway runs 
on that site. To prevent gateways from inter-
fering with real Grid’5000 users, we used the 
emulated VMM, which instantiates fictitious 
VMs. The number of emulated hosts is the num-
ber of real cores available on each site. Figure 6 
illustrates the Grid’5000 sites and the evaluated 
gateway configurations.

We generated the site’s workloads using Uri 
Lublin and Dror G. Feitelson’s model,8 which 
we refer to here as Lublin99. We configured 
Lublin99 to generate one-day-long workloads; 
the maximum number of VMs that generated 
requests require is the number of cores in 
the site. To generate different workloads, we 
set the mean number of VMs that a request 

requires (specified in log2) to log2m – umed, 
where m is the maximum number of VMs 
allowed in the system. We randomly varied 
umed from 1.5 to 3.5. In addition, to simulate 
a burst of request arrivals and heavy loads, 
thus stretching the system, we multiplied the 
interarrival time by 0.1.

Figure 7 shows the load characteristics 
under the four-gateway scenario. The teal bars 
indicate each site’s load when they aren’t inter-
connected; the magenta bars show the load 
when gateways redirect requests to one another; 
the green bars correspond to the amount of load 
each gateway accepts from other gateways; and 
the brown bars represent the amount of load 
redirected. The results show that the policy the 
gateways use balances the load across sites, 
making it tend to 1. Rennes, a site with heavy 
load, benefits from peering with other gateways 
as the gateway redirects a great share of its load 
to other sites.

Table 1 presents the job slowdown improve-
ment resulting from gateway interconnection. 
Overall, the interconnection improves job slow-
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Figure 7. Load characteristics under the four-gateway scenario. The 
teal bars indicate each site’s load when they aren’t interconnected; 
the magenta bars show the load when gateways redirect requests 
to one another; the green bars correspond to the amount of load 
each gateway accepts from other gateways; and the brown bars 
represent the amount of load redirected.

Table 1. Job slowdown improvement under different gateway configurations.

Site Two gateways Three gateways Four gateways

Orsay –0.00006 N/A 0.00010

Nancy N/A 3.95780 4.30864

Rennes N/A 7.84217 12.82736

Sophia 0.20168 –6.12047 –3.12708
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down — for example, sites with the heaviest 
loads (that is, Rennes and Nancy) have better 
improvements. However, the job slowdown of 
sites with lower loads gets worse; as the number 
of gateways increases, though, this impact is 
minimized, which leads to the conclusion that 
sites with light loads suffer a smaller impact 
when more interconnected gateways are pres-
ent. This experiment demonstrates that peering 
is overall beneficial to interconnected sites — 
these benefits derive from load balancing and 
overall job slowdown improvement.

Deploying a Bag-of-Tasks Application
For our second experiment, we considered Evo-
lutionary Multi-Criterion Optimization (EMO),9 
a bag-of-tasks application for solving optimi-
zation problems using a multi-objective evolu-
tionary algorithm. Evolutionary algorithms are 
a class of population-based metaheuristics that 
exploit the concept of population evolution to 
find solutions to optimization problems. They 
can find the optimal solution using an iterative 
process that evolves the collection of individu-
als to improve the solution’s quality. Each task 

is an EMO process that explores a different set 
of populations.

Figure 8 shows the testbed for running the 
experiment. We carried out each test in two 
steps. First, we evaluated EMO’s execution time 
using a single gateway, and then we forced 
InterGrid to provide resources from two gate-
ways. In this case, we limited the number of 
available cores for running VMs, and the DVE 
manager submitted two requests. For 10 VMs, 
we limited both gateways to five cores, and the 
DVE manager sent two requests for five VMs 
each. Next, for 20 VMs, we set the limit to 10 
cores, and the DVE manager requested 10 VMs 
twice. The two gateways used resources from 
Amazon EC2 — the requests demanded a small 
EC2 instance running Windows Server 2003. 
Table 2 reports both steps’ results. The execu-
tion time of the bag-of-tasks application doesn’t 
suffer important performance degradations 
with one or two gateways.

O ur experiments with InterGrid have shown 
that it can balance load between distributed 

sites and have validated that a bag-of-tasks 
application can run on distributed sites using 
VMs. We currently provide a minimal gateway 
that lets resource providers interconnect sites 
and deploy VMs on different kinds of infra-
structures, such as local clusters, Amazon EC2, 
and Grid’5000.

In future work, we plan to improve the VM 
template directory to let users submit their 
own VMs and synchronize the available VMs 
between gateways. In addition, although we 
haven’t addressed security aspects in this work 
because they’re handled at the operating system 
and network levels, it would be interesting to 
address those concerns at the InterGrid level.�
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Table 2. Experimental results with one and two gateways  
using resources from Amazon EC2.

Number of virtual 
machines (VMs)

One gateway 
(seconds)

Two gateways* 
(seconds)

5 4,780 –

10 3,017 3,177

15 2,407 –

20 2,108 2,070

*Each gateway provides half of the VMs
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