
C
lo

ud
 C

om
pu

ti
ng

24 	 Published by the IEEE Computer Society	 1089-7801/09/$26.00 © 2009 IEEE� IEEE INTERNET COMPUTING

O ver the past decade, the dis-
tributed computing field has
been characterized by large-

scale grid deployments, such as the
Enabling Grids for E-science project
(EGEE; http://public.eu-egee.org) and
Grid’5000.1 Such grids have given the
research community an unprecedented
number of resources, which it’s used
for various scientific endeavors. Sev-
eral efforts have been made to enable
grids to interoperate — for instance, by
providing standard components and
adapters for secure job submissions,
data transfers, and information que-
ries (see http://forge.ogf.org/sf/projects/
gin). Despite these efforts, software
and hardware heterogeneity has con-
tributed to the increasing complexity

inherent in deploying applications
on these infrastructures. Moreover,
recent advances in virtualization tech-
nologies2 have led to the emergence of
commercial infrastructure providers,
a concept known as cloud computing.3
Handling distributed applications’ ever-
growing demands while addressing
heterogeneity remains a challenging
task that can require resources from
both grids and clouds.

In previous work, we presented
an architecture for resource sharing
between grids4 inspired by the peering
agreements established between ISPs,
through which they agree to allow
traffic into each others’ networks.
Here, we look at the realization of this
architecture, which we call the Inter-

The InterGrid system aims to provide an execution environment for running

applications on top of interconnected infrastructures. The system uses virtual

machines as building blocks to construct execution environments that span

multiple computing sites. Such environments can be extended to operate on

cloud infrastructures, such as Amazon EC2. This article provides an abstract

view of the proposed architecture and its implementation; experiments show

the scalability of an InterGrid-managed infrastructure and how the system can

benefit from using the cloud.

Alexandre di Costanzo,
Marcos Dias de Assunção,
and Rajkumar Buyya
University of Melbourne

Harnessing Cloud Technologies
for a Virtualized Distributed
Computing Infrastructure

SEPTEMBER/OCTOBER 2009� 25

Harnessing Cloud Technologies

Grid. Our architecture relies on InterGrid gate-
ways (IGGs) that mediate access to participating
grids’ resources. It also aims to tackle hardware
and software heterogeneity within grids. Using
virtualization technology can ease the deploy-
ment of applications spanning multiple grids
because it allows for resource control in a con-
tained manner. In this way, resources allocated
by one grid to another can help deploy virtual
machines (VMs), which also let InterGrid use
resources from cloud computing providers.

Background and Context
With the recent advances in multicore technolo-
gies, virtualization has become more adoptable
and provides solutions for interconnecting het-
erogeneous distributed infrastructures. (See the
“Related Work in Interconnecting Infrastruc-
tures” sidebar for more about this topic.)

Virtualization Technology
and Infrastructure as a Service
VM technologies’ increasing ubiquity has
enabled users to create customized environments
atop physical infrastructure and has facilitated
the emergence of business models such as cloud
computing. VMs’ use has several benefits:

•	 server consolidation, which lets system
administrators place the workloads of sev-
eral underutilized servers in fewer machines;

•	 the ability to create VMs to run legacy
code without interfering with other appli-
cations’ APIs;

•	 improved security through the creation of
sandboxes for running applications with
questionable reliability; and

•	 performance isolation, letting providers
offer some guarantees and better quality of
service to customers’ applications.

Existing VM-based resource management sys-
tems can manage a cluster of computers within a
site, allowing users to create virtual workspaces5
or clusters.6 Such systems can bind resources
to virtual clusters or workspaces according to a
user’s demand. They commonly provide an inter-
face through which users can allocate VMs and
configure them with a chosen operating system
and software. These resource managers, or vir-
tual infrastructure engines (VIEs), let users create
customized virtual clusters by using shares of the
physical machines available at the site.

Virtualization technology minimizes some
security concerns inherent to the sharing of
resources among multiple computing sites.
Indeed, we use virtualization software to real-
ize the InterGrid architecture because existing
cluster resource managers relying on VMs can
give us the building blocks — such as avail-
ability information — required to create virtual
execution environments. In addition, relying on

Related Work in Interconnecting Infrastructures

Existing work has shown how to enable virtual clusters that
span multiple physical computer clusters. In VioCluster, a

broker is responsible for managing a virtual domain (that is, a
virtual cluster)1 and can borrow resources from another bro-
ker. Brokers have borrowing and lending policies that define
when a broker requests machines from other brokers and
when they’re returned, respectively.

Systems for virtualizing a physical infrastructure are also avail-
able. Rubén S. Montero and colleagues investigated the deploy-
ment of custom execution environments using OpenNebula.2
The authors investigated the overhead of two distinct models for
starting virtual machines and adding them to an execution envi-
ronment. A.J. Rubio-Montero and colleagues used GridWay to
deploy virtual machines on a Globus Grid3; jobs are encapsulated
as virtual machines. The authors showed that the overhead of
starting a virtual machine is small for the application evaluated.

Researchers have investigated several load-sharing mecha-
nisms in the distributed systems realm. Alexandru Iosup and
colleagues proposed a matchmaking mechanism for enabling

resource sharing across computational grids.4 Sonesh Surana
and colleagues addressed the load balancing in distributed
hash-table-based peer-to-peer networks.5

References
1.	 P. Ruth, P. McGachey, and D. Xu, “VioCluster: Virtualization for Dynamic

Computational Domain,” Proc. IEEE Int’l Conf. Cluster Computing (Cluster 05),

IEEE Press, 2005, pp. 1–10.

2.	 R.S. Montero, E. Huedo, and I.M. Llorente, “Dynamic Deployment of Cus-

tom Execution Environments in Grids, Proc. 2nd Int’l Conf. Advanced Engineer-

ing Computing and Applications in Sciences (ADVCOMP 08), IEEE CS Press,

2008, pp. 33–38.

3.	 A.J. Rubio-Montero et al., “Management of Virtual Machines on Globus

Grids using GridWay,” Proc. IEEE Int’l Parallel and Distributed Processing Symp.

(IPDPS 07), IEEE CS Press, 2007, pp. 1–7.

4.	 A. Iosup et al., “Inter-Operating Grids through Delegated Matchmaking, Proc.

2007 ACM/IEEE Conf. Supercomputing (SC 07), ACM Press, 2007, pp. 1–12.

5.	 S. Surana et al., “Load Balancing in Dynamic Structured Peer-to-Peer Sys-

tems,” Performance Evaluation, vol. 63, no. 3, 2006, pp. 217–240.

Cloud Computing

26 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

VMs eases the deployment of execution envi-
ronments on multiple computing sites; user
applications can have better control over the
software installed on the allocated resources
without compromising the hosts’ operating sys-
tems at the computing sites.

Virtualization technologies have also facili-
tated the realization of cloud computing ser-
vices. Cloud computing includes three kinds
of Internet-accessible services: software-as-a-
service (SaaS), platform-as-a-service (PaaS),
and infrastructure-as-a-service (IaaS). Here,
we consider only IaaS, which aims to provide
computing resources or storage as a service to
users. One major player in cloud computing is
Amazon’s Elastic Compute Cloud (EC2; http://
aws.amazon.com/ec2/), which comprises several
data centers worldwide. Amazon EC2 lets users
deploy VMs on-demand on Amazon’s infra-
structure and pay only for the computing, stor-
age, and network resources they use.

InterGrid Concepts
In this article, we’ll examine the InterGrid’s
realization, but let’s first look at its overall
architecture; more details are available in our
previous work.4

Figure 1 depicts the scenario InterGrid con-
siders. InterGrid aims to provide a software
system that lets users create execution envi-
ronments for various applications on top of the
physical infrastructure participating grids pro-
vide. Peering arrangements established between
gateways enables the allocation of resources
from multiple grids to fulfill the execution
environments’ requirements.

A grid has predefined peering arrange-
ments with other grids, which IGGs manage and
through which IGGs coordinate the use of Inter-
Grid’s resources. An IGG is aware of the peer-
ing terms this grid has with other grids, selects
suitable grids that can provide the required
resources, and replies to requests from other
IGGs. Request redirection policies determine
which peering grid InterGrid selects to process
a request and a price for which that grid will
perform it. An IGG can also allocate resources
from a cloud provider. Figure 2 illustrates a sce-
nario in which an IGG allocates resources from
an organization’s local cluster to deploy appli-
cations. Under peak demand, this IGG interacts
with another that can allocate resources from a
cloud computing provider.

Although applications can have resource
management mechanisms of their own, we pro-
pose a system that creates a virtual environ-
ment to help users deploy their applications.
These applications use the resources InterGrid
allocates and provides as a distributed virtual

Grid

InterGrid gateway

Applications

InterGrid

Grids

G1

G3

G2

G3

G4

G5
G6

G2

G4

G5
G6

G3

G1

(a)

(c)

(b)

Peering arrangement

Figure 1. InterGrid software layers. InterGrid aims to provide a
software system that lets users create execution environments for
(a) various applications on top of (b) physical infrastructure that
participating grids provide. (c) Peering arrangements established
between gateways enable the allocation of resources from multiple
grids to fulfill the execution environments’ requirements.

Cloud provider

Organization’s site

VIE
(cloud APIs)

Virtual
infrastructure
engine (VIE)

User
application

3 Application deployment

1
Request
for VMs

2 Enactment of leases
Physical resources

IGG

IGG
Peering

arrangement

Figure 2. Application deployment. An InterGrid gateway (IGG)
allocates resources from one organization’s local cluster and
interacts with another IGG that can allocate resources from a
cloud computing provider.

SEPTEMBER/OCTOBER 2009� 27

Harnessing Cloud Technologies

environment (DVE) — that is, a network of VMs
that runs isolated from other networks of VMs.
A component called the DVE manager performs
resource allocation and management on the
application’s behalf.

InterGrid Realization
To realize our system, we’ve implemented the IGG
in Java; Figure 3 depicts its main components.

The communication module receives mes-
sages from other entities and delivers them to
the components registered as listeners for those
types of messages. It also lets components com-
municate with other entities in the system by
providing the functionality for sending mes-
sages. Message-passing helps make gateways
loosely coupled and able to build more failure-
tolerant communication protocols. In addition,
senders and receivers are decoupled, making
the entire system more resilient to traffic bursts.
One central component, the post office, handles
all the communication module’s functionalities.
When the post office receives an incoming mes-
sage, it associates the message to a thread and
then forwards it to all listeners. Threads are
provided by a thread-pool, and if the pool is
empty, the post office puts messages in a queue
to wait for available threads. Listeners are mes-
sage handlers and deal with messages. All lis-
teners are notified when a new message arrives
and can individually decide to process the mes-
sage. Because messages are asynchronous and
sent or served in parallel, no order or deliv-
ery guarantees are possible by default. Rather,
communicating components are responsible
for handling those properties. For instance, the
scheduler (described later) uses unique message
identifiers to manage request negotiations.

InterGrid uses Java Management Extensions
(JMX) to perform management and monitoring.
JMX is a standard API for managing and moni-
toring resources such as Java applications. It
also includes remote secure access, so a remote
program can interact with a running application
for management purposes. Via JMX, the gate-
way exports management operations such as
configuring peering, connecting or disconnect-
ing to another gateway, shutting down the gate-
way, and managing the VM manager. All these
operations are accessible via JConsole, a graphi-
cal Java client that lets an administrator (for
instance) connect to any application using JMX.
Moreover, we provide a command-line interface

that interacts with components via JMX.
Persistence relies on a relational database for

storing the information the gateway uses. Infor-
mation such as peering arrangements and VM
templates are persistently stored in the data-
base, which the Apache Derby project (http://
db.apache.org/derby) provides. This database is
implemented entirely in Java.

The scheduler component comprises several
other components — namely, the resource pro-
visioning policy, the peering directory, request
redirection, and the enactment module. The
scheduler interacts with the virtual machine
manager (VMM) to create, start, or stop VMs
to fulfill scheduled requests’ requirements. The
scheduler also maintains the availability infor-
mation the VMM obtains.

Virtual Machine Manager
The VMM is the link between the gateway and
the resources. As we described, the gateway
doesn’t share physical resources directly but
relies on virtualization technology for abstract-
ing them. Hence, the actual resources it uses
are VMs. The VMM relies on a VIE to man-
age VMs on a set of physical resources. VMM
implementation is generic so that it can connect
with different VIEs. Typically, VIEs can cre-
ate and stop VMs on a physical cluster. We’ve
developed VMMs for OpenNebula, Amazon EC2,
and Grid’5000. At present, we use OpenNebula
(www.opennebula.org) as a VIE for deploying
VMs on a local infrastructure. The connection

Management and monitoring
JMX

InterGrid gateway

Virtual machine manager

Pe
rs

is
te

nc
e

da
ta

ba
se

Ja
va

 D
er

by

C
om

m
un

ic
at

io
n

m
od

ul
e

m
es

sa
ge

-p
ar

si
ng

Scheduler
(provisioning policies and peering)

Infrastructure-as-a-service
provider

Grid
middleware

Local
resourcesEmulator

Figure 3. InterGrid gateway components. The core component
is the scheduler, which implements the provisioning policies and
peering with other gateways. The communication component
provides an asynchronous message-passing mechanism, and
received messages are handled in parallel by a thread-pool.

Cloud Computing

28 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

with OpenNebula uses the Java client (http://
opennebula.org/doku.php?id=ecosystem#java
_api) to submit and stop VMs and transform
our VM template (described later) to the format
OpenNebula recognizes. OpenNebula runs as a
daemon service on a master node, so the VMM
works as a remote user. It lets users submit VMs
on physical machines using different kinds of
hypervisors, such as Xen (www.xen.org), which
enables running several operating systems on
the same host concurrently. A hypervisor gives
guest operating systems privileged access to the
hardware. The host can control and limit guests’
use of certain resources, such as memory or CPU.

The VMM also manages VM deployment on
grids and IaaS providers. We’ve implemented a
connector to deploy VMs on IaaS providers, but
so far, InterGrid supports only Amazon EC2. The
connector is a wrapper for the command-line
tool Amazon provides. The VMM for Grid’5000
is also a wrapper for its command-line tools
(that is, the OAR scheduler and Kadeploy virtu-
alization). In addition, we’ve developed an emu-
lated VIE for testing and debugging purposes.
The emulator provides a list of fake machines
where we can set the number of cores for host-
ing VMs.

To deploy a VM, the VMM needs a description
of it, or template. Figure 4 shows the interaction

between the gateway, the template directory,
and the VMM.

VM template. OpenNebula’s terminology can
help explain the idea of templates for VMs. A
template is analogous to a computer’s configu-
ration and contains a description for a VM with
the following information:

•	 the number of cores or processors to be
assigned to the VM;

•	 the amount of memory the VM requires;
•	 the kernel used to boot the VM’s operating

system;
•	 the disk image containing the VM’s file sys-

tem; and
•	 (optionally) the price of using a VM over one

hour.

This information is static — that is, it’s described
once and reusable; the gateway administrator
provides it when the infrastructure is set up.
The administrator can update, add, and delete
templates at any time. In addition, each gate-
way in the InterGrid network must agree on the
templates to provide the same configuration on
each site.

To deploy an instance of a given template, the
VMM generates a descriptor from the informa-

Public API

Template directory

Interface

VM manager service

vmInstance.shutdown()

EmulatorOAR/KadeployOpenNebula

Grid’5000Local physical
infrastructure

IaaS
VMVM

VMInstance vm = vmms.submit(vmTemplate, host)

ubuntu; 1 core; 128 Mbytes

fedora; 2 cores; 256 Mbytes

opensuse; 1 core; 512 Mbytes

...

Convert the generic template
to the virtual infrastructure

engine format

VMVM

Amazon
EC2

VM VM

Figure 4. Design and interactions within the virtual machine (VM) manager. The manager provides
a public API for submitting and controlling VMs. This API is abstract, and we provide a few
implementations for deploying VMs on different types of resources.

SEPTEMBER/OCTOBER 2009� 29

Harnessing Cloud Technologies

tion in the template. This descriptor contains the
same fields as the template and additional infor-
mation related to a specific VM instance, such as

•	 the disk image that contains the VM’s file
system;

•	 the address of the physical machine hosting
the VM;

•	 the VM’s network configuration; and
•	 the required information on the remote

infrastructure (for deployment on an IaaS
provider), such as account information for
the provider.

Before starting an instance, the scheduler
gives the network configuration and the host’s
address; it then allocates MAC and IP addresses
for that instance. The template specifies the disk
image field, but this field can be modified in the
descriptor. To deploy several instances of the
same template in parallel, each instance uses a
temporary copy of the disk image the template
has specified. Hence, the descriptor contains the
path to the copied disk image.

The descriptor’s fields are different for
deploying a VM on an IaaS provider. Network

information isn’t mandatory for using Amazon
because EC2 automatically assigns a public IP
to the instances. In addition, EC2 creates cop-
ies of the disk image seamlessly to run sev-
eral instances in parallel. Before running an
instance, an InterGrid administrator must
upload the disk image to Amazon EC2, thus
ensuring that the template has its correspond-
ing disk image.

VM template directory. The IGG works with a
repository of VM templates — that is, the gate-
way administrator can register templates to the
repository to let users find and request instances
of specific VMs. In addition, the gateway
administrator must upload the images to Ama-
zon if the gateway uses the cloud as a resource
provider. Users currently can’t submit their own
templates or disk images to the gateway.

Distributed Virtual Environment Manager
A DVE manager interacts with the IGG by
making requests for VMs and querying their
status. The DVE manager requests VMs from
the gateway on behalf of the user application
it represents.

Gateway

Gateway

VM ...VM VMVM

Gateway

DVE manager

VM manager

Internet

4 Find resources

3
Start the

negotiation

2
Forward

resource requests

1 Submit an application
with resource requests

5 Send VM access

6 Get VM list

7 Execute application tasks

Application

1.2.3.1
1.2.3.4
1.2.3.6
1.2.3.7

...

VM address

...T5T4T3T2T1

Amazon EC2

User

Figure 5. The main interactions among InterGrid components. On the user’s behalf, the distributed virtual environment
(DVE) manager requests resources to a gateway. The gateway then tries to serve the request locally or starts
negotiating with other gateway to fulfill it. Once a gateway can serve the request, the virtual machine manager (VMM)
deploys the resources on top of the infrastructure and returns the access information about the VM to the requesting
gateway. Finally, the DVE manager fetches the VM access from the gateway and deploys the user’s application.

Cloud Computing

30 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

When the reservation starts, the DVE man-
ager obtains the list of requested VMs from the
gateway. This list contains a tuple of public IP/
private IP for each VM, which the DVE man-
ager uses to access the VMs (with Secure Shell
[SSH] tunnels). With EC2, VMs have a public IP,
so the DVE can access the VMs directly with-
out tunnels. Then, the DVE manager deploys
the user’s application.

InterGrid Gateway at Runtime
Figure 5 shows the main interactions between
InterGrid’s components. When the user first
requests a VM, a command-line interface
handles the request. Users must specify which
VM template they want to use; they can also
specify the number of VM instances, the
ready time for the reservation, the deadline,
the walltime (that is, the time the user esti-
mates the job will take), and the address for
an alternative gateway. The client returns an
identifier for the submitted request from the
gateway. Next, the user starts a DVE man-
ager with the returned identifier (or a list of
identifiers) and its application as parameters.
The application is described via a text file in
which each line is one task to execute on a
remote VM. (The task is indeed the command
line that runs with SSH.) The DVE manager

waits until InterGrid has scheduled or refused
the request. The local gateway tries to obtain
resources from the underlying VIEs. When
this isn’t possible, the local gateway starts a
negotiation with any remote gateways to ful-
fill the request. When a gateway can fulfill
the request — that is, can schedule the VMs
— it sends the access information for connect-
ing to the assigned VM to the requester gate-
way. Once this gateway has collected all the
VM access information, it makes it available
for the DVE manager. Finally, the DVE man-
ager configures the VM, sets up SSH tunnels,
and executes the tasks on the VM. In future
work, we want to improve the description of
applications to allow file transfer, dependen-
cies between tasks, and VM configuration.

Under the peering policy we consider in this
work, each gateway’s scheduler uses conser-
vative backfilling to schedule requests. When
the scheduler can’t start a request immediately
using local resources, then a redirection algo-
rithm will take the following steps:

1.	Contact the remote gateways and ask for
offers containing the earliest start time
at which they would be able to serve the
request, if it were redirected.

2.	For each offer received, check whether the

(a) (b)

IGGIGG

Orsay

2 gateways

3 gateways

4 gateways

SophiaLille
of cores: 618

NancySophia

IGGIGG

IGG

OrsaySophia

Nancy

Rennes

Rennes

IGGIGG

IGG IGG

Orsay

Lyon

Rennes

Bordeaux

Nancy
of cores: 684

of cores: 574

of cores: 268

Grenoble # of cores: 272

Sophia
of cores: 568

Toulouse
of cores: 436

of cores: 650

of cores: 722

10 Gnps link

Grid’5000 sites

Peering

Figure 6. InterGrid testbed over Grid’5000. We can see the Grid’5000 sites as well as the gateway configurations
we evaluated.

SEPTEMBER/OCTOBER 2009� 31

Harnessing Cloud Technologies

request start time a peering gateway pro-
poses is that given by local resources. This
being the case, the algorithm redirects the
request; otherwise, the algorithm will check
the next offer.

3.	 If the request start time that local resources
have given is better than those the remote
gateways have proposed, then the algorithm
will schedule the request locally.

We previously proposed and evaluated this
strategy in a smaller environment that included
a local cluster and a cloud computing provider.7

Experiments
We conducted two experiments to evaluate our
InterGrid architecture. The first evaluates the
performance of allocation decisions by mea-
suring how the IGGs manage load via peering
arrangements. The second considers InterGrid’s
effectiveness in deploying a bag-of-tasks appli-
cation on cloud providers.

Peering Arrangements
For our testing, we used the French experimen-
tal grid platform, Grid’5000, as both a scenario
and a testbed. Grid’5000 comprises nine sites
geographically distributed across France, and
currently features 4,792 cores.

Each gateway created in this experiment
represents one Grid’5000 site; the gateway runs
on that site. To prevent gateways from inter-
fering with real Grid’5000 users, we used the
emulated VMM, which instantiates fictitious
VMs. The number of emulated hosts is the num-
ber of real cores available on each site. Figure 6
illustrates the Grid’5000 sites and the evaluated
gateway configurations.

We generated the site’s workloads using Uri
Lublin and Dror G. Feitelson’s model,8 which
we refer to here as Lublin99. We configured
Lublin99 to generate one-day-long workloads;
the maximum number of VMs that generated
requests require is the number of cores in
the site. To generate different workloads, we
set the mean number of VMs that a request

requires (specified in log2) to log2m – umed,
where m is the maximum number of VMs
allowed in the system. We randomly varied
umed from 1.5 to 3.5. In addition, to simulate
a burst of request arrivals and heavy loads,
thus stretching the system, we multiplied the
interarrival time by 0.1.

Figure 7 shows the load characteristics
under the four-gateway scenario. The teal bars
indicate each site’s load when they aren’t inter-
connected; the magenta bars show the load
when gateways redirect requests to one another;
the green bars correspond to the amount of load
each gateway accepts from other gateways; and
the brown bars represent the amount of load
redirected. The results show that the policy the
gateways use balances the load across sites,
making it tend to 1. Rennes, a site with heavy
load, benefits from peering with other gateways
as the gateway redirects a great share of its load
to other sites.

Table 1 presents the job slowdown improve-
ment resulting from gateway interconnection.
Overall, the interconnection improves job slow-

Nancy Rennes Orsay Sophia

Lo
ad

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Load without peering

Load when peering

Load accepted

Load redirected

Figure 7. Load characteristics under the four-gateway scenario. The
teal bars indicate each site’s load when they aren’t interconnected;
the magenta bars show the load when gateways redirect requests
to one another; the green bars correspond to the amount of load
each gateway accepts from other gateways; and the brown bars
represent the amount of load redirected.

Table 1. Job slowdown improvement under different gateway configurations.

Site Two gateways Three gateways Four gateways

Orsay –0.00006 N/A 0.00010

Nancy N/A 3.95780 4.30864

Rennes N/A 7.84217 12.82736

Sophia 0.20168 –6.12047 –3.12708

Cloud Computing

32 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

down — for example, sites with the heaviest
loads (that is, Rennes and Nancy) have better
improvements. However, the job slowdown of
sites with lower loads gets worse; as the number
of gateways increases, though, this impact is
minimized, which leads to the conclusion that
sites with light loads suffer a smaller impact
when more interconnected gateways are pres-
ent. This experiment demonstrates that peering
is overall beneficial to interconnected sites —
these benefits derive from load balancing and
overall job slowdown improvement.

Deploying a Bag-of-Tasks Application
For our second experiment, we considered Evo-
lutionary Multi-Criterion Optimization (EMO),9
a bag-of-tasks application for solving optimi-
zation problems using a multi-objective evolu-
tionary algorithm. Evolutionary algorithms are
a class of population-based metaheuristics that
exploit the concept of population evolution to
find solutions to optimization problems. They
can find the optimal solution using an iterative
process that evolves the collection of individu-
als to improve the solution’s quality. Each task

is an EMO process that explores a different set
of populations.

Figure 8 shows the testbed for running the
experiment. We carried out each test in two
steps. First, we evaluated EMO’s execution time
using a single gateway, and then we forced
InterGrid to provide resources from two gate-
ways. In this case, we limited the number of
available cores for running VMs, and the DVE
manager submitted two requests. For 10 VMs,
we limited both gateways to five cores, and the
DVE manager sent two requests for five VMs
each. Next, for 20 VMs, we set the limit to 10
cores, and the DVE manager requested 10 VMs
twice. The two gateways used resources from
Amazon EC2 — the requests demanded a small
EC2 instance running Windows Server 2003.
Table 2 reports both steps’ results. The execu-
tion time of the bag-of-tasks application doesn’t
suffer important performance degradations
with one or two gateways.

O ur experiments with InterGrid have shown
that it can balance load between distributed

sites and have validated that a bag-of-tasks
application can run on distributed sites using
VMs. We currently provide a minimal gateway
that lets resource providers interconnect sites
and deploy VMs on different kinds of infra-
structures, such as local clusters, Amazon EC2,
and Grid’5000.

In future work, we plan to improve the VM
template directory to let users submit their
own VMs and synchronize the available VMs
between gateways. In addition, although we
haven’t addressed security aspects in this work
because they’re handled at the operating system
and network levels, it would be interesting to
address those concerns at the InterGrid level.�

Acknowledgments
We thank Mohsen Amini for helping in the system imple-

mentation. This work is supported by research grants

from the Australian Research Council and the Australian

Department of Innovation, Industry, Science, and Research.

Marcos Dias de Assunção’s PhD research is partially sup-

ported by National Information and Communications Tech-

nology Australia. We carried out some experiments using

the Grid’5000 experimental testbed being developed under

the INRIA Aladdin development action with support from

CNRS, RENATER (Centre national de la recherche sci-

entifique, Réseau National de télécommunications pour

IGG-1 IGG-2

Amazon EC2

USA site 1 . . . USA site 2

Getting virtual machine from the cloud

Negotating resources

Figure 8. Testbed used to run Evolutionary Multi-Criterion
Optimization on a cloud computing provider. The testbed is
composed of two InterGrid gateways (IGGs), each using resources
from Amazon EC2.

Table 2. Experimental results with one and two gateways
using resources from Amazon EC2.

Number of virtual
machines (VMs)

One gateway
(seconds)

Two gateways*
(seconds)

5 4,780 –

10 3,017 3,177

15 2,407 –

20 2,108 2,070

*Each gateway provides half of the VMs

SEPTEMBER/OCTOBER 2009� 33

Harnessing Cloud Technologies

la Technologie l’Enseignement et la Recherche), several

universities, and other funding bodies (see https://www.

grid5000.fr). The experiments run on Amazon EC2 are

supported by an Amazon Web Services Research Grant.

References
1.	 F. Cappello et al., “Grid’5000: A Large-Scale and

Highly Reconfigurable Grid Experimental Testbed,”

Int’l J. High Performance Computing Applications, vol.

20, no. 4, 2006, pp. 481–494.

2.	 X. Zhu et al., “1000 Islands: Integrated Capacity and

Workload Management for the Next Generation Data

Center,” Proc. Int’l Conf. Autonomic Computing (ICAC

08), IEEE CS Press, 2008, pp. 172–181.

3.	 M. Armbrust et al., Above the Clouds: A Berkeley View

of Cloud Computing, tech. report UCB/EECS-2009-28,

EECS Dept., Univ. of California, Berkeley, Feb. 2009.

4.	 M. Dias de Assunção, R. Buyya, and S. Venugopal,

“InterGrid: A Case for Internetworking Islands of

Grids,” Concurrency and Computation: Practice and

Experience, vol. 20, no. 8, 2008, pp. 997–1024.

5.	 K. Keahey et al., “Virtual Workspaces: Achieving Qual-

ity of Service and Quality of Life in the Grids,” Scientific

Programming, vol. 13, no. 4, 2006, pp. 265–275.

6.	 J.S. Chase et al., “Dynamic Virtual Clusters in a Grid

Site Manager,” Proc. 12th IEEE Int’l Symp. High Per-

formance Distributed Computing (HPDC 03), IEEE CS

Press, 2003, p. 90.

7.	 M. Dias de Assunção, A. di Costanzo, and R. Buyya,

“Evaluating the Cost-Benefit of Using Cloud Computing

to Extend the Capacity of Clusters,” Proc. Int’l Symp.

High Performance Distributed Computing (HPDC 09),

ACM Press, 2009, pp. 141–150.

8.	 U. Lublin and D.G. Feitelson, “The Workload on Parallel

Supercomputers: Modeling the Characteristics of Rigid

Jobs,” J. Parallel and Distributed Computing, vol. 63,

no. 11, 2008, pp. 1105–1122.

9.	 M. Kirley and R. Stewart, “Multiobjective Evolutionary

Algorithms on Complex Networks,” Proc. 4th Int’l Conf.

Evolutionary Multi-Criterion Optimization, LNCS 4403,

Springer, 2007, pp. 81–95.

Alexandre di Costanzo is a research fellow at the University

of Melbourne. His research interests are in distributed

and grid computing. Di Costanzo has a PhD in computer

science from the University of Nice Sophia Antipolis,

France. Contact him at adc@csse.unimelb.edu.au.

Marcos Dias de Assunção is a PhD candidate at the Uni-

versity of Melbourne. His PhD thesis is on peering

and resource allocation across grids, and his interests

include grid scheduling, virtual machines, and net-

work virtualization. Dias de Assunção has a PhD in

computer science from the University of Melbourne.

Contact him at marcosd@csse.unimelb.edu.au.

Rajkumar Buyya is an associate professor and reader of

computer science and software engineering as well

as the director of the Grid Computing and Distributed

Systems (GRIDS) Laboratory at the University of Mel-

bourne. He also serves as CEO of Manjrasoft. Contact

him at raj@csse.unimelb.edu.au.

IEEE Micro seeks general-interest submissions
for publication in upcoming issues. These
works should discuss the design, performance,

or application of microcomputer and micropro-
cessor systems. Of special interest are articles on
performance evaluation and workload character-

ization. Summaries of work in progress and de-
scriptions of recently completed works are most
welcome, as are tutorials. Micro does not accept
previously published material.

Check our author center (www.computer.org/mc/
mi cro/author.htm) for word, fi gure, and reference
limits. All submissions pass through peer review
consistent with other professional-level technical
publications, and editing for clarity, readability, and
conciseness. Contact IEEE Micro at micro-ma@
computer.org with any questions.

performance evaluation and workload character-

consistent with other professional-level technical
publications, and editing for clarity, readability, and
conciseness. Contact
computer.org with any questions.

consistent with other professional-level technical
publications, and editing for clarity, readability, and
conciseness. Contact
computer.org with any questions.

Call for Papers | General Interest

