
Image Filtering on .NET-based Desktop Grids

Christian Vecchiola
1
, Krishna Nadiminti

2
, Rajkumar Buyya

2

1
DIST – Department of Communication Computer

and System Sciences,

The University of Genoa, Italy

christian@dist.unige.it

2
Grid Computing and Distributed Systems Laboratory,

Department of Computer Science and Software Engineering,

The University of Melbourne, Australia

raj@csse.unimelb.edu.au

Abstract

Image filtering is the use of computer graphics

algorithms to enhance the quality of digital images or

to extract information about their content. However

rendering very large size digital images on a single

machine is a performance bottleneck. To address this

we propose parallelising this application on a desktop

Grid environment. For parallelizing this application

we use the Alchemi Desktop Grid environment and the

resulting framework is referred to as ImageGrid.

ImageGrid allows the parallel execution of linear

digital filters algorithms on images. We observed

acceptable speed up as a result of parallelising

filtering operation through ImageGrid. We run the

tests on different data sets by varying the dimension of

the images and the complexity of the filters. Results

demonstrate potential of Grid computing for desktop

applications and that the speed up obtained is more

consistent for large images and complex filters.

1. Introduction

Digital image processing [1] has nowadays become

a common activity for every kind of users. If we went

out with your digital camera we will most likely to have

hundreds of pictures whose size is normally about 3

megabytes; this means that if we want to retouch or

adjust them we will have to deal with hundreds of

megabytes. If we consider image processing for

scientific purposes we will have terabytes of data and,

probably, days of processing time. Digital image

management plays an important role in astronomy

(earth observation, space probes) and medicine

(medical imaging as Magnetic Resonance Imaging and

microscopy): in these cases large datasets of huge

images are produced daily. For example radar images

are normally 25K x 5K pixels while microscope images

can range from 40K x 40K to 100K x 100K pixels.

This means having to process images whose size ranges

from hundreds of megabytes to gigabytes. The common

tasks performed on these images range from image

enhancement to features extraction and content

retrieval and they basically rely on some sort of image

filtering. Image filtering is a CPU intensive task and

processing images of the above dimensions becomes

prohibitive even on a fast workstation. Fortunately, it is

possible to take advantage of distributed systems like

computational Grids, to reduce the filtering processing

time or to rely on wide network storage.

Computational Grids [2] are a particular kind of

distributed systems which use the resources of many

separate computers connected through the Internet and

expose them as a virtual computer architecture that is

able to distribute process execution across a parallel

infrastructure. Grids can provide different kind of

resources to the user: CPU cycles (Computational

Grids), disk space (Data Grids) and services (Service

Grids). A Grid is an intrinsically dynamic system:

resources constituting the system change during time

and normally come from different domains and

organisations. When these resources are spread across

an enterprise, provide services to users within that

enterprise and are managed by a single organisation,

we are considering an Enterprise Grid (which is

popularly called as a Desktop Grid).

The “Grid concept” is now considerably established

in the IT and there are many grid infrastructures that

can be used (Globus [3], Gridbus [4], Achemi [5],

Condor [6], NetSolve [9], Harness II [7], and H20 [8]).

The real challenge now lies in making Grid computing

infrastructures easily accessible and usable to the end

users by seamlessly integrating their desktop

applications with Grids on demand (whenever they

need a huge computing power). In other words the Grid

should be used as a service in any kind of application.

At the moment Grid computing is already being

employed widely as a service in e-Science and e-

Business applications. In particular, in the case of e-

Science, Grids are used to process large amounts of

data generated by scientific experiments that evaluate

models, and to share large datasets among researchers.

Some projects that have been actively used by research

communities include: PlanetLab [10], myGrid [11],

MediGrid [12], MammoGrid [13], and BIRN [14].

These large-scale efforts predominantly focused on

the use of high-end computing systems such as clusters

and supercomputers to build computational Grids for

scientific applications. Our work complements them

by demonstrating how a light weight Grids can be

established (by leveraging existing technologies) and

easily harnessed for performing image filtering

operation. Filtering is the basis for many image

manipulation tasks performed by any imaging

application running on either desktop or workstation.

Nowadays desktop users deal with ever-growing image

sizes with the proliferation of digital cameras and the

demand for more computing power to quickly perform

image editing tasks has been growing. It is no more

uncommon to manipulate images as large as 10K x 2K

pixels on desktop computers. Almost all professional

and semi-professional imaging applications allow

extending their features with the use of plug-ins: by

developing a plug-in we can easily enhance such

applications and make them Grid aware. A smooth

integration of desktop applications with enterprise grids

(desktop grids) rapidly enhances adoption of Grids for

common day-to-day applications.

In this article we present our work, called

‘ImageGrid’, an application that has been developed as

a proof of concept to demonstrate the advantages

desktop Grid-based image filtering and to show how

desktop applications can easily exploit Grid-services.

ImageGrid allows performing basic image editing

operations and let the user run them either locally or

remotely by executing the filters on an Alchemi Grid.

The integration between Alchemi and ImageGrid is

seamless and does not require the user to learn much

about the Grid. The user just has to provide his/her

credentials and the host name/IP address of the

Alchemi Grid Manager. For these reasons, ImageGrid

is a good point to start and to learn from, if we wish to

make Grid-aware professional imaging applications.

2. Image Filtering: Basics in Brief

A digital image is a representation of a two-

dimensional image as a finite set of digital values,

called picture elements or pixels. Digital images are

commonly represented with 2D matrices whose

elements axy maintain the color information (values for

the red, green, and blue channels and transparency) of

the corresponding point in the image at the given

coordinates (x,y)
1
.

Digital image processing is the use of computer

algorithms to perform processing on digital images or

make modifications to them. In particular, image

filtering is the process of applying computer algorithms

– called digital filters – to an image in order to create a

new one. Image filtering allows performing basic

image editing tasks such as image smoothing,

sharpening, blurring, edge detection, mean removal and

embossing. All these operations can be implemented by

a particular class of filters called linear filters. Linear

filters compute each pixel-value as a linear

combination of the values of a set of pixels in the

image. Usually this set is defined by the pixels

contained in a square region centered on the pixel to be

evaluated. In this case, the coefficients corresponding

to each pixel can be arranged in a matrix, called the

kernel, whose dimensions are defined by the previous

square region. If the filter is described by a kernel it is

possible to express the value of each new pixel as the

result of the following 2D discrete convolution

operation:

[]∑ ∑
− −

+−−+−−⋅=
1

,0

1

,0
))2/)1((,)2/)1(((,),(

N

kx

N

kyfilter kyNykxNxPkykxKyxP

Expression 1. Pixel Convolution.

In the expression N is the dimension of the kernel

matrix K and Pfilter and P are the functions which return

the corresponding pixel information, given the

coordinates x and y. Figure 1 describes the entire

process of determining the new value of a pixel. The

summations in Expression 1 can be easily translated

into a two nested for-loops and by iterating this

expression for all the pixels we can implement the

filtering algorithm.

1
 Hereafter we will omit the term digital that is always implied.

Figure 1. Computing the value of the filtered pixel.

Actually, the real implementation of the filtering

algorithm has to take into account some issues that are

not captured by the previous expression. These are:

pixel value underflow, overflow
2
 and edge-pixel

filtering.

2.1. Pixel Value Overflow and Underflow

So far we have not looked into the structure of the

data maintained for each pixel and have implicity

assumed that pixel color information is represented by

a scalar value. Actually, the structure of such data

strictly depends on the image encoding format and the

scalar value has to be manipulated in order to extract

the pixel information. If we consider images using a

24bppRGB encoding format, then the scalar value

represented by the 24 bits has to be separated into the

three corresponding bytes with each byte representing a

single colour channel. This means that the previous

expression has to be computed for each colour channel.

Moreover, since the encoding assigns only one byte per

channel, a pixel value for each channel ranges from 0

to 255, and the possible overflows or underflows have

to be rounded to the range limits and the resulting value

has to cast into a byte value.

2
 The terms underflow and overflow respectively identify the

condition in which a quantity goes out of an established range by

assuming a value smaller than the minimum or bigger than the

maximum. The expression pixel value underflow (overflow) means

that the numeric value of the pixel is out of range.

2.1. Edge-pixel Filtering

Pixels on the edges of the image cannot be

evaluated with the discussed algorithm since the square

region required by the kernel is not properly defined. In

other words, when we want to compute the value of

Pfilter(0,0) we need the information of P(-(N-1)/2, -(N-

1)/2) which does not exist. In order to solve this

problem the original image is enlarged by (N-1)/2

pixels on each side and the new regions are filled

according to a given algorithm
3
.

3. Grid-based Image Filtering

Given an image the performance of linear filtering

heavily depends on the kernel dimension. For example,

given a kernel dimension of N, for each pixel channel

we will have:

• NxN sums

• NxN products

Hence the complexity for each pixel is O(N
2
). This

means that for large images the filtering process can

take a lot of time and the operation is computationally

intensive. A possible solution to reduce the processing

time and the CPU workload is trying to parallelise the

process and to take advantage of distributed computing

infrastructures such as computational Grids.

3
 There are normally three different techniques used: zero fill,

mirror fill, and stretch fill. The first strategy assigns to each pixel

the black color value. The second one mirrors the pixel values by

taking the original image borders as symmetry axis while the third

one just replicates the pixel value of edge pixels.

Figure 2. Grid-based image filtering.

This operation is actually possible because linear

filtering is a local operation; this means that in order to

compute the value of one pixel we need the information

of only the nearby pixels and not of the entire image.

More precisely, given a kernel of dimension N, in order

to determine the value of pixel (x,y), we need to access

the pixels contained in the square region centered on

that pixel which has an edge of N pixels. Normally an

even value of N ranging from 3 to 9 is chosen. A value

of 3 is for fast filters while a value of 9 leads to more

accurate but more computationally intensive filters.

Due to this locality property of linear filtering, we

can parallelise the execution by dividing the image into

several adjacent rectangular regions and model the

filtering of each region as a separate Grid task. After all

the tasks are executed the filtered regions are

recomposed into the resulting image. Figure 2

describes the entire process.

The task of filtering a large image can be broken

down into a set of filtering tasks performed on smaller

images. The operation performed on each rectangular

region is the same as that for the entire image. If we

overlap the rectangular regions by half of the kernel

dimension the filtering process becomes an

embarrassingly parallel problem and there will be no

need of inter-task communication. Grid-based filtering

adds additional time to the entire filtering task since we

need to perform the following operations:

• Divide the image into rectangular regions

• Connect to the Grid and send tasks

• Recompose the filtered regions into the resulting

image after the tasks are completed

The time required to perform these sub-tasks

depends on the number of regions we decide to create;

for these reason choosing the right number of regions

can greatly influence the overall computation time.

Nonetheless, the time required to perform these tasks is

only a fraction of the entire computation time and is far

less than the time required to perform filtering. This is

particularly true for large images. Moreover, we can

observe that image recomposition can be performed

while the filtering process is still running without

spending additional time. The reason behind this is that

as soon as the grid tasks are completed the

corresponding sub-region in the resulting image is

filled with the filtered data. The recomposition time is

then negligible in comparison to the slicing and the

applicaction setup times. Thus the recomposition time

can be excluded for computing the overall filtering

time.

4. Exploiting the Power of the Grid:

ImageGrid Implementation

ImageGrid is an application that allows users

performing basic filtering operations on digital images.

It relies on the Alchemi Grid computing infrastructure

to perform filtering. ImageGrid allows you to run

image filters in three different modes:

• Default: serial execution on the local node.

• Threaded: parallel execution on the local node.

• Alchemi: on multiple nodes by using Alchemi.

The application keeps track of the execution timing

along with a wide range of statistics for the parallel

execution modes. In particular, it is possible to see the

timing for each slice and to collect the maximum, the

minimum and the average execution time. By using this

historical data the user can be supported in selecting

the best execution mode for a given image.

Figure 3. Alchemi architecture.

ImageGrid is developed using the .NET Framework

2.0 and does not require anything more than the

framework and the Alchemi libraries available for free

download from http://www.alchemi.net.

4.1. Alchemi

Alchemi is an open source, .NET-based enterprise

Grid computing framework developed by researchers at

the GRIDS laboratory, in the Computer Science and

Software Engineering Department at the University of

Melbourne, Australia. It lets the user to painlessly

aggregate the computing power of networked machines

into a virtual supercomputer and develop applications

to run on the Grid with no additional investment and no

discernible impact on users. Alchemi supports the

Microsoft Windows operating system and the main

features offered by the framework are:

• Virtualisation of compute resources across the

LAN/internet

• Ease of deployment and management

• Web Services interface for interoperability with

Grid meta-schedulers

Three components constitute the architecture of an

Alchemi Grid (see Figure 3):

• The Manager

• Te Executor

• The User application

The Manager node is a computer with the Alchemi

Manager installed. Its main function is to service user

requests for application distribution. On receiving a

user request, the Manager authenticates it, and

distributes the workload across the various executors

that are connected to it. The Executor node is the node

that actually performs the computation. By using the

Alchemi Software Developer’s Kit users can easily

create the applications and run and monitor their

execution on the Grid.

Alchemi offers two different programming models:

• Object-oriented Grid thread programming

model. This model is suitable for Grid

application development: a Grid application

consist of a set of Grid threads which define the

tasks performed by the application and are

executed on the Grid.

• File-based Grid job model. This model allows

legacy applications running on the Grid. In this

case the users submit a job to the Grid which

consists of an executable that will be run on the

Grid Executor nodes.

The first model gives full access to all the APIs

available with the .NET framework while the second

model is used to Grid-enable legacy or existing

applications without changing the codebase. Alchemi is

widely used for a variety of applications: teaching,

setting up test Grids and commercial applications.

4.2. ImageGrid

ImageGrid is the GUI application which allows

users performing basic image editing using predefined

filters. Users can load images from the file system,

apply the filters and save the results. It is possible to

apply either predefined filters (edge detection,

smoothing, Gaussian blur, sharpening, mean removal,

and emboss) or custom filters by defining the kernel

matrix in the settings dialog. This dialog provides the

connection parameters to the Alchemi Grid and other

properties for the parallel execution such as the slices

dimension of the slices and reconstruction mode.

(a) Original Image

(b) Emboss Filetred Image

Figure 4. A snapshot of ImageGrid GUI. Image used in creating emboss is a photo of ones of the
authors (Buyya) taken with Prof. Niklaus Wirth who is the inventor of Pascal language.

 Figure 4 shows the structure of the GUI and its

usage in emboss operation. The working area hosts a

tabbed interface in which the user can compare the

filtered image and the original one. All the information

about the current filtering task (image dimensions, size,

filtering mode, and kernel) are maintained into a

property page. ImageGrid records the execution times

of each filters and provides a history of all the filters

run: this feature allows users to compare the different

runs quickly.

The GUI acts as the front-end of the imaging library

which actually performs image filtering. All the filters

must implement the IFilter interface which defines the

basic operation each filter should support. In order to

integrate the GUI with Alchemi we developed a filter

class implementing the IFilter interface which connects

to the Alchemi Grid computing infrastructure and

applies filtering as described in Figure 2.

5. Performance Evaluation

We have run some tests in order to compare the

performance of the different execution modes. We set

up different tests by varying the following parameters:

• Image dimensions

• Slice dimensions

• Kernel dimensions

In order to run the tests we used a Pentium 4, 2.80

GHz with 2 GB RAM as local machine, while the

Alchemi Grid was composed by 6 - 1 manager and 5

executors - Dell OPTIPlex GX 2f0 Pentium IV 3.40

GHz, 1.5 G of RAM connected through a 100 Mbps

LAN. All the machines used in the test were running

Windows XP SP2 and .NET framework 2.0.

Table 1 presents the timing statistics (hh.mm:ss.d)

for the different filtering modes which have been tested

with four different image sizes and four different kernel

dimensions. As mentioned earlier in the case of parallel

filtering only the slicing time is taken into account.

The data represented in Table 1 shows that the use

of Alchemi as computing backbone helps speeding up

the image filtering process. This performance gain

becomes more evident as the size of the image

increases. The best results for the given configuration

of Alchemi have been obtained with 256x256 and

512x512 slices. Figure 5 shows the comparison of

execution times of the default mode with the worst runs

of the parallel modes along with the time required to

divide the image into slices: it can be observed that

Alchemi gives always the best performance. In this

case the time spent to divide the image in slices is just a

small fraction of the overall execution time of the filter.

Even when the two parallel filtering modes (Threaded

and Alchemi) give comparable processing times the use

of Alchemi has an advantage in that it does not cause a

high percentage of CPU usage on the local machine.

6. Conclusion and Future Work

The use of Alchemi for image filtering – and of Grid

computing in general – is a real advantage and its

integration into ImageGrid has been a seamless task.

ImageGrid is a proof of concept effort demonstrating

seamless integration of desktop applications with light-

weight Grids. It also demonstrates the strategy used and

how it can be adopted in existing imaging software like

PaintShop Pro or Photoshop. Another interesting idea

is to try to plug-in Grids into the Paint.NET open

source project. Paint.NET is a .NET-based imaging

application which defines filters as plug-ins. Due to the

popularity of Paint.NET the introduction of such a

feature into its code base would really contribute to

making the Grid computing resources available to end

users with no burden.

Table 1. Filter timing (hh.mm:ss.d)

Filter Execution Timing

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

9x9 7x7 5x5 3x3 9x9 7x7 5x5 3x3 9x9 7x7 5x5 3x3 9x9 7x7 5x5 3x3

10205x1752 3072x2304 2048x1365 1024x683

Runs

E
x
e
c
u

ti
o

n
 T

im
e

Default - Single Node

Threaded - Single Node

Alchemi - Multiple Nodes

Slicing

Figure 5. Filter timing histogram.

7. References

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title”,

Journal, Publisher, Location, Date, pp. 1-10.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title,

Publisher, Location, Date.

[1] Gonzales, R.C. and R.E. Woods, Digital Image

Processing, 2nd Ed., Prentice Hall, 2002.

[2] I. Foster, C. Kesselman, and S. Tuekle, “The Anatomy of

the Grid: Enabling Scalable Virtual Organizations”,

International J. Supercomputer Applications, Vol 15, No. 3,

2001.

[3] I. Foster, “Globus Toolkit Version 4: Software for

Service-Oriented Systems”, IFIP International Conference

on Network and Parallel Computing, Springer-Verlag LNCS

3779, 2006, pp. 2-13.

[4] R. Buyya and S. Venugopal, “The Gridbus Toolkit for

Service Oriented Grid and Utility Computing: An Overview

and Status Report”, Proceedings of the First IEEE

International Workshop on Grid Economics and Business

Models (GECON 2004), IEEE Press, NJ, USA, Seoul, Korea,

April 23, 2004, pp. 19-36.

[5] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal,

“Alchemi: A .NETBased Enterprise Grid Computing

System”, Proceedings of the 6th International Conference on

Internet Computing (ICOMP'05), Las Vegas, USA, J une 27-

30, 2005.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Distributed

Computing in Practice: The Condor Experience",

Concurrency and Computation: Practice and Experience,

Vol. 17, No. 2-4, February-April, 2005, pp. 323-356.

[7] M. Migliardi, D. Kurzyniec, and V. Sunderam.

“Standards Based Heterogeneous Metacomputing: The

Design of Harness II”, International Parallel and Distributed

Processing Symposium (IPDPS-HCW), Ft. Lauderdale, FL,

April 2002.

[8] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V.

Sunderam, “Towards Self-Organizing Distributed Computing

Frameworks: The H2O Approach”, Parallel Processing

Letters, Vol. 13, No. 2, 2003, pp. 273–290.

[9] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra,

"NetSolve: Grid Enabling Scientific Computing

Environments", Grid Computing and New Frontiers of High

Performance Processing, Advances in Parallel Computing,

14, Grandinetti, L. eds. Elsevier, 2005.

[10] A. Bavier et. al., "Operating System Support for

Planetary-Scale Network Services", First Symposium on

Networked Systems Design and Implementation (NSDI), San

Francisco, CA, March 29-31, 2004, pp. 253-266.

[11] R.D. Stevens, A.J. Robinson, and C.A. Goble, "myGrid:

Personalised Bioinformatics on the Information Grid",

Proceedings of 11th International Conference on Intelligent

Systems in Molecular Biology, June 29–July 3, 2003,

Brisbane, Australia.

[12] J. Montagnat, V. Breton, and I.E. Magnin, "Using Grid

Technologies to Face Medical Image Analysis Challenges",

Biogrid'03, Proceedings of the IEEE CCGrid03, Tokyo,

Japan, May 2003.

[13] S.R. Amendolia et. al., "MammoGrid: A Service

Oriented Architecture based Medical Grid Application",

Proceedings of the 3rd International Conference on Grid and

Cooperative Computing (GCC'04), Wuhan, China, October

20-23, 2004.

[14] J.S. Grethe et. al., “Biomedical Informatics Research

Network: Building a National Collaboratory to Hasten the

Derivation of New Understanding and Treatment of

Disease”, Studies in Health Technology and Informatics.

Vol. 112, 2005, ISBN 978-1-58603-510-5, IOS Press,

Amsterdam, The Netherlands, 2005, pp. 100-109.

