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Abstract 
 

Image filtering is the use of computer graphics 

algorithms to enhance the quality of digital images or 

to extract information about their content. However 

rendering very large size digital images on a single 

machine is a performance bottleneck. To address this 

we propose parallelising this application on a desktop 

Grid environment. For parallelizing this application 

we use the Alchemi Desktop Grid environment and the 

resulting framework is referred to as ImageGrid. 

ImageGrid allows the parallel execution of linear 

digital filters algorithms on images. We observed 

acceptable speed up as a result of parallelising 

filtering operation through ImageGrid. We run the 

tests on different data sets by varying the dimension of 

the images and the complexity of the filters. Results 

demonstrate potential of Grid computing for desktop 

applications and that the speed up obtained is more 

consistent for large images and complex filters.  

 

1. Introduction 
 

Digital image processing [1] has nowadays become 

a common activity for every kind of users. If we went 

out with your digital camera we will most likely to have 

hundreds of pictures whose size is normally about 3 

megabytes; this means that if we want to retouch or 

adjust them we will have to deal with hundreds of 

megabytes. If we consider image processing for 

scientific purposes we will have terabytes of data and, 

probably, days of processing time. Digital image 

management plays an important role in astronomy 

(earth observation, space probes) and medicine 

(medical imaging as Magnetic Resonance Imaging and 

microscopy): in these cases large datasets of huge 

images are produced daily. For example radar images 

are normally 25K x 5K pixels while microscope images 

can range from 40K x 40K to 100K x 100K pixels. 

This means having to process images whose size ranges 

from hundreds of megabytes to gigabytes. The common 

tasks performed on these images range from image 

enhancement to features extraction and content 

retrieval and they basically rely on some sort of image 

filtering. Image filtering is a CPU intensive task and 

processing images of the above dimensions becomes 

prohibitive even on a fast workstation. Fortunately, it is 

possible to take advantage of distributed systems like 

computational Grids, to reduce the filtering processing 

time or to rely on wide network storage. 

Computational Grids [2] are a particular kind of 

distributed systems which use the resources of many 

separate computers connected through the Internet and 

expose them as a virtual computer architecture that is 

able to distribute process execution across a parallel 

infrastructure. Grids can provide different kind of 

resources to the user: CPU cycles (Computational 

Grids), disk space (Data Grids) and services (Service 

Grids). A Grid is an intrinsically dynamic system: 

resources constituting the system change during time 

and normally come from different domains and 

organisations. When these resources are spread across 

an enterprise, provide services to users within that 

enterprise and are managed by a single organisation, 

we are considering an Enterprise Grid (which is 

popularly called as a Desktop Grid). 

The “Grid concept” is now considerably established 

in the IT and there are many grid infrastructures that 

can be used (Globus [3], Gridbus [4], Achemi [5], 



Condor [6], NetSolve [9], Harness II [7], and H20 [8]).  

The real challenge now lies in making Grid computing 

infrastructures easily accessible and usable to the end 

users by seamlessly integrating their desktop 

applications with Grids on demand (whenever they 

need a huge computing power). In other words the Grid 

should be used as a service in any kind of application. 

At the moment Grid computing is already being 

employed widely as a service in e-Science and e-

Business applications. In particular, in the case of e-

Science, Grids are used to process large amounts of 

data generated by scientific experiments that evaluate 

models, and to share large datasets among researchers. 

Some projects that have been actively used by research 

communities include: PlanetLab [10], myGrid [11], 

MediGrid [12], MammoGrid [13], and BIRN [14]. 

These large-scale efforts predominantly focused on 

the use of high-end computing systems such as clusters 

and supercomputers to build computational Grids for 

scientific applications.   Our work complements them 

by demonstrating how a light weight Grids can be 

established (by leveraging existing technologies) and 

easily harnessed for performing image filtering 

operation. Filtering is the basis for many image 

manipulation tasks performed by any imaging 

application running on either desktop or workstation. 

Nowadays desktop users deal with ever-growing image 

sizes with the proliferation of digital cameras and the 

demand for more computing power to quickly perform 

image editing tasks has been growing. It is no more 

uncommon to manipulate images as large as 10K x 2K 

pixels on desktop computers. Almost all professional 

and semi-professional imaging applications allow 

extending their features with the use of plug-ins: by 

developing a plug-in we can easily enhance such 

applications and make them Grid aware. A smooth 

integration of desktop applications with enterprise grids 

(desktop grids) rapidly enhances adoption of Grids for 

common day-to-day applications. 

In this article we present our work, called 

‘ImageGrid’, an application that has been developed as 

a proof of concept to demonstrate the advantages 

desktop Grid-based image filtering and to show how 

desktop applications can easily exploit Grid-services. 

ImageGrid allows performing basic image editing 

operations and let the user run them either locally or 

remotely by executing the filters on an Alchemi Grid. 

The integration between Alchemi and ImageGrid is 

seamless and does not require the user to learn much 

about the Grid. The user just has to provide his/her 

credentials and the host name/IP address of the 

Alchemi Grid Manager. For these reasons, ImageGrid 

is a good point to start and to learn from, if we wish to 

make Grid-aware professional imaging applications. 

 

2. Image Filtering: Basics in Brief 
 

A digital image is a representation of a two-

dimensional image as a finite set of digital values, 

called picture elements or pixels. Digital images are 

commonly represented with 2D matrices whose 

elements axy maintain the color information (values for 

the red, green, and blue channels and transparency) of 

the corresponding point in the image at the given 

coordinates (x,y)
1
. 

Digital image processing is the use of computer 

algorithms to perform processing on digital images or 

make modifications to them. In particular, image 

filtering is the process of applying computer algorithms 

– called digital filters – to an image in order to create a 

new one. Image filtering allows performing basic 

image editing tasks such as image smoothing, 

sharpening, blurring, edge detection, mean removal and 

embossing. All these operations can be implemented by 

a particular class of filters called linear filters. Linear 

filters compute each pixel-value as a linear 

combination of the values of a set of pixels in the 

image. Usually this set is defined by the pixels 

contained in a square region centered on the pixel to be 

evaluated. In this case, the coefficients corresponding 

to each pixel can be arranged in a matrix, called the 

kernel, whose dimensions are defined by the previous 

square region. If the filter is described by a kernel it is 

possible to express the value of each new pixel as the 

result of the following 2D discrete convolution 

operation: 
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Expression 1. Pixel Convolution. 
 

In the expression N is the dimension of the kernel 

matrix K and Pfilter and P are the functions which return 

the corresponding pixel information, given the 

coordinates x and y. Figure 1 describes the entire 

process of determining the new value of a pixel. The 

summations in Expression 1 can be easily translated 

into a two nested for-loops and by iterating this 

expression for all the pixels we can implement the 

filtering algorithm.  

                                                           
1
 Hereafter we will omit the term digital that is always implied. 



 

Figure 1. Computing the value of the filtered pixel. 
 

 

Actually, the real implementation of the filtering 

algorithm has to take into account some issues that are 

not captured by the previous expression. These are: 

pixel value underflow, overflow
2
 and edge-pixel 

filtering. 

 

2.1. Pixel Value Overflow and Underflow 
 

So far we have not looked into the structure of the 

data maintained for each pixel and have implicity 

assumed that pixel color information is represented by 

a scalar value. Actually, the structure of such data 

strictly depends on the image encoding format and the 

scalar value has to be manipulated in order to extract 

the pixel information. If we consider images using a 

24bppRGB encoding format, then the scalar value 

represented by the 24 bits has to be separated into the 

three corresponding bytes with each byte representing a 

single colour channel. This means that the previous 

expression has to be computed for each colour channel. 

Moreover, since the encoding assigns only one byte per 

channel, a pixel value for each channel ranges from 0 

to 255, and the possible overflows or underflows have 

to be rounded to the range limits and the resulting value 

has to cast into a byte value. 

                                                           
2
 The terms underflow and overflow respectively identify the 

condition in which a quantity goes out of an established range by 

assuming a value smaller than the minimum or bigger than the 

maximum. The expression pixel value underflow (overflow) means 

that the numeric value of the pixel is out of range. 

2.1. Edge-pixel Filtering 
 

Pixels on the edges of the image cannot be 

evaluated with the discussed algorithm since the square 

region required by the kernel is not properly defined. In 

other words, when we want to compute the value of 

Pfilter(0,0) we need the information of P(-(N-1)/2, -(N-

1)/2) which does not exist. In order to solve this 

problem the original image is enlarged by (N-1)/2 

pixels on each side and the new regions are filled 

according to a given algorithm
3
. 

 

3. Grid-based Image Filtering 
 

Given an image the performance of linear filtering 

heavily depends on the kernel dimension. For example, 

given a kernel dimension of N, for each pixel channel 

we will have: 

• NxN sums 

• NxN products 

Hence the complexity for each pixel is O(N
2
). This 

means that for large images the filtering process can 

take a lot of time and the operation is computationally 

intensive. A possible solution to reduce the processing 

time and the CPU workload is trying to parallelise the 

process and to take advantage of distributed computing 

infrastructures such as computational Grids. 

                                                           
3
 There are normally three different techniques used: zero fill, 

mirror fill, and stretch fill. The first strategy assigns to each pixel 

the black color value. The second one mirrors the pixel values by 

taking the original image borders as symmetry axis while the third 

one just replicates the pixel value of edge pixels. 



 

Figure 2. Grid-based image filtering. 

 

This operation is actually possible because linear 

filtering is a local operation; this means that in order to 

compute the value of one pixel we need the information 

of only the nearby pixels and not of the entire image. 

More precisely, given a kernel of dimension N, in order 

to determine the value of pixel (x,y), we need to access  

the pixels contained in the square region centered on 

that pixel which has an edge of N pixels. Normally an 

even value of N ranging from 3 to 9 is chosen. A value 

of 3 is for fast filters while a value of 9 leads to more 

accurate but more computationally intensive filters. 

Due to this locality property of linear filtering, we 

can parallelise the execution by dividing the image into 

several adjacent rectangular regions and model the 

filtering of each region as a separate Grid task. After all 

the tasks are executed the filtered regions are 

recomposed into the resulting image. Figure 2 

describes the entire process. 

The task of filtering a large image can be broken 

down into a set of filtering tasks performed on smaller 

images. The operation performed on each rectangular 

region is the same as that for the entire image. If we 

overlap the rectangular regions by half of the kernel 

dimension the filtering process becomes an 

embarrassingly parallel problem and there will be no 

need of inter-task communication. Grid-based filtering 

adds additional time to the entire filtering task since we 

need to perform the following operations: 

• Divide the image into rectangular regions 

• Connect to the Grid and send tasks 

• Recompose the filtered regions into the resulting 

image after the tasks are completed 

The time required to perform these sub-tasks 

depends on the number of regions we decide to create; 

for these reason choosing the right number of regions 

can greatly influence the overall computation time. 

Nonetheless, the time required to perform these tasks is 

only a fraction of the entire computation time and is far 

less than the time required to perform filtering. This is 

particularly true for large images. Moreover, we can 

observe that image recomposition can be performed 

while the filtering process is still running without 

spending additional time. The reason behind this is that 

as soon as the grid tasks are completed the 

corresponding sub-region in the resulting image is 

filled with the filtered data. The recomposition time is 

then negligible in comparison to the slicing and the 

applicaction setup times. Thus the recomposition time 

can be excluded for computing the overall filtering 

time. 

 

4. Exploiting the Power of the Grid: 

ImageGrid Implementation 
 

ImageGrid is an application that allows users 

performing basic filtering operations on digital images. 

It relies on the Alchemi Grid computing infrastructure 

to perform filtering. ImageGrid allows you to run 

image filters in three different modes: 

• Default: serial execution on the local node. 

• Threaded: parallel execution on the local node. 

• Alchemi: on multiple nodes by using Alchemi. 

The application keeps track of the execution timing 

along with a wide range of statistics for the parallel 

execution modes. In particular, it is possible to see the 

timing for each slice and to collect the maximum, the 

minimum and the average execution time. By using this 

historical data the user can be supported in selecting 

the best execution mode for a given image.



Figure 3. Alchemi architecture. 

 

ImageGrid is developed using the .NET Framework 

2.0 and does not require anything more than the 

framework and the Alchemi libraries available for free 

download from http://www.alchemi.net. 

 

4.1. Alchemi 
 

Alchemi is an open source, .NET-based enterprise 

Grid computing framework developed by researchers at 

the GRIDS laboratory, in the Computer Science and 

Software Engineering Department at the University of 

Melbourne, Australia. It lets the user to painlessly 

aggregate the computing power of networked machines 

into a virtual supercomputer and develop applications 

to run on the Grid with no additional investment and no 

discernible impact on users. Alchemi supports the 

Microsoft Windows operating system and the main 

features offered by the framework are: 

• Virtualisation of compute resources across the 

LAN/internet 

• Ease of deployment and management 

• Web Services interface for interoperability with 

Grid meta-schedulers 

Three components constitute the architecture of an 

Alchemi Grid (see Figure 3): 

• The Manager 

• Te Executor 

• The User application 

The Manager node is a computer with the Alchemi 

Manager installed. Its main function is to service user 

requests for application distribution. On receiving a 

user request, the Manager authenticates it, and 

distributes the workload across the various executors 

that are connected to it. The Executor node is the node 

that actually performs the computation. By using the 

Alchemi Software Developer’s Kit users can easily 

create the applications and run and monitor their 

execution on the Grid.  

Alchemi offers two different programming models:  

• Object-oriented Grid thread programming 

model. This model is suitable for Grid 

application development: a Grid application 

consist of a set of Grid threads which define the 

tasks performed by the application and are 

executed on the Grid. 

• File-based Grid job model. This model allows 

legacy applications running on the Grid. In this 

case the users submit a job to the Grid which 

consists of an executable that will be run on the 

Grid Executor nodes. 

The first model gives full access to all the APIs 

available with the .NET framework while the second 

model is used to Grid-enable legacy or existing 

applications without changing the codebase. Alchemi is 

widely used for a variety of applications: teaching, 

setting up test Grids and commercial applications. 

 

4.2. ImageGrid 
 

ImageGrid is the GUI application which allows 

users performing basic image editing using predefined 

filters. Users can load images from the file system, 

apply the filters and save the results. It is possible to 

apply either predefined filters (edge detection, 

smoothing, Gaussian blur, sharpening, mean removal, 

and emboss) or custom filters by defining the kernel 

matrix in the settings dialog. This dialog provides the 

connection parameters to the Alchemi Grid and other 

properties for the parallel execution such as the slices 

dimension of the slices and reconstruction mode.



 
(a) Original Image 

 
(b) Emboss Filetred Image 

Figure 4. A snapshot of ImageGrid GUI. Image used in creating emboss is a photo of ones of the 
authors (Buyya) taken with Prof. Niklaus Wirth who is the inventor of Pascal language. 

 

 Figure 4 shows the structure of the GUI and its 

usage in emboss operation. The working area hosts a 

tabbed interface in which the user can compare the 

filtered image and the original one. All the information 

about the current filtering task (image dimensions, size, 

filtering mode, and kernel) are maintained into a 

property page. ImageGrid records the execution times 

of each filters and provides a history of all the filters 

run: this feature allows users to compare the different 

runs quickly. 

The GUI acts as the front-end of the imaging library 

which actually performs image filtering. All the filters 

must implement the IFilter interface which defines the 

basic operation each filter should support. In order to 

integrate the GUI with Alchemi we developed a filter 

class implementing the IFilter interface which connects 

to the Alchemi Grid computing infrastructure and 

applies filtering as described in Figure 2. 

 

5. Performance Evaluation 
 

We have run some tests in order to compare the 

performance of the different execution modes. We set 

up different tests by varying the following parameters: 

• Image dimensions 

• Slice dimensions  

• Kernel dimensions 

In order to run the tests we used a Pentium 4, 2.80 

GHz with 2 GB RAM as local machine, while the 

Alchemi Grid was composed by 6 - 1 manager and 5 

executors -  Dell OPTIPlex GX 2f0 Pentium IV 3.40 

GHz, 1.5 G of RAM connected through a 100 Mbps 

LAN. All the machines used in the test were running 

Windows XP SP2 and .NET framework 2.0.  

Table 1 presents the timing statistics (hh.mm:ss.d) 

for the different filtering modes which have been tested 

with four different image sizes and four different kernel 

dimensions. As mentioned earlier in the case of parallel 

filtering only the slicing time is taken into account. 

The data represented in Table 1 shows that the use 

of Alchemi as computing backbone helps speeding up 

the image filtering process. This performance gain 

becomes more evident as the size of the image 

increases. The best results for the given configuration 

of Alchemi have been obtained with 256x256 and 

512x512 slices. Figure 5 shows the comparison of 

execution times of the default mode with the worst runs 

of the parallel modes along with the time required to 

divide the image into slices: it can be observed that 

Alchemi gives always the best performance. In this 

case the time spent to divide the image in slices is just a 

small fraction of the overall execution time of the filter. 

Even when the two parallel filtering modes (Threaded 

and Alchemi) give comparable processing times the use 

of Alchemi has an advantage in that it does not cause a 

high percentage of CPU usage on the local machine. 

 

6. Conclusion and Future Work 
 

The use of Alchemi for image filtering – and of Grid 

computing in general – is a real advantage and its 

integration into ImageGrid has been a seamless task. 

ImageGrid is a proof of concept effort demonstrating 

seamless integration of desktop applications with light-

weight Grids. It also demonstrates the strategy used and 

how it can be adopted in existing imaging software like 

PaintShop Pro or Photoshop. Another interesting idea 

is to try to plug-in Grids into the Paint.NET open 

source project. Paint.NET is a .NET-based imaging 

application which defines filters as plug-ins. Due to the 

popularity of Paint.NET the introduction of such a 

feature into its code base would really contribute to 

making the Grid computing resources available to end 

users with no burden. 



Table 1. Filter timing (hh.mm:ss.d) 
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Figure 5. Filter timing histogram. 
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