ITL: An Isolation-Tree based Learning of Features for Anomaly Detection in Networked Systems

SARA KARDANI-MOGHADDAM, RAJKUMAR BUYYA AND KOTAGIRI RAMAMOHANARAO
Cloud Computing and Distributed Systems (CLOUDS) Laboratory
School of Computing and Information Systems
The University of Melbourne, Australia

Abstract

With the advances in monitoring techniques and storage capability in cloud, a high volume of valuable monitoring data is available. The collected data can be used for profiling of applications behavior and also detecting anomalous events that identify unexpected problems in the normal functioning of the system. However, the fast changing environment of cloud brings a need for fast and efficient analytic solutions to monitor the cloud system for its correct operational behavior. Isolation-based method is an effective approach for detecting anomalies. This method randomly samples the data and builds several isolation-trees (iTrees) data structure to find anomalous records. However, a common challenge of iTrees as well as other anomaly detection algorithms is dealing with high dimensional data which can affect the accuracy and execution time of the process. This is an important issue for cloud hosted applications where a variety of problems can affect different groups of features from low-level network data to high level application performance. Therefore, refining the feature space for removal of irrelevant attributes is a critical issue.

In this paper, we introduce an iterative iTree based Learning (ITL) algorithm to handle high dimensional data. ITL takes the advantage of iTree structure to learn relevant features for detecting anomalies. Initially, it builds iTrees making use of all features of the data and in the iterative steps, it refines the set of the features to find the most relevant ones by selecting highly ranked anomalies discovered in the previous iteration. Experiments are conducted to validate the performance of our proposed ITL method on several benchmark datasets. The results show that ITL can achieve significant speedups with appropriate choice of the number of iTrees while achieving or exceeding the AUC values of other state-of-the-art Isolation-based anomaly detection methods.

Keywords: Feature Analysis, Performance Management, Network Analysis, Isolation-Trees, Anomaly Detection

1. Introduction

Anomaly detection is an important field of the knowledge discovery with a rapid adoption in a variety of applications. The main goal is to find interesting patterns in the data that deviates from the
expected behavior of the application. In the context of cloud environment, this process is utilized for a variety of performance management applications. For example, intrusion detection systems provide frameworks that monitor the performance of the network to find misbehaving users, possible misconfiguration or serious conditions from an attack on the system [1]. Similarly, SMART (Self-Monitoring, Analysis and Reporting Technology)-based disk failure prediction applications perform regular monitoring and anomaly detection analysis to increase the reliability of storage systems [2].

With the advances in data collection techniques, storage capabilities and high performance computing, a huge volume of monitoring data is collected from continuous monitoring of the system attributes. Despite the appealing benefits of access to larger amounts of the data for better diagnostics of the anomalous events, the great challenge is how to deal with high volume of information that should be processed effectively in real-time. The increase in the volume of data is due to:

1) Recording of fine grained measurements for long periods of time which increases the number of records to be processed. 2) High dimensional data with many features that describe various aspects of the target system. The curse of dimensionality or having many features can make the problem of anomaly detection in high dimensional data more complex in terms of the runtime efficiency and accuracy [3]. This is also becoming a critical issue in cloud systems which are exposed to several performance problem at different layers of computing. As a result, the collected performance data is heterogeneous and includes a variety of attributes from low-level operation logging data to hardware specific features, applications performance data or network related information. On the other hand, these performance data are exposed to a variety of problems such as different types of attack and intrusion patterns in network related performance data. Particularity, the general anomaly detection techniques can not perform well for high dimensional network data with a variety of data types and embedded meaningful subspaces from different sources [4]. Moreover, the collected data is dynamic and rapidly changing. All of these, together, highlights the need for highly adaptable and fast analytic solutions. Therefore, researchers are investigating more efficient techniques with the goal of better explorations of collected data and improving the quality of the extracted knowledge.

Traditional anomaly detection algorithms usually work based on the assumptions that highly deviated objects in terms of the common metrics such as distance or density measures have a higher probability of being anomalous (outliers in statistical methods). While these assumptions are applicable in general, their accuracy can be affected when the base assumptions do not hold, such as in the high dimensional data [5, 6]. Moreover, in the traditional methods, anomalies are detected as a by-product of other goals such as classification and clustering. More recent approaches, such as isolation-based methods directly target the problem of anomaly detection with the assumption that anomalies are few and different [7, 8]. However, the problem of having high number of noisy features can also affect these methods. In order to improve the efficiency of detection algorithms in high dimensional data, a variety of solutions such as random feature selection or subspace search
methods are proposed \[9, 10\]. However, the proposed approaches are usually considered as the preprocessing steps which are performed as a separate process from the anomaly detection. Although this separation makes them applicable for a variety of algorithms, finding the relevant features in the datasets with many noisy features can be challenging when the mechanism of target detection algorithms in finding the anomalies is ignored. Therefore, a question arises that is there a way that one can improve the efficiency of anomaly detection by extracting knowledge from the assumptions and the process which leads to the identifying potential anomalies in the data? Having this question in mind, in this paper, we address the problem of anomaly detection in high dimensional data by focusing on the information that can be extracted directly from the Isolation-based mechanism for identifying anomalies. The reason for selecting this technique as the base process is that it is known as a category of anomaly detection techniques that is designed to directly target the most common characteristics of anomalous events such as rarity compared to other objects. We exploit the knowledge that comes from the detection mechanism to identify the features that have higher contribution in the separation of the anomaly instances from normal ones. This approach helps to identify and remove many irrelevant noisy features in high dimensional data. The proposed method, Isolation-Tree (iTree) based Learning (ITL), addresses the problem of anomaly detection in high dimensional data by refining the set of features with the aim of improving the efficiency of the detection algorithm. These are the features that appear in the short branches of iTrees. The refining procedure helps the algorithm to focus more on the subset of features where the chances of finding anomalies are higher while reducing the effect of noisy features. The process helps to obtain more informative anomaly scores and generates a reduced set of the features that improves the detection capability with better runtime efficiency in comparison to the original method that uses all the features.

Accordingly, the major contributions of this work are as follows:

- Proposed an iterative mechanism for structural learning of data attributes and refining features to improve the detection efficiency of Isolation-based methods.

- Exploited the inherent knowledge from iTree data structure to reduce the effect of noisy and irrelevant features.

- Efficiently found an essential subset of the features that can effectively detect anomalies. The simplified model is extremely fast to train so that the model can be periodically trained when the important features largely remain unchanged.

- Carried out experiments on network intrusion datasets and other high-dimensional benchmark datasets to demonstrate the effectiveness of ITL in improving the anomaly detection results as well as runtime efficiency.
ITL focus on data engineering part of data analytics which also helps to speed up the process of anomaly detection. We have compared ITL with the state-of-the-art feature learning based framework [11] and show that not only ITL improves results as an ensemble learning method with the bagging of scores, but also it can discover a subset of the features that can detect anomalies with reduced complexity. Since anomalies can be different and dependent on the context of the datasets, we have considered the heterogeneity by analyzing different benchmark datasets with a variety of attributes and anomaly patterns.

The remainder of this paper is structured as follows. Section 2 reviews some of the related works in the literature. Section 3 overviews the basic idea of the isolation-based anomaly detection and the main assumptions in problem formulation. Section 4 presents ITL framework and details the steps of the algorithm. Section 5 presents experiments and results followed by time complexity and runtime analysis, and finally Section 6 concludes the paper with directions for future research.

2. Related Work

The general concept of anomaly detection indicates the exploration and analysis of data with the aim of finding patterns that deviates from normal or expected behavior. The concept has been widely used and customized in a range of applications such as financial analysis, network analysis and intrusion detection, medical and public health, and etc [1, 12, 13]. The growing need for anomaly related analysis has led researchers to propose new ways of addressing the problem where they can target unique characteristics of the anomalous objects in the context of the target applications. For example, distance based algorithms address the problem of anomaly detection based on the distance of each instance from neighborhood objects. Greater the distance, the more likely that the instance presents abnormal characteristics in terms of the values of the features [14, 15]. Alternatively, [16, 17] define the local density as a measure for abnormality of the instances. The objects with a low density in their local regions have a higher probability of being detected as anomaly. Ensemble based methods try to combine multiple instances of anomaly detection algorithms in order to improve the searching capability and robustness of the individual solutions [18, 11].

Performance anomaly detection has also widely been applied in the context of cloud resource management to identify and diagnose performance problems that affect the functionality of the system. These problems can happen at different levels of granularity from code-level bug problems to hardware faults and network intrusions. The fast detection of problem is a critical issue due to the high rate of changes and volume of information from different sources. A variety of techniques from statistical analysis to machine learning solutions are used to process collected data. For example, Principal Component Analysis (PCA) is used in [19] to identify most relevant components to various types of faults. [2] applies random forests on various exported attributes of drive reliability to identify disk failures. [20] exploits self-organizing map technique to pro-actively distinguish anomalous events.
in virtualized systems. Clustering techniques are utilized by [21] to split the network related log data into distinctive categories. The generated clusters are then analyzed separately by anomaly detection systems to identify intrusion and attack events. [22] uses entropy concept on network and resource consumption data to identify denial of service attacks.

While the above mentioned approaches show promising results for a variety of problems, the exploding volume and speed of the data to be analyzed require complex computations which are not timely efficient. A common problem which makes these difficulties even more challenging is the high dimensional data. For example, the notion of distance among objects loses its usability as a discrimination measure as the dimension of data increases [5, 3]. Methods based on the subspace search or feature space projections are among approaches which are proposed as possible solutions for these problems [23]. The idea of dividing a high-dimensional data to groups of smaller dimensions with related features is investigated in [24]. This approach requires a good knowledge of domain to define meaningful groups. PCA based methods try to overcome the problem by converting the original feature set to a smaller, uncorrelated set which also keeps as much of the variance information in data as possible [25]. PINN [26] is an outlier detection strategy based on the Local Outlier Factor (LOF) method which leverages random projections to reduce the dimensionality and improve the computational costs of LOF algorithm. Random selection of the features is used in [27] to produce different subspaces of the problem. The randomly generated sub problems are fed into multiple anomaly detection algorithms for assigning the anomaly scores. While random selection can improve the speed of feature selection process, as the selection is completely random there is no guarantee of having informative subspaces of data to improve the final scoring. A combination of correlation based grouping and kernel analysis are applied in [28] for feature selection and anomaly detection in time-series data. Feature reduction is done by selecting representative features of final clusters. [9] and [11] propose two different variations of subspace searching. The former tries to find high contrast subspaces of the problem to improve the anomaly ranking of density based anomaly detection algorithms. The subspace searching is based on the statistical features of the attributes and is performed as a preprocessing step separated from target anomaly detection algorithms. The latter, in contrast, integrates the subspace searching as a sequential refinement and learning in anomaly detection procedure where the calculated scores are used as a signal for the selection of next subset of the features. Our proposed anomaly detection approach is inspired by such models and tries to refine the subset of the selected features at each iteration. However, we try to take advantage of the knowledge from the structure of constructed iTrees instead of building new models for the regression analysis.
3. Model Assumptions and an Overview on Isolation-based Anomaly Detection

The iterative steps in ITL process are based on the iTree structure for assigning the anomaly scores as well as identifying features. We choose isolation-based approach and specifically IForest algorithm [29, 7] in this work due to its simplicity and the fact that they target the inherent characteristic of the anomalies as being rare and different without any prior assumption on their distributions. We note that the target types of the anomaly in this paper are instances which are anomalous in comparison to the rest of the data and not as a result of being part of the larger groups [1, 30]. This is also consistent with the definition of anomaly in many cloud related performance problems especially network and resource abnormalities.

The idea of Isolation-based methods is that for an anomaly object we can find a small subset of the features that their values are highly different compared to the normal instances and therefore it can quickly be isolated in the feature space of the problem. IForest algorithm demonstrates the concept of the isolation and partitioning of the feature space through the structure of trees (iTrees), where each node represents a randomly selected feature with a random value and existing instances create two new child nodes based on their values for the selected feature. It is demonstrated that the anomaly instances usually create short branches of the tree and therefore, the length of the branch is used as a criteria for the ranking of the objects [29]. Consequently, anomaly scores are calculated as a function of the path length of the branches that isolates the instance in the leaf nodes on all generated iTrees. This process can be formulated as follows [7]: Let \(h_i(x) \) be the path length of instance \(x \) on iTree \(t \). Then, the average estimation of path length for a subset of \(N \) instances can be defined as Equation 1:

\[
C(N) = \begin{cases}
2H(N - 1) - 2 \frac{(N-1)}{N} & \text{if } N > 2, \\
1 & \text{if } N = 2, \\
0 & \text{otherwise}
\end{cases}
\]

(1)

where \(H(N) \) is the harmonic number and can be calculated as \(\ln(N) + Euler_Constant \). Using \(C(N) \) for the normalization of expected \(h(x) \) of instance \(x \) on all trees, the anomaly scores can be calculated as follows:

\[
s(x, N) = 2^{-\frac{H(h(x))}{C(N)}}
\]

(2)

Considering this formula, it is clear that anomaly scores have an inverse relation with the expected path length. Therefore, when the average path length of an instance is close to zero, the anomaly score is close to 1, and vise versa.

Figure 1 shows a graphical representation of the isolation technique for a dataset with two attributes \(X_1 \) and \(X_2 \). The left and right columns show examples of random partitions on the
attribute space and their corresponding tree structures to isolate a normal and anomaly instance respectively. As it is shown, instance A (anomaly) can be isolated quickly considering the sparsity of values of X_1 around this instance. Though this example is a simple case with just two attributes, the general idea can be extended to the problems with many features and variety of distributions.

Considering the above explanations, ITL process is based on an idea that iTrees can also give information on important features for detection purpose. Therefore, ITL analyzes the generated iTree structure to extract information about the features that have more contribution in creating short branches and detected anomalies. In order to better explain the problem, let us assume that the input D is a matrix of N instances, each instance explained with a row of M features such that:

$$D = \{(X_i), 1 \leq i \leq N|X_i = (x_{ij}), 1 \leq j \leq M, \quad x_{ij} \in R\}$$ \hspace{1cm} (3)$$

We have excluded nominal data in our assumptions and definition of Equation 3. However, the ITL process is general and can be combined with solutions which convert categorical data to numerical to cover both cases [11]. We formulate the problem as follows: Given matrix D as the input, we try to iteratively remove some irrelevant features from the feature space of D, keeping the more relevant features for the detected anomalies at each step in an unsupervised manner. The goal is to increase the quality of the scores in terms of assigning higher scores to the true anomaly points by reducing the effect of noisy features. The output at each step k is a set of the scores S_k on a set of the reduced features M_k. The idea is that the removal of noisy features makes it easier to
Figure 2: ITL Framework. The initial input is a matrix of N instances with M features. An ensemble of iTrees is created. Then, top ranked identified anomalies are filtered. The iTrees are analyzed for filtered instances to create a list of ranked features.

focus on the relevant partitions of the data, where the values of the features show higher deviations for the anomalous objects in comparison to the normal ones. As a result, the ranking of the input objects would improve with regard to the true detected anomalies.

4. ITL Approach

Figure 2 shows the main steps in ITL framework. As we already discussed in Section 3, the iTree structure forms the base of the ITL learning phase following the assumption that short branches in the structure of iTree are generated by the attributes with higher isolation capability. In another words, a subset of the attributes which are creating the nodes in the short length branches can from a vertical partition of the data that localize the process on anomaly related subset of the data. As we can see in Figure 2, the process is completely unsupervised with the input matrix as the only input of each iteration (that is we have no information of anomalous instances). There are four main steps in the ITL process and these are:

1. Building iTrees Ensemble: IForest creates a set of the iTrees from input data. This is a completely unsupervised process with random sampling of the instances/features to create the splitting nodes in each tree.

2. Horizontal partitioning: The anomaly score for each instance is computed based on the length of the path traversed by the instance on the generated iTrees [7]. The final score shows the degree of outlierness for the instance. Our goal is to discover important features based on their contribution in isolation of anomaly instances. The low score instances do not affect the determination of the important features for anomaly detection and therefore, we can remove them reducing the data size.

3. Extracting Feature Frequencies: We create a frequency profile of occurrences of different features observed during traversal of short branches of iTrees. These features have high probability of detecting anomalous instances.
Algorithm 1: ITL Process

input: \(D = (X_1, X_2, ..., X_N), X_i \in \mathbb{R}^M : D \) is a matrix of \(N \) records, each record including \(M \) features

Parameter: \(th \): Anomaly score threshold value

output: Reduced Matrix, Scores

1. \(D' \leftarrow D \)
2. while not (There are unseen features) do
3. Build \(iTrees \) ensemble using iForest on \(D' \)
4. /* Calculate scores for all input instances using Equation 2 */
5. \(S = (S_k) = (s_{k1}, s_{k2}, ..., s_{kN}) \leftarrow \text{Scores}(iTrees, D') \)
6. /* Filter a small part of the input matrix with higher anomaly scores */
7. \(D_{\text{subset}} \leftarrow \{ x_i | x_i \in D' \land s_i \geq th \} \)
8. initialize \(Frequency \) as an array with length equal to number of features in \(D_{\text{subset}} \) all equal to zero
9. for tree \(\in iTrees \) do
10. for \(x \in D_{\text{subset}} \) do
11. update \(Frequency \) of features by adding the occurrences of each attribute seen while traversing from root node to the leaf node that isolates \(x \)
12. end
13. end
14. \(D' \leftarrow \{ x_{ij} | x_{ij} \in D' \land \text{frequency}(j) \geq \text{Average(frequency)} \} \)
15. end
16. return(\(D', S \))
4. Vertical Partitioning: Having a profile of the feature frequencies, a subset of the features that are identified to have a higher contribution in the abnormality of data are selected and other features are removed. This process creates a vertically partitioned subset of data as the input for the next iteration of the ITL.

This process is repeated multiple times until the termination condition is met. As we continuously refine the features, we expect to see improvement in anomaly detection process as the detection process becomes more focused on the interesting set of features. Therefore, the set of iTrees built during consecutive steps can be combined to create a sequence of the ensembles. Algorithm 1 shows pseudo code of ITL. A more detailed and formal description of the process is presented in the following section.

4.1. Feature Refinement Process

We assume that the input D is a matrix of objects labeled as one of the classes of normal or anomaly. These labels are not part of the ITL process as it is an unsupervised mechanism. They are used for evaluating the output results of proposed algorithms and other benchmarks for validation purpose. The goal is to find a ranking of the objects, so that the higher values imply higher degrees of abnormality. Considering this objective, the first step of ITL process is to build the initial batch of the iTrees from input matrix. IForest is used to create t iTrees. To create each iTree, ψ random instances are selected from D and each node of the tree is created by randomly selecting a feature and a value and splitting the instances based on this selection to form two branches. The output is iTrees ensemble and anomaly scores $S = (s_1, s_2, ..., s_N)$ computed for all instances based on Equation 2 (Lines 3-4, Algorithm 1).

After creating new iTrees, the next step is to reduce the target instances to be used for the learning procedure (Line 5). A threshold value (th) is defined and all instances with an anomaly score lower than this value are discarded. The idea behind this selection is to focus better on parts of the data which have higher degree of abnormality based on the iTrees structure as well as reducing the complexity of the problem. As the learning phase is the most time consuming part of the ITL process, this reduction dramatically decreases the runtime of the algorithm. The selection can also take advantage of the expert knowledge on the characteristics such as the contamination ratio of the dataset for defining a proper cut-off value of anomaly scores. The output of this step is a subset of the input matrix D (D') with p instances such that $p << |D|$. We emphasis that the process is unsupervised as we do not have the knowledge of anomalous instances. However, based on the assumption that anomalies are few and different, we expect to see many of the anomaly instances in D'. It should also be noted that the generation of each iTree is completely random in terms of the splitting features and value selection. Therefore, one tree may not be informative per se. However, when the random process is repeated to generate many number of trees, the overall observed patterns...
confirm the idea of short branch isolation of anomaly instances \cite{7}. This can be observed in Figure 1 as well. Generating iTree structure on high density regions requires many nodes and splitting conditions to isolate one instance, while for an anomaly instance there is one feature or more that can quickly differentiate that from the rest of the data.

The instances that passed the filtering procedure from previous step (highly ranked anomalies) are processed by each iTree from ensemble model to record the frequency of occurrences of features when traversing the trees. The frequency profile of the features allows to determine the important features relevant to detecting target anomalies. According to the formulas in Section 3 and their interpretation as an iTree structure, we expect to see a subset of more important features for anomalous instances in the short branches of trees. It should be noted again that these are the expected observations from an ensemble of many random trees and are not attributed to any specific iTree. Consequently, we keep the features whose frequencies are higher than the average of the frequency profile (Lines 6-12).

The above steps are repeated multiple times. The output is a set of the anomaly scores for each subset of the data, starting from full data with all features. Therefore, the iteration k of ITL process creates a set S_k of anomaly scores for all instances on reduced feature set M_k (M_0 is the full set of the features for the first iteration). We note that each iteration would produce potentially different set of anomalous points and hence different frequency profile of the features. The termination condition we choose is when the frequency of occurrences for all features is greater than one, meaning that every feature has seen at least one anomalous point in the short branches of iTrees. The idea behind this condition is that as the noisy features are removed during the iterative process, ITL produces better iTrees for detecting true set of the anomalies. Therefore, the observed features become more important in the detection process. When ITL reaches a state that all the features are present in the short branches, it indicates that all current features are contributing in the detection of anomalous instances. Therefore, the termination condition T_k at iteration k is evaluated as follows:

$$T_k = \begin{cases}
 \text{True} & \text{if } \text{Size}(M_k) \leq 1 \text{ or } \text{Frequency}_k > 0 \\
 \text{False} & \text{otherwise}
\end{cases} \quad (4)$$

where $\text{Size}(M_k)$ evaluates the number of remaining features at the iteration k. Frequency_k is the corresponding frequency profile which is an array of length M initialized by zero (Lines 6). The term $\text{Frequency}_k > 0$ evaluates the condition that the frequencies of all attributes in M_k are greater than zero. When T_k evaluates to true, ITL process terminates and the final outputs are evaluated as follows:

- **Bagging of the Scores:** Each iterative step of the ITL process produces score for each data point in D which represents the degree of anomalousness based on the corresponding set of the
reduced features. As we try to improve the detection capability of the ensemble by reducing the noisy features, we expect to get better anomaly scores in terms of the ranking of instances. Therefore, in this approach, the goal is to take advantage of the detection results from all iterations by averaging of the scores and defining a new score for each instance. Accordingly, the final score of each instance is calculated as follow:

$$S_f(x) = \frac{1}{K} \sum_{k=1}^{K} S_k(x)$$

where S_f is the final score and S_k is the score at iteration k from K iterations of ITL process.

• Reduced Level Scores: ITL produces an ensemble of iTrees on the important features for the anomaly detection. The generated iTrees on the reduced features can be used for detecting anomalies in new data. Therefore, the anomaly scores are calculated directly based on the extracted reduced feature set from the process.

5. Performance Evaluation

In this section, an empirical evaluation of ITL process on two network intrusion datasets and three other benchmark datasets is presented. The two sets of the experiments are designed to demonstrate the behavior of ITL in bagging and reduced modes on the target datasets. First, Section 5.1 presents the datasets and parameter settings of the experiments. Then, Section 5.2 shows the comparison results of ITL in the bagging mode with a recently proposed state-of-the-art sequential ensemble learning method and then investigates the improvements made by reduced level features in terms of both AUC and runtime analysis in a set of the cross validated experiments. Section 5.2.3 and Section 5.3 discuss runtime complexity and weakness/strong points of ITL approach.

5.1. Experimental Settings

Table 1 shows a summary of statistics for the benchmark datasets. All datasets are publicly available in UCI machine learning repository [31]. For U2R and DOS datasets which are network intrusion data set from Kddcup99, a down-sampling of attack classes is performed to create the anomaly class. In other datasets, the instances in minority class are considered as the anomaly.

In order to evaluate the results, we select Receiver Operating Characteristics (ROC) technique and present Area Under the Curve (AUC) as a measure of the accuracy of the system. AUC value summarizes the trade-off between true positive and false positive detection rates as shown in

\[\text{http://archive.ics.uci.edu/ml}\]
Table 1: Properties of Data used for Experiments. \(N\) and \(M\) are number of instances and features in each dataset, respectively.

<table>
<thead>
<tr>
<th></th>
<th>(N)</th>
<th>(M)</th>
<th>Anomaly Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>69363</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>U2R</td>
<td>69363</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>AD</td>
<td>3279</td>
<td>1558</td>
<td>13</td>
</tr>
<tr>
<td>Seizure</td>
<td>11500</td>
<td>178</td>
<td>20</td>
</tr>
<tr>
<td>SECOM</td>
<td>1567</td>
<td>590</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: AUC results for the base IForest, ITL and CINFO. \(M\) and \(M'\) show the size of the original and reduced features for ITL. The best AUC for each dataset is highlighted in bold.

<table>
<thead>
<tr>
<th></th>
<th>IForest</th>
<th>CINFO</th>
<th>ITL</th>
<th>ITL Feature Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(M)</td>
</tr>
<tr>
<td>DOS</td>
<td>0.981</td>
<td>0.971</td>
<td>0.981</td>
<td>37</td>
</tr>
<tr>
<td>U2R</td>
<td>0.874</td>
<td>0.894</td>
<td>0.901</td>
<td>37</td>
</tr>
<tr>
<td>SECOM</td>
<td>0.551</td>
<td>0.655</td>
<td>0.594</td>
<td>590</td>
</tr>
<tr>
<td>AD</td>
<td>0.704</td>
<td>0.850</td>
<td>0.856</td>
<td>15584</td>
</tr>
<tr>
<td>Seizure</td>
<td>0.989</td>
<td>0.987</td>
<td>0.990</td>
<td>178</td>
</tr>
</tbody>
</table>
Equation 6 and 7 under different threshold values. Higher AUC indicates better performance with regard to the detected anomalous instances.

\[
TPR = \frac{TP}{TP + FN} \quad (6)
\]

\[
FPR = \frac{FP}{FP + TN} \quad (7)
\]

ITL process is implemented based on the publicly available python library, scikit-learn [32]. Unless otherwise specified, the values of the parameters for iTree generation step of ITL process are according to the recommended settings as explained in [7]. The value of other parameters are set based on the experimental tunings. The threshold value for the horizontal partitioning (\(th\) in Algorithm 1) is determined by assuming a contamination ratio equal to 0.05% for all datasets. This means that the cut-off threshold is identified so that 0.05% of the objects have a score higher than the \(th\) which is good enough considering the number of instances and the contamination ratio in our target datasets. The frequency profiling is done on the branches with maximum length 4. This threshold has been selected based on the average length of the trees which is dependent on the sample size and therefore constant in all experiments. To ensure comparativity, the number of trees for the IForest algorithm in all methods is the same and is between 600 to 900 trees.

For the comparison, we have selected a recently proposed sequential learning method, CINFO, designed for outlier detection in high dimensional data [11]. CINFO works based on lasso-based sparse regression modeling to iteratively refine the feature space. As their method is general, we select the IForest based implementation which considers the scores generated by IForest algorithm as the dependent variable of the regression model. Due to randomness feature of iTree generation, each experiment is repeated for minimum 5 times and the average of results are reported. For CINFO, the number of repeated experiments is based on their recommended values to have stable results [11].

5.2. Experiment Results

5.2.1. ITL with Bagging of the Scores

Table. 2 shows the AUC results for the base IForest algorithm as well as both ITL and CINFO learning methods. The best results are highlighted in bold. As the results show, ITL process improves the performance of IForest by combining the scores from various subsets of the feature space. The best AUC results are achieved for \(AD\) dataset for which the results of ITL shows a dramatic improvement (around 22%) compared to the base method. This is a result of the higher ratio of noisy features in this dataset. In a comparison to CINFO method, same or better performance are observed for 4 of the 5 datasets. The only exception is \(Secom\) where ITL shows improvements compared to the base, but not as much as the CINFO. This could be attributed to
Figure 3: AUC comparison for IForest and OCSVM. OCSVM results are shown when applied on input data with all features and with ITL reduced set of the features. The results are average AUC over cross-validation folds.

Figure 4: AUC comparison for IForest when applied on input data with all features and with ITL Reduced set of the features. The results are average AUC over cross-validation folds.
the greedy removal of features in vertical partitioning of ITL as we explained in Section 4.1. Since the results for DOS and Seizure are very high, even with the base IForest (higher than 95%), we do not expect to see too much improvement. However, ITL still shows comparable or improved AUC while achieving a reduction about 8% and 43% in the size of the feature set. In general, ITL shows improved results as well as a reduction of the features between 9% to 97% compared to the original set. These results are especially important when the quality of reduced features is investigated for detection of unseen anomalies. Therefore, in the following, we further study the effectiveness of reduced subset of features produced by ITL in anomaly detection results.

5.2.2. ITL with Reduced Features

To validate the efficacy of reduced subset of features on the detection capability of IForest algorithm, a series of experiments are conducted based on the k-fold cross validation. Figures 3 compares the performance of isolation-based technique (IForest) and a kernel-based anomaly detection method (OCSVM). OCSVM is a novelty detection method which can also be used in unsupervised anomaly detection by selecting soft boundaries. The figure also shows the results of OCSVM when applied on ITL reduced set of features. As the results show, while applying OCSVM with ITL approach can improve the results of OCSVM, Isolation-based technique (IForest) shows a higher performance. Therefore, in the next experiments, the performance of ITL on IForest is studied. The 5-fold validation is used to train IForest model on 4 parts of the data when all features are included in comparison to the data with the reduced features from ITL process and AUC values of validation parts are reported. Figure 4 demonstrates ITL results for different number of trees from 1 to 100. As we can see, reduced features can achieve or improve AUC value compared to the full set of the features for a range of number of trees in all datasets. The interesting observation is that the reduction in the number of trees has less impact on the performance, especially for the reduced set as shown in Figure 4. For example, even with 10 trees the results are very close to the performance of the algorithm with default parameters (100 trees). This improvement can be attributed to having less number of
features to be explored during random selection of the features. In other words, having a subset of
the features learned through ITL process, one can achieve the improved results with less number of
trees. The reduction of features as well as the number of trees can help to reduce the complexity in
terms of the memory and runtime requirements. Figure 5 shows the running time taken for a variety
of tree numbers. As we can see, the reduction of number of trees can hugely impact the testing
time. This is highly important for dynamic environments such as cloud where the testing should be
performed regularly. These results indicate ITL approach as a potential choice to be employed by
real-time applications where new incoming stream of data requires quick online tests for identifying
possible problems.

During ITL learning phase, the number of iTrees in each ensemble is a parameter which should

Figure 6: AUC value distribution for ITL Reduced Features in Training. This plot shows the sensitivity of ITL process
to different numbers of the learning trees.
be decided for each iteration. In order to have a better understanding of the sensitivity of ITL to this parameter, we run ITL several times for a range of values for number of trees. Figure 6 shows AUC distribution of each set of the experiments for all datasets. As the results show, ITL is sensitive to this parameter. However, AUC values show improvements with increased number of trees and are stable for numbers larger than 600. Practically, we found that a value between 600 to 900 trees is sufficient in most cases to have a good trade-off between accuracy and training complexities in terms of the memory and runtime.

5.2.3. Time Complexity and RunTime Analysis

Algorithm 1 presents the main steps of the ITL process. The main while loop (Line 2) continues until the termination condition of having zero unseen attributes is met. The termination condition is guaranteed to converge as during vertical partition phase, features with zero-seen or low frequency are removed which reduces the feature space. As a result, the remaining features have more chance to be explored with regard to anomalous instances (and possibly showing in short branches of the tree which increases their potential to be included in high frequency profile). Since we always have potential anomalies seen in short branches, there are at-least one feature with frequency higher than one which will create the final reduced subspace. Therefore, we finally get to a level where
all features are seen at-least one time or the reduced subspace has just one feature left. The loop typically converges in less than 5 iterations. Lines 3-11 build IForest models and filter high-rank instances based on the predefined threshold. Considering the IForest trees as the base structure for these steps, it takes $O(t\psi \log(\psi))$ for constructing where ψ is the number of selected subsamples and t is the number of constructed trees. If there are N testing points, it requires $O(N t \log(\psi))$ for determining anomalous points and $O(K t \log(\psi))$ for updating frequency profile of the features where $K << N$ (Line 5) is filtered anomalies (Worst case complexity is order $O(t\psi(\psi + N)))$. Therefore, we expect a linear complexity with regard to data size.

IForest is shown to have a very fast and memory efficient runtime for both modeling and testing purpose. In order to have a clear understanding of the ITL contribution to make this process even faster, a series of execution times with respect to the number of learning trees are presented. Figure 7 shows the learning time in ITL, where the main feature refinements are done by constructing iTrees and creating new subset of features. The diagram shows the learning time for a variety of tree numbers. As it is mentioned before, 600 to 900 usually is enough to have a sufficient exploration of feature space for target datasets. When the learning phase of ITL is completed, the anomaly detection is done by modelling iTrees with extracted features. To have a better comparison of execution times, Figure 8 compares modelling time of ITL-learned features with reduced number of Trees with the base IForest without feature refinements and with recommended number of trees in the literature. As we can see, ITL process makes a dramatic decrease of modeling times by helping to decrease the number of features/trees which makes the construction of iTrees and training step much faster. It should be highlighted that this reduction is achieved by keeping or improving the detection accuracy as it is shown in Figure 4. However, the feature refinement process of ITL as shown in Figure 7 is the cost of achieving these results. But the learning phase is one-time process which is performed off-line and the final subset is used for subsequent anomaly detection task which is significantly improved in terms of both modelling and testing times as shown in Figure 8 and 5 respectively. Considering the context of one application, learning phase can be done with a low frequency and as a background process. Therefore, systems that require regular updating of their performance models can highly benefit from time/memory reductions of this process.

In conclusion, ITL shows that by targeting the main contributing features which isolate the instances in iTrees we can reach a refined set of the features that can be used by less number of trees to create a model with better results.

5.3. Strength and Limitations of ITL Approach

IForest algorithm, as described in Section 3, is designed to detect anomalous objects by ensemble of binary trees from input data. ITL tries to take the advantage of this mechanism to extract information about relevant features that better isolate instances. Since the core of the ITL is iTree data structures from IForest, the same advantages of random based sampling and feature selection
is equally applicable to ITL. Moreover, it can be used as a pre-processing step to learn a reduced set of the features for any other anomaly detection algorithm. ITL is a promising method for real-time applications as high detection accuracy can be achieved with small memory and time complexity and it can perform well without prior-knowledge of the specific distribution. We have tested the applicability of our proposed techniques on a variety of datasets with different characteristics and applications domains. The benefit of our method is that it can be trained rapidly as the trees are very fast construct. Finding optimal features can be computed in the background without sacrificing response time for anomaly detection. Moreover, ITL is an unsupervised method and does not require a training data containing the anomaly annotations.

Similarly, ITL inherits same drawbacks as the base algorithm in detecting local clustered anomalies [8]. This can affect the filtering of instances, when the assumption is made that there are a majority of anomaly instances at the top of the ranking list. Adaptive, data-dependent configuration for parameters such as maximum height of Trees or customized split point selection for node constructions may help to reduce this effect, but requires more pre-processing and knowledge on statistical characteristics of anomalous data.

6. Conclusions and Future Work

In this paper, we introduce an iterative learning framework (ITL) for the refinement of features and improvements of anomaly detection process. Advances in monitoring and storage capabilities provide high volume of information on the performance of application and systems to be used for anomaly and fault analysis. These require real-time analysis of data to quickly identify problems and take appropriate corrective actions. However, high-dimensional data can adversary affect the traditional measures of anomaly detection such as distance between instances in terms of the efficacy and time complexity. More recent approaches such as isolation-based technique try to directly target the main features of anomalies as being different and rare. ITL is designed based on an idea that isolation-based generated tree structures can give some insights on the importance of the features. Therefore, the learning phase of ITL is based on the knowledge from iTree structures which are binary trees constructed by random selection of the features from domain problem. The assumption is made that the features on the short branches of iTree can be used as a reference to identify relevant features to the detection of anomaly instances. The learning is based on the iterative removal of the noisy and irrelevant features in terms of their importance for isolating anomalies to generate a final subset of the features to be used for anomaly detection. The experiments show that the anomaly scores from IForest algorithm on generated subsets of the data at each iteration can be combined to create more informative set of the scores in terms of the detection capability of anomaly instances. Moreover, the experiments on five benchmark datasets demonstrate that with the reduced set of the features and choosing a proper number of trees IForest can achieve better results in terms of the
detection accuracy while reducing the complexity of algorithm.

For future work, we plan to enhance ITL framework to identify groups of anomalous metrics that isolate individual faults. This can be achieved for types of the problems that can affect separate parts of feature space which helps to distinguish among different anomalies such as various types of attacks. We also would like to extend the ITL idea to more flexible tree structures (for example trees with more than two branches) to investigate the possibility of further improvements for clustered anomalies. We also highlight that anomaly detection, in general context, considers any significant deviation in the values of the attributes from the past data (training part) as an anomaly which will be reflected in anomaly scores. However, with regard to the required actions after detecting anomalies, some level of knowledge expert may be required. For example, detecting abnormality in packet level information which can be a sign of the attacks (as shown by datasets of U2R and DoS in the experiments), resource owners may prefer to shut down targeted resources (VM or Physical machine) to reduce the cost of wasted resources. The integration of anomaly detection part and application performance management actions may bring new challenges in the design of fitting solutions which require further investigations.

References

URL http://archive.ics.uci.edu/ml