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In industrial production, dynamic nature of working conditions and reliance on manual judgment introduces
significant hurdles for accurate prediction models. Despite commendable performance of contemporary Deep
Learning techniques in time series prediction (TSP), they frequently overlook crucial impact of human inter-
vention. Moreover, the subjective nature of operational condition labeling and the scarcity of comprehensive
experimental datasets further hinder the efficacy of predictive systems. This work proposes an Enhanced Hybrid
Deep Neural Network (EH-DNN) framework to tackle these issues. It achieves robust classification and prediction
of working conditions by integrating the multi-dimensional features of set values and observation time series.
The data preprocessing phase encompasses feature extraction and feature fusion, ensuring the model acquires
the essential information intrinsic to the production process. A novel two-step prediction methodology is em-
ployed during the training phase, incorporating pre-classification to enhance TSP, achieving an accuracy of 94%.
EH-DNN mirrors intricate dynamics of industrial production and aligns seamlessly with real-world application
scenarios, demonstrating substantial practical utility. By integrating this methodology, the industrial sector can
anticipate a significant leap in automation levels and production efficiency, bridging the gap between theoretical
models and practical implementation.

1. Introduction Mechanisms (Wang et al., 2023), and Graph Neural Networks (GNNs)

(Chen et al., 2022c¢). These methods are effective at capturing nonlinear

Industrial production processes are inherently variable, influenced
by equipment wear, raw material inconsistencies, and environmental
fluctuations. Operators are required to continuously monitor and adjust
parameters through manual interventions to stabilize production. While
indispensable, these human adjustments introduce subjectivity and im-
precision, hindering the consistency of control strategies and complicat-
ing the accurate modeling of industrial dynamics. Anticipating operat-
ing states is thus critical not only for optimizing efficiency but also for
enabling proactive maintenance and safeguarding product quality.

In practice, data collected by Distributed Control Systems (DCS)
manifest as Industrial Time Series (ITS). Predicting such time series has
been widely addressed with machine learning and deep learning ap-
proaches (Bertolini et al., 2021; Bi et al., 2025), including Convolutional
Neural Networks (CNNs) (Jin et al., 2019), Recurrent Neural Networks
(RNNSs) (Liu et al., 2020), Autoencoders (AEs) (Wu et al., 2020), Re-
stricted Boltzmann Machines (RBMs) (Wang et al., 2020a), Attention
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temporal dependencies. However, existing studies largely assume stable
operating conditions and rely on pre-labeled datasets (Yuan et al., 2025),
which rarely exist in real industrial contexts. Simplifications such as bi-
nary “normal vs. abnormal” classifications fail to represent the richness
of real operating states. Moreover, conventional univariate time-series
prediction (TSP) neglects interactions among variables and overlooks
the non-stationary behavior arising from external disturbances and hu-
man intervention.

The core research gap, therefore, lies in how to perform accurate TSP
under variable operating states that are strongly influenced by manual
settings and adjustments. Conventional forecasting frameworks are lim-
ited in two aspects.

1. Inadequate modeling of manual interventions. Operator-defined set
values, though central to PID-based control, are seldom incorporated
as explicit features. Their randomness, timing, and fuzziness directly
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affect process dynamics but remain underutilized in predictive mod-
eling.

2. Failure to adapt to dynamic operating states. Industrial time series
exhibit concept drift caused by shifts in equipment conditions, fuel
quality, or operator expertise. Without adaptive segmentation and
state-specific learning, long-term predictions quickly lose reliability.

To address these challenges, this paper proposes Enhanced Hybrid
Deep Neural Network (EH-DNN) framework. This framework achieves
robust classification and prediction of working conditions by integrating
multidimensional features of Setting Values and observed time series.
The EH-DNN framework introduces feature extraction and feature fu-
sion techniques in the data preprocessing stage to ensure that the model
can obtain key information inherent in the production process. During
the training phase, a novel two-step prediction method is adopted to en-
hance the accuracy of TSP through pre-classification. The experimental
results show that the framework achieved an accuracy of 94% in indus-
trial TSP, significantly better than existing methods. EH-DNN can reflect
the complex dynamics of industrial production and seamlessly integrate
with practical application scenarios, demonstrating significant practi-
cality. By integrating this method, the industrial sector is expected to
achieve significant improvements in automation level and production
efficiency, bridging the gap between theoretical models and practical
applications.

The main contributions of this work are summarized as:

1. Adaptive Operating State Identification: An approach for detecting
shifts in operational states through concept drift detection has been
suggested, employing sliding window techniques to observe real-
time variations in the operational states of industrial processes.

2. Predicting Features Beyond Numbers: A multidimensional feature
extraction and fusion method was designed, which combines the
set values with time-domain and frequency-domain features to en-
hance feature expression ability. Moving beyond traditional numeri-
cal forecasting, it emphasizes feature prediction by using Deeo Learn-
ing to uncover intrinsic properties and non-linear relationships in
ITS, offering valuable insights into industrial process dynamics.

3. EH-DNN Framework: An innovative two-step prediction approach
was developed to greatly enhance the precision of time series predic-
tions by utilizing pre-classification and detailed regression forecast-
ing. EH-DNN incorporates operational state evaluations and model
improvements, taking into consideration operational changes and
human interventions, leading to accurate TSP and a new approach
to modeling industrial processes.

This research offers both a novel approach to forecasting industrial
time series and theoretical backing along with practical advice for re-
alizing intelligent, automated industrial processes. The structure of the
remaining sections is as follows. Section 2 reviews related work on op-
eration state identification and time series prediction (TSP) methods.
Section 3 explains motivation of this research and proposes overall de-
sign. Section 4 provides a detailed introduction to the core methods of
the EH-DNN framework. Section 5 demonstrates the effectiveness of EH-
DNN. Finally, Section 6 wraps up the study.

2. Related work
2.1. Operation state identification

Operation state identification in industrial processes has been widely
studied, with methods ranging from clustering-based approaches (K-
means (Huang et al., 2016), Fuzzy C-Means Time Series (FCM-TS) (Lu
et al., 2014)) to supervised and semi-supervised learning. While effec-
tive in simple settings, these methods require prior assumptions (e.g.,
number of clusters) and are less capable of capturing temporal dy-
namics. Recent advances attempt to incorporate concept drift detection
to address non-stationary behavior in industrial systems. For example,
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Uchiteleva et al. (2021) proposed a drift-aware prediction approach for
IIoT data, while adaptive sliding window methods such as Adaptive Slid-
ing Window (ADWIN) have been applied in financial forecasting (Chou
& Nguyen, 2018) and seizure detection (Wang et al., 2013). Liu et al.
(2019) convert time series data into a three-dimensional tensor to al-
low convolution operations to explore local interactions and temporal
dependencies. In the industrial domain, more recent studies integrate
online drift detection with deep learning to dynamically retrain mod-
els (Arena et al., 2024), but such methods are rarely extended to state
segmentation and labeling. This highlights a gap between drift detec-
tion and practical operating state identification in complex production
environments.

2.2. Time series prediction

Traditional data-driven methods combine feature extraction (e.g,
TSFresh (Sala et al.,, 2018), Empirical Mode Decomposition (EMD)
(Zheng et al.,, 2021), Wavelet Decomposition (WD) (Bi et al,
2024b; Zheng et al., 2022)) with regression models such as Vector-
Autoregressive (VAR) (Coyle et al.,, 2005) or Support Vector Re-
gression (SVR). However, they struggle with noise sensitivity and
non-stationarity. In recent years, there has been a notable increase
in deep learning methods: CNNs and LSTMs for capturing spatial—
temporal dependencies (Chadha et al., 2019; Guo et al., 2018). Hy-
brid models integrating Deep Learning with probabilistic methods, e.g.,
LSTM + Gaussian Process for battery life prediction (Liu et al., 2021).
Attention mechanisms and Transformer-based models (Bi et al., 2024a;
Wang et al., 2023, 2024; Zhang et al., 2021) that effectively capture
long-term dependencies. Graph Neural Networks (GNNs) for multivari-
ate industrial processes (Chen et al., 2022b). Very recently, lightweight
architectures such as TSMixer (Ekambaram et al., 2023) have emerged
to address scalability issues in multivariate forecasting.

Despite these advances, two critical limitations persist:

¢ Neglect of manual interventions: Operator-defined set values, which
directly affect control decisions, are rarely incorporated as model
input.

o Lack of adaptation to variable operating states: Most Deep Learning
models assume stationarity, and while some studies include noise
or disturbances, they rarely handle systematic shifts in operational
modes caused by raw material quality, environmental changes, or
human adjustments.

2.3. Summary of existing studies

In summary, existing research demonstrates substantial progress in
industrial time series prediction through advanced feature extraction,
deep learning, and drift-aware techniques. However, the following gaps
remain:

¢ Insufficient integration of operator knowledge: Few methods incor-
porate human-set control values, despite their central role in process
dynamics.

¢ Weak adaptability to dynamic operating states: Current models per-
form poorly when frequent state changes or concept drift occur.

¢ Limited unification of classification and regression: Most approaches
treat state identification and forecasting separately, missing the op-
portunity to exploit their interdependence.

Therefore, a unified framework is needed that adaptively identifies
operating states under concept drift, fuses multidimensional features
including manual interventions, and combines pre-classification with
state-specific regression. This paper’s EH-DNN framework directly ad-
dresses these issues by bridging the gap between theoretical advances
in Deep Learning and the realities of industrial operations.
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Fig. 1. Change from experience-based manual control process to data-driven online prediction.
Table 1 In this investigation, manually adjusted process parameters are de-
Labels of variables in Fig. 1. noted as “Setting Values,” typically established by experts based on their
Tag  Var Name Tag  Var Name Tag  Var Name experience to meet production objectives. The Proportional-Integral-
Derivative (PID) control process, facilitated by these set values, orches-
X1 Temp Setting E1l Tail Oil Flow  R1 Calciner Outlet Temp (PID) p ’ y ?

X2 Pressure Setting E2
X3 Raw Feed Setting ~ E3

Fan Speed R2
Flow Value R3

Kilin Head Pressure
Raw Feed

3. Research motivation and proposal design

This section introduces the research motivation and the design of the
EH-DNN framework. Firstly, taking cement production as an example,
the value of operational data in the industrial field and the importance
of manually setting and observing values in the production process are
explained. Furthermore, in response to the complexity of industrial time
series data and the limitations of traditional methods, the design concept
of EH-DNN framework is proposed, aiming to optimize the production
process through data-driven methods, reduce manual intervention, and
improve prediction accuracy.

3.1. Research motivation

The industrial realm has amassed a substantial volume of opera-
tional data, containing valuable insights into the interplay between pro-
duction operations and process parameters. Take cement manufactur-
ing, for instance, where DCS stands as a pivotal technology, harnessing
computer-based control and micro-controllers to oversee real-time pro-
duction processes, ensuring their smooth operation. By capturing key
parameters within the cement production process, DCS system furnishes
essential reference and control mechanisms for central controllers. This
study aims to delve into the intricate relationship between operational
variables and conditions, using the cement industry as a focal point and
leveraging data from DCS system to drive technical inquiry.

trates adjustments to uphold production process stability and efficiency.
The variables of the PID adjustment process, as depicted in Fig. 1, are
elucidated in Table 1. For instance, manipulating the opening of the E3
valve to regulate the feed speed of R3 or setting the target temperature
of X1 to modulate the oil supply from FE1 facilitates precise control over
the temperature of R1. Typically, PID control operates within two levels,
allowing for attainment of the final target value in most scenarios. This
study specifically excludes aberrant situations and does not encounter
any anomalies related to PID during the data collection process. There-
fore, the provided quantity values act as input variables for operational
behavior, while the observed values serve as parameters monitored by
operators throughout industrial operations, forming the identification
variable of the working situation, Y = {Y (k) | k = 1,2,...,n}.

However, due to the complex and unpredictable nature of produc-
tion processes, as well as the inability to measure certain external fac-
tors (such as output requirements, fuel type, power consumption de-
mands, product specifications, and quality criteria), achieving complete
automation and control throughout the entire process is still difficult to
attain. Therefore, central control operators must constantly monitor and
make necessary adjustments to observed variables at all times in order
to assure uninterrupted production progress.

This paper proposes a process modeling approach that is based on
historical operation records as a remedy to this difficulty. By analyz-
ing previous operational data, experts can extract valuable insights that
allow for the automatic identification and forecast of operational cir-
cumstances. This methodology not only improves production efficiency
and product quality, but also reduces the workload of central con-
trol operators. By doing so, this study introduces novel concepts and
methodologies for optimizing production processes within the cement
sector through the extraction of valuable insights from operational data.
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Fig. 2. EH-DNN framework.

Although the attainment of fully automated end-to-end control remains
a persistent challenge, advancements towards intelligent and automated
production processes can be achieved through the application of process
modeling and the consolidation of expert knowledge.

3.2. Problem description and proposal design

When dealing with multidimensional ITS, the primary challenge lies
in transforming heterogeneous data, comprising operator-defined set-
ting values and observed process variables, into reliable operational
models. Traditional methods often fail to manage large volumes of re-
dundant information, strong non-stationarity, and human interventions,
significantly altering the dynamics of ITS. Consequently, accurate pre-
diction requires not only feature extraction, but also adaptive modeling
of variable operating states.

To overcome these challenges, we design the Enhanced Hybrid Deep
Neural Network (EH-DNN) framework, whose core components are il-
lustrated in Fig. 2 and described as follows.

1. Operating-State Pre-Classification Module

¢ Purpose: Detect and segment data streams into consistent opera-
tional states.

e Methods: A drift-aware operating state identification mechanism
is used, using dual sliding windows to capture statistical differ-
ences in distributions. This enables adaptive segmentation under
changing raw material quality, combustion efficiency, or opera-
tor interventions.

¢ Contribution: Provides a stable basis for training by ensuring that
subsequent regression is performed under homogeneous states
rather than on globally mixed data.

2. Feature Extraction and Fusion Module

¢ Time-frequency features: Extracted via wavelet decomposition
with energy normalization, capturing both local and global signal
dynamics at multiple scales.
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e Manual setting values: Processed through setting values granu-
lation (SVG), which reduces dimensionality while preserving the
uncertainty and fuzziness inherent in human adjustments.

¢ Fusion: The two feature sets are combined into an integrated fea-
ture matrix, serving as a comprehensive representation of both
system dynamics and operator influence.

3. Two-step Prediction Strategy

o Step 1: State-specific Classification. A deep neural network clas-
sifier is trained to identify the operational state of incoming data.

o Step 2: Regression Prediction. For each identified state, a regres-
sion sub-model is applied to predict the future trajectory of pro-
cess variables. This design allows the model to adapt prediction
parameters to specific operating conditions.

4. Adaptive Learning Mechanism
EH-DNN incorporates a feedback-driven mechanism to adjust
prediction parameters whenever concept drift or state transitions
occur.This ensures that the framework maintains robustness under
non-stationary industrial environments and remains reliable during
long-term operation.

Overall, EH-DNN integrates state-aware segmentation, multidimen-
sional feature fusion, and a dual-phase prediction strategy into a unified
framework. By doing so, it directly addresses the limitations of conven-
tional TSP methods, which either ignore manual interventions or fail
to adapt to shifting operational states. This design not only improves
predictive accuracy but also reduces reliance on operator experience,
moving toward more intelligent and automated production processes.

4. Proposed methods under EH-DNN framework

This section provides a detailed introduction to the core methods of
the EH-DNN framework. Firstly, a sliding window based operation state
detection method is proposed, which identifies state changes through
concept drift analysis. Subsequently, the multidimensional feature ex-
traction and fusion techniques were elaborated, including wavelet de-
composition and fuzzy granulation of set values. Finally, the EH-DNN
architecture design was introduced, which significantly improved the
accuracy and robustness of industrial time series prediction through a
two-step strategy of pre classification and regression prediction.

4.1. Detection of operating state changes through drift analysis

There is a significant link between shifts in operating state and drift
in concept. Changes in operating state involve modifications to factors
such as equipment status, environmental situations, and material com-
position in industrial processes. Concept drift describes alterations in
data distribution or how data is generated over time. Modifications in
operating state may affect data distribution or the link between data and
target variables, resulting in concept drift.

To monitor changes in the operational state during working process,
Operating State Identification (OSI) approach is introduced. OSI method
identifies concept drift by analyzing the statistical traits in two separate
data windows. It utilizes dual sliding windows: one for the most recent
data samples and another for historical data samples. Through the com-
parison of statistical properties between these windows, OSI assesses the
occurrence of concept drift. OSI calculates a test statistic by computing
the mean and variance from both windows. A bilateral test technique is
applied to check if this statistic surpasses a predefined threshold. If the
threshold is crossed, it indicates a shift in the operating state, depicted
in Fig. 3. The comprehensive steps are outlined in Algorithm 1.

4.2. Feature extraction and feature fusion

This study aims to translate the operator’s skills into quantifiable
knowledge to minimize reliance on individual expertise and experi-
ence, thereby increasing the standardization and automation of the
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Segment Feature Extraction

Feature Matix

Input: ITS (dataStream)

Output: Indices of detected change points

1: Initialize parameters: minimum window size (min), maxi-
mum window size (max), change detection threshold (6)

2: for each data point p at index i in dataStream do

3:  Append p to dataWindow

4. if len (dataW ind ow)>max then

5: mean«—mean(dataW indow)

6: v«uvariance(dataW indow)

7 sd—sqrt(v)

8: d<|p—mean)|

9: if d>6xsd then

10: changeDetected < T'rue

11: Append i to changePoints

12: % record the index of the change point

13: Decrease window-size by 1, ensuring it bigger than

min

14: else

15: changeDetected < False

16: end if

17: Increase window size by 1, ensuring it does not exceed
max

18: else

19: changeDetected — False

20: end if

21: end for

22: Return change Points

operating process. Achieving this involves establishing a set of opera-
tional patterns. The dataset {X,(i) | i = 1,2,...,n} consists of preset val-
ues selected by the operator for equipment parameters at specific time
points. These presets are based on the operators’ knowledge of equip-
ment performance and process needs, along with historical operational
data analysis. The dataset {Y (k) | k = 1,2,...,n} contains observed val-
ues recorded during actual operations. This dataset can verify the cor-
rectness of the preset values and provide data for optimization processes.
Through comparing and analyzing these preset and observed values,
one can detect patterns and deviations in the operation process. Fur-
thermore, developing various operational modes can guide future op-
erations, reduce human errors, and improve operational efficiency and
product quality.

EH-DNN addresses the challenge of multivariate and multidimen-
sional feature exaction shown in Fig. 4. First, single-variable ITS ({Y (k) |
k=1,2,...,n} ) is decomposed to extract time-frequency dual-channel
features of operating parameters. Unlike deep learning techniques like
CNNs, it is essential to accurately capture statistical features to effec-
tively represent the time-frequency characteristics of signals. Due to
varying ITS lengths as described in Section 4.1, to deal with unequal
length data, features at different scales are extracted through energy-
normalized WD for unequal length data.

Subsequently, to effectively capture the combinations of values in
the industrial setting ({X,(i) | i =1,2,...,n}) and the impacts of man-
ual intervention, setting values granulation is incorporated. Manual ad-
justments can occur at any moment, with their sequence and timing

Settings , [6, ]
([ V-V \—{sv6 | | .
‘ SVG

N )l

Fig. 4. ITS feature exaction and feature fusion process.

differing among individuals. In the processes of human reasoning and
developing concepts, information granules often manifest as fuzzy (f-
granular) rather than precise (c-granular). Fuzzy information granula-
tion addresses this ambiguity and uncertainty by utilizing fuzzy sets and
fuzzy logic to articulate and manage these granules. For instance, in time
series analysis, granulation can segment data into fuzzy time intervals,
thus more effectively encapsulating the dynamic variations of the data.
Finally, the features from both steps are combined into an eigenvalue
matrix.

4.2.1. Energy normalized WD of unequal length scales

Unlike the Fourier transform, WD provides localized transformations
in both time and frequency domains, making it more effective for ex-
tracting information from signals. Through scaling and translation, WD
enables multiscale analysis, addressing the limitations of the Fourier
transform. EH-DNN employs WD to extract features across various time
and frequency scales from raw, noisy data, enhancing traditional single-
variable TSP in industrial processes. This approach captures hidden non-
linear relationships by incorporating these extracted features into a Deep
Learning-based model, resulting in more reliable and accurate predic-
tions.

In the discrete wavelet transform (DWT), a signal is decomposed
into approximation coefficients (c A) and detail coefficients (¢ D) through
convolution with low-pass and high-pass filters. This process is shown
as follows.

Approximation Coefficients (Low-frequency component):

cAylnl= Y x[kl - h(2n — k] ¢h)
k

where x[k] represents the signal, h[k] is the low-pass filter, and cA jlnlis
the approximation coefficient at level j. After the convolution, down-
sampling is performed, keeping only the even-indexed coefficients,
where 7 is the index after downsampling.

Detail Coefficients (High-frequency component):

eD;n)= Y’ xIk] - g[2n — k] @
k
where g[k] is the high-pass filter, and ¢ D;[n] is the coefficient at level ;.
Similarly, convolution is followed by downsampling.
Assuming the initial signal is x(¢), the wavelet decomposition at level
Jj is expressed as:

Decomposition

x(t)———— (cAj,cDj) 3)

In Section 4.1, ITS is adaptively segmented in the first stage of the
ITS window, resulting in inconsistent segment lengths. After extracting
wavelet coefficients, it is necessary to normalize them based on each
segment’s time scale, such as by calculating the energy proportion for
each scale or the relative intensity of frequency components. Energy
normalization scales the energy of different features relative to the to-
tal signal energy, making it useful for comparing features from signals
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Fig. 5. Cases of KC state change detection with OSI.

with varying lengths or amplitudes. A step-by-step description of how
to perform energy normalization:

For each feature or component (e.g wavelet coefficients), calculate
its energy, which is typically the sum of the squared values of the coef-
ficients.

E;= Y |ClKI? )
k

where C;[k] represents the k-th coefficient in the i-th component (e.g.
wavelet detail or approximation coefficients), and E; is the energy of
the i-th component.

Add the energies of all components together to calculate the total
energy of the signal.

Eoral= Z E; 5)
i

For each component, divide its energy by the total energy. This step
scales the energy of each component to be relative to the overall energy
of the signal.

F=—t (6)
' Etotal

where E; is the normalized energy of the i-th component.

4.2.2. Setting values granulation

Setting values refers to the adjustments of the control operator’s pa-
rameters to intervene in the production process. To reduce data dimen-
sionality while preserving key information, SVG is used.

SVG consists of two steps: window division and fuzzification. First,
ITS is segmented into operational windows. Then, each window is con-
verted into a fuzzy set, reducing data volume while retaining critical
features. A general definition of SVG utilizes fuzzy sets, which can be
described as follows.

A={(e.nz(0) | x € U} @

where 4 ;(x)€[0, 1] represents the membership degree. Commonly used
fuzzy processing forms include triangle, trapezoid, and symmetrical
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Table 2
Classification performance result.

Tasks Accuracy (%) Fl-score (%) Precision (%) Recall (%)

KC 95.12 + (1.33)
cop 92.01 + (1.87)
COT 93.99 + (2.06)

92.94 + (2.03)
90.68 + (3.12)
91.09 + (2.56)

95.76 + (1.89)
93.33 + (2.09)
92.82 + (2.64)

90.22 + (3.79)
88.31 + (4.74)
89.58 + (5.10)

Gaussian. The Gaussian function is used as the membership function,
and it is defined as follows.

_ (,\‘—L‘)2

ux)=e 2° (C))

where u(x) represents the membership of element x to the fuzzy
set, ¢ is the center point of the Gaussian function, and ¢ is the pa-
rameter that controls the smoothness of the Gaussian curve in the
system.

5. Performance evaluation
5.1. Experimental design and dataset

The complexity of industrial production processes, along with un-
known disturbances, complicates accurate state adjustments. Operators
must modify input amounts based on fluctuations in process parame-
ters to stabilize the system. The cement production industry is selected
for experiment, utilizing data from the DCS system with a collection fre-
quency of 3 seconds. The training data set spans from December 9, 2023,
to January 1, 2024, excluding downtime. Online data is taken from 12
hours of actual production. The predictions of the model are compared
to actual data to assess the accuracy of the prediction. Key operating
parameters monitored include Kiln Current (KC), Calciner Outlet Pres-
sure (COP), and Cyclonel Outlet Temperature (COT). In addition, eight
frequently adjusted settings are selected as fusion feature sources. The
experimental process follows six steps.

1. Preprocessing: Apply state labeling through the OSI method (Sec-
tion 4.1), resample uniformly at 10s intervals, and segment operat-
ing states adaptively.

2. Feature extraction and fusion: Conduct wavelet decomposition with
energy normalization for time-frequency features, and fuzzy granu-
lation for setting values.

3. Model training: Train the EH-DNN framework in two stages: classifi-
cation pre-training for operating states, and state-specific regression
forecasting.

4. Comparative evaluation: Benchmark EH-DNN against representa-
tive baseline and state-of-the-art models with identical training/test
splits.

5. Performance metrics: Evaluate prediction using MAE and R? across
operating scenarios. Each experiment is repeated five times, report-
ing mean (%) + standard deviation (%).

5.1.1. Preprocessing

Data statistical traits alter with changes in the operational state.
The initial step EH-DNN undertakes is to segment states based on
operating state parameters, thereby identifying the training state. As
the data set records observational variables every 3 s/time, but this
is not consistent, the ITS is first resampled uniformly at 10 s/time.
Subsequently, the operating state detection method OSI from Sec-
tion 4.1 categorizes the operational state parameters into distinct states.
Each subfigure in Fig. 5 illustrates the operating state labeling results
for KC data spanning December 17 to 20. Experimentally, the win-
dow size is configured to 30, with a threshold of 2.6. The thresh-
old’s value is adjustable, depending on the desired granularity in state
segmentation.
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Fig. 7. Feature Extraction of Setting values with SVG.

5.1.2. Feature extraction and fusion

It is essential to go into the extraction of characteristics following the
state labeling process. At this stage, the Daubechies wavelet function is
a practical basis for a detailed decomposition of the primary data. This
decomposition is meticulously carried out at a depth of three levels, and
the result example is shown in Fig. 6. The resultant matrix, composed
of approximate and detailed decomposition coefficients, serves as the
backbone for regression analysis. Concurrently, the normalized energy

output is harnessed for classification tasks, while the aforementioned
feature matrix is dedicated to enhancing regression accuracy.

5.1.3. ITS feature fusion process

To supplement the influence of set values in the actual production
process, the experiment fuses the set value matrix ¢ with the operating
state feature matrix 6. Supposing that manual adjustment is the key rea-
son for the alteration of working conditions, it is considered that a set of
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set-value matrices can be retrieved under identical working conditions.
However, manual intervention is random in actual production, and a
small amount of adjustment does not necessarily bring about a state
change. Therefore, the set value within a specific operating state period
is not ideal. SVG processing is chosen for approximate substitution of
the setting process. The size of the fuzzy set is set to 10 minutes for
dimensionality reduction. Due to space constraints, this article displays
the results for three configuration settings in Fig. 7.

5.1.4. Model training

Step 1: Classification Pre-training After segmenting the operating
state, although the state transition points can be identified, it is im-
possible to consider states in different periods as distinct. Without clas-
sification labels for the same state, it becomes impossible to identify
identical states from historical data and make predictions. The working
conditions of various states are hierarchically clustered after state seg-
mentation. A weighted average distance approach is used to determine
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Table 3
Prediction for Each Operating Scenario.
Prediction index KC CcoP CoT
Feature component I I 111 I I 111 I 1T 111
TXMixer MAE 13.266 8.694 10.256 5.847 8.886 11.334 4.232 12.365 6.306
R? 0.744 0.867 0.843 0.717 0.720 0.700 0.758 0.645 0.832
TimeXer MAE 12. 399 15.399 16.328 11.721 11.589 13.090 14.785 15.231 15.789
2 0.655 0.643 0.617 0.758 0.744 0.708 0.638 0.792 0.808
VMD-GRU MAE 11.233 10.699 10.259 9.923 9.876 10.254 9.129 10.840 10.431
R? 0.756 0.792 0.758 0.809 0.808 0.778 0.816 0.854 0.840
DeepHealth MAE 1.059 1.771 1.344 0.895 0.903 1.224 0.771 1.155 1.399
R? 0.896 0.808 0.826 0.819 0.897 0.849 0.816 0.891 0.834
GCN-Attention MAE 1.233 1.699 1.259 1.923 1.876 1.254 0.129 2.840 3.431
R? 0.856 0.892 0.858 0.809 0.808 0.878 0.816 0.854 0.840
EH-DNN (ours) MAE 0.489 0.392 1.431 1.265 2.399 0.872 0.834 1.389 1.007
R? 0.988 0.992 0.972 0.918 0.906 0.908 0.913 0.930 0.922
Table 4
Ablation study results for EH-DNN core modules.
Model MAE(KC)]  MAE(COP)|  MAE(COT)| R*(KC)t  R?(COP)?  R*(COT)t A MAE(avg) AR*(avg)
EH-DNN(full) 0.49 1.27 0.83 0.99 0.92 0.91 - -
EH-DNN-1(w/o Feature Extraction) 11.09 8.86 12.01 0.79 0.86 0.74 +10.1 -0.13
EH-DNN-2(w/o State Classification) 1.06 0.90 0.77 0.90 0.92 0.92 +0.25 -0.05
EH-DNN-3(w/o Both) 19.04 30.53 25.99 0.40 0.26 0.39 +24.0 -0.55

the distance between two combined data points. For every cluster merg-
ing, the ideal merge is identified by calculating the average distance
between all points in the two clusters. An excessive number of clusters
would lead to shorter distances between neighboring clusters and worse
classification accuracy. As illustrated in Fig. 8, twelve categories are
used for labeling in the experiment since the cluster distances are closer
when KC is divided into thirteen categories. The goal of this labeling
stage is to improve the accuracy of the subsequent phase’s predictions.
A DNN is subsequently trained using the classification model, and the
performance outcomes are displayed in the Table 2. Performance results
are expressed in the form of mean (%) + standard deviation (%).

Step 2: state-specific regression forecasting Before modeling, it is
necessary to reconstruct training samples. Feature fusion refers to tak-
ing the previous step’s classification prediction results as the training
data’s dimension input. The parameter settings of EH-DNN are carefully
adjusted by cross-validating the reconstructed samples. EH-DNN specif-
ically selects a 6-layer neural network and uses the Adaptive Moment
Estimation (Adam) solver, and the learning rate range is [0.01, 0.40].

5.2. Comparison methods

To highlight the advantage of EH-DNN, we compare it with both
classical and latest research models.

1. TSMixer: Lightweight MLP-Mixer for multivariate time series fore-
casting (Ekambaram et al., 2023).

2. TimeXer: Transformer-based forecasting framework incorporating
exogenous variables (Wang et al., 2024).

3. DeepHealth: A self-attention-based predictive maintenance frame-
work for industrial IoT (Zhang et al., 2021).

4. GCN-Attention — Graph convolutional networks with attention for
multivariate prediction (Chen et al., 2022a).

5. VMD-GRU: Variational Mode Decomposition combined with GRU for
short-term industrial time series forecasting (Wang et al., 2020b).

In addition, three ablation variants of EH-DNN are implemented to
evaluate the contribution of its core modules:

1. EH-DNN-1 (without Feature Extraction): Removes wavelet decom-
position and fuzzy granulation.

2. EH-DNN-2 (without State Classification): Trains regression on unseg-
mented data.

3. EH-DNN-3 (without Both): Simplified baseline without feature ex-
traction or classification.

5.3. Results and analysis

5.3.1. Comparison with baseline models

Table 3 summarizes experimental results comparing EH-DNN to sim-
ilar models, with the best performances highlighted in bold. A residual
plot effectively illustrates the impact of various models on predictions,
as depicted in Fig. 9. Each procedure is replicated five times to reduce
the effects of random variables, and the metrics are averaged for bal-
anced representation of each method’s effectiveness. In this analysis,
“I” represents wavelet approximation coefficients, “II” refers to primary-
level wavelet detail coefficients, and “III” indicates secondary-level coef-
ficients. MAE denotes the Mean Absolute Error, reflecting the difference
between estimated and actual values. “R?” measures the variance ex-
plained by models relative to total variability in the dataset. The results
show the following.

e TSMixer and TimeXer achieve R? values between 0.64 — 0.87, reflect-
ing their ability to capture temporal dependencies. However, their
performance degrades under frequent operating state changes.

e VMD-GRU benefits from signal decomposition, achieving R?> above
0.75, but it lacks adaptability to manual interventions.

e DeepHealth and GCN-Attention demonstrate improved capacity for
long-term dependencies and relational modeling, with R? around
0.80 — 0.85, but still underperform in non-stationary industrial set-
tings.

o EH-DNN consistently outperforms all baselines, achieving R> above
0.90 and MAE reductions by 5 — 10x. This demonstrates that inte-
grating operator set values with adaptive state classification yields
advantages unattainable by general-purpose models.

5.3.2. Ablation study analysis

Table 4 presents the results of the ablation experiments designed to
evaluate the contribution of the core modules in EH-DNN. In this table,
AMAE(avg) indicates the increase in the model’s average MAE relative
to the Full EH-DNN. A R?(avg) indicates the decrease in the model’s av-
erage R’ relative to the Full EH-DNN.
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The following insights can be drawn:

1. Impact of Feature Extraction and Fusion (EH-DNN-1)

Removing wavelet decomposition and setting-value granulation
leads to a dramatic performance drop (average AMAE +10.1, AR? —
—0.13). This indicates that raw ITS alone cannot adequately repre-
sent the dynamics of industrial processes. The incorporation of both
time—frequency features and fuzzy-granulated set values is therefore
crucial for capturing the intrinsic characteristics of process dynamics
and operator interventions.

2. Impact of Operating State Pre-classification (EH-DNN-2)

When the pre-classification stage is skipped, the model shows
moderate degradation (average AMAE +0.25, AR — —0.05). While
regression models can still capture partial dependencies, they strug-
gle to remain stable across variable operating states. The results con-
firm that adaptive state identification improves robustness and re-
duces forecasting uncertainty in dynamic production environments.

3. Impact of Removing Both Modules (EH-DNN-3)

The simplified baseline without feature extraction and state clas-
sification performs the worst (average AMAE +24.0, AR? — —0.55).
This suggests that a “black-box” DNN cannot generalize under non-
stationary, operator-driven processes, underscoring the necessity of
combining domain-inspired feature engineering with state-aware
modeling.

4. Full EH-DNN

The complete model achieves the highest accuracy across all op-
erating scenarios, with MAE values below 1.5 and AR? consistently
above 0.90. This demonstrates the synergistic effect of feature ex-
traction, state classification, and regression prediction. Each module
contributes complementary strengths, and together they provide a
robust solution for industrial time series prediction under variable
operating states.

5.3.3. Overall findings

EH-DNN not only surpasses classical and recent baseline models but
also proves that its performance stems from a carefully designed archi-
tecture.

e Adaptive state identification ensures stability across varying condi-
tions.

e Feature extraction and fusion capture both system dynamics and op-
erator influence.

* Two-step prediction strategy provides accurate and robust forecast-
ing.

Thus, EH-DNN bridges the gap between theoretical advances in deep
learning and the realities of industrial production under variable oper-
ating states with manual interventions.

6. Conclusions and future work

In industrial manufacturing, traditional predictive frameworks are
tied to critical metrics. In that case, they often fail to grasp the
nuanced interplay of factors embedded within production systems, espe-
cially when faced with many variables that resist straightforward anal-
ysis. To address this difficulty, the Enhanced Hybrid Deep Neural Net-
work (EH-DNN) explores the amalgamation of deep learning within in-
dustrial environments. Weaving Deeo Learning architectures into the
tapestry of real-world manufacturing creates a groundbreaking time se-
ries prediction (TSP) model. This model acknowledges the variability of
operational states and incorporates manual settings as pivotal attributes,
thereby deepening the portrayal of production intricacies during the
data preparation stage. It adopts a classification pre-training strategy to
reinforce the framework of the deep neural network (DNN), markedly
enhancing its capability to distill features when dealing with fluctuat-
ing operational data. The remarkable accuracy of the model in TSP 94%
is confirmed by empirical data, emphasizing the importance of feature
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extraction and condition identification in improving forecast accuracy
in general.

Future work aims to expand the scope of the research, tackling the
existing gap in status data availability during the start, shutdown, and
malfunction phases. In addition, further exploration may focus on in-
corporating essential constraints, such as considering energy use and
carbon footprint, into prediction algorithms, aiming to optimize the
regulation of industrial operations. This research pathway promises to
augment the utility and industrial relevance of the model and promote
greener and more efficient smart manufacturing.
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