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An Online Algorithm for Task Offloading in Heterogeneous

Mobile Clouds
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Mobile cloud computing is emerging as a promising approach to enrich user experiences at the mobile device

end. Computation offloading in a heterogeneous mobile cloud environment has recently drawn increasing at-

tention in research. The computation offloading decision making and tasks scheduling among heterogeneous

shared resources in mobile clouds are becoming challenging problems in terms of providing global optimal

task response time and energy efficiency. In this article, we address these two problems together in a het-

erogeneous mobile cloud environment as an optimization problem. Different from conventional distributed

computing system scheduling problems, our joint offloading and scheduling optimization problem considers

unique contexts of mobile clouds such as wireless network connections and mobile device mobility, which

makes the problem more complex. We propose a context-aware mixed integer programming model to pro-

vide off-line optimal solutions for making the offloading decisions and scheduling the offloaded tasks among

the shared computing resources in heterogeneous mobile clouds. The objective is to minimize the global task

completion time (i.e., makespan). To solve the problem in real time, we further propose a deterministic online

algorithm—the Online Code Offloading and Scheduling (OCOS) algorithm—based on the rent/buy problem

and prove the algorithm is 2-competitive. Performance evaluation results show that the OCOS algorithm

can generate schedules that have around two times shorter makespan than conventional independent task

scheduling algorithms. Also, it can save around 30% more on makespan of task execution schedules than

conventional offloading strategies, and scales well as the number of users grows.
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1 INTRODUCTION

Mobile computing technologies developed enormously in recent years and mobile devices (e.g.,

smartphones, tablets, and wearable devices) have been involved as part of people’s daily activities
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Fig. 1. A typical heterogeneous mobile cloud environment.

(Dinh et al. 2013). Mobile applications such as cognitive applications (e.g., optical character

recognition, face detection) and augmented reality are gaining popularity among mobile device

users. These applications typically require intensive computation as well as considerable energy

consumption. However, compared to desktop computers, mobile devices still provide a relatively

inferior performance in terms of processing capacity, memory, storage capacity, and battery life

to support long-time services. As a result, the gap between resource-constrained mobile devices

and computing intensive applications has posed a significant challenge.

Cloud computing is a promising solution to this challenge. It enables users to run applications

and services on various cloud service models (i.e., IaaS, PaaS, SaaS) on demand. Recently, mobile

cloud computing is introduced by bringing the benefits of cloud computing to augment resource-

constrained mobile devices. Code offloading provides an approach to migrate computing intensive

tasks to other computing resources in order to enhance the processing capacity and reduce the

energy consumption of the mobile device.

Previous works (Kumar and Lu 2010; Chen et al. 2015) have seen limits of only offloading to

the cloud since wireless networks can cause performance bottleneck. To overcome this challenge,

it is of interest to provide mobile cloud users with alternative computing paradigms. Due to the

improvement in short range wireless networks and mobile devices, mobile cloud computing has

evolved beyond the onefold resource into a heterogeneous network of computing resources.

As illustrated in Figure 1, the heterogeneous mobile cloud (HMC) environment contains different

types of computing resources such as public clouds, private clouds, cloudlets (Satyanarayanan et al.

2009), and mobile ad-hoc networks (MANET) in proximity that can be utilized to offload computing

intensive mobile tasks. Computing resources are considered machines that are interconnected by

multiple wireless technologies, namely WiFi, cellular networks, and Bluetooth to form a shared

pool of resources for mobile devices. Each mobile device within the shared environment is able

to offload tasks to other available machines, and vice versa. For the individual mobile device, it is

important to make the offloading decision based on its context such as network conditions, load

of other machines, and mobile device’s own constraints (e.g., mobility and battery). Moreover, to

achieve a global optimal task completion time for tasks from all the mobile devices, it is necessary

to devise a task scheduling solution that schedules offloaded tasks in real time.

In this article, we jointly investigate the mobile code offloading problem and task scheduling

problem for offloaded tasks as a mobile code offloading and scheduling problem (MCOSP).

Unlike the existing code offloading approaches, MCOSP not only makes decisions of whether,

when, and how to offload tasks for each mobile device, but also aims to schedule offloaded tasks
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Table 1. List of Acronyms

Acronyms Description

HMC Heterogeneous Mobile Clouds

MCOSP Mobile Code Offloading and Scheduling Problem

OCOS Online Code Offloading and Scheduling algorithm

LCSD Low Computation Small Data Size workload

HCSD High Computation Small Data Size workload

HCLD High Computation Large Data Size workload

VM Virtual Machine

OCR Optical Character Recognition

OLB Opportunistic Load Balancing algorithm

LO Mobile Local Only

CO CO Offloading to Cloud Only

among shared machines in heterogeneous mobile clouds. MCOSP takes into consideration the

constraints of the shared computing resources (i.e., load of the resources, network conditions,

and limits of battery lifetime) when scheduling, such that the overall task completion time is

minimized. Our work considers a common task scheduling model where the mobile device within

the heterogeneous mobile cloud environment generates independent tasks at arbitrary time, and

one machine may only process one task at a time. The heterogeneity in both tasks and machines

makes MCOSP an NP-hard problem (Garey and Johnson 1990). We study the optimization of

MCOSP in both off-line and online cases. Table 1 lists the acronyms used in this article. The key

contributions of this work are the following:

—First, we propose the models of computation, energy consumption, monetary cost, and time-

to-failure for mobile devices that represent the heterogeneity of the proposed heteroge-

neous mobile cloud environment.

—Second, we formulate MCOSP as a mixed integer non-linear programming problem based

on the models of the proposed heterogeneous mobile clouds and provide an analysis on

its hardness. Then, we transform it into a mixed integer linear programming formulation

using linearization and solve the problem using the branch-and-bound (BB) algorithm.

—Finally, to provide a practical solution for the problem, an online real-time scheduling al-

gorithm for MCOSP based on a generalization of rent/buy problem framework is proposed

to obtain competitive schedules for large workloads. Experimental results demonstrate that

the proposed online algorithm OCOS generates 2-competitive makespan on average com-

paring to off-line optimal solution in terms of scheduling performance, and scales well in

terms of offloading gains when the number of mobile users in the system increases.

The remaining article is organized as follows. The related work in mobile code offloading is

reviewed in Section 2. In Section 3, the system models for task scheduling are introduced, followed

by a description on MCOSP and the MIP-based formulation in Section 4. Then, we proposed the

online solutions and its competitive analysis in Section 5. The experiment settings are explained

and the performance evaluation results are discussed in Section 6. Finally, we conclude our work

and present the future work in Section 7.

2 RELATED WORK

Mobile code offloading has been widely studied in the literature. Most previous work has focused

on the application partitioning and task offloading from a single mobile device user point of view.
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However, the lack of consideration for the load of other machines can significantly affect the task

completion time. Additionally, the scalability of these offloading strategies would suffer when the

number of mobile device users grows.

Ma et al. (2013) presented a review of computation offloading works in mobile cloud computing

and identified key issues. Wen et al. (2012) studied the optimization of configuring clock frequency

of mobile processors and data transmission rate for offloading to minimize the energy consumption

subject to deadlines. ThinkAir (Kosta et al. 2012) is an Android platform for code offloading that

aims to lower the execution time and energy consumption together. Huang et al. (2012) provided

a Lyapunov optimization-based solution for saving energy while satisfying application deadlines,

device mobility, and network conditions. Kovachev et al. (2012) designed mobile cloud offloading

middleware MACS for Android devices, which aims to minimize the task execution cost of CPU,

memory, and data transmission. Chen et al. (2013) presented an offloading algorithm based on a

semi-Markovian decision process to optimize execution time and energy consumption. Lai et al.

(2013) investigated the communication latency issue as a mobile cloud offloading bottleneck for

time critical applications. The SpotCloud was proposed to shorten the latency by offloading tasks

to local home PCs. Zhang et al. (2013) devised a threshold policy to dynamically set CPU frequency

and radio transmission rates for energy optimization under stochastic wireless channels based on

energy consumption rates and wireless channel states. Barbera et al. (2013) studied the feasibility of

both mobile computation offloading and mobile data backups using cloud resources. The influence

of wireless network availability and quality on the offloading performance is evaluated. Deng et al.

(2015) investigated the effect of user mobility and fault tolerance on code offloading decisions. They

proposed a genetic algorithm to solve offloading problems with consideration of random walk

models and failure recovery time. Krishna et al. (2016) proposed a model for task offloading using

a learning automata based decision-making algorithm. It compares the execution time and energy

consumption of a task on a local device and the cloud to make offloading decisions. Noticeably, all

the above-mentioned work only focused on the localized offloading benefits between a single user

and cloud servers, assuming cloud resources are unlimited. However, the potential cost incurred

by renting the resources is of concern in reality.

Several works study the offloading problem under the concept of multiple users sharing the

limited cloud resources. Chen (2015) adopted a game theory approach to address the challenge of

devising efficient offloading coordination among mobile device users considering the wireless ac-

cess efficiency. Rahimi et al. (2013) proposed a multi-tier offloading framework that uses a greedy

heuristic to make the offloading decisions considering device mobility. Barbarossa et al. (2013) in-

troduced a joint optimization problem of computation resource and transmission power allocation

among multiple users under application delay constraints. Liu et al. (2016) formulated the energy

consumption optimization of a multi-device task offloading problem as a binary non-linear inte-

ger programming problem with acceptable time delay and communication quality. The proposed

problem is converted into a continuous convex optimization and solved by an iterative decoupling

algorithm. Wang et al. (2016) took a further step to study the QoS-aware mobile data traffic offload-

ing in vehicular ad-hoc networks (VANET). They proposed a combinatorial optimization problem

to minimize the mobile data traffic and maximize resource utilization while meeting the QoS guar-

antee. Nan et al. (2016) studied the tradeoff issue between average response time and average cost

by scheduling tasks among resources in fog computing systems. The solution can achieve near

optimal results by using a Lyapunov optimization-based online algorithm. However, these works

have not studied the benefit of utilizing the heterogeneity of computing resources under multiple

types of tasks and different context of machines and network conditions.
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Table 2. Notation

Symbol Description Symbol Description

M the set of heterogeneous machines such as cloud VMs,
cloudlets, and MANET

T ex ec
i,m the processing time of task i on machine m

S the set of independent tasks to be scheduled T tr ans
i,ch

the data transferring time of task i using wireless
channel ch

m machine m in HMC environment Eex ec
i,m the energy consumption for executing task i on

machine m

i mobile task i Etr ans
i,m the energy consumption for transferring task i to

machine m using wireless channel ch

fi the data size of task i xi,m the binary variable indicating task i is assigned to
machine m in HMC

ϖi the computation workload of task i wi , ci , bi the binary variables indicating the wireless medium
used to offload task i

t ar r ive
i the arrival time of task i oi, j,m the binary variable indicating whether task i is

scheduled before task j on node m

μ the processing speed of the machines t st ar t
i,m the real variable representing the start time of task i

on machine m

l network latency of the HMC network t
f inish
i,m the real variable representing the finishing time of task

i on machine m

r the charge rate per time unit for cloud instance in M T a constant greater than the worst-case makespan

θ the proportion of battery energy provided by mobile
device in M

Ri renting cost of task i

νm the energy consumption rate of CPU on machine m Bi,m buying cost of dispatching task i to machine m

PRactive energy consumption per time unit when the machine
is in the active mode

C
budдet
m the monetary budget of machine m

PRidl e energy consumption per time unit when the machine
is in the idle mode

C tr ans
i the monetary cost of transferring data of task i via

mobile data

Etot al
m the total battery energy of mobile device m CV M

i the monetary cost of executing task i on cloud VMs

t
join
m the time when machine m joins the HMC network

t leave
m the time when machine m leaves the HMC network

In this article, we study the multi-user mobile offloading task scheduling, under the constraints

of HMC resources (i.e., limited computing capacity, battery lifetime, network conditions, user mo-

bility, and monetary cost), to minimize the makespan.

3 HMC SYSTEM MODEL

3.1 Motivation Example

A group of oversea tourists are travelling at a local museum. Since they do not speak the local lan-

guage, an optical character recognition (OCR) application is installed on smartphones and tablets

to help them read museum exhibit descriptions. The OCR application takes photos of the descrip-

tions, processes to extract the text from the photos, and sends extracted texts over the Internet

to its back-end services in the cloud for translation. However, some mobile devices do not have

enough computing capacity to perform the text extraction, and some other mobile devices do not

have an Internet connection to get the translation. In order to enable every group member to

use the OCR application on his or her device, mobile devices, including smartphones, tablets, and

laptops, and public cloud virtual machines (VMs) running back-end services, form a network of

shared computing resources (i.e., HMC). The individual mobile device that lacks resources is able

to utilize the shared computing and network resources by offloading tasks to other devices or the

cloud.

The challenge in the scenario is deciding whether, where, and how to offload a mobile task, as

well as scheduling the offloaded tasks with load balance among the shared resources to achieve

optimal task completion time.
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3.2 Heterogeneous Mobile Clouds

The system models of the environment are formally presented in this section. The definition of

the proposed heterogeneous mobile cloud is given as follows.

Definition 3.1 (Heterogeneous mobile cloud). The heterogeneous mobile cloud is a computing par-

adigm that consists of multiple types of machines including mobile devices, cloudlets, and public

cloud services. The machines are interconnected via wireless communications technologies such

as WiFi, WiFi-direct, Bluetooth, and mobile cellular networks. Each machine can execute its tasks

either on its own or offload tasks to other machines via available wireless networks. In order to uti-

lize the shared resources, each machine needs to provide its computation time as well as a portion

of battery.

Suppose a set of heterogeneous machinesm ∈ M are connected via different wireless technolo-

gies. M consists of three types of computing resources: virtual machines on a single public cloud

service, nearby cloudlets, and mobile devices in proximity.

The heterogeneity of each machine m is modeled in terms of computing and network capa-

bility. The model is given asm � 〈μ, l , r ,θ , PRactive , PRidle ,Etotal , t join , t leave ,Cbudдet 〉,∀m ∈ M ,

where μ is the processing speed of machine m, l is the network latency between the client device

and m, r is the charge rate per time unit for the cloud instance, and θ denotes the proportion of

energy machine m will provide to execute offloaded tasks. M represents the set of machines that

form the shared resource pool. Note that θ is an exclusive property for mobile devices. The value

of this metric for other types of computing resources is set to 0. PRactive represents the energy

consumption rate per time unit of the mobile device in active mode, and PRidle represents the

energy consumption per time unit in idle mode. Etotal is the total battery energy of machine m.

The mobility of mobile devices are represented by the joining time and leaving time, respectively,

as t join and t leave .Cbudдet denotes the monetary budget of machinem for using the mobile cloud

service and cellular network data usage.

Mobile devices are not always available due to the mobility of users, and the available time of the

machines in HMC has a vital impact when scheduling mobile tasks. To enable a tractable analysis,

we first assume that network settings (i.e., signal strength, network speed, and latency) remain

unchanged throughout the time when the mobile device is within the HMC environment. This is

reasonable considering a group-based environment such as offices or group travelling.

In each proposed HMC network (e.g., one of the circled networks in Figure 1), a task sched-

uler is deployed to receive task offloading requests from mobile devices within the network and

schedule the tasks based on the proposed scheduling algorithms. To reduce scheduling overhead,

the scheduler is placed on the nearby cloudlet to reduce network latency. In case the cloudlet is

not available or in failure, the scheduler is placed on the VM on the public cloud as a backup.

The proposed HMC environment is enabled by our previously proposed mobile cloud offloading

framework mCloud (Zhou et al. 2015).

3.3 Workload Model

Only tasks with high computation and small data input size are beneficial from mobile cloud of-

floading (e.g., OCR and GPS-based applications), and we call it offloading tasks (Zhou et al. 2015).

Consider an application is composed of offloading tasks and other tasks. The proposed algorithm

only considers offloading tasks for offloading scheduling. Note that each application can only sub-

mit the offloading tasks to the scheduler (this is enabled by the framework in Zhou et al. (2015)

with Java Reflection). Hence, we assume that the tasks evaluated at the scheduler are independent

and non-preemptive of each other. We define a 3-tuple for offloading tasks i � 〈fi ,ϖi , t
arr ive
i 〉,

where fi is the data size of the task i to be offloaded, ϖi denotes CPU cycles needed to complete
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task i , and tarr ive
i represents the arrival time of task i at the scheduler. The mobile device user can

adopt the methods proposed by Cuervo et al. (2010) and Chun et al. [2011] to obtain the value of f
and ϖ . Tasks are generated at an arbitrary time. Due to the concern of communication overhead,

once offloading tasks are generated, only the information of the 3-tuple model is sent to the central

scheduler at the stage of scheduling.

3.4 Computation and Communication Models

The execution time and energy consumption required to execute a task are major factors consid-

ered in the process of making offloading decisions. CPU and the wireless transmitter are two major

energy consumption sources for mobile devices in mobile cloud computing. Typically, the power

consumption of these hardware components depends on their operating state (i.e., utilization, data

rate, etc.). Without loss of generality, we assume that the CPU operates at full utilization when ex-

ecuting mobile tasks and the data rate of the wireless channel is constant and stable. In our model,

the scheduler takes into account two metrics: the computation time and the energy consumption

of processors and transmitters.

Suppose that an offloading task i is waiting to be scheduled to M . The computation execution

time of task i on machine m is composed of CPU computation time and memory I/O access time.

Since memory access is tightly coupled with the type of application and instructions executed

and can vary on different hardware architectures, the model takes on a high-level abstraction of

memory access based on a cache miss model proposed by Fan et al. (2005).

T exec
i,m =

ϖi

μm
+ taccess ∗ Nmiss ,

where taccess and Nmiss represent memory access time and the number of cache miss, respectively.

These two parameters can either be obtained from hardware specifications or from existing per-

formance counters on many modern processors (Fan et al. 2005). If machinem is not the one that

generates task i , a task offloading occurs with extra cost in terms of time and energy required for

data transmitting. The data transmission time is given as

T tr ans
i,m =

fi
BWch

,

where BWch denotes the network speed of the wireless channel used to offload data. The compu-

tation execution time for an offloaded task is the sum of T exec
i,m and T tr ans

i,m . Note that the time and

energy cost for sending computation results back to the mobile device user are neglected, due to

the fact that the data size of results for the considered applications (i.e., cognitive applications) is

much smaller compared to the offloaded data (i.e., input data and application code).

Similar to computation models, the energy consumption model consists of the execution of

offloaded tasks, and energy consumed by data transmission if offloading occurs. The energy con-

sumption model for task i executing on machinem is given as

Eexec
i,m = νm

ϖi

μm
,

where νm represents the energy consumption rate of m executing tasks based on the processor’s

frequency (Wen et al. 2012). Eexec
i,src is the energy consumption for machine m if the scheduler de-

cides to execute task i locally. For the computation offloading, the amount of energy incurred by

data transfer, Etr ans
i,m , depends on the size of the data and the wireless medium that carries the

transmission.

Etr ans
i,m = ρch

fi
BWch

,
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where ρch denotes the energy consumption rate of the wireless medium applied and BWch is the

network speed. Accordingly, the energy consumption of task i executing locally is Etr ans
i,src .

3.5 Monetary Cost

We assume that each individual mobile device has a monetary cost budget set by the mobile user

for using the proposed mobile cloud services. The monetary cost is generated by transferring data

via cellular networks and using public cloud services. The scheduler needs to make offloading

decisions without violating budget constraints. In our system model, the data transferring cost of

offloading task i is calculated asCtr ans
i = κ ( fi + fr es ), where κ is the cost per megabyte of cellular

networks, and fi , fr es denotes the data size of task i and computation results, respectively.

The cost of using public cloud services is based on the type of service and the usage. The spend-

ing on running task i on cloud VM m is calculated as CV M
i = rvm

ϖi

μvm
, where rm is the cost per

time unit of cloud instancem.

3.6 Failure Model

Mobile devices are unreliable due to their mobility and unstable wireless network links. The dis-

connections of mobile devices from the mobile cloud environment can cause failures in execution

of offloaded tasks. Therefore, considering the availability of machines is important for making of-

floading decisions. Note that the study of mobility patterns of mobile devices is not the focus of

this article. Instead, the system model adopts the time-to-failure metric to represent the availabil-

ity of the machines. Time-to-failure represents the time between the machine joining (i.e., t join
m )

and being disconnected from the shared resource pool (i.e., t leave
m ).

To obtain the time-to-failure of mobile devices, Weibull distribution is adopted since it can well-

represent the case where failure rate is constant as well as the case where failure rate increases or

decreases as time goes by (see Lee et al. (2010)), and is shown to be useful for modeling lifetime

data in engineering sciences (Lawless 2011). The probability density function (PDF) of Weibull

distribution is given by:

f (t ) =
β

η

(
t

η

)β−1

e−( t
η )β

,

where β is the shape parameter and η is the slope parameter of the distribution. Time-to-failure of

each machine can be randomly obtained from the inverse function of Weibull distribution. t leave
m

of machinem can be calculated by padding the time-to-failure after t join
m of the machine.

4 MOBILE OFFLOADING SCHEDULING PROBLEM FORMULATION

In our system model, mobile tasks, machines, and wireless networks are all considered heteroge-

neous. To guarantee a consistent user experience for all mobile cloud service users, we target on the

balanced utilization of the shared computing resources with the shortest possible tasks response

time for all mobile device users, i.e., the overall task completion time is minimized considering the

heterogeneity and constraints of the HMC environment. In such case, task completion time for an

individual user may not be optimal, but for all the service users, the task completion time of all

mobile tasks submitted by mobile devices is minimized to ensure the balanced and fair use of the

shared computing resources.

4.1 Mixed Integer Programming Based Off-line Optimal Formulation

The MCOSP aims to decide on which machine to execute each generated mobile task, as well

as which wireless medium to use if an offloading is required. Furthermore, it needs to devise an
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optimal schedule for the mobile task execution with minimum makespan, subject to constraints

from the proposed HMC environment.

Based on proposed system models, we presented a mixed integer programming (MIP) based

problem formulation for MCOSP. In the MIP formulation, five binary variables and two continuous

variables are defined to devise the optimal solution. Note that the term machine is used to represent

any types of computing resources in the proposed HMC environment.

Let tstar t
i,m and t

f inish
i,m be the starting time and finishing time of task i executing on machine m,

respectively. The binary variable xi,m represents whether task i is scheduled on machinem.

xi,m =

{
1, if task i ∈ S is assigned to machinem ∈ M
0, otherwise

Then, the variables for the wireless medium used for data offloading are defined as binary vari-

ablewi , ci , and bi . The variables represent whether the data is offloaded via WiFi, cellular network,

or Bluetooth, respectively. The variable that represents the utilized wireless medium for task i is

set to 1, otherwise it is set to 0. As an example, the definition of wi is given below.

wi =

{
1, if task i is offloaded via WiFi

0, otherwise

In order to simplify the calculation of task completion time, binary variable oi, j,k is defined to

represent the order of tasks scheduled on each machine.

oi, j,m =

{
1, if task i is scheduled before task j on machinem
0, otherwise

The MIP formulation is given as follows.

Minimize: max{t f inish
i,m },∀i ∈ S,∀m ∈ M (1)

Subject to: ∀i ∈ S,
∑

m∈M

xi,m = 1 (2)

wi + ci + bi + xi,src = 1 (3)

T (oi, j,m − 1) � t
f inish
j,m − tstar t

i,m � T ∗ oi, j,m (4)

xi,m + x j,m + oi, j,m + oj,i,m � 3 (5)

oi, j,m + oj,i,m � 1 (6)

tstar t
i,m � tarr ive

i (7)

tstar t
i,m � t join

m +T (xi,m − 1) (8)

tstar t
i,m � t

f inish
j,m −T (1 − oj,i,m ) −T (2 − xi,m − x j,m ) (9)

t
f inish
i,m � t leave

m (10)

t
f inish
i,m = tstar t

i,m + xi,m ∗ (T exec
i,m +T tr ans

i,m ) (11)

t tr ans
i,m =wi ·T tr ans

i,W iF i · I
m
wif i + ci ·T tr ans

i,3д · Im
3д + bi ·T tr ans

i,bl · Im
bl ) (12)
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T exec
i,src � xi,m ∗ (T exec

i,m +T tr ans
i,m ) (13)

∑
i ∈S

xi,m · Eexec
i,m � Etotal

m · θm (14)

νsrc · Eexec
i,src > Etr ans

i (15)

∑
i ∈S

ci ·Ctr ans
i +

∑
m∈M

xi,m ·CV M
i � C

budдet
m (16)

∀i, j ∈ S,∀m ∈ M (17)

The objective function of Equation (1) minimizes the maximum of the task completion time

from all the machines (i.e., makespan of the scheduled tasks). Constraints (2)–(11) ensure a valid

schedule of the tasks. Constraint (2) ensures that each task needs to be assigned to one and only

one machine (either local execution or offloading to another machine). Constraint (3) ensures that

for each task being scheduled, either it is executed locally (xi,src ) or offloaded via one and only

one of the wireless networks (wi , ci ,bi ). Different tasks are scheduled with one of the different

types of wireless networks and it can be different for each task based on its execution conditions

(Equation(12)). xi,src is one of the binary variables xi,m .

Constraint (4) assigns values to the order variable oi, j,m for each pair of tasks scheduled on

the same machine based on the difference between the finish and start time of each task. T is the

constant greater than the worst case makespan. Constraints (5) and (6) restrict the tasks scheduled

on the same machine from overlapping; that is, each machine can only run one task at a time.

Since the tasks are generated randomly at times, Constraint (7) ensures a valid schedule of tasks

starting after the task arriving time.

Additionally, the starting and finishing time of a task being scheduled to another mobile device

should be within the range of that device’s joining and leaving time. This is guaranteed by Con-

straints (8) and (10). If the task i is not assigned to machinem, tstar t
i,m will be set to a value greater

than the worst case makespan by Constraint (8). Constraint (9) indicates that the task is scheduled

to an available time slot of the machine. Constraint (10) calculates the finish of task i on machine

m. The finish time of task i on machinem is equal to the sum of its start time tstar t
i,m , the execution

time T exec
i,m , and the data transferring time T tr ans

i,m , if xi,m is equal to 1.

Constraints (13)–(16) describe the unique constraints of code offloading in proposed heteroge-

neous mobile clouds. Constraint (13) specifies that tasks that are offloaded should have a shorter

execution time than that of local execution. Im
channel

is a binary indicator that represents the avail-

ability to access machinem via each type of wireless interfaces. It is set by the machine when it is

initially connected to the network. In the system model, each mobile device is only contributing

θm proportion of its battery energy for running the offloaded tasks from other mobile device users.

This is enforced by Constraint (14) for each mobile device. When a task is scheduled to offload to

another machine, the energy consumption of the data communication should be less than that

of executing the task locally. The energy consumption constraint is described in Constraint (15).

The left part of the inequation represents the energy consumption of executing the task i on a

local processor, and the right side is the energy of computing it on machine m. νsrc is the en-

ergy consumption rate of the original machine of task i . Finally, Constraint (16) guarantees that

the monetary cost of each machine by using the public cloud services and mobile data does not

exceed its limit C
budдet
m .
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We can observe that the formulation is a non-linear model because of Constraints (1), (11),

and (13). Generally, the mixed integer non-linear programming model is not solvable with the

optimization software. Therefore, the model needs to be linearized for further optimization.

The objective function is a min-max function that can be linearized by minimizing a continuous

variable T and adding the following constraint:

T ≥ t
f inish
i,m ,∀i ∈ S,∀m ∈ M . (18)

To linearize Constraints (11) and (13), three new binary variables δmedium
i,m are defined as follows.

δmedium
i,m = xi,m ·mediumi , (19)

wheremediumi is wi , ci , or bi . All the quadratic terms in Constraints (11) and (13) can be equiva-

lently replaced by δmedium
i,m , and three constraints are added:

δmedium
i,m �xi,m (20)

δmedium
i,m �mediumi (21)

δmedium
i,m �xi,m +mediumi − 1 (22)

Therefore, the mixed integer linear programming formulation is given as:

Min : T (23)

s.t. : (2) − (18), (20) − (22).

4.2 Complexity Analysis

MCOSP is based on a task scheduling problem for heterogeneous computing (Topcuoglu et al.

2002). Given a heterogeneous computing environment that has processors with different process-

ing speeds, and a set of tasks modeled by a directed acyclic graph waiting to be scheduled onto

the machines, the objective of the heterogeneous task scheduling problem is to minimize the max-

imum task completion time while the schedule satisfies the task precedence. The task scheduling

in heterogeneous systems is proven to be an NP-hard problem (Hong and Prasanna 2007; Ibarra

and Kim 1977). The main differences of MCOSP are that it considers a set of independent, non-

preemptive tasks. Moreover, our proposed problem considers the unique constraints of the shared

computing resources to offload in HMC in terms of computing capacity, battery limits, the avail-

ability of mobile devices, and network conditions. Therefore, based on the proposed mixed integer

linear programming (MILP) formulation, the MCOSP is an NP-hard problem.

Generally, an MILP problem is solved by the BB method (Alisa Land 1960). As a result, there

exists a large search space when being solved by the BB method due to the number of variables,

which is related to the size of the task set and machines. Hence, the optimal results can only

be devised for a small set of problem instances. The efficiency of the proposed MILP solution is

evaluated in the experiments (Section 6). Therefore, an online, lightweight scheduling algorithm

for MCOSP is of interest.

5 ONLINE CODE OFFLOADING AND SCHEDULING ALGORITHM

In the proposed heterogeneous mobile cloud environment, the central scheduler has no knowledge

of future task arrivals. Hence, the scheduler has to make decisions of task offloading and scheduling

in a real-time manner without knowing the entire input sequence (i.e., task arrival times). An

online optimization framework is therefore needed to solve the MCOSP in real time. We proposed

the OCOS algorithm based on the rent/buy problem to tackle this challenge.
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5.1 Mobile Code Offloading and Scheduling Problem

Many online problems involve a sub-problem called rent/buy problem. One has to decide whether

to stay in current state with a certain amount of cost per time unit, or pay some fixed cost to move

to another state.

Ski rental (Karlin et al. 1990) is a classic example. Suppose a person is skiing for an unknown

number of days. He needs to either buy the equipment or rent from the shop. Renting costs r per

day while buying costs B, where B > r . The objective is to make the renting or buying decision

online in order to minimize the total cost on skiing.

A well-known generalization of this classical rent/buy problem is the transmission control pro-

tocol (TCP) acknowledgement problem (Karlin et al. 1990). The system needs to decide how long

a packet waits before sending the acknowledgement. Waiting incurs delay cost while acknowl-

edging incurs some cost that is more than delay cost. It can be beneficial as multiple packets can

potentially be acknowledged together.

Consider the MCOSP problem in the online manner. Similar to the TCP acknowledgement prob-

lem, MCOSP can be considered as a generalization of rent/buy problems. Multiple jobs can be sub-

mitted to the scheduler at the same point of time. Hence, as the service continues, there will be

several mobile tasks waiting on the scheduler to be dispatched. In particular, consider the problem

as to whether to hold a task waiting in the scheduler or to offload the tasks to one of the machines

in HMC to execute. The tasks may finish execution earlier if they wait in the scheduler for some

time and execute on another machine that is available later other than the currently available ones.

A task waiting to be processed sometime in the future generates a waiting cost of 1 for each time

unit. Otherwise, it can pay an additional cost B to execute on one of the machines immediately.

Obviously, if the scheduler somehow knows the task needs to wait for at least B time periods, it is

optimal to pay a higher cost and run the task immediately in one of the machines at the beginning.

However, in reality, the scheduler has no knowledge of that. Therefore, for each task that awaits

in the queue, the scheduler needs to decide at each time period whether to keep the task waiting

or offload to a machine, considering the scheduler does not have any knowledge of the next task

arrival. We define the following entities in the context of MCOSP:

(1) Rent: The scheduler holds the task awaiting in the queue for one time period.

(2) Buy: The scheduler dispatches the task to one of the machines for execution.

(3) Renting cost Ri : Renting incurs one cost per time unit. Thus, the renting cost Ri of task

i refers to the time period task i waited before being dispatched. Ri is defined as:

Ri = T
wait
i

(4) Buying costBi,m : Buying cost refers to the time consumed for the task to finish execution.

Assume task i is assigned to machinem for execution. Bi,m is defined as:

Bi,m = T
avail
m +T exec

i,m +T tr ans
i,m −T arr ival

i ,

whereT avail
m is the earliest available time of machinem,T exec

i,m is the execution time of task

i on machinem, andT arr ival
i is the arriving time of task i . To calculate the task execution

time of task i on machinem, if there is any task offloading required, the data transmission

time for offloading is calculated based on the wireless channel availability of machine m
(i.e., Im

wif i
, Im

3д , I
m
bt

) in Equation (12). If multiple channels are available, then the channel

with minimum transmission time is selected. The leaving time of a machine is considered

when calculating the cost. That is, if the leaving time of a machine m is before a task i
can finish computation, T exec

i,m is set to infinity so that the overall buying cost would be

infinity.
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ALGORITHM 1: Online Code Offloading and Scheduling Algorithm

1: Initialize : waitlist L,n ← 0

2: for ∀m ∈ M do

3: initialize machine properties μm , rm ,θm ,νm , PR
active , PRidle

4: end for

5: while n � D do

6: Upon receiving a task i: L ← i
7: Ri ← 0

8: for ∀m ∈ M do

9: update Tm
avail

10: Bi,m ← 0

11: end for

12: for ∀i ∈ L do

13: formachine m ∈ M do

14: calculate Bi,m

15: end for

16: end for

17: Bi,m∗ ←minm∈MBi,m

18: for ∀i ∈ L do

19: Rmin ← MAX_VALUE

20: if Ri � Bi,m∗ and Ri < Rmin then

21: Rmin ← Ri

22: taд ← i
23: end if

24: end for

25: if Ctaд,m∗ +C
curr ent
m∗ � C

budдet
m∗ and Etaд,m∗ + E

curr ent
m∗ � Etotal

m∗ · θm∗ then

26: Schedule task taд to machine m∗

27: Remove task taд from L
28: end if

29: for ∀i ∈ L do

30: Ri ← Ri + 1

31: Update Ri

32: end for

33: n ← n + 1

34: end while

5.2 Online Code Offloading and Scheduling Algorithm

Based on the problem definition above, we proposed an online code offloading and scheduling

algorithm (OCOS) based on the break-even algorithm. The break-even algorithm (Karlin et al.

1986) has been widely used to design the online algorithms. A break-even point refers to the time

when the renting cost equals the buying cost. The algorithm decides to buy the resources after the

break-even point. It has been proven to be 2-competitive (Karlin et al. 1986).

A discrete time horizon of D epochs is considered, where D could possibly be infinite. Starting

from time 0, the tasks arrive at the scheduler at arbitrary epoch. The pseudo code of the proposed

algorithm is given in Algorithm 1. Firstly, the scheduler initializes a waitlist L and updates all

the information of the machines available (e.g., earliest available time, processing speed, energy

rate, and so on) by sending a request to each machine (Steps 1–4). If there is any change of the

information, it will be sent to the scheduler periodically. When a task is generated, its information

is sent to the scheduler, it is added into the waitlist, and its renting cost is set to 0 (Steps 6–7). At
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the beginning of each scheduling epoch, the scheduler updates the earliest available time of each

machine (Steps 12–16). The machine m∗ that has the minimum buying cost is selected (Step 17).

Then, it calculates the renting cost and buying cost on every machine for each task in the waiting

list. Tasks meeting the following condition will be selected and scheduled to the corresponding

machinem with the least buying cost Bi,m :

Ri � min
m∈M

Bi,m . (24)

If there is more than one task meeting the above-mentioned condition for the same machine, the

task with the lowestR will be scheduled (Steps 18–24). Note that to follow the energy and monetary

cost constraints, the algorithm maintains two variables — Ccurr ent
m for the current total monetary

cost of machine m (i.e., mobile user m) and Ecurr ent
m for the current overall energy consumption

for machinem — to reject the schedule if the conditions are not met (Steps 25–28). Scheduled tasks

will be removed from the waiting list. Then, the scheduler updates the renting cost of tasks in the

waitlist by adding one time unit (Steps 29–32).

The complexity of the proposed algorithm isO ( |M | · |S |), given that |S | tasks arrived during the

time period D and there are |M | machines available. Step 6 takes O ( |M |) to update the available

time at each epoch. Updating buy cost for each task in the waiting list takes O ( |M | · |S |) (Steps 6–

10). Step 11 takes O ( |S |loд |M |) to check each task’s condition. Therefore, the overall algorithm

takes O ( |M | · |S | + |M | + |S |loд |M |) at each epoch, which can be summed as O ( |M | · |S |). We then

present a competitive analysis on the online algorithm as follows.

Definition 5.1 (Competitive Ratio). An online algorithm ALG is c-competitive if for all finite

input sequences I ,

ALG (I ) ≤ c ·OPT (I ) + α ,

where ALG (I ) is the cost of the online algorithm and OPT (I ) is the cost of the off-line optimal

(Borodin and El-Yaniv 1998). A c-competitive online algorithm ALG is also a c-approximation

algorithm with the restriction that ALG must compute online.

The competitive ratio is evaluated to show the performance of the proposed online algorithm by

calculating the total completion time of the tasks in a time period for the off-line optimal solution

and the online algorithm.

Let TALG
σ ,m and TOPT

σ ,m denote the makespan of tasks scheduled on machine m by the proposed

OCOS algorithm and off-line optimal, respectively, where σ denotes the set of tasks scheduled

to machine m by OCOS or off-line optimal. Given a heterogeneous set of machines M , and an

arbitrary task sequence σ to schedule among machines in M , we obtain the following:

Lemma 5.2. For ∀m ∈ M ,TALG
σA,m

� 2TOPT
σO ,m , whereσA ∈ σ ,σO ∈ σ are the task sequences scheduled

to machinem by the OCOS algorithm and off-line optimal algorithm, respectively.

Proof. For task set σA and σO , there are two cases to discuss where σA = σO and σA � σO .

First, if σA = σO , based on the scheduling policy of the OCOS algorithm (Equation (24)),

TALG
σA,m =

∑
i ∈σA

(Ri + Bi,m ) = 2
∑

i ∈σA

Bi,m

TOPT
σO ,m =

∑
i ∈σO

Bi,m =
∑

i ∈σA

Bi,m =
1

2
TALG

σA,m
.

Thus, for σA = σO , TALG
σA,m = 2 TOPT

σO ,m .

Second, if σA � σO , the possible relations between σA and σO are either σA ⊂ σO or σA � σO .

We prove by contradiction that the case of σA � σO does not exist.
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Assume σA � σO exists. Then, let σ ′ = σA − σO so that σ ′ is scheduled to machine m by the

OCOS algorithm. Based on OCOS algorithm’s scheduling policy that dispatches task i only when

the renting cost Ri is equal to the minimum of buying cost Bi,m among M (Equation (24)),∑
i ∈σ ′ Bi,m is the minimum. On the other hand, since σ ′ is scheduled to another machine by the

off-line optimal algorithm, for instance, machine n, we have
∑

i ∈σ ′ Bi,n � ∑
i ∈σ ′ Bi,m , which is

contradicted to the case, for which
∑

i ∈σ ′ Bi,m is the minimum. Therefore, σA � σO does not exist.

When σA ⊂ σO ,

TALG
σA,m

TOPT
σO ,m

=
TALG

σA,m

TOPT
σA,m +T

OPT
(σO−σA ),m

�
TALG

σA,m

TOPT
σA,m

= 2.

Therefore, for ∀m ∈ M , TALG
σA,m � 2 TOPT

σO ,m . This completes the proof. �

Theorem 5.3. The proposed OCOS algorithm for task scheduling on heterogeneous mobile cloud

environment is 2-competitive.

Proof. Let ALG denote the proposed OCOS algorithm and OPT denote the off-line optimal

algorithm. Let σ = (t1, t2, . . . , tn ) be an arbitrary tasks sequence submitted for scheduling, and

∀m ∈ M be a machine in the environment to execute tasks. ALG (σ ) and OPT (σ ) denote the

makespan of the schedule generated by the OCOS algorithm and the off-line optimal schedule,

respectively, on the input sequence σ .

Without loss of generality, we assume that σ = σ1 ∪ σ2 ∪ · · · ∪ σm is the task sequence sched-

uled on each machine by algorithm OPT, and

OPT (σ1) � OPT (σ2) � · · · � OPT (σm ).

Let σ = σ ′1 ∪ σ ′2 ∪ · · · ∪ σ ′m be the task sequence scheduled by algorithm ALG and

ALG (σ ′1 ) � ALG (σ ′2 ) � · · · � ALG (σ ′m ),

where σm and σ ′m are tasks scheduled to machine m by OPT and ALG, respectively. Thus, the

makespan OPT (σ ) = OPT (σM ) and ALG (σ ) = ALG (σ ′m ).
Based on the definition of competitive ratio and Lemma 1,

ALG (σ )

OPT (σ )
=

ALG (σ ′m )

OPT (σm )
� 2.

Hence, the competitive ratio of the OCOS algorithm is 2. �

6 PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithms in two aspects, namely the scheduling perfor-

mance (i.e., the makespan of the tasks) and the offloading performance (i.e., total execution time

and energy saved). Six sets of experiments are conducted to evaluate the proposed off-line and on-

line scheduling solutions in terms of scheduling performances, algorithm efficiency, and the effect

of the parameters considered by the algorithms. For the scheduling performance, the proposed al-

gorithms are compared with the online mode independent task scheduling heuristic opportunistic

load balancing (OLB) (Braun et al. 2001). For the offloading performance, the proposed algorithms

are compared with the offloading policies in ThinkAir (Kosta et al. 2012).

6.1 Experiment Settings

For the off-line mixed integer linear programming model proposed, the off-line optimal algorithm

is implemented in Gurobi Optimizer 6.5 (Optimization et al. 2015) to provide the off-line optimal

solutions of the model. The optimization is undertaken on an m1.xlarge instance on Nectar Cloud
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Table 3. Characteristics of

Workloads

Type Data Size (MB) CPU Cycle (Giga)

LCSD [0.05, 0.5] [1, 10]

HCSD [1, 5] [50, 100]

HCLD [1, 5] [50, 100]

Table 4. Parameter Settings for Evaluation

Parameter Value

Task data size (f ) [0.05,0.5],[1,5]

Task computation (ϖ ) [1,10],[50,100]

Mobile device CPU frequency (μ ) {0.2,0.5,0.8,1.0,1.2}

Cloudlet CPU frequency 2.5

Cloud VM CPU frequency 3.6

Cloud VM charge rate 0.84

Battery limit fraction (θ ) Uniform(0.2,0.5)

Active CPU power consumption rate (P Ractive ) 0.07,0.34,0.48,0.56,0.6

Idle CPU power consumption rate 0.002

WiFi data rate (BWwif i ) 1

Bluetooth data rate (BWbt ) 0.26

Cellular data rate (BWcel l ) 0.85

WiFi power rate (ρwif i ) 1.94

Bluetooth power rate (ρbt ) 0.28

Cellular power rate (ρcel l ) 5.56

Weibull parameters (α, β ) (1.9543,326.87),(1.2861,178.56), (0.8712,276.87), (1,163)

(Nectar 2015) with 8vCPUs and 32GB RAM. For the online algorithm evaluation, we develop our

own experiment environment to evaluate the performance of the proposed algorithms. The sched-

uler runs on a local computer that has an Intel Core i7 CPU with 3.4GHz and 8GB RAM. Experiment

settings and workload parameters are listed in Table 4.

Due to the lack of real-world traces that are suitable for the HMC environment and mobile

device constraints, workloads are obtained by profiling the cognitive applications running on mo-

bile devices in the experimental environment. The workload consists of three types of task sets

that represent the diversity of mobile application tasks, namely low computation small data size

(LCSD), high computation small data size (HCSD), and high computation large data size (HCLD).

In order to profile values of the parameters of task sets, an open-source OCR application1 is ex-

ecuted on Android with Android Studio performance analysis tools to profile the OCR application

on the method level. The profile, which consists of data size of the captured picture frame and in-

clusive CPU running time of each operation (i.e., methods for Android application) for processing,

is then classified into the three workload types. In workload LCSD, the range of data size of tasks

lies in the interval [0.05, 0.5] megabytes, and the computation of completing each task distributes

in the interval [1, 10] giga CPU cycles. Similarly, in workload HCSD and HCLD, data size of the

tasks are in the interval of [0.05, 0.5] and [1, 5] megabytes, respectively, and the computation of

both task sets is in an interval of [50, 100] giga CPU cycles. A summary of the workloads used in

the experiment is listed in Table 3.

Regarding the experiment environment, it includes two identical cloudlets and three identical

VMs in the public cloud. The number of mobile devices varies based on different experiments

conducted. The hardware information is profiled from a number of Android smartphones. For

each mobile device, the CPU speed μ is randomly assigned from the set {0.2, 0.5, 0.8, 1.0, 1.2}GHz

for the mobile devices. These CPU frequencies are obtained from different mobile devices such as

Nexus 4, HTC G13, HTC G3, and Samsung I997. The CPU speed of the cloudlet is 2.5GHz, and

cloud VM CPU speed is 3.6GHz following the Amazon EC2 C3 instances. The monetary cost of

cloud VM is $0.84 per offloading request. θi is uniformly selected from the interval [0.2, 0.5]. For

the energy aspect of the mobile devices, the parameters given in the energy models proposed by

Ali et al. (2016) are adopted in the experiments. The active CPU energy consumption rate PRactive

1Available at https://github.com/rmtheis/android-ocr.
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Fig. 2. Makespan and running time of the off-line optimal approach.

is set from {0.07,0.34,0.48,0.56,0.6} based on the above-mentioned CPU frequency, accordingly. The

idle power consumption rate PRidle is set to 0.002 for all devices.

The network of the experiment environment consists of three types of wireless mediums,

namely mobile cellular network, Bluetooth, and WiFi. Network parameters are obtained by profil-

ing the network conditions in our experiment environment using file transferring applications on

the mobile device. WiFi network speed BWwifi is set to 1MBps, Bluetooth transmission speed BWbl

is set to 0.26MBps, and cellular network speed BWcell is set to 0.85MBps. The network latency to

public cloud service is set to 0.1s. It is profiled by testing the delay to the Amazon EC2 service in

the Sydney region. Moreover, the energy consumption parameters of WiFi, Bluetooth, and cellular

network are set to ρwifi = 1.94 W , ρbt = 0.28 W , and ρcell = 5.56 W , respectively, based on the

energy model proposed by Balasubramanian et al. (2009).

A 2-parameter Weibull distribution is used to obtain the leaving time of the mobile device from

HMC. To capture the mobility patterns of real mobile devices in the wireless network, the CRAW-

DAD tracesets (Kotz et al. 2009) are used to obtain valid values for the shape parameter α and the

slope parameter β in the Weibull distribution. The traceset is composed of the system logs of WiFi

access points on the Dartmouth campus from September 1, 2005 to October 4, 2006. The number

of sessions in every minute is extracted from the trace to generate the probability function using

rank regression (Rinne 2008). Then, the time-to-failure of each machine is randomly obtained from

the inverse function of Weibull distribution in order to generate the t leave .

6.2 Experiment Results

6.2.1 Off-line Approach Performance Evaluation. Figure 2 shows the time taken to generate the

solution and the makespan of tasks in the workload by using the off-line approach. The task set for

the experiment is obtained from workload HCLD. Note that since the off-line approach uses the BB

algorithm to solve the MILP model formulated, the search space of the BB algorithm is only based

on the number of tasks and machines rather than the heterogeneity of the tasks and machines.

Hence, either workload can be used for the evaluation of the off-line approach. Results of makespan

for the off-line optimal are used as a benchmark for the online algorithms’ evaluation. As shown

in Figure 2, the processing time for producing the optimal solution increases expeditiously as the

number of tasks grows. This is because the complexity of our proposed MILP model is a product of

the number of tasks, the number of machines, and the number of variables defined. Hence, solving

an off-line optimal schedule that involves large data sets would require an unreasonably large

amount of time for the mobile cloud offloading systems, which demands lightweight and timely

offloading decisions. Therefore, the results show necessity of the online scheduling algorithm to

solve the proposed mobile cloud offloading and scheduling problem with low processing delay.
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Fig. 3. Performance of OCOS algorithm with different task data size.

6.2.2 OCOS Algorithm Performance Evaluation. The performance of the proposed OCOS algo-

rithm is investigated. The online solutions under all three types of workloads are evaluated and

compared with the non-preemptive task scheduling heuristic OLB as well as the benchmark off-

line optimal schedule. The OLB heuristic schedules tasks to the machine with the earliest avail-

able time when tasks arrive at the scheduler. Note that the OLB heuristic is different from the

OCOS algorithm in that it does not consider the offloading benefits (e.g., whether the offloading

would shorten the task completion time) when scheduling the tasks. Two metrics are considered,

namely makespan and the overall energy consumption. The makespan represents the maximum

task completion time of the set of scheduled tasks. The overall energy consumption is the sum of

each mobile device’s energy consumption for running the scheduled tasks.

To explore the impact of different offloading data sizes on the performance of the OCOS al-

gorithm, tasks from workload HCSD and HCLD are categorized into 10 task sets based on the

offloading data size (from 0.5MB to 5MB) and CPU cycles from 50 to 60 giga cycles. Results are

averaged by 50 runs. Figure 3(a) depicts that the makespan of the OCOS algorithm and off-line

approach algorithm only have a small increase as the offloading data size of the tasks increases.

OLB heuristic generates a much higher makespan. This is caused by its scheduling strategy that

only considers the earliest available time of the machines, which makes the load of machines un-

balanced. Also, as the data size increases, there is a much faster growth in makespan than the

OCOS algorithm and off-line approach, since mobile devices take a longer time to transfer the

offloaded data. The results indicate that, for the cognitive application with offloading data size

less than 5MB, the performance of OCOS is not affected by the data size. It can also be observed

that makespans generated by the online algorithm are around 2.6 times as much as the off-line

approach on average, while the OLB heuristic is five times longer. Different from the 2x makespan

shown in Theorem 5.3, the 2.6x makespan yielded by the experiment is caused by the difference

of modeling and hardware in machines. The models for task execution time have a high level of

hardware abstraction to eliminate the complexity lying in hardware (which is not the focus of

this work). However, in reality, machines have multi-core CPU and multi-level memory hierarchy

I/O that will affect the task execution time. Moreover, in reality, mobile devices and HPC servers

run many background activities that will affect and lengthen the execution time of tasks in the

proposed work.

The overall energy consumption of the mobile devices in the experiments (Figure 3(b)) increases

as the data size grows. For the OLB heuristic, the percentage of tasks scheduled to cloud and

peer mobile devices does not have much fluctuation (shown in Figure 3(c)) with the growth of

data size, due to the earliest-available-time-only scheduling strategy. The increase in the energy

consumption of the schedule made by the OLB heuristic is caused by the larger data size and the

higher makespan as the data size increases. For the OCOS algorithm, more tasks are scheduled to
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Fig. 4. Performance of OCOS algorithm for tasks with different computing requirements.

peer mobile devices (shown in Figure 3(c)) rather than the cloud as the data size of tasks grows.

This is because OCOS considers the task completion time as well as the energy consumption of

executing tasks. Tasks with larger data size tend to be offloaded to peer mobile devices rather

than to the cloud to reduce the data offloading energy consumption as well as the transferring

time and to generate balanced schedules. As a result, the overall energy consumption of all mobile

devices increases. In addition, the growth in data size also increases the energy consumption of

the wireless transmitters.

Furthermore, for tasks with different computing resource requirements, the impact on the per-

formance of the proposed algorithms is evaluated. For each run, the tasks from workload type

LCSD and HCSD are categorized into the 10 task sets based on the CPU cycles required (10 to

100). Results are averaged by 50 runs. The makespan of schedules, total energy consumption, and

portion of tasks offloaded to the cloud as well as peer mobile devices are shown in Figure 4. In

Figure 4(a), the makespans generated by all three algorithms increase with the increase in com-

putation load. The makespan generated by the OLB heuristic grows much faster than that of the

OCOS algorithm due to its offloading strategy that tasks with high computation requirements are

scheduled to low computing capacity mobile devices. Eventually, the makespan of the unbalanced

schedule becomes higher. On the other hand, the growth of makespan generated by the OCOS

algorithm is much slower than that of the OLB heuristic. This is because the OCOS algorithm

compares the current renting cost (waiting time) of the task with its buying cost (task completion

time) on different machines when making the scheduling decisions, and thus, generates a more

load-balanced schedule compared to OLB. In terms of energy consumption, Figure 4(b) shows that

the differences of growth trend between three algorithms are similar to those of the makespan in

Figure 4(a). This is because the longer the execution time of the task, the higher the energy mo-

bile devices consume. Therefore, as the computation requirements of the tasks grow, the overall

energy consumption of the mobile devices increases. On average, the energy consumed executing

the tasks of the schedule generated by the OCOS algorithm is around two times less than that of

OLB, and around 1.5 times more than that of the off-line approach.

Figure 4(c) shows the percentage of tasks scheduled to offload to the cloud and peer mobile

devices by the OCOS algorithm and OLB heuristic, respectively, under different computing re-

quirements. For the OCOS algorithm, the portion of tasks offloaded to the cloud and the total por-

tion of tasks offloaded both increase with the increase of computing requirements of tasks. This

is because OCOS considers the task completion time as well as how much time and energy can

be saved when deciding the schedule. Therefore, as the computing requirements of the tasks in-

crease, OCOS schedules more tasks to the cloud to reduce the makespan. On the contrary, the OLB

heuristic only considers the earliest available time of the machine when scheduling tasks. Thus,

most of the tasks (90% on average) are offloaded to the cloud and other mobile devices regardless
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Fig. 5. Makespan with differ-

ent task arriving rates (λ).

Fig. 6. Energy consumption with

different task arriving rates.

Fig. 7. Makespan with differ-

ent Weibull Distribution (α :

shape, β : scale).

of the offloading benefits. This scheduling strategy also causes unbalanced schedules among tasks

(shown in Figure 4(a)), compared to OCOS that takes machine load balance into consideration.

Based on the results obtained from the two sets of experiments conducted above, compared to

OLB, the OCOS algorithm has a steady performance on makespan and energy consumption for

cognitive applications with task data size between 1MB and 5MB. The performance ratio of the

online algorithm over the off-line approach is around two for makespan.

To observe the performance of the algorithm in terms of mobile device reliability, two sets of

experiments are conducted. The first set compares the makespan and energy consumption of the

three algorithms with different task arriving rates (i.e., λ). The second experiment tests the effect

of different mobile device reliability (i.e., device leaving time) on makespans of scheduled tasks.

Tasks from workload HCSD are used for both sets of experiments. Results are shown in Figures 5–

7. From Figure 5 and Figure 6, we can observe that the task arriving rate does not have much

influence on makespan and overall mobile device energy consumption since the results do not

have fluctuations over different arriving rates. This is due to the fact that all three algorithms

aim to schedule multiple tasks that match their scheduling policies at the same time. Moreover,

makespan and energy consumption generated by the OCOS algorithm are around 65% and 57% of

the OLB algorithm respectively, and 2.2 and 1.5 times of the off-line algorithm, respectively.

To test the performance of proposed algorithms on mobile device reliability, multiple cases

are tested to represent different device mobility as device leaving time. The device leaving time

is obtained from the above-mentioned Weibull distributions in Section 6.1 using CRAWDAD

tracesets. The shape (α ) and scale (β) parameters for the Weibull distributions are listed in Table 4.

The same task set from workload HCSD is used for all the cases. α , β for the first two cases are

extracted from the data between 1 and 8 p.m. in tracesets, the fourth case is obtained from data

between 5 a.m. and 1 p.m., and the third case is a synthetic pair of parameters for comparison.

α < 1 indicates the device failure rate decreases with time; that is, mobile devices have short

connection time. α > 1 indicates the device failure rate increases with time and mobile devices

have a longer connection time, while α = 1 represents a constant failure rate. In Figure 7, it

shows that as the device failure rate increases (i.e., mobile device connection time decreases), the

makespan generated by OCOS has an approximate 10% increase throughout four cases, while

makespans generated by OLB have a 20% increase. This is due to the fact that more tasks are

scheduled onto cloud servers instead of mobile devices that left the environment. The makespans

of the OCOS algorithm are around 37% less of those generated by the OLB algorithm since OCOS

considers the load balancing of machines during scheduling.

Moreover, the performance of the OCOS algorithm in terms of offloading benefits (e.g., execution

time and energy saved) against conventional offloading strategies is evaluated. Upon comparison,
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Fig. 8. Performance comparison of different offloading strategies.

three baselines are implemented. The first baseline, offloading to the cloud only (CO), always of-

floads the submitted mobile tasks to the cloud VMs. The second base online, Mobile Local Only

(LO), always executes mobile tasks on its own mobile device locally. The third baseline algorithm

is the mobile code offloading strategies proposed in ThinkAir with the execution time priority

policy (Kosta et al. 2012). Note that the offloading decision making algorithm in ThinkAir only

considers the context of a single mobile device to the cloud offloading model. All algorithms are

evaluated with the same task sets from workload type HCLD. The size of the task set is 20 tasks

generated per mobile device on average. Results are shown in Figure 8 with a different number of

mobile devices.

As shown in Figure 8(a), the makespan generated by all four algorithms increases as the number

of mobile device users increases. For baseline LO and CO, the growth of CO is much faster than that

of the LO. Similarly, the makespan generated by ThinkAir increases faster than the LO baseline.

The results indicate that as the number of mobile device users increases, the benefits of offloading

to fixed public cloud resources decreases. This is because both baseline algorithms make individual

offloading decisions without considering the overall computation load of the cloud resources. As

a result, the task offloaded by one mobile device may be delayed in the cloud VM, which ends

up with a longer makespan. On the contrary, the makespan generated by the OCOS algorithm

increases much slower compared to the other three baselines. This is because OCOS uses the peer

mobile devices in the HMC environment and considers the computation load of each machine in

the environment when making the offloading decisions. It can also be observed that the ratio of the

makespan of ThinkAir over that of the OCOS algorithm increases as the number of users increases.

The growth shows that the OCOS algorithm outperforms conventional offloading strategies (e.g.,

CO, LO, and ThinkAir) when the number of mobile users is large.

Furthermore, the performance of the OCOS algorithm in terms of overall mobile device energy

consumption is illustrated in Figure 8(b). It shows that the overall mobile device energy consump-

tion in HMC for all the algorithms increases with growth in the number of mobile users. The

energy consumption of algorithm CO and ThinkAir is relatively low compared to the other two

algorithms since the mobile devices consume much less energy in the idle mode when offloading

tasks to the cloud. Compared to that, for the OCOS algorithm, the overall energy consumption

for all the mobile devices is around 50% of LO on average, and twice as much as that of CO and

ThinkAir. This is because the objective of the OCOS algorithm is to minimize the makespan with

the constraints of mobile devices such as battery lifetime and mobility. Thus, although the energy

consumption is higher than CO and ThinkAir, the makespan generated by the OCOS algorithm

is one fourth and half of the makespan generated by CO and ThinkAir, respectively, and can get

much lower when the number of mobile users scales up (as shown in Figure 8(a)).
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Fig. 9. Makespan with different

WiFi bandwidth usages.

Fig. 10. Average energy con-

sumption per machine with

different WiFi bandwidth usages.

Fig. 11. Makespan with dif-

ferent Weibull Distribution

(α : shape, β : scale).

In addition, the communication time overhead for operations related to communication such as

data offloading and messages passing are evaluated, and results are shown in Figure 8(c). The com-

munication overhead of OCOS is slightly larger than that of ThinkAir due to the use of Bluetooth

when offloading to a peer mobile device, which incurs a longer communication time comparing

to WiFi. The average communication time overhead for the OCOS algorithm is around 12% of the

makespan. Although it is slightly larger than ThinkAir, the offloading gain (i.e., makespan saved)

is much more than ThinkAir. Furthermore, as a centralized scheduling algorithm, it is necessary

to measure the behavior of the number of control messages sent by the scheduler to update the

hardware information of the mobile devices and cloud. The results are shown in Figure 8(c) with

the dashed line. The number of messages sent by the scheduler increases as more mobile users

join the environment. Since ThinkAir makes offloading decisions locally on each mobile devices,

it has less communication overhead than OCOS. However, the difference of the communication

overhead is rather small compared to the shorter makespan enabled by OCOS.

In reality, there are usually limited numbers of WiFi access points available in a mobile cloud

network; therefore, the limited network bandwidth may affect the performance of the proposed

algorithm. A set of experiments are conducted to analyze the influence of network bandwidth

usages. The effects of cellular network, WiFi-direct, and Bluetooth are not considered here as their

bandwidths are not affected by the number of machines in the network. The experiment is set with

one available WiFi access point and it provides the fixed bandwidth of 10Mbps. All the machines

share the network bandwidth evenly. The task set containing a number of 500 tasks obtained from

workload type HCLD are used for the experiments. The results are averaged by 50 runs and shown

in Figures 9 and 10 in comparison with results of ThinkAir. In Figure 9, as the average bandwidth

per machine decreases from 1Mbps, the makespan of OCOS increases from around 2,000 seconds

to 5,000 seconds and becomes stable after 0.4Mbps since the bandwidth does not change too much

after that, while the makespan of ThinkAir increases more rapidly. The increase of makespan is

due to the competition of bandwidth between devices leading to longer data transferring time

over WiFi to public clouds. Also, OCOS schedules some tasks with large data size to run local

instead, which generates longer makespan. The similar results also reflect on the average energy

consumption per mobile device. The shorter makespan and less energy consumption generated by

OCOS, especially with more devices, is because of the use of a mobile device cloud that is able to

load balance the computation among the entire network.

Since machines, especially mobile devices, may drop out of the network before their estimated

leaving time, the robustness of the OCOS algorithm is evaluated. The makespans generated over

different task computation workloads are compared in three cases: (1) no machine dropouts, (2) two

randomly chosen machines dropping out at random time before its estimated leaving time, and

(3) no machine dropouts without the two machines chosen in case 2 in the network. The results
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are averaged by 50 runs and depicted in Figure 11. OCOS_NO represents case 1, OCOS_2D repre-

sents case 2, and OCOS_NO2 represents case 3. As shown in Figure 11, the machine dropouts do

not have a significant effect on the makespan generated by the OCOS algorithm. Compared with

the results of OCOS_NO, the makespan has around 0.05% increase for different amounts of com-

putation workload with machines accidentally dropping out of the network. This is because the

OCOS algorithm receives updates on the earliest available time from each machine in the network

at the beginning of each scheduling epoch. If a machine drops out before its estimated leaving

time, the scheduler is able to detect it and considers the rest of the machines when scheduling

tasks. Moreover, the makespans of the OCOS algorithm with machine dropouts (OCOS_2D) are

lower than those generated by the OCOS algorithm with two less machines in the network from

the beginning (OCOS_NO2) due to the load balancing of the OCOS algorithm.

7 CONCLUSIONS AND FUTURE WORK

In this article, we discussed the MCOSP in the heterogeneous mobile cloud environment. We for-

mally defined the problem with a mixed integer programming model that considered a shared

resources pool of heterogeneous machines including peer mobile devices, nearby private cloud,

remote public cloud services and various network conditions. In order to provide an online op-

timal scheduling solution for our proposed mobile code offloading and scheduling problem, we

further designed a centralized, real-time scheduling algorithm based on the ski-rental framework.

We show that the proposed online scheduling algorithm OCOS is 2-competitive of the off-line

optimal solution. The experimental results show that the OCOS algorithm is consistent with the

off-line optimal solution in terms of competitiveness. The algorithm generates shorter makespans

and less energy consumption with the cognitive applications such as OCR and face detection appli-

cations comparing to the OLB heuristic, and also scales well comparing to other previous proposed

mobile code offloading strategies when the number of mobile device users increases in the system.

For the future work, we plan to investigate the real-time scheduling solutions for mobile cloud

services that combine both mobile code offloading and mobile task delegation (Flores and Srirama

2014) in which the dependency of the mobile tasks within a mobile application as well as the

application deadlines should be considered when scheduling. Moreover, as energy constrain is

vital for mobile devices, a joint optimization of makespan and energy consumption for mobile

cloud offloading will be studied in the future work. The malicious users that only submit tasks

while rejecting task offloading requests from the HMC network can affect the performance of the

scheduling results. The fault detection and tolerance mechanism needs to be studied to prevent

such malicious activities.
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