
Journal of Network and Computer Applications 173 (2021) 102869

Available online 28 October 2020
1084-8045/© 2020 Elsevier Ltd. All rights reserved.

HeporCloud: An energy and performance efficient resource orchestrator for
hybrid heterogeneous cloud computing environments

Ayaz Ali Khan a, Muhammad Zakarya a,*, Izaz Ur Rahman a, Rahim Khan a, Rajkumar Buyya b

a Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
b Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Datacenters
Virtualisation
Containerisation
Resource management
Server consolidation
Workload migration
Energy efficiency
Performance

A B S T R A C T

In major Information Technology (IT) companies such as Google, Rackspace and Amazon Web Services (AWS),
virtualisation and containerisation technologies are usually used to execute customers’ workloads and applica
tions. The computational resources are provided through large-scale datacenters, which consume substantial
amount of energy and have, therefore, ecological impacts. Since long, Google runs users’ applications in con
tainers, Rackspace offers bare-metal hardware, whereas AWS runs them either in VMs (EC2), containers (ECS)
and/or containers inside VMs (Lambda); therefore, making resource management a tedious activity. The role of a
resource management system is of the greatest importance, principally, if IT companies practice various kinds of
sand-boxing technologies, for instance, bare-metal, VMs, containers, and/or nested containers in their data
centers (hybrid platforms). The absence of centralised, workload-aware resource managers and consolidation
policies produces questions on datacenters energy efficiency, workloads performance, and users’ costs. In this
paper, we demonstrate, through several experiments, using the Google workload data for 12,583 hosts and
approximately one million tasks that belong to four different kinds of workload, the likelihood of: (i) using
workload-aware resource managers in hybrid clouds; (ii) achieving energy and cost savings, in heterogeneous
hybrid datacenters such that the workload performance is not affected, negatively; and (iii) how various allo
cation policies, combined with different migration approaches, will impact on datacenter’s energy and perfor
mance efficiencies. Using plausible assumptions for hybrid datacenters set-up, our empirical evaluation suggests
that, for no migration, a single scheduler is at most 16.86% more energy efficient than distributed schedulers.
Moreover, when migrations are considered, our resource manager can save up to 45.61% energy and can
improve up to 17.9% workload performance.

1. Introduction

1Problems such as global warming, national and international energy
supply, water complications, growing fuel costs, and computational
business economics entirely bring the necessity for energy and perfor
mance, consequently, cost-efficient computation into sharp focus.
Depletion in power plants that operate using coals, specifically, in the
UK, offering an estimated safety margin for energy [i.e. capacity and
demand ratio] of just 0.29% in 2017 (Shehabi et al., 2016), and the
termination of several nuclear power plants in Germany and France,
bring the actual risk of power outages and load-shedding in the very
near future. Due to growth in renewables, a minor upsurge in energy

safety margin of the UK can be realized in 2018 (i.e. an uptake from
~29.0% to ~36.0%). If we presume similar rates of consumption to the
world of about 3.0% of total energy usage, then ~9.6% rise in datacenter
energy efficiency will transform to approximately two times growth in
the UK’s energy safety margin (Shehabi et al., 2016), (Zakarya, 2018a).
Similarly (Shehabi et al., 2016), also indicates that, until 2020, data
centers energy efficiency will remain unchanged, since industrial private
workloads will migrate from internal private clouds to the public clouds.
However, due to increase in mobile services and number of users,
Internet of Things (IoT), and computing at scale, an increasing trend in
energy consumption of the current datacenters can still be seen. Such an
increase in energy consumption and the expected level of service

* Corresponding author.
E-mail addresses: ayazali@awkum.edu.pk (A.A. Khan), mohd.zakarya@awkum.edu.pk (M. Zakarya), izaz@awkum.edu.pk (I.U. Rahman), rahimkhan@awkum.

edu.pk (R. Khan), rbuyya@unimelb.edu.au (R. Buyya).
1 VM, EC2, ECS stand for virtual machine, elastic compute cloud and elastic container service, respectively.

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

https://doi.org/10.1016/j.jnca.2020.102869
Received 8 March 2020; Received in revised form 21 August 2020; Accepted 13 October 2020

mailto:ayazali@awkum.edu.pk
mailto:mohd.zakarya@awkum.edu.pk
mailto:izaz@awkum.edu.pk
mailto:rahimkhan@awkum.edu.pk
mailto:rahimkhan@awkum.edu.pk
mailto:rbuyya@unimelb.edu.au
www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2020.102869
https://doi.org/10.1016/j.jnca.2020.102869
https://doi.org/10.1016/j.jnca.2020.102869
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102869&domain=pdf

Journal of Network and Computer Applications 173 (2021) 102869

2

performance would certainly affect the environmental sustainability
(3% Greenhouse gases), user’s monetary costs and cloud economics
[\euro 183.98billions in 2016 to \euro 217.05billions in 2017 - ~18%
increase]. For example, AWS experienced approximately 1% reduction
in their sales due to only 100 ms loss in performance (Zakarya, 2018a).
Therefore, it is essential to look deeply into the problem and identify
possible causes, opportunities and appropriate solutions for energy
savings and performance improvements (as agreed in Service Level
Agreement - SLA document) (Zakarya, 2018a), (Zakarya and Gillam,
2017).

The above issues advise the necessity to investigate for the sources
and reasons of growing energy consumption in IaaS (Infrastructure as a
Service) clouds and try to get rid of the reasons and/or manage them
using conceivable solutions under workload performance constraints.
The growing quantity and practice of ICT (Information & Communica
tion Technology) equipment in IaaS cloud datacenters takes a conse
quential influence on the workload performance and IaaS energy
consumption levels. Similarly, the falling practice of non-renewable
energy sources, like coal, power plants, rises the necessity to design
solutions to manage IaaS clouds resources in order to diminish the rising
levels of energy usage, worldwide (Zakarya, 2018a). In respect of the
former statement, datacenter’s resources are usually under-utilised and
idle; thus, making it possible to use methods like virtualisation and
containerisation to save energy. In respect of the later statement,
workloads might be moved, across resources powered by various energy
production methods such as coal and renewables, when it is essential (as
renewables are intermittent) or more beneficial (cost-efficient) to do so.

Virtualisation and containerisation enable same hardware for
sharing among different users that: (i) increases resource utilisation; and
(ii) creates opportunities for energy savings using resource consolida
tion. Besides these gains, virtualisation, containerisation and consoli
dation technologies could create performance-related problems due to
migration and co-location (workloads compete for resources) leading to
higher users’ monetary costs, VM runtimes, and energy consumption.
Moreover, public clouds may also achieve IaaS energy and performance
efficiencies through appropriate resource management, allocation, and
placement policies (Zakarya, 2018b). In hyper-scale cloud environments
such as Intel, Google and AWS, containers have nearly replaced VMs as
computational instance of choice. Compared to traditional VMs, con
tainers have lower overheads of deployment and can, therefore, offer the
best performance for certain workload types, as demonstrated in (Felter
et al., 2015), (Kozhirbayev and Sinnott, 2017), (Kominos et al., 2017),
(Mondesire et al., 2019), (Chae et al., 2019). Various applications have
dissimilar business goals; few of them might run proficiently within VMs
whereas few would perform best within containers or over bare-metal
resources. Additionally, through running containers in VMs, supreme
levels of resource utilisation are guaranteed through consolidation.
Nevertheless, this may produce performance problems, in particular,
when containers and VMs are being migrated collectively crosswise
heterogeneous resources. Moreover, if workloads are running over
various platforms in a datacenter, then there would be various migrat
able entities such as containers, VMs, hybrid (containers—VMs) and
bare-metal workloads. Some of them would be more effective than the
others and vice versa. For example, inter-platform migrations may occur
in a particular platform; and intra-platform migrations may occur within
platforms.

VMs and containers have allowed the quick adoption of the cloud
computing environment, and the necessities, in terms of utility
computing, moved to incorporate various kinds of sand-boxing tech
nologies including virtualisation, containerisation, bare-metal and vir
tualised containerisation (Kominos et al., 2017). Generally, HPC (high
performance computing) workers will favour provisioning the raw
hardware (bare-metal) in order to deploy and run their workloads which
decreases the hazards of performance degradation due to virtualisation.
This is evidenced through the recent introduction of the bare-metal in
stances in the AWS cloud; which allows users to have full control over

their provisioned resources. Moreover, certain workloads would
perform better on containers than VMs and vice versa. For example,
bank applications would run more securely in VMs than containers
(isolation). In such circumstances, as shown in Fig. 1, variations in ap
plications runtimes would create questions on datacenter energy con
sumption, workload performance and cloud economics i.e. users
monetary costs and energy bills. For example, Fig. 1 demonstrates that
the performance of BZIP2 workload over E5-2630 (CPU model) signifi
cantly varies across various platforms i.e. 300–500 min on bare-metal,
400–500 min on VMs, 300–500 min on containers, 550–700 min on
containers over VMs. This suggests that the containerised applications’
performance is comparable to the bare-metal infrastructure. The CPU
models correspond to processor families with different clock speed, in
struction set architecture (ISA), cache size, type, and performance var
iations during the fabrication process. Interested readers should refer
(O’Loughlin, 2018), for further discussion of various CPU models and
workload performance.

Big data and IaaS providers, e.g. Intel, Google, Microsoft, Rackspace,
and AWS, examine and explore leading-edge solutions made over the
VMs and/or containers technologies. The desires of these progresses
partake a crucial influence on the IaaS management systems that are
utilised to design dedicated services to handle with heterogeneities of
resources and users’ workloads. In consort with the difficulty of resource
management system, up till then, such evolutions had been accom
plished independently, deprived of demonstrating whether accurate
abstractions will let the supervision of any type of sand-boxing tech
nologies in a combined way (centralised) or in a distributed style.
Furthermore, how various combinations of resource allocation and
migration policies would affect IaaS energy consumption and workload
performance. These sand-boxing technologies provide possibilities of
affective resource scheduling, placement and consolidation. For
example, workload could be scheduled or migrated to resources where
its performance, high resource utilisation and energy efficiency are
guaranteed. However, consolidation requires migrations that could be
expensive in regard to energy consumption and performance loss
(Zakarya, 2017). Moreover, similar workloads may perform quite
differently on various platforms as described above. Similarly, certain
cloud users may need full access to bare-metal resources in order to get
total control of their provisioned hardware. This will, probably, soon
force IaaS providers to rethink of using various platforms in their
datacenters. Therefore, management complexities would further grow,
when cloud providers will use a mixture of these technologies – in order
to maximise their resource usage and reduce their operational costs.
Thus, certain workloads may execute faster over the containers, or
bare-metal hardware (non-virtualised) platforms; but, might perform
the worst over VMs (technical white paper, 2016). The lowest execution
times might mean the highest energy efficiency, and the least users’
costs. Moreover, IaaS energy efficiency might also relate to these
sand-boxing technologies, workload types and energy profiles of hard
ware (Zakarya, 2017).

This brings possibilities for hybrid datacenters which concurrently
implement all sand-boxing technologies, e.g. the Intel’s CIAO (Cloud
Integrated Advances Orchestrator),2 Magnum,3 Kolla4 and, subse
quently, higher opportunities for efficient workload placement,
consolidation and migration decisions across various technologies. This
could be achieved through clustering the IaaS resources such that each
cluster corresponds to a particular sand-boxing technology. Further
more, each cluster may have either its own scheduler or share a cen
tralised scheduler. Using individual schedulers for each sand-boxing
technology such as containerisation, virtualisation, containers—VMs,
bare-metal might not be suitable regarding energy and performance

2 https://ciao-project.github.io/.
3 https://wiki.openstack.org/wiki/Magnum.
4 http://docs.openstack.org/developer/kolla/.

A.A. Khan et al.

https://ciao-project.github.io/
https://wiki.openstack.org/wiki/Magnum
http://docs.openstack.org/developer/kolla/

Journal of Network and Computer Applications 173 (2021) 102869

3

efficiencies; due to the absence of entire datacenter’ state and resource
usage details at each scheduling (platform) level. If these schedulers, can
communicate and share entire datacenter state with each other (i.e.
centralised scheduler); appropriate energy and performance efficient
management decisions could be triggered (Zakarya, 2018a). Moreover,
this will provide support for inter-platform and intra-platforms migra
tions; which are, to the best of our knowledge, unexplored in the existing
literature of cloud computing. The former one occurs among the hosts of
a particular platform e.g. VMs that could increase resource contention.
The latter one would be more appropriate if certain workloads are
misplaced during allocation. When both approaches are concurrently
assumed, high levels of resource utilisation could be achieved.

This research aims to identify additional probable savings through
efficient resource placement, allocation and consolidation with migra
tions (i.e. resource management) to reduce datacenters energy usage so
that the workload performance is not affected undesirably due to re
sources and workloads heterogeneities. Furthermore, we investigate the
impact of inter-platform and intra-platforms migrations on IaaS energy
efficiency and workload performance, therefore, costs. The objective is
to deal with these challenges through suggesting an architecture
(reference) and a single, platform-independent, resource manager. The
key contest would be, possibly, to decide the right set of abstractions for
the development of a combined-style service which leverages the key
approach/methodology i.e. deprived of implementing a specific, dedi
cated service, e.g. individual schedulers (distributed approach) and
platform-specific monitoring, for each sandboxing technology. We,
then, propose a centralised, workload-aware, scheduler and a consoli
dation technique which reduces the datacenter’s energy consumption,
and increases workload performance. In public clouds, reasonable best
efforts would mean no loss in performance, as this will certainly affect
the SLA’s; and violation to SLA’s would require a penalty to service
providers. Whereas, in private clouds, increase in performance would be
essential for certain workloads types such as HPC and database appli
cations. We perform expansive simulations of the suggested framework

using real workloads from large-scale IaaS providers such as Intel (Shai
et al., 2013), Microsoft Azure (Cortez et al., 2017) and Google (Reiss
et al., 2011) clusters that correspond to HPC (bare-metal), virtualisation
and containerisation workloads, respectively.

The major contributions of our research are:

• a reference architecture and a single, platform-independent, resource
manager is advised;

• an energy, performance and cost (EPC-aware) resource scheduler is
presented that could effectively manage hybrid IaaS cloud in
frastructures that run different kinds of sand-boxing technologies;

• an EPC-aware orchestrator is proposed that migrates various work
loads energy, performance and, therefore, cost-efficiently;

• in order to concurrently simulate and evaluate hybrid clouds with
various sand-boxing technologies, a cloud simulator is developed;
and

• investigate the impact of datacenter resource configuration (physical
order of hosts) on energy consumption and workload performance.

The rest of the paper is organised as follows. In Sec. 2, we discuss the
resource allocation, placement and consolidation issue. In Sec. 3, we
propose HeporCloud – a heterogeneity-aware hybrid approach that
places and migrates workload appropriately. Sec. 4 describes various
models to demonstrate energy and performance heterogeneities of
various cloud platforms. We evaluate and validate HeporCloud through
real workload datasets from Google, Intel and Azure clusters in Sec. 5
and demonstrate its efficiency in terms of energy, performance and,
therefore, cost with respect to existing methods. In Sec. 6, we offer an
overview of the related work. Finally, Sec. 7 summarises the paper along
with several future research directions.

2. Problem description

In this section, we transform our multi-objective optimisation

Fig. 1. Variations in applications performance when running over various sand-boxing technologies and CPU models [from left to right and top to bottom: VMs,
containers, containers—VMs and bare-metal] – performance of BZIP2 workload over E5-2630 significantly varies across various platforms.

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

4

problem into a single-objective problem. Multi-objective optimisation
problems can be solved in two ways: (i) concurrently solve all objectives
at once; and (ii) solve one objective first, and then make it a constraint
on the next one. Moreover, various objectives can be combined into a
single metric, and then solved as a single objective problem (Zakarya
and Gillam, 2019). The three parties involved within the optimisation
problem are: IaaS - service providers; SaaS - users or applications; and
workloads. Furthermore, workloads can be assumed as SaaS. The aim of
IaaS providers is to minimise energy consumption, SaaS wants to
improve or, at least, maintain workload performance, and users wants to
reduce their costs for the resources. The last two objectives are redun
dant across SaaS – as improved performance in terms of runtimes
(reduced) will achieve the users objective (reduced costs). In the rest of
this section, we mathematically formulate our objective optimisation
problem.

2.1. Mathematical formulation

Assuming the above diverse requirements and circumstances (i.e.
decreased runtimes, decreased costs, increased consumption of energy
and reduced performance), our aim is to develop an allocation and
consolidation model which: (i) predicts the energy consumption and
levels of workload performance; (ii) correlates the predicted quantities
(containers—VMs, performance and energy) to decide affective migra
tions; and (iii) lastly migrate best migratable entities to obtain optimal
or approximate outcomes in terms of energy consumption and workload
performance. The proposed technique is an effort to reduce infrastruc
ture energy consumption (IaaS) without negatively affecting the work
load performance (SaaS), even if migrated. We can describe the
workload allocation or migration as a multi-objective optimisation
(MOO) issue that consists of three nominal types of costs i.e. cost of
energy consumption (EC), users’ monetary cost (UC), and workload
performance cost (WPC). These costs are related to two different parties i.
e. service providers (IaaS, SaaS) which are engaged in the whole pro
gression; and regarding their properties and characteristics, each cost is
exactly mapped to a particular goal/objective as given underneath:

I. IaaS → reduce the quantity of consumed energy during workload
execution – EC;

II. Workloads (SaaS) → improve or, at least, maintain the probable
level of performance at the settled costs (in order to avoid pen
alties and meet SLAs - service level agreement) – in terms of
execution time (R), where performance is expressed as the
opposite of R and our aim is to reduce or, at least, maintain R –
WPC; and

III. Customers (SaaS) → are billed appropriately i.e. reduce cost or, at
least, maintain the cost as per SLA agreement – UC.

This could be understood spontaneously that UC is proportional to R
(i.e. each user is billed subject to his/her submitted workload runtime),
and thus, if objective (II) is achieved then objective (III) is also achieved,
intuitively. Therefore, objective (III) is not taken into account, as a
separate objective, in this paper. As a result, we transform and express
the multi-objective optimisation problem into an equivalent bi-objective
optimisation problem. The two objectives of the transformed bi-
objective optimisation problem are: reduce energy consumption (E);
and reduce workload runtime (R). Mathematically, these objectives can
be expressed as an objective function f, given by Eq. (1):

f =

⎧
⎨

⎩

minimise(E) where E =
∑platforms

i=1
Pi and P =

∑hosts

j=1
Ej

minimise(R) where R =
∑w

j=1
Runtimej

(1)

subject to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H,V and 𝒮 set of hosts, VMs∣containers and resources
e.g.CPU, memory, disk

(i)
∑

h∈H
xhv = 1 where xhv = {0, 1} ⟹ xhv = 1

if VM v is mapped to host h
(ii)

∑

v∈V
uvrxhv ≤ chryh where uvr denotes VM∣container resources

∀ v ∈ V and h ∈ H
chr denotes amount of host′ resources ∀ r ∈ 𝒮

yh = {0, 1} ⟹ yh = 1
if host h is used otherwise yh = 0

(2)

where P denotes the total energy consumed by all hosts in a particular
platform and Ej is the energy consumption of a specific host j that can be
assumed as a linear function of the host’ CPU utilisation level or number
of running VMs (virtualised hosts). Moreover, the datacenter’ total en
ergy consumption is denoted by E. Furthermore, Runtimej denotes the
execution time of a particular VM—container—task that belongs to
workload w in a specific platform. The sum of all tasks’ execution times
in a workload is represented by R. Lower values for R mean higher
performance and, subsequently, lower users’ monetary costs UC – VMs
are billed according to execution times (Pay As You Go i.e. PAYG
model). The constraints of container—VM placement problem are: (i)
each container—VM is exactly allocated to a single VM—host at a time;
(ii) the sum of all containers—VMs accommodated on a particular
VM—host should not exceed the VMs—hosts individual capacities; and
(iii) user’s monetary cost remains as per SLA, as shown in Eq. (2) (Fer
reto et al., 2011). Besides various constraints of the optimisation prob
lem, Eq. (2) also illustrates various parameters and variables. For
example, the variables xhv corresponds to the mapping factor when a
VM—container is allocated to a host. In consolidation scenarios, energy
consumption could also be minimised through minimising the number
of used hosts i.e. min(

∑
h∈Hyh).

In order to transform the above bi-objective optimisation problem
(min-min) into a single objective minimisation problem, we can combine
these objectives in different ways. For instance, Gupta et al. (Gupta,
2011) proposed the ERP metric (i.e. Energy Response time Product)
which captures the trade-off that exists between energy, performance
and, therefore, cost. Moreover, ERP is a widely used and appropriate
evaluation metric to represent comparable trade-offs in the cloud com
munity (Zakarya and Gillam, 2019), (Gandhi et al., 2010). Note that,
reducing ERP can be assumed as maximising the “Performance-Per-
Watt” ratio (PPW - performance achieved when one Watt-hour energy is
consumed)5 – where performance of the workload is expressed as
reciprocal of the response time. In our formulation, workload perfor
mance is computed through runtime R which is assumed equivalent to
the response time, grounded on the factor of time. Consequently, we
reread the specified name of the ERP metric as the Product of Energy and
Runtime (ERP). The ERP evaluation metric is given by Eq. (3):

ERP = E × R (3)

Hypothetically, the single objective of our bi-objective optimisation
issue is to reduce, investigate and assess the behaviour of the ERP for
numerous allocation and consolidation with migration policies, as
specified by Eq. (4):

min(ERP) (4)

5 https://www.spec.org/power_ssj2008/.

A.A. Khan et al.

https://www.spec.org/power_ssj2008/

Journal of Network and Computer Applications 173 (2021) 102869

5

This transforms the above bi-objective optimisation problem into a
single objective. The reason behind this simplification and using simple
heuristic approach is to bias for dispatching speed and implementation
simplicity over an absolute optimality. Albeit, multi-objective mini
misation and meta-heuristic techniques can offer optimal results for off-
line problems (Adhikari and Narayana Srirama, 2019), (Kaur et al.,
2019); however, for on-line problems they are not preferable since the
workload is not known and it will take long time to reach a placement
decision (Zakarya, 2017), (Hu et al., 2019). From an experimental point
of view, ERP of every host is estimated, for each placement and/or
migration decision, using energy and runtime prediction techniques, as
discussed in Sec. 3. The incoming workload is assigned and/or migrated
to the host having the least ERP. Through realistic and plausible as
sumptions in a significantly modified version of an event driven cloud
simulator “CloudSim” (Calheiros et al., 2011), we investigate how
various resource placement, and consolidation with migration policies
in a heterogeneous cloud, may affect the energy consumption of the IaaS
cloud, performance of the SaaS workloads, and users’ monetary cost
when various types of heterogeneous workloads are taken into account.

3. HeporCloud - system architecture and resource management
algorithms

In this section, we propose “HeporCloud” that uses a single scheduler

and orchestrator to manage heterogeneous hybrid datacenters re
sources, energy and performance, therefore, cost efficiently. The
HeporCloud architecture is shown in Fig. 2. The scheduler and orches
trator both uses certain types of predictors to take effective scheduling
decisions. Note that, the orchestrator looks/collects opportunities for
consolidations, and, subsequently, which VMs and/or containers to
migrate to where (hosts); and informs the scheduler to complete the
operation. The proposed architecture consists of four IaaS resource types
(VMs, containers, containers over VMs, bare-metal) and a storage
module. The storage module is responsible to hold workload details and
previous placement and migration actions which are used by the pre
dictors to take appropriate decisions. Next sections, describes this in
more detail.

3.1. The HeporCloud framework

We suggest a resource manager/architecture called “HeporCloud”
which empowers the management of numerous, dissimilar, sand-boxing
technological resolutions; and assess the performance of the projected

resource manager through simulations along with plausible assumptions
and real workload datasets. The proposed resource manager, as shown
in Fig. 3, comprises three major modules: (i) a single scheduler
[HeporCloudScheduler]; (ii) an orchestrator [HeporCloudOrchestrator];
and (iii) HeporCloudStat which is responsible to collect node level sta
tistics such as resource utilisation levels, workload runtimes, placement
and migration statistics and etc. The HeporCloudStat is an agent very
similar to the cluster monitoring systems such as DataDog6 and
Ganglia.7 The collected data is stored over a shared server, preferably, a
Storage Area Network (SAN) that is accessible to the scheduler and
orchestrator over a network. The HeporCloudScheduler and Hepor
CloudOrchestrator are installed on a separate host while HeporCloud
Stat is installed on every host of the datacenter.

The HeporCloudScheduler and HeporCloudOrchestrator are aware
of the whole infrastructure (multiple platforms); and use predictors for
workload-aware resource allocation and migration decisions. Since, the
proposed HeporCloud framework uses a centralised approach rather
than a distributed one (Khan et al., 2019a); therefore, when more and
more VMs and/or containers interact with the HeporCloudScheduler
and/or HeporCloudOrchestrator then due to either: (i) delay in

Fig. 2. The proposed HeporCloud architecture for hybrid clouds [SAN - Storage
Area Network].

Fig. 3. The proposed HeporCloud framework [from an implementation point of view].

6 https://www.datadoghq.com/.
7 http://ganglia.sourceforge.net/.

A.A. Khan et al.

https://www.datadoghq.com/
http://ganglia.sourceforge.net/

Journal of Network and Computer Applications 173 (2021) 102869

6

communication; or (ii) some other reason (e.g. huge number of migra
tions, network congestion), the response may become slow. Subse
quently, it will affect the system performance with respect to time,
placement and migration decisions and will therefore, further, impacts
on users monetary costs and energy consumption. This issue is more
likely to arise with increase in number of VMs, containers or both.
Fortunately, datacenters have their own dedicated networks and, we
believe, this might be tolerable.

3.1.1. The HeporCloud scheduler
From an implementation point of view, the HeporCloudScheduler

can be assumed as a centralised scheduler that interconnects various
hardware technologies such as virtualised, containerised, virtual con
tainerised (i.e. containers run inside VMs) and bare-metal, in the cloud
platform. In order to optimise resource allocation and management, the
scheduler maintains a history (ℋ𝒴) of resource utilisation, various ap
plications, their energy consumption and performance. Since, history or
historical information is generated with the passage of time; which
means that history may not be available when the model initially starts
working. In such cases, the scheduler uses the well-known First Fit (FF)
technique to place workload on available resources. Later on, they might
be migrated to appropriate resources in next consolidation round. The
pseudocode for HeporCloudScheduler is described in Alg. 1.

The scheduler predicts the future workload type and categorize it
according to its energy consumption and performance. The prediction
module, as shown in Fig. 4, looks for a platform where the application’s
performance is best at minimum energy cost. In the first phase, the
runtime for the submitted job is predicted, as shown in Fig. 5. Due to
high level of correlation between job runtimes, and three other job pa
rameters i.e. its submitting user, job name and job logical name, our
model predicts runtime using these parameters. Furthermore, along
with runtimes, other job characteristics such as its submission time, job
priority, and resource (CPU, memory, disk) actual usage and resource
requirements can also be taken into account. However, it will increase
the algorithmic complexity. In the second phase, the prediction module
searches the features’ history of previous executed jobs on various
platforms (hosts) and their performance or runtimes. The submitted job
is compared to other jobs, using various parameters such as submitting
user, name, and closer, most similar, jobs along with platforms are
noted. The idea of these two phases stems, basically, from (George et al.,
2017), (Tumanov et al., 2016). In the third phase, the estimator chooses
the best platform (host) that could run the workload with the minimum
product of energy consumption and runtime (ERP). For example, if job X
ERP is Y when run in a container and Z when run in a VM, and Y > Z,
then the containerised platform is selected. If there are more than one
platforms—hosts, then all platforms—hosts within a particular clus
ter—platform are sorted out in decreasing order of their ERPs (objective

Fig. 4. Prediction of workload platform – in the first phase, similar jobs are
being collected from the feature history; in the second phase, a best platform is
being chosen (George et al., 2017).

Fig. 5. Prediction of workload runtimes – in the first phase, similar jobs are
being collected from the feature history; in the second phase, a particular sta
tistical method is used to estimate runtimes (Tumanov et al., 2016).

Algorithm 1
The HeporCloudScheduler.

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

7

function). Thus, if the predicted workload falls within the category of
HPC (bare-metal applications), VM, container—VM, or container, then
the scheduler runs it, as appropriate, either on the most
energy-performance efficient bare-metal, VM, virtualised container, or
container, respectively. Unfortunately, if there is no suitable platform or
host, then the job is packed in a VM and allocated to a host on the FF
policy. Furthermore, if all the platforms are equally good for a certain
workload, then the job is allocated with random (RND) allocation pol
icy. Note that, the predictor is a history-based, and the HeporCloudStat
(as explained later in this section) collects node level statistics and up
dates the previous history, at a separate host (probably attached to a
Network Area Storage - NAS), at regular intervals of time e.g. 5 min.
Once a VM terminates, its runtime, submitting user, hosts, resource
usage, placement, and migration details are saved to an NAS. As shown
in Fig. 2, the predictor associated with the HeporCloudScheduler is
responsible to read workload details from a NAS server. In (Tsafrir et al.,
2007), the authors have used a very simple predictor for runtimes which
only averages the runtimes of the last two tasks submitted by a particular
user. Their results ascertain that, counter-intuitively, using the most
recent data is more significant than taking out longer history for com
parable tasks. Thus, we believe, that maintaining a long history ℋ𝒴

would have, only, a negative impact on the algorithm complexity.

3.1.2. The HeporCloud orchestrator
The HeporCloudOrchestrator executes sporadically or as soon as

there are consolidation occasions, possibly, because of lesser demand for
resources 𝒮. From implementational viewpoint, as soon as the resource
(CPU, memory, disk) utilisation levels of some particular hosts either
upsurges or declines from some pre-defined threshold values (Ulow and
Uup), then the HeporCloudOrchestrator is triggered to optimise the
current state of the datacenter resources through consolidation with
migration technique. We assume Ulow = 0.2 and Uup = 0.8, as described
later in Sec. 5.1, which mark hosts which are less than 20% utilised as
under-utilised and those which are more than 80% utilised as over-
utilised. The orchestrator forecasts whether an application ought to be
migrated across various platforms with the intention to lessen energy

consumption and, also, performance degradation. The steps involved in
the optimisation are described in Alg. 2. Firstly, all migratable entities
(workload, VM, container) are searched for [step 1]. The optimise(si)
module searches across all hosts (H) for under-utilised (Hunderutilised) and
over-utilised (Hoverutilised) hosts using the pre-defined threshold values
(Zakarya and Gillam, 2016). Secondly, for every migratable entity, a

suitable platform is estimated as its target platform using a predictor and
the features’ history [step 2–6]. This could be achieved using the
HeporCloutScheduler, as shown in Fig. 4. Thirdly, the HeporCloud
Scheduler is directed to take appropriate decision i.e. migrate or do not
migrate [step 7–14]. Moreover, various characteristics of the migratable
entities on both source and target hosts, such as energy consumption,
remaining runtime, and performance requirements, are considered
during the migration decisions, as shown in Alg. 3.

Note that, Alg. 3 computes the total savings, in terms of energy and
performance, which are achievable through migrating a particular
VM—container to an appropriate host or platform. In the first phase,
optimisation and migratable entities are estimated [step 1–2]. In the
second phase, energy and performance of the target hosts h′∕∈{Hunderu

tilised, Hoverutilised} is computed [step 3–7]. The energy consumption of a
particular migratable entity is computed using the model proposed in
(Liu et al., 2011) and given by Eq. (5) - where energy is largely consumed
during transferring the VM data from source to destination.

Emig = 0.512 × VMdata + 20.165 (5)

where VMdata is the amount of data transferred (in MBs) during the
migration process. This model is suggested more than 90% accurate.
Furthermore, we use the transformed linear power model, as given by
Eq. (12), to predict the container—VM energy consumption. Similarly,
the performance of the migratable entity is estimated using the bench
mark data (in terms of statistical distributions, means and standard
deviations) and Eq. (8), as described later in Sec. 3.2 and Sec. 4.2. In
third phase, expected remaining runtimes of VMs—containers are esti
mated using a particular prediction technique [step 8]. In fourth phase,
the expected energy savings and performance gains are computed [step
9]. If migrations are affective i.e. savings are possible, then it is added to
the migration list, otherwise next migration entity is considered for the
above steps [step 10–17]. Finally, the migration list is sorted in
decreasing order of VMs—containers savings (to prioritise entity for
higher savings); and passed to the HeportCloudOrchestrator to take
appropriate decisions [step 18–20].

Furthermore, if there are several migration opportunities, then we
prioritise that migratable entity that could: (a) spend less energy on
migration; and (b) save more energy or money (perform better) after the
migration. The savings are calculated using Alg. 1. Note that, savings are
possible only if migrations are performed to more energy and perfor
mance efficient target hosts than the source host. We use the host

Algorithm 2
The HeporCloudOrchestrator.

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

8

efficiency factor Ef which is described as the product of host’ energy
consumption and performance (runtime) for a particular workload
(Zakarya, 2017). For every migratable entity, we use Ef to compare its
source and target in terms of energy consumption and expected level of
performance [step 1–2]. Note that, PCsource and μCsource

denote the energy
consumption and expected level of performance of a particular workload
on source host. If Ef > 1, this means that the target is more energy and/or
performance efficient that the source; therefore, savings are possible.
The savings are computed with our previous models i.e. CMCR -
Consolidation with Migration Cost Recovery (Zakarya, 2018b), (Zakarya
and Gillam, 2016) and Consolidation with migration Performance, En
ergy costs Recovery - CPER (Khan et al., 2019b) [step 3–9]. Further
more, CMCR ensures to offset the migration cost with possible savings
which runs in three steps: (i) compute the level of differences between
source and target i.e. δx [step 4]; (ii) compute the time point where
migration cost has been recouped back i.e. toff [step 6]; and (iii) predict
workload runtime in order to compute its remaining runtime (ts), after
which it has recovered its migration cost, for possible savings ℘savings

[step 7–9]. Note that, ℘savings can be computed through multiplying the
task remaining runtime with the difference between efficiencies of

source and target hosts. If Ef ≤ 1, then savings are not guaranteed,
therefore, such migratable entities are removed from the migration list
[step 10–17]. Finally, migratable entity along with saving is returned to
Alg. 3 [using Alg. 4]. In order to calculate the remaining runtime of a
migratable entity rtime on the target platform, its total runtime is pre
dicted with the predictRuntime() routine, using the features’ history, as
shown in Fig. 5. There is already rich literature which has focused on
application runtimes prediction (Tumanov et al., 2016), (Smith et al.,
2004). An application’s runtime can be predicted in two steps: (i) find
similar applications that were executed in the past; and (ii) use a sta
tistical approach to estimate its runtime. In respect of (i), application
characteristics like submitting user, resource requirement, past runtime
can be used to gather similar applications and their data from a data
base. The database is to be maintained either on each host or over a
centralised SAN server. The accuracy of the prediction is strongly related
to the accuracy of the similarity measures. In respect of (ii), techniques
like mean, moving average, and regression analysis could be used to
reach an estimation. Further details on runtime prediction can be found
in (Tumanov et al., 2016), (Tsafrir et al., 2007), (Smith et al., 2004).

Table 1
Different workloads‘ runtimes over various CPU architectures and VM instances [696 MB input file to BZIP2 - Ubuntu 10.04 AMD desktop ISO file], container two types,
virtualised containers (container—VMs), and bare-metal hardware, CoV is computed through dividing σ over the μ (Felter et al., 2015), (Kominos et al., 2017),
(Zakarya, 2017), (O’Loughlin and Gillam, 2014), (Vaucher, 2015).

Sandboxing technology Workload type CPU model m1.small m1.medium

(μ) (σ) Min Max CoV (μ) (σ) Min Max CoV

Virtualisation BZIP2 E5-2665 241.3 1.18 237.97 245.2 0.005 – – – – –
PXZ E5540 709.6 7.8 680.4 733.6 0.011 393.6 3.4 381.9 403.9 0.009

E5-2630 535 20 470.4 606.6 0.037 – – – – –
X5560 1680 32.5 1625 1755 0.019 – – – – –

–
STREAM E5-2665 59.2 1.88 52.16 65.0 0.032 – – – – –
POVRAY E5540 623.9 3.2 612.5 636.8 0.005 241.1 2.9 231.9 250.7 0.012

E5-2630 128 2 120.5 134.2 0.016 – – – – –
X5560 525.5 0.6 524.4 526.8 0.001 – – – – –

Containerisation PXZ E5540 685.2 3.9 670.68 698.17 0.006 387 7.6 362.55 410.53 0.02
E5-2665 290.9 0.98 287.4 293.9 0.003 – – – – –

BZIP2 E5-2630 495 159 42.1 1048.8 0.321 – – – – –
X5560 1622 21.75 1580 1667 0.013 – – – – –

–
STREAM E5540 211.7 2.5 204 219.9 0.012 131.2 1.4 126.9 136 0.011

E5-2665 73.5 0.64 71.7 75.3 0.009 – – – – –
POVRAY E5-2630 118 32 30.9 221.9 0.27 – – – – –

X5560 524.5 1.05 521.2 525.4 0.002 – – – – –
Containers—VMs PXZ E5-2665 284.2 1.45 279.8 288.7 0.005 – – – – –

E5540 683.8 2.8 674.7 695.4 0.004 388.9 3.8 375.8 402.1 0.01
BZIP2 E5-2630 621 23 535.1 687.9 0.037 – – – – –

X5560 1634 26 1584 1688 0.016 – – – – –
–
STREAM E5-2665 62.2 1.33 58.3 65.9 0.022 – – – – –

E5540 211.3 2.1 205.3 219.9 0.01 131.4 2.1 124.7 138 0.016
POVRAY E5-2630 149 2 142.6 155.8 0.013 – – – – –

X5560 527 0.5 526 528 0.000 – – – – –
Bare-metal PXZ E5-2665 290.8 1.13 287.6 294.4 0.004 – – – – –

E5540 670.8 6.9 647.7 694.4 0.010 360.4 4.3 343.4 376.4 0.013
BZIP2 E5-2630 418 37 307.8 518.2 0.088 – – – – –

X5560 1600 23.75 1575 1670 0.015 – – – – –
–
STREAM E5-2665 76.2 0.93 73.2 79.1 0.012 – – – – –

E5540 192.0 0.8 189.6 194.3 0.004 109.5 1.0 106.4 112.8 0.009
POVRAY E5-2630 100 10 61.9 134.8 0.101 – – – – –

X5560 521.6 0.625 520.4 522.9 0.001 – – – – –

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

9

3.1.3. The HeporCloudStat
The HeporCloudStat module is running on every cluster node; and is

responsible to collect node level statistic, periodically (e.g. regularly at
5 min intervals) or when needed (e.g. when migrations are performed).
These statistics, including resource (CPU, memory, disk) consumption,
utilisation levels, platform type, energy consumption, workload run
times (performance), submitting users, and allocation along with
migration details are stored on the same or on a separate host;

preferably, a NAS server within the datacenter. Moreover, every agent of
the HeporCloudStat on each node is connected to the master Hepor
CloudStat module that runs on the NAS server - which is responsible to
collect and store node statistics on NAS. The HeporCloudScheduler and
HeporCloudOrchestrator use these details for various purposes such as
workload-aware resource allocation, platform/host selection and pre
diction of effective migrations (either VMs, or containers), respectively.
Furthermore, certain APIs and built-in functionalities of the hypervisor

Algorithm 3
Feasible migration technique.

Algorithm 4
Calculate power savings.

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

10

can be used to gather these node level details (e.g. dstat, ps). Moreover,
third party cluster monitoring tools, either centralised or distributed
that runs like an agent or daemon on each cluster node, such as DataDog
and Ganglia, can also be used to gather node statistics (Massie et al.,
2004).

We are aware that the HeporCloudStat is a burden on the cluster
node that: (i) keeps on maintaining and/or calculating statistical details
of hosts regarding VMs—containers in addition to performing its
essential task of job execution; (ii) update its information with NAS
server periodically or on-demand; and (iii) for hundreds or thousands of
cluster nodes updating their information on NAS server will itself
generate a lot of network traffic and, subsequently, burden on the
datacenter network that may result in performance degradation in terms
of longer latencies. In respect of (ii) and (iii), it might be tolerable due to
datacenters internal dedicated networks and multi-cast channels (Mas
sie et al., 2004). However, in respect of (i) this could degrade the cluster
node performance and, most importantly, the available capacity for
virtualised or containerised workloads. However, for a single node this
overhead is very small, probably, less than 0.1% (CPU) and approxi
mately 0.9 MB i.e. 0.09% (memory), as demonstrated in (Massie et al.,
2004), for Ganglia monitoring tool on PlanetLab cluster. For other sys
tem, these values could be up to 0.025% (CPU) and 1.3 MB i.e. 0.25%.
We further believe, a centralised HeporCloudStat, which runs on a
dedicated powerful server, probably closer to the NAS server will resolve
these issues to some extent. We prefer the distributed HeporCloudStat
over the centralised one due to: no single point of failure; and quick
communication with system other modules.

3.2. Resource predictions

Application’s runtime prediction techniques have at least two major
benefits: (i) efficient resource scheduling (placement) decisions can be
made – e.g., VMs—containers with similar applications (or runtimes)
can be placed on the same host (Dabbagh et al., 2014); (ii) if a host needs
maintenance, the resource manager can estimate runtimes of all
VMs—containers located on it – to determine when maintenance can be
scheduled, and whether VMs—containers need to be migrated or not
(Cortez et al., 2017); and (iii) cost effective migration decisions can be
triggered – e.g. if certain co-located workloads perform worst, they can
be migrated to other hosts (Khan et al., 2019a). In (Cortez et al., 2017),
the authors have demonstrated that most runtimes of VMs in Azure
cloud are relatively short i.e. more than 90% of runtimes are shorter. The
curves show a knee around a day and then almost flatten out; suggesting
that, if a particular VM runs for a day, it will very likely run much longer.
Moreover, the relatively small percentage of long-running VMs actually
account for more than 95% of the total resource usage. These findings
are very similar to Google cloud, where applications run in containers
(Zakarya, 2017), (Reiss et al., 2011).

As noted in Sec. 3.1, the HeporCloud framework consists of three
prediction techniques: (i) predict the workload type; (ii) predict the
workload runtime; and (iii) use workload runtimes and previous runs to
predict an appropriate platform/host. In respect of (i) and (iii), appro
priate resources and technology could be selected to run these work
loads. In respect of (ii), appropriate migration decisions could be made.
Cortez et al. (2017) suggests that same subscriptions have almost similar
workloads, largely, with similar CPU utilisations. The author have used
Fast Fourier Transform (FFT) to find periodicity in various workloads
and categorized them as either potentially interactive or
delay-insensitive (batch workloads). Moreover, the literature is signifi
cantly vast that describe various techniques, such as resource utilisation
levels, priorities and submitting users, to profile and predict cloud
workloads. The providers can use this knowledge in packing VMs and
containers on hosts, as appropriate. For example, delay-insensitive
workloads can be packed more tightly; while interactive workloads
can be loosely packed onto hosts. Furthermore, the provider can avoid
over-subscription of resources that run interactive workloads while

allowing over-subscription for other workloads. Lastly, it is also possible
to choose an appropriate and most affective sand-boxing technology
(VM, container, container—VM, bare-metal) to run these workloads in
an energy and performance efficient way.

To simplify the implementation, we use the workload priority as a
representation of its type. This is in-line with previous assumptions as
the task’s priorities affect billing in Google cloud (Reiss et al., 2012). In
our dataset, each job is submitted along with its priority. In order to
predict the workload runtimes, we use the two most important features
i.e. submitting user and workload type (priority). This is also in-line with
previous work as demonstrated in (Cortez et al., 2017), (Tsafrir et al.,
2007) – users, largely, submit similar jobs in Azure cloud. We are aware
that there would be other efficient ways, such as machine learning
techniques (gradient boost trees, performance monitoring), to estimate
runtimes (Masdari and Khoshnevis, 2019); however, they might be
impractical in large environments - requiring storage to log and main
tain records and then searching the log for predictions. In (Tsafrir et al.,
2007), the authors demonstrated that simple averaging the recent du
rations of jobs by the same user can result in good prediction outcomes.
Moreover, their outcomes demonstrate that good predictability may not
be always inline with good performance. Therefore, we believe complex
predictors might be expensive in large-scale systems. Once the workload
type and its estimated runtimes are known, we can use the ERP of every
host to select the most energy, performance and cost-efficient host. The
process also involves transforming the remaining runtime of a particular
workload on a source host to equivalent remaining runtime on a target
host. This can be achieved using the z-score normalisation (Zakarya and
Gillam, 2019). The z-score (also known as standard score), as specified
by Eq. (6), is usually used for computing the likelihood or probability of
a particular score (x) that happens in the interior of a normally
distributed dataset. Besides this, the concept of z-score also offers a
technique to associate two or more than two scores that belong to
different datasets having normal distributions.

z =
x − μ

σ (6)

Eq. (7) can be used to find runtime of the migrated workload (estimated)
on the target host with given statistical means (μ, μ1) and standard de
viations (σ, σ1) of source and target hosts (for normal distributions).

x − μ
σ =

x1 − μ1

σ1
(7)

where x and x1 denote the probable execution times of the migrated
workload on the source and target hosts, correspondingly. Moreover, the
right and left sides of Eq. (7) narrate to the z-scores of the target and
source hosts, correspondingly. This formulation permits us to analyse
and estimate the likelihood of a score (i.e. the anticipated growth or
reduction in execution time of the workload on the target host)
happening inside a normally distributed dataset. Note that, the dataset
consists of the performance (runtime) dissimilarities due to resource,
workload and/or platform heterogeneities. The above Eq. (7) can be
redrafted, to find the anticipated runtime (x1) of the migrated workload
on the target host given its remaining runtime (x) on the source host, as
Eq. (8). For lognormal distributions, both x and x1 are replaced with log
(x), log(x1) according to the definitions of normal and lognormal dis
tributions (Zakarya and Gillam, 2019).

x1 = exp
(

σ1 ×

{
log(x) − μ

σ

}

+ μ1

)

(8)

Note that, the remaining runtime of the workload running inside a
VM—container can be computed through subtracting current time from
the workload total runtime - predicted using the model, as shown in
Fig. 5.

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

11

4. Modelling energy consumption and platforms heterogeneities

In Sec. 4.1, we discuss how the energy consumption of a contain
er—VM or physical host should be measured in simulations. In Sec. 4.2,
we describe the performance of various benchmarks workloads when
run over various platforms such as virtualisation, containerisation, vir
tualised containers and bare-metal hardware.

4.1. Modelling energy consumption

We use actual data for energy consumption of various servers that
was collected by SPECpower8 standards; so that, subsequently, the total
energy consumed by datacenter is calculated [as described in Sec. 5.1].
Though, there is no defined method to calculate energy usage by a VM as
well as container straight away; consequently, we use numerous math
ematical models to obtain their estimated energy usage. Alternative
method is division of server’s total energy usage by total number of
VMs/containers executing on that particular server. The aggregated
energy usage (P) for a non-virtualised host is assessed by using linear
power model, obtained by Eq. (9); where the extent of energy used is
directly proportional to consumption level of the CPU (Zakarya, 2017).

P = Ptrivial + (Pmaximum − Ptrivial) × U (9)

where CPU usage level is given by U, Pmaximum and Ptrivial give energy
usage once CPU usage is 100% and trivial i.e. 0%, respectively. Fan et al.
(2007) experimentally evaluated the accuracy of this model as high as
95% over a few hundred servers. The authors also suggested a non-linear
power model, given by Eq. (10); and demonstrated its accuracy as high
as 99% (Dayarathna et al., 2015).

P = Ptrivial + (Pmaximum − Ptrivial) × (2U − Ur) (10)

where r is the calibration parameter to minimise the square error and
needs to be computed experimentally. Largely, it is used as equal to 1.4
in existing works (Dayarathna et al., 2015). Furthermore, considering
containerised/virtualised servers, alone the VM—container energy
usage is directly related with the number of VMs—containers executing
over that specific server (Zakarya and Gillam, 2016), (Alzamil and
Djemame, 2016). Thus, it is realistically sensible to forecast/estimate
the VM—container energy usage in context with the linear CPU energy
usage model (Zakarya, 2017) by having use of Eq. (11):

℘V M∣container =

(
Ptrivial

N

)

+𝒲V M∣container × (Pmaximum − Ptrivial)

×UV M∣container

(11)

where aggregated VMs—containers housed on a server is given by N, the
extent of server’s resources, like number of cores allotted to VM—con
tainer, is given by 𝒲V M∣container, and usage level of VM—container is
shown by UVM|container (Khan et al., 2020). In a real cluster setup, authors
in (Alzamil and Djemame, 2016) demonstrated that this model has mean
error as low as 1.75. Additionally, Ptrivial and Pmaximum show the server’s
energy usage, calculated in Watt-hours, when the server is 0% (trivial)
and 100% utilised, respectively (Zakarya and Gillam, 2016). The
aforementioned model can be used to forecast energy consumption of a
particular VM on a specific server at suitable usage levels (Alzamil and
Djemame, 2016). Similarly, if a VM is executing M containers, then each
container’s energy consumption ℘container can be computed through
transforming Eq. (11) to Eq. (12):

℘container =

(
℘vmtrivial

M

)

+ 𝒱container × (℘vmmaximum − ℘vmtrivial) × Ucontainer (12)

where the usage level of container is given by Ucontainer and the fraction
of resources for VM allotted to a container is given by 𝒱container.
Furthermore, ℘vmtrivial and ℘vmmaximum denote the VM energy consumption
when idle and fully utilised, respectively. We are aware of the fact that
there may be several other precise models which may predict the energy
usage of a server, VM, and container more accurately (Dayarathna et al.,
2015), (Colmant et al., 2015), (Callau-Zori et al., 2018), (Lebre et al.,
2019). However, the energy usage for a VM—container have been seen
by these models as fraction of resources allocated from the physical
server along with its usage levels. In the perspective of our efforts in this
work, we use SPECpower standards for host’s energy usage that settles
for CPU, memory and/or disk. Thus, we believe that the datacenter total
energy usage will not be affected using any other energy consumption
model. As, in this paper, we focus on datacenter’s energy efficiency, but,
not a complete cloud environment, therefore, we assume that the above
model is enough accurate and reasonable to measure the energy con
sumption of a datacenter. To have desperate cloud scenario, the energy
usage within communication networks and/or other parts of the envi
ronment should be taken in consideration (Jiang and Chen, 2018).
Further, energy used by containers—VMs during communication which
are placed at various hosts should be considered when predicting total
energy use. For further details, interested readers should read (Day
arathna et al., 2015), (Khan et al., 2020).

4.2. Modelling performance

Due to non-availability of a representative cloud workload (perfor
mance-specific) and CPU performance benchmarks; we model resource
and application heterogeneities using statistical distributions. First, we
collect data and simulate them using monte-carlo simulations. Using
mapping techniques, we, then, relate this data to available real dataset

Fig. 6. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY), when run over different sand-boxing technologies, on X5560 CPU platform
[BZIP2 in containers and bare-metal has comparable runtimes; POVRAY in containers performs better than VMs and virtualised containers].

8 https://www.spec.org/.

A.A. Khan et al.

https://www.spec.org/

Journal of Network and Computer Applications 173 (2021) 102869

12

(runtimes) in order to extract resource and application performance
parameters (Zakarya and Gillam, 2019). In this section, we discuss
heterogeneities of various applications when run on four different
sand-boxing technologies. Morabito et al. (2015) and Felter et al. (2015)
have discussed virtualisation, containerisation and virtualised con
tainers. Their investigation suggests that virtualisation performs worse
than the other techniques (~45.76%); however, virtualised containers
performs better than virtualisation (~4%) and worse than containers
(~26.46%). These variations in performance can be related to CPU
models (O’Loughlin and Gillam, 2014); and affect user monetary costs
and providers revenues.

4.2.1. Virtualisation
Virtualisation can increase the utilisation levels of datacenter re

sources (such as CPU, memory, disk), however, they suffer from per
formance degradation due to resource contention or interference –
particularly when VMs with similar workloads compete for same re
sources (Xu et al., 2016). Moreover, similar workloads (running inside
similar instance types) perform quite differently on various CPU archi
tectures (O’Loughlin and Gillam, 2014). The distribution of runtimes of
a particular workload on a specific CPU platform can be modelled as
log-normal. Moreover, certain platforms could offer the best perfor
mance for certain workloads; however, their performance is question
able for other kinds of workloads. As shown in Table 1, these variations
in runtimes, given in terms of minimum (Min), maximum (Max), mean
(μ), standard deviation (σ), and coefficient of variance (CoV), could be
significant – thus have notable impact on infrastructure energy effi
ciency, workload performance and, therefore, users monetary costs.
Note that, PXZ is also a compression tool, similar to BZIP2; which is widely

available in Ubunto and Fedora operating systems. Furthermore, we
assume the STREAM workload throughput (i.e. data copied in MB/s) as a
proxy of VMs—containers runtimes; and the order of hosts performance
is adjusted to MB/s. As lower MB/s means longer runtime to transfer
data, therefore the graph in Fig. 6, Fig. 7, Fig. 8 would be interpreted
with the best performance from right to left (Zakarya, 2017).

4.2.2. Containerisation
Containerisation is an alternative technique to virtualisation; that

have been largely used in public datacenters such as Google. Similar to
VMs, containers suffer from performance variations for similar work
loads (Ruan et al., 2016). These variations can also be related to various
CPU platforms, as shown in Table 1. Management platforms, for
example the Google’s Kubernetes, impose affinity constraints (for
co-location) in order to guarantee that numerous workloads and appli
cations (with resemblances in resource demands and usage) could be
crowded and accommodated over same hosts (Medel et al., 2016). In
Kubernetes, this is achieved though groups of containers known as pods.
Sharma et al. (2016) experimentally proved that compared to VMs,
co-located containers suffer from large performance degradation and
interference. Consequently, container placement and migration policies
desire to be more improved in order to pick the precise set of co-located
and neighbouring containers on a particular host. Kozhirbayev et al.
(Kozhirbayev and Sinnott, 2017) have compared bare-metal and two
containerised platforms i.e. LXC and Docker, using various benchmark
workloads. Their evaluation, on a real cluster, suggests that the per
formance of both containerised platforms vary for various workloads.
Since, containers share the operating system, and other binaries of the
physical host; therefore, it is possible to fit three times more containers

Fig. 7. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY) when run over different sand-boxing technologies, on E5-2630 CPU platform
[both applications, when run in virtualised containers, may perform better than VMs and containers; containers could be as bad as best in certain scenarios].

Fig. 8. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY) when run over different sand-boxing technologies, on E5-2665 CPU platform
[both applications, when run in virtualised containers, may perform better than VMs and containers; containers could be as bad as best in certain scenarios].

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

13

on the host as VMs.

4.2.3. Containerisation over virtualisation
The lack of isolation and efficient resource sharing with resource

over-subscription (soft limits) makes running containers inside VMs a
more feasible architecture [as happens in AWS EC2 container service,
Lambda that uses Dockers and Google container engine]. Soft limits
enable applications to use resources beyond their allocated limits if
those resources are not in use (over-subscription). For VMs, resource
limits are usually hard which means that VMs are not allowed to utilise
more resources than their provisioned resources even if the resources are
idle. Soft limits and over-subscribing resources may provide efficient
resource utilisation and management (Dabbagh et al., 2016). Merging
containers with VMs could provide both the benefits of containers and
VMs. For example, VMs are securer than containers and containers could
provide better resource utilisation levels than VMs. Furthermore,
Sharma et al. (2016) stated that containers in VMs provide performance
benefits as well. The authors suggest that neighbouring containers
within a VM can be trusted because containers from a single tenant may
be allowed to run in a particular VM. Mondesire et al. (2019) suggest
that running containers inside VMs instead on bare-metal have at least
two advantages: (i) if a particular container needs restarting, only the
VM, which accommodate this container, will be restarted; and (ii)
snapshots of VMs could be migrated to other hosts, if needed.

Table 1 show variations in runtimes when various workloads or
functions are being executed in virtualised containers (containers run
inside VMs) over different CPU architectures. These statistics were
collected from various published works (Felter et al., 2015), (Kominos
et al., 2017), (Vaucher, 2015). Using monte-carlo simulations for these
statistics (with respect to mean and standard deviation), we observed
that containers running inside VMs could increase resource utilisation;
however, the workload performance is negatively affected, probably,
due to large number of co-located containers (O’Loughlin, 2018).
Moreover, for certain workloads, virtualised containers may provide for
comparable performance to bare-metal; however, for other workloads,
the reverse might be true as their performance is lower than VMs. This is
illustrated visually in Fig. 8.

4.2.4. Bare-metal
The business requirements of organisation may include full and

privileged access to raw hardware which they provision for their ser
vices. This may also happen for certain workloads types, such as HPC
and real-time applications, that need the best performance. Therefore, it
would be essential to run user’s application on bare-metal hardware
instead of packing it in a container or a VM. Amazon AWS has recently
launched bare-metal instance class which offers complete access to the
provisioned resources (the recent M5 instances). Similarly, the Rack
space cloud also offers bare-metal hardware known as “OnMetal”.
Moreover, bare-metal offers several advantages over containers and
VMs, e.g.: (i) security - multiple containers—VMs on a single VM—host
create chances for network attacks such as denial of service; and (ii)
performance is affected - the “noisy neighbour” or co-location problem.
Few works have characterized the performance of containers, VMs,
virtualised containers and bare-metal; and largely, the later one per
forms better than the former ones (Felter et al., 2015), (Morabito et al.,
2015), (Sharma et al., 2016). As shown in Table 1, variations in runtimes
can be seen across various CPU platforms (architectures) for various
kinds of applications and hardware platforms (VMs, containers,
container over VMs, bare-metal). Several reasons, such as resource or
CPU contention, cache design, for these kinds of variations over
bare-metal hardware are described in (O’Loughlin, 2018).

In Table 1, some statistics such as μ, Min and Max were being
calculated manually; as they were not available in the literature. For
example, where Min and Max values were not found but μ and σ were
present, we used monte-carlo simulations and statistical distributions
(log-normal for VMs and normal for others) to calculate them from the μ

and σ. Moreover, where μ and σ were not found, we used range equation
to calculate them from the Min and Max. Figs. 6–8 show the perfor
mance (runtimes) of various applications, when run over various sand-
boxing technologies. Large variations can be seen for POVRAY bench
mark on X5560 as compared to BZIP2. Moreover, containers could be of
comparable performance to bare-metal; however, in certain scenarios
their performance may be even worse than VMs and containers—VMs
both. We speculate this situation might happen due to numerous co-
located containers on a host, with similar workloads competing for
same resources. Fig. 8 illustrates that containers could offer comparable
performance to bare-metal; however, bare-metal consume more energy
due to lower resource utilisation levels. Moreover, for certain work
loads, the performance of virtualised containers may be worse than VMs.

5. Performance evaluation

Bin-packing issues are NP hard and are, therefore, solved using
heuristics approaches, usually. Albeit, heuristics may not ensure optimal
outcomes, however, they can quickly reach to an approximate (or near
to optimal) solution for large-scale problems (Ferreto et al., 2011). We
consider the resource placement and consolidation problem as
migrating from a particular datacenter state (current) to an ideal state.
The ideal state is the one that uses the fewest hosts in order to run all
workloads, possibly, those which are energy, performance, therefore,
cost efficient. We obtain a datacenter state through the implementation
of the proposed HeporCloud framework, along with consolidation policy
that ensures both energy and performance efficiencies. To demonstrate
the impact of this on IaaS resources and workloads, we presume: (i) no
migration; (ii) migrate all; (iii) migrate workloads individually either
from VMs, containers, bare-metal, or virtualised containers (containers
over VMs); and (iv) HeporCloud which predicts an effective migration
among various migrations possibilities. Moreover, we consider various
scheduling policies. Furthermore, we also investigate migrations per
formed within a particular platform (inter-platform) and those triggered
across various platforms (intra-platforms).

We presume the process of consolidation with migration as an
optimisation issue with the aim to reduce the number of hosts needed to
run a particular workload. The optimisation module runs after each 5
min, based on the current levels of utilisation of all switched on hosts.
The whole process happens in three steps; (a) VMs—containers selection:
All hosts are regularly monitored and when their current utilisation
levels are lower than some pre-defined low threshold value Ulow (e.g.
25%), then all accommodated VMs and containers on these particular
hosts are marked for migration. In case, there are several VMs and/or
containers appropriate for migrations, then the proposed VMs—con
tainers selection policy [Alg. 2] prioritises those VMs or containers
which may offer higher margins for costs savings (℘savings) – (we prefer to
migrate one VM or container from a particular host, at a time, to reduce
performance loss); (b) hosts selection: The migration approach looks for
the most appropriate (i.e. EPC aware) host from all available hosts that
might run these migratable VMs and/or containers energy and perfor
mance, therefore, cost efficiently. Nevertheless, in order to further
reduce the total number of active hosts, the allocation and migration
policies circumvent allocations to: (i) switched off hosts (if possible);
and (ii) hosts that might change their status to idle or switched off states
(i.e. hosts which are switched on but are idle); and (c) placement: The list
of all VMs and containers which are appropriate for migrations is sorted
in decreasing order of their estimated future runtimes (Rpredicted). This
further ensures that long-running VMs—containers will be migrated first
– since they guarantee effectiveness of their migration efforts. In last, a
particular VM and/or a container allocation algorithm(s) (heuristics) is
(are) used to re-allocate all migratable VMs and containers. Note that,
placement of migratable entities is a sub-problem of the overall
consolidation with migration procedure (Zakarya, 2017).

Evaluation metrics: We consider total number of migrations (inter-
platform and intra-platforms), energy consumption (KWh) and

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

14

Table 2
Various characteristics of Intel, Microsoft Azure and Google datasets.

Dataset Size (Zip) GB Number of instances Number of users Period (traced) Important fields Runtime distribution

Intel 2.46 48,821,850 4727 Oct 2016 life time, user, cores, lognormal
Nov 2016 memory

Azure 18.8 2,013,767 5958 Nov 16, 2016 life time, average CPU, lognormal
Feb 16, 2017 memory, disk, VM size, category

Google 41.0 24,281,242 922 May 2011 runtime, CPU, memory, lognormal
disk, priority, user

Table 3
Various characteristics and properties of different datasets (sampled) used in simulations; variations in these statistics might produce different outcomes.

Dataset Size (no of tasks) Runtimes (seconds) CPU demands (utilisation %) Memory demands (MBs) Instance type

μ σ μ σ μ σ

Intel 6.12k 25.42 11.89 51.09 5.56 764.32 541.89 server
Microsoft Azure 6.25k 49.92 16.65 44.32 5.32 1002.45 994.87 vCPUs
Google 6.01k 49.36 9.83 67.34 10.34 865.45 654.66 cores
Synthesized 6.31k 102.58 37.06 63.76 11.78 982.87 867.99 cores—vCPUs

Fig. 9. Mapping Google data to real benchmarks (left) and plausible assumptions for choosing appropriate hosts (right) (Zakarya and Gillam, 2019) – performance
parameters for various hosts are shown in Table 4 [POVRAY workload performs best on E5430 and worst on E5645].

Table 4
Different benchmarks runtime parameters for lognormal distribution (Zakarya and Gillam, 2019), (O’Loughlin and Gillam, 2014).

Workload Benchmark CPU Model Real benchmarks Google data ℱ

(μ) (σ) Min Max (μ) (σ) Min Max

Gratis POVRAY E5430 439 11 421 467 438.06 9.42 421 467 ℱ < 7.65
E5-2650 468 12 451 500 473.87 11.93 451 500 9.75 > ℱ ≥ 7.65
E5645 507 10 490 535 498.55 10.44 490 535 ℱ ≥ 9.75

Table 5
Hosts various characteristics for Amazon’s cloud (simulated).

CPU MODEL SPEED (MHz) NO OF CORES NO OF ECUs MEMORY (GB) PIDLE (Wh) PMAX (Wh) AMOUNT

E5-2630 2300 12 27.6 128 99.6 325 12,583
E5430 2830 8 22.4 16 166 265
E5507 2533 8 20 8 67 218
E5-2620 2000 12 24 32 70 300
E5645 2400 12 28.8 16 63.1 200
E5-2650 2000 16 32 24 52.9 215
E5-2651 1800 12 21.6 32 57.5 178
E5-2670 2600 16 41.6 24 54.1 243
E5540 2500 4 10 72 151 312
X5560 2800 8 22.4 128 133 288
E5-2665 3000 8 24 256 117 314
X5650 2666 12 31.2 64 80.1 258

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

15

workload performance (execution time measured in minutes) as the
performance evaluation metrics.

Datasets: The datasets used in this paper relate to three different
workloads i.e. HPC - Intel (Shai et al., 2013), Virtualised - Microsoft
Azure (Cortez et al., 2017), and containerised - Google’s cluster (Reiss
et al., 2011). Due to non-availability of a virtualised containers work
loads, we used synthesized workloads, extracted from benchmark results
which are described in Table 1. Each dataset consists of various task’
parameters such as submit & finish time, resource (CPU, memory, disk)
demand & usage, task priorities, submitting user, VM type & category,
scheduling or workload class, and etc. The type of each workload cor
responds to tasks’ priorities (containers in Google) and VM category
(virtual machines in Microsoft Azure). In Azure cloud, the runtimes
curves show a knee around 24 h (i.e. more than 90% VM life times are
short), and then the curve is almost flattened out. This demonstrates
that, VMs that run for 24 h are likely to run for longer. Moreover, a small
amount of long-running VMs account for CPU resources. The same ob
servations can also be seen for Google’s cluster data (Zakarya, 2017) –
where 90% tasks run for less than an hour. In Intel’s clusters, largely jobs
require a single core, and, largely, jobs runs for short durations [80%
jobs run for less than 10 min and 90% run for less than an hour] (Shai
et al., 2013).

This discussion is relevant to aggregation-based placement and
migration since: (i) aggregating shorter and longer tasks might be af
fective(w.r.t energy consumption and performance); and (ii) migrating
shorter tasks may not be affective as their migration efforts might be
wasted (Zakarya and Gillam, 2019). Moreover, VM workloads runtimes
are strongly correlated to workload types (Cortez et al., 2017); while
container workloads runtimes can be highly related to submitting users
and resource i.e. CPU, memory, disk usage patterns. Several important
characteristics and properties of these three datasets are shown in
Table 2.

Since, it will take significant time and, most importantly, a cluster of
resources to simulate and replay all these workloads. Due to non-
availability of a cluster, we consider random samples where each sam
ple comprises approximately six thousands tasks, extracted from each of
these datasets as representative workload. The tasks runtimes, inside a
particular workload type, are assumed as proxies to represent variations
in performance. The histogram of each sampled dataset can be seen as a
multi-modal distribution, where modality relates to different CPU ar
chitectures and the statistics of each model denote the CPU perfor
mance. Various characteristics and properties of these sampled datasets,
in terms of tasks level statistics, are shown in Table 3. Note that, the
sums of execution times (in hours), of all tasks in different workloads are

approximately 43.22, 68.67, 82.41, and 179.8, respectively. These
execution times are, then, used to compare the performance of various
workloads (evaluation metric).

Unfortunately, the above datasets does not have neither resource
contention, nor workload and machine performance details - in terms of
VM placement and migration techniques. Therefore, in order to extract
parameters for resource contention for each workload on every host, we
mapped runtimes’ histograms of these workloads and real benchmarks.
In order to carry out that, we plot these histograms on the same scale
(Zakarya and Gillam, 2019). To find closer similarity among the mapped
histograms, we used their statical values i.e. means (μ, μ1) and standard
deviations (σ, σ1) - where μ, σ and μ1, σ1 denote the means and standard
deviations of above workloads (Table 2) and real benchmarks (Table 1).
The closer the means and standard deviations, the more accurate is the
mapping. This method enable us to find the best CPU models for our
workloads, and therefore, appropriate performance parameters. For
example, the right-hand side of Fig. 9 shows the distributions of run
times over the same scale for both Google data (priority 0) (Zakarya and
Gillam, 2019) and real benchmarks (O’Loughlin and Gillam, 2014). The
left-hand side of Fig. 9 shows various hosts or CPU models i.e. E5430,
E5-2650, E5645; which are chosen using a distribution factor (ℱ), as
described in Table 4. The closest statistical means and standard de
viations without overlaps are assumed as the mapping criteria and
extract performance parameters. Further details on the statistical map
ping of the Google data to benchmark workloads are discussed in
(Zakarya, 2017).

5.1. Experimental setup

We performed all the experiments in an event-driven simulation
environment through integrating two well-known cloud simulators i.e.
CloudSim (Calheiros et al., 2011) and ContainerCloudSim (Piraghaj
et al., 2017). The former one offers support for virtualisation technology
(VMs) and the latter one is recognized for containerisation technology
(containers). Nevertheless, ContainerCloudSim does not provide the
ability of running nested/virtualised containers (containers that run
inside VMs). Furthermore, its presently existing version does not care for
VMs migration, nevertheless, partial operation of the optimisation
segment can be realized in the current code. We prolonged its numerous
classes, like the optimisation segment and the broker, in order to
accomplish our evaluation and experimentations. The extended version
of the broker class has the competence to boot up a VM—container,
during simulations, as soon as a request is received. The request arrival
matches task arrival durations from the Google cluster workload trace. A
cluster (simulated using extended CloudSim) of 12,583 heterogeneous
hosts/servers, which consists of various architecture types (regarding
fluctuating performance) and CPU hardware specifications – as shown in
Table 5 - is ready to execute numerous types of benchmarked workloads.
The simulated servers are configured based on several reasonable as
sumptions as described in Sec. 4. The hardware specification (CPU) and
energy usage details for various servers were taken from the well-known
SPECpower9 benchmarks. The servers’ energy consumption,
VMs—containers migration energy costs and performance of VMs—
containers were supposed as illustrated in (Zakarya, 2017). Addition
ally, we used four different types of workloads, i.e. HPC (bare-metal), W1
(VMs), W2 (containers) and W3 (virtualised containers), that belong to
real data from major cloud providers i.e. Intel’s compute cloud (Shai
et al., 2013), Google (Reiss et al., 2011) and Microsoft Azure (Cortez
et al., 2017) clusters, respectively.

Our simulation environment consists of six types of VMs and three
types of containers which relate to Amazon’s instance classes as given in
Table 6 and Table 7, respectively. Further, the VMs and containers types
are ranked (regarding their performance levels and resource capacities)

Table 6
Amazon different instance types and their characteristics – MEM means memory
(RAM).

Instance
type

No of
vCPUs

No of
ECUs

Speed (GHz)
MIPS

MEM

(GB)
Storage
(GB)

t2.nano 1 1 1.0 0.5 1
t1.micro 1 1 1.0 0.613 1
t2.micro 1 1 1.0 1 1
m1.small 1 1 1.0 1.7 160
m1.

medium
1 2 2.0 3.75 410

m3.
medium

1 3 3.0 3.75 4

Table 7
Container types and their characteristics.

Container type Speed (MHz) Cores ECU’s Memory (MB)

A 1000 1 1 128
B 1225 1 1.23 256
C 1500 1 1.5 512

9 https://www.spec.org/power_ssj2008/.

A.A. Khan et al.

https://www.spec.org/power_ssj2008/

Journal of Network and Computer Applications 173 (2021) 102869

16

according to the terminology and measurement of Amazon’s for gauging
performance rating of their offered instances – ECU (EC2 Compute Unit),
which is defined as: “equivalent CPU capacity of a 1.0 GHz–1.2 GHz
2007 Opteron or 2007 Xeon processor”. Moreover, for certain workload
types, variations in their performance levels over various instances in
the AWS cloud are suggested as equal to ~20% (1.0 GHz–1.2 GHz) of the
workloads original runtimes (O’Loughlin and Gillam, 2014). Note that,
the above ECU rating is described as per core, thus, the total rating of a
particular host or VM (with multiple cores or vCPUs) can be computed
through multiplying their ECU rating and total number of cores or
vCPUs (O’Loughlin and Gillam, 2014).

We presume that these hosts and VMs are equitable by just a single
measure which allows for performance ranking, and for which we
consider the CloudSim’s “Million of Instructions Per Second (MIPS)”
terminology as a proxy. One possible approach for VM sizing is to assign
every VM a single core (hyper-threaded) for the maximum value of 1,
half a core for 0.5, and assume that higher gearing of a VM leads to a
quarter of a hyper-threaded core for 0.25. However, along lines with
specific service providers (IaaS), and to more flexibly address the
resource allocation, we map frequencies of hosts’ CPUs to that of Am
azon’s notion of ECUs as: 1 GHz CPU, 1.7 GB RAM, giving various
instance (container—VM) types10 (Zakarya, 2017). Moreover, to keep
consistency with the “CloudSim” simulator each ECU maps the notion of
MIPS (Table 6), and we assume that every container—VM, at least,
needs 1 ECU and 1 vCPU (hyper-threaded core) or more, as shown in
Table 6. Therefore, the speed of every container—VM type (also called
the MIPS rating) is the multiplication of the total number of ECUs (1
ECU = 1 GHz) and vCPUs (hyper-threaded cores). For example, the CPU
speed of a m3.medium VM type, as shown in Table 6, is 3 (ECUs) × 1
(vCPU) = 3 (GHz).

To address a public cloud terminology more closely, for example
Amazon Lambda, each Azure’s, Google’s task is allocated to a single,
notional, VM or container, that relates to Google machine types with the
only exception that all VMs and containers are exactly single core, as
given in Table 7. Further, very similar to sizing of VMs, containers are
also sized (according to MIPS) and every VM can host, at least, one or
more than one container. For example, an instance m1.medium can host

exactly one container of type C (no resource over-subscription), while
two containers of type A, and so on. Moreover, every task utilises its
allocated resources (CPU, memory, disk) according to resource usage
and tasks’ statistics in Intel’s cloud (Shai et al., 2013), Google (Reiss
et al., 2011) and Microsoft Azure datasets (Cortez et al., 2017). Note
that, in our experiments we do not account for resource
over-subscription of containers and/or VMs (Dabbagh et al., 2016).

Each container is assumed to run four workload types that belong to
either Intel’s cloud (Shai et al., 2013), Google’s cluster (Reiss et al.,
2011) or Microsoft Azure (Cortez et al., 2017) datasets. These datasets
denote four various kinds of workloads i.e. HPC (bare-metal), con
tainers, VMs, containers—VMs, respectively. Due to the unavailability of
the fourth dataset i.e. virtualised containers (when containers run inside
VMs), we used a synthesized workload which was derived from various
statistics such as mean (μ) and standard deviation (σ), as shown in
Table 1. Further, the utilisation of each workload type is modelled as a
normal distribution function over the mean CPU usage, as calculated
from the original traces, at 5 min intervals. Moreover, the total execu
tion time of each application is the sum of its every tasks‘ execution
times. Each dataset consists of approximately 6000 tasks whose sum of
execution times are 43.22, 68.67, 82.41 and 179.8, in hours.

To begin with, all containers and VMs were assigned resources
conferring to: (a) the resource necessities well-defined by the type of
container—VM; (b) container placement strategy; and (iii) VM place
ment strategy. To ensure that each workload executes on a cheap (cost-
effective) and suitable container—VM, the instance-type selection al
gorithm, as proposed in (Zakarya, 2018b), was implemented. This en
sures reduction in stranded resources. It is notable that entirely
containers—VMs were assigned to VMs—hosts by means of the
workload-aware FF placement strategy and their coming match to task
coming epochs and proportion in Google and Azure clusters datasets
(Zakarya, 2017). Nevertheless, by means of the workload trace, if con
tainers—VMs exploit their provisioned IaaS resources fewer, this pro
duce chances for resource consolidation. Furthermore, every
container—VM is arbitrarily given a workload data trace from one of the
instance types (Intel + Azure + Google + Synthesized datasets) which
executes till its computation is finished. Throughout the consolidation

Table 8
Virtualisation and containerisation total migration-time and down-time (in seconds) at various workloads with different utilisation levels (Kotikalapudi, 2017).

Workload 66% utilisation 100% utilisation

mean std. dev. min max mean std. dev. min max

KVM
Downtime 14 1.886 12 17 16 2.404 13 21.5
Migration time 119.1 3.281 115 125 129.8 3.553 125 135

LXC
Downtime 8 1.155 6 10 10 1.886 7 12.5
Migration time 82 3.266 77 90 95.7 1.703 92 98

Table 9
Configuration times in seconds [ProLiant DL580 Gen8 with Ubuntu Server
14.04] – the host configuration energy consumption is computed based on its
maximum power consumption and the transition times from one state to another
(Zakarya, 2017), (Dabbagh et al., 2016).

Container VM Container—VM Host

Start 1.623 3.005 4.628 600 (Kominos et al.,
2017) Off 2.493 64.422 66.915

Restart
(soft)

4.209 125.463 129.672

Restart
(hard)

4.338 6.043 10.381

Delete 2.473 3.767 6.24

Table 10
Energy consumption in kWh [the values followed by ± symbol denote standard
deviations] - the overlap for no migration and migrate all approaches under
HeporCloud field represents the trade-off between efficient allocation and
migration.

Policy Bare-metal VMs Containers Containers—VMs HeporCloud

No migrations 2563 2678 2792 2934 2412 [±121]
Migrations –
Migrate all 2982 2856 2921 2785 2353 [±437]
HeporCloud –
inter-platform 2456 2087 2873 3173 1782 [±57]
intra-platforms 2389 2129 2666 3198 1759 [±98]

10 http://www.ec2instances.info.

A.A. Khan et al.

http://www.ec2instances.info

Journal of Network and Computer Applications 173 (2021) 102869

17

phase, the optimisation part governs the under-utilised and over-utilised
servers by means of two procedures: (a) the one threshold strategy – that
practices a static higher utilisation threshold (e.g. 80%) for every server;
and (b) two threshold’s strategy – that practices two thresholds values i.
e. a lower threshold (e.g. 20%) and an upper threshold (e.g. 80%).
Regarding the outcomes offered in this manuscript, we practice the later
method i.e. double threshold policy. In case, there exist numerous
migratable containers—VMs, at that moment the consolidation strategy
practices their rating [computed as the product of energy usage and
estimated execution time – as described in Sec. 3] to rank first those
containers—VMs which might save large energy whereas supreme levels
of workload performance is preserved (℘savings). Additionally, the
destination hosts—VMs for all migratable VMs—containers are recog
nized by means of a modified version of the default host selection policy
in ContainerCloudSim (Piraghaj et al., 2017). The modified host selec
tion policy accounts for host’s ERP in order to pick an energy and

performance efficient one for the migratable entity.
In order to account for migration costs (energy usage and perfor

mance loss), we made minor amendments to the above experimenta
tions. The migration duration of each VM is computed from its size, type
and network capacity (bandwidth), along with the period wanted to
boot up the fresh VM. Previous works (Calheiros et al., 2011), (Piraghaj
et al., 2017) have supposed that half of the entire network capacity is
accessible for the migration of VMs—containers, whereas the remaining
half is kept for communication between VMs—containers. Other works
(Felter et al., 2015), (Amaral et al., 2015) adopt that the migration
period of a container is the duration desirable to boot up a fresh
container at the destination server. In case, a previously existing VM
cannot run a particular container, at that point a fresh VM is booted first
– thus, the migration period of the container is the sum of booting up a
VM and a container along with the memory pages dirtied by the
container during the migration. To simplify concerns, these works
further accept that the container is stateless, subsequently leading to no
dirtied pages that should to be migrated. In our experiments, the
migration total time and down time are taken from (Kotikalapudi,
2017), which are experimentally evaluated and account for network
costs in terms of communication and delay, as shown in Table 8.
Furthermore, datacenters are usually equipped with dedicated net
works; and these costs would largely impact migrations across several
datacenters (geographically distributed). This study is limited to various
types of migration, however, within a single datacenter. Moreover,
consolidation can bring several hosts to idle states, thus making it
possible to switch off (bring to sleep states) them in order to save energy.
Switching on/off and states transitions of hosts can bring scheduling

Table 11
Performance of various workloads using different techniques to migrations and virtualisation (in minutes) [the workload prediction accuracy represents scheduling
and resource prediction accuracy corresponds to the efficiency of hosts].

Migration policy Workload type Sand-boxing technology Prediction accuracy

Bare-metal VMs Containers Containers—VMs HeporCloud Workload Resource

NO HPC 43.22 67.32 51.52 65.83 43.22 – –
W1 66.89 72.77 69.8 73.1 68.67 – –
W2 71.43 98.19 87.71 91.88 82.41 – –
W3 173.2 211.8 198.2 191.9 179.8 – –
HeporCloud 170.91 207.29 199.11 190.87 172.77 59.8% 78.8%

inter-platform migrations
HPC HPC 44.98 67.32 51.52 66.32 43.22 – –

W1 69.12 72.77 69.8 74.9 68.67 – –
W2 76.89 98.19 87.71 94.76 82.41 – –
W3 147.1 172.3 168.9 167.9 155.6 – –

W1 HPC 43.22 78.86 51.52 55.56 43.22 – –
W1 66.89 79.74 69.8 80.8 68.67 – –
W2 71.43 99.14 87.71 99.12 82.41 – –
W3 147.1 172.3 168.9 167.9 155.6 – –

W2 HPC 43.22 67.32 52.67 69.54 43.22 – –
W1 66.89 72.77 70.1 69.98 68.67 – –
W2 71.43 98.19 87.93 88.34 82.41 – –
W3 147.1 172.3 168.9 167.9 155.6 – –

W3 HPC 43.22 67.32 52.67 69.54 43.22 – –
W1 66.89 72.77 70.1 69.98 68.67 – –
W2 71.43 98.19 87.93 88.34 82.41 – –
W3 141.9 170.1 166.9 167.0 151.4 – –

Migrate all HPC 44.99 68.89 52.56 65.99 44.67 56.1% 43.23%
W1 69.78 72.01 68.88 75.31 68.12 60.4% 44.8%
W2 77.17 98.79 88.34 93.97 84.09 58.9% 46.2%
W3 149.87 177.11 169.88 177.55 159.11 59.7% 47.8%

HeporCloud HPC 43.29 68.21 53.78 56.67 45.22 60.1% 79.9%
W1 67.34 72.89 70.3 68.12 68.97 62.2% 80.2%
W2 71.67 99.7 88.01 81.07 72.99 58.9% 80.3%
W3 141.9 170.1 166.9 167.0 151.4 59.5% 79.5%

intra-platforms migrations
HPC 51.91 69.23 55.89 60.78 49.32 – –
W1 66.99 71.56 73.67 69.32 65.21 – –
W2 74.32 94.12 89.45 82.78 74.1 – –
W3 139.23 169.89 165.54 164.87 153.23 – –
Migrate all 141.76 168.12 164.32 165.89 155.99 61.45% 48.8%
HeporCloud 138.89 166.23 165.23 165.98 148.23 62.98% 84.8%

Table 12
Energy consumption (in kWh) using single and distributed schedulers
[Improvement means using single (centralised) scheduler instead of distributed
(individual) for all platforms].

Policy Distributed scheduler Single scheduler Improvement (%)

No migrations 2742 [±159] 2412 [±121] 7.62–16.86
Migrations

Migrate all 2886 [±85] 2353 [±437] 0.39–20.8
inter-platform 2647 [±475] 1782 [±57] 15.33–44.75
intra-platforms 2596 [±458] 1759 [±98] 13.14–45.61

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

18

delays. We assume container—VM start, reboot, off times as shown in
Table 9. These costs (delays) are very important, in the context of cloud
computing, as users are charged for the total duration of their service
[workloads runtimes + instances launch times]. These values are also
used inside ContainerCloudSim (Piraghaj et al., 2017), by default.
Furthermore, containers—VMs performance is affected as described in
Sec. 4. Transitions among various states of a host also incur
non-negligible energy overheads (Zakarya, 2017).

5.2. Experimental results

The simulated cloud environment is composed of 12,583 hosts, 3800
containers—VMs with configuration shown in Table 5, Table 6 and four
kinds of workloads that belong to bare-metal, virtualised, containerised
and virualised containers, respectively. When a container—VM request
is received, a container—VM is created from a list of available flavours
as shown in Table 7, Table 6 and is placed on a suitable host or a VM
which is already running on a particular host. The scheduler is workload
aware which predicts the type of workload; then the platform which
might offer performance benefits; and then a most energy and perfor
mance efficient host to run the workload. Moreover, the scheduler uses a
FF heuristic to place similar workloads in a particular platform. If there
is no suitable VM to accommodate the container, then a new VM is
created from a list of available instance types as shown in Table 6.
Various container types are described in Table 7. We assume that the
container workload is heterogeneous and, therefore, changes when a
container is being migrated from one host to another. For bare-metal,
the container is assigned solely to a particular host; and no other allo
cation is possible to this host until the container is being terminated and
the host resources are free. The allocation policy is workload-aware that
allocate containers to appropriate platform. After each 5 min interval,
the HeporCloud technique checks for consolidation opportunities, and

selects effective migrations from a list of possible migratable entities.

5.3. Results discussion

The obtained results of numerous scheduling and consolidation with
migration policies are described in Table 10 (overall energy usage) and
Table 11 (workload runtimes). Besides trivial decrease in performance
approximately from 2.14% to 3.02%, the suggested HeporCloud
framework can considerably reduce the overall energy consumption of
the IaaS cloud, that might be as high as 30.47%, and the total number of
migrations. Large variations in energy consumption for the migrate all
approach demonstrate that uncontrolled migrations could lead to
datacenter inefficiency. In our experiments, we found that efficient
allocation could be approximately 10.18% more energy efficient than
the no migration technique. Similarly, an overlap between inter-
platform and intra-platforms migrations shows an existing trade-off
that is, largely, dependent on the workload type and datacenter
configuration. From performance perspective, intra-platforms migra
tions are more effective than the inter-platform migrations; if and only if
migrations are triggered to more performance efficient hosts. Otherwise,
if migrations are uncontrolled then intra-platforms migration are worse

Table 13
Energy consumption and workload performance using single and distributed schedulers for various datacenter set-up, workload types [the results are averaged over
different platforms].

Policy Datacenter size Workload type Single scheduler Distributed scheduler

Energy Performance Energy Performance

(KWh) (hours) (KWh) (hours)

No migrations 2993 142.67 3003 143.88
Migrate all 12,583 W1 + W2 2283 126.56 2487 129.43
HeporCloud 2109 128.33 2349 128.82

No migrations 3789 213.67 3237 200.78
Migrate all 25,166 W1 + W3 3822 218.43 3101 193.56
HeporCloud 3203 199.32 3002 185.08

No migrations 2984 294.79 2903 291.34
Migrate all 12,583 W1 + W2 + W3 2845 301.68 2699 290.56
HeporCloud 2601 281.2 2576 274.93

Fig. 10. Energy consumption (KWh) [left] and overall performance (execution times in hours) [right].

Table 14
Percentages of migratable entities, cost recovery and prediction accuracy [the
sign ± denotes standard deviation over various runs].

Migration policy Migratable % Cost recovered % Runtime accuracy

NO – – –
Migrate all inter-platform 4.01 (±2.1) 24.87 (±2.8) 78.45% (±1.01)
HeporCloud 3.17 (±1.4) 79.02 (±4.2) 79.33% (±1.11)
NO – – –
Migrate all intra-platforms 6.87 (±2.3) 41.76 (±3.8) 69.41% (±1.88)
HeporCloud 5.01 (±1.2) 75.89 (±2.6) 70.34% (±2.26)

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

19

than inter-platform migration.
An interesting behaviour can be observed when using a single

(centralised) scheduler and distributed (individual) schedulers, as
shown in Table 12. For example, when migrations are not taken into
account, single scheduler is approximately 7.62%–16.86% more energy
efficient than the distributed schedulers. However, when migrations are
considered, then: (i) for uncontrolled migrations – the single scheduler
produces large variations in energy consumption; and (ii) for controlled
migrations – the distributed schedulers produces large variations in
energy consumption. In both cases, using a single (centralised) scheduler
is more energy efficient than using the distributed, but, individual
schedulers for each sand-boxing platform. Moreover, the total number of
triggered migrations and, therefore, performance of various applications
is affected when a single scheduler or several distributed schedulers are
used. Since, the single scheduler has knowledge of all platforms and
resources; therefore, more performance aware migration decisions can
be triggered as compared to distributed schedulers. Moreover, single
scheduler can reduce the resource contention and interference that
could occur due to co-location i.e. when similar workloads co-located on
same hosts and compete for similar resources. However, distributed
schedulers can put similar workloads on same resources that subse
quently degrade workload performance and, therefore, increases energy
consumption. Similarly, centralised scheduler have better control over
the available resources, therefore, resource placement and migration
can result in well-utilised state for the datacenter (minimum resources
switched on). In contrast, distributed schedulers will keep more re
sources switched on.

Unfortunately, the centralised scheduler suffers from single point of
failure. Moreover, when more number of VMs—containers interact with
the centralised scheduler, its response could be degraded due to the
delay involved in communication with available resources. Moreover,
the scalability of the single scheduler is affected with increase in data
center size and workload resource consumptions. Unfortunately,

networks and communication delays are not within the scope of this
paper. Therefore, in order to investigate the scalability of the single
scheduler, we run several experiments over different datacenter set-ups
(sizes) and various kinds of workloads - using same simulation set-up,
energy and performance parameters, as initially described in Sec. 5.1.
Table 13 summarises our outcomes. Our evaluation shows that for large-
scale datacenters, distributed schedulers are performance efficient than
the single scheduler [6.03%–11.39%]. However, energy consumption
overlaps for both schedulers. Moreover, certain workloads and, there
fore, resource placement and migration decisions also create large var
iations in the performance and energy efficiencies of the single resource
scheduler. Therefore, various requirements, datacenter characteristics
and workload information must be considered, essentially, before
deciding to use either a single or a distributed resource scheduler.

As shown in Fig. 10, the HeporCloud technique is more energy effi
cient (approximately from 14.61% to 37.97%) and more performance
efficient (from 7.23% to 20.0%) than the only virtualisation and
containerisation technologies, respectively. When migrations are
disabled, our approach is ~6.3% more energy efficient than the bare-
metal. However, the savings can be up to 37.8%, if migrations are
taken into account to consolidate workloads on fewer hosts. These
savings for virtualised containers were observed as 17.8% and 43.8%,
respectively. Moreover, our evaluation demonstrates that bare-metal
hardware offers optimal performance; however, the energy consump
tion is reliant, largely, on the workload type and patterns for job arrival
(% of job requests in a particular time window). Perhaps, the resource
utilisation pattern of a workload (i.e. CPU usage) has higher impacts on
overall infrastructure energy consumption. Although, a single job can be
run much fast and quickly that could, subsequently, decrease the energy
consumption of that particular job; however, the provisioned resources
can not be allocated to those jobs which are waiting in the waiting queue.
Resultantly, increased wait times for jobs increases latencies and run
times. Furthermore, bare-metal resources are largely under-utilised.
These issues may potentially increase job wait times and, therefore,
negatively affects the workload performance, user cost and datacenter
energy efficiency.

Similarly, VMs might increase IaaS energy consumption due to
longer runtimes (poor performance of workloads), in particular, due to
co-location which might happen very frequently if VMs workloads
compete for same resources. In case of virtualised containers i.e. con
tainers run over VMs, the performance of the containerised workload is
limited to the actual resource usage and available capacities of VMs that

Fig. 11. Variations in energy consumption (KWh) with respect to various migration policies and datacenter configurations [left: INC – middle: NR – right: DEC].

Fig. 12. Variations in workload performance (minutes) with respect to various migration policies and datacenter configurations [left: INC – middle: NR – right: DEC].

Table 15
Variations in energy consumptions (KWh) for various models and workloads.

Policy Energy model Workload utilisation

mean st. dev. mean st. dev.

No migrations 2114.87 8.89 1934.2 297.93
Migrate all 2467.54 29.87 21.52 892.83
HeporCloud 1741.49 21.83 1877.81 501.1

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

20

results in longer runtimes and, therefore, lower energy efficiency. The
approach “bare-metal i.e. containers run directly on bare-metal” offers
for the highest energy, performance and cost efficiencies. Moreover, if
the placement and/or migration policies have knowledge of the type of
workloads, and infrastructure, then it is possible to obtain optimal en
ergy, performance, and, therefore, cost efficiencies.

When resource migrations are enabled, then our proposed technique
“HeporCloud” and algorithms offer for higher energy efficiency at
equitable cost of performance to that of the “bare-metal” approach.
Furthermore, since the HeporCloudOrchestrator is aware of all four
environments (sand-boxing technologies), therefore, it is possible to
decide appropriate, energy, performance and cost efficient (EPC-aware)
migrations (Zakarya, 2018b). Unlike several demonstrated outcomes
(Vaucher, 2015), our empirical evaluation shows that bare-metal
hardware are expensive regarding energy usage, possibly because of
the lowest levels of resource utilisation (i.e. whole resources are pro
vided to a single VM—container) (Kominos et al., 2017). Virtualised
containers, those run over VMs offer the highest and peak resource
utilisation levels; but, unfortunately their performance is limited to VMs
performance that hosts them – therefore, consuming more energy than
VMs and containers, as shown in Fig. 10. Another reason for this low
performance of virtualised containers is, probably, the large ration of
co-location and neighbouring containers that might compete for same
resources. This suggests a trade-off between VMs and containers (when
run inside VMs) with respect to energy consumption and workload
performance.

Table 14 shows the migration statistics such as the percentage of
migratable entities, those which were able to recover their migration
costs, and the accuracy of the prediction technique. The data show that
HeporCloud has significantly reduced the total number of migrations
and, largely, migrations have recovered their costs. We observed more
number of triggered migrations across platforms (intra-platforms) as
compared to with a particular platform (inter-platform). The prediction
accuracy is computed through analysing the data we gathered during
numerical simulations. For example, in case of inter-platform migra
tions, approximately 79.33% of the migrated entities were continued to
run until they recovered their migration costs toff. In other words, the

prediction accuracy does not reveal that how accurately runtimes were
estimated; instead, it reveals that how many runtimes were lengthier
than the toff; and the migratable entities were able to recover their
migration costs. In next section, we briefly evaluate the impact of
datacenter configurations and energy consumption models on overall
infrastructure energy efficiency.

5.4. Datacenter configuration impact on energy consumption and
performance

How hosts are arranged and addressed in an IaaS datacenter
(configuration) has a possible impact on the resource allocation
approach. For instance, if hosts are kept and arranged in an increasing
order of their energy consumption (efficiency factor – Ef) and a partic
ular algorithm is used to allocate these resources; then, the total energy
consumption would be different in circumstances if same hosts are or
dered in decreasing order of their energy efficiencies. Moreover, if hosts
are kept physically or ordered logically based on their expected levels of
performance (CPU models), or both energy consumption and perfor
mance (ERP), then the trade-off between energy consumption and per
formance would vary for various resource allocation, consolidation
(migration) policies and workloads. We demonstrate the potential
impact of host ordering and allocation approaches (how hosts are
addressed logically) on infrastructure energy efficiency and workload
performance, therefore, costs. Each resource allocation and migration
policy chooses a particular host to execute the given workload; where
the starting point for such re-allocation decisions could, possibly, pro
duce variations in energy consumption, performance and, therefore,
users monetary costs. For instance, if the initial ordering were reversed,
this may change the experimental outcomes in terms of energy con
sumption and workload performance (Zakarya, 2017).

Table 16
Variations in average energy consumptions (KWh) and performance for various prediction models.

Policy Model Eq. (8) (distributions mapping) Model Average (recent job runtimes)

E (KWh) P (minutes) Migrations Accuracy E (KWh) P (minutes) Migrations Accuracy

Migrate all 2467.54 156.83 856 68.04% 2398.66 157.93 803 83.01%
HeporCloud 1741.49 137.21 589 69.72% 1801.03 139.07 644 82.99%

Table 17
Costs savings [Energy and users monetary costs are described in US dollars].

Policy Energy costs
($)

Users monetary costs
($)

Total costs savings
(%)

No
migrations

2654.26 1057.35 –

Migrate all 2793.65 973.75 7.91
HeporCloud 1702.7 907.17 14.2

Table 18
Energy consumption of the CIAO and HeporCloud architectures in KWh [mini
mum values are “best”]; these improvements can be translated to providers
energy bills.

Policy CIAO HeporCloud Improvement

No migrations 2662 2412 9.4%
Migrations –
inter-platform 2076 1782 14.20%
intra-platforms 2076 1759 15.27%

Table 19
Performance comparison of the CIAO and HeporCloud architectures – perfor
mance means workload execution time in minutes [the “best” results are shown
in boldface]; these improvements can be translated to users monetary costs.

Workload type Performance Improvement

CIAO HeporCloud

HPC 55.09 45.22 17.9%
W1 70.18 68.97 1.7%
W2 86.46 72.99 15.6%
W3 170.91 151.4 11.42%

Table 20
Energy Runtime Product (ERP)14 to demonstrate the trade-off between energy
consumption and performance using CIAO and HeporCloud frameworks [min
imum values are “best”].

Policy Energy (E) Performance (P) ERP

E × P

No migrations 2662 44.89 119.5
HPC 2221 55.09 122.4
W1 2189 70.18 153.6
W2 2299 86.46 198.8
W3 2311 151.4 349.9
CIAO 2076 55.09 114.4
HeporCloud 1782 45.22 80.6

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

21

In order to determine how datacenter configuration affects IaaS en
ergy consumption and workload performance, we run the experiments
from Sec. 5.1 ten times with three different initial orders for hosts: (a)
INC – increasing order based on Ef; (b) NR – no order i.e. random; and (c)
DEC – decreasing order based of Ef. For every host, the Ef is computed
through dividing the host peak power consumption (Pmax – energy
consumed at 100% utilisation level) by the total number of available
slots (cores, vCPUs or GCEUs). For instance, if we have four hosts (H1,
H2, H3 and H4) having EH1

f = 4, EH2
f = 1, EH3

f = 2 and EH4
f = 3; where

larger Ef denotes higher energy efficiency. Then the corresponding or
ders would be: INC – [H2, H3, H4, H1]; NR – [H1, H2, H3, H4]; and DEC –
[H1, H4, H3, H2]. We can also use other metrics such as ERP to compute
order for hosts. Various orders of hosts create various levels of energy
and performance efficiencies. Fig. 11 and Fig. 12 demonstrate variations
in workload performance (runtime) and energy consumption for various
kinds of workloads and orders of hosts. Note that, ordering here is dis
cussed in terms of logical addressing which means through allocation
policies and is, therefore, not a physical shift. As a future work, this
might be transformed to: (a) physically shifting hosts within a particular
rack or across several racks; and/or (b) putting hosts in different racks.
These empirical evaluations demonstrate that the physical order of hosts
is a major concern for service providers that could affect IaaS energy
consumption and performance, therefore, cost of running workloads in
large-scale datacenters. In order to show how energy consumption
models for VM—container would affect the IaaS energy efficiency, we
repeatedly performed the above experiments with four different models
– two models from Sec. 4.1 and two from (Alzamil and Djemame, 2016)
were selected. Moreover, we changed the workload utilisation levels to
stress and release the CPU demand to see its impact. Surprisingly, our
evaluation suggests that there are very small variations in IaaS energy;
due to the fact that the entire energy relates to physical hosts and their
benchmarked values at various utilisation levels. Since, every
VM—container energy is computed as part of the SPECpower bench
marks at particular utilisation level; therefore, the impact is lower.
These variations were observed larger when workload types or uti
lisation levels are changed, as shown in Table 15.

For the above experiments, we changed the runtime prediction
model in order to see the impact of the accuracy of a prediction approach
on IaaS energy efficiency (E) and workload performance (P). As shown
in Table 16, the accuracy of the prediction approach may significantly
affect the scheduling decisions, particularly, the total number of mi
grations. However, the energy efficiency and performance of the
workloads are not affected, severely. For example, in the case of ‘migrate
all’ approach, number of migrations are reduced; however, in the case of
‘HeporCloud’ the total number of migrations were increased. Albeit, the
accuracy of the averaging-based approach is higher than the
distribution-based approach; but, the impacts over energy consumption
and performance is not non-trivial. However, these findings are not
inline with previous work (Tsafrir et al., 2007); and this might be related
or specific to our abstraction and simulation of a real system. Further
more, these impacts would vary to the use of prediction e.g. (i) whether
runtimes are predicted in the initial scheduling phase or in the optimi
sation phase; and/or (ii) whether workload types, utilisation patterns, or
runtimes are predicted. In the future, we will do further investigation on
how various machine or deep learning based prediction approaches will
affect the resource management of hybrid IaaS clouds.

5.5. Costs savings

The total electricity bill, user monetary costs and costs savings (in US
dollars - $) are described in Table 17. For these analyses, we assume a
PUE11 i.e. power usage effectiveness of 1.10 and energy price of 0.88$

per KWh12 that mimic a Google datacenter located in the Oklahoma
state, USA. The PUE is a simple ratio of power consumed in computation
and power used in other parts of the datacenters e.g. cooling, offices etc.
A minimum value for PUE of 1 means that all the power consumed in
datacenter is for computational purposes. Moreover, we assume that the
users bills are computed at 0.0017$ per second.13 In practice, various
providers offer various pricing for their instances. The providers could
save up to 35.9% energy costs using the proposed HeporCloud technique
rather than using simple allocation and migration heuristic approaches.
Moreover, the users costs could also be reduced up to approximately
7.91%–14.2% as compared to simple management policies. We believe,
these savings would translate to a million dollars savings per year for big
service providers, such as AWS, Google, that operate and manage
thousands of machines in their computational clusters.

5.6. CIAO vs. HeporCloud framework

The results in terms of energy consumption and workload perfor
mance are shown in Table 18 and Table 19, respectively. The Hepor
Cloud orchestrator is approximately 9.4%–14.2% more energy and
1.7%–17.9% more performance efficient than the Intel’s CIAO frame
work when several combinations of workloads and migration policies
are taken into account. We also observed a similar behaviour of the
CIAO framework; due to the existing trade-off between energy con
sumption and workload performance (Khan et al., 2019a). Using several
reasonable assumptions, our evaluation suggests that approximately
13.57% energy could be saved at cost of 3.88% loss in performance.
These savings seem to be in line with possible savings using the
HeporCloud framework i.e. ~30.47% energy savings at cost of 2.14%
loss in performance. When migrations are considered, the HeporCloud
framework could be as high as 14.2% cost-effective than the CIAO ar
chitecture. Similarly, if costly migrations are avoided, then approxi
mately 15.27% performance improvements are achievable. The
performance improvements for various workloads are shown in
Table 19.

These results demonstrate the efficiency of our proposed HeporCloud
framework. Due to the existing trade-off between energy consumption

Fig. 13. The CIAO architecture.16.

11 https://www.google.co.uk/about/datacenters/efficiency/.

12 https://www.eia.gov/electricity/monthly/.
13 https://aws.amazon.com/ec2/pricing/.

A.A. Khan et al.

https://www.google.co.uk/about/datacenters/efficiency/
https://www.eia.gov/electricity/monthly/
https://aws.amazon.com/ec2/pricing/

Journal of Network and Computer Applications 173 (2021) 102869

22

and workload performance, it is impossible to improve both; however,
the best approach would improve one factor with a slight decrease in
another factor. The trade-off can be observed accurately using a single
metric i.e. Energy Runtime Product (ERP)14 – the product of energy
consumption (P) and performance (R); where runtime is the inverse of
performance (as lower workload run-times mean good performance and
vice versa). A detail discussion of the ERP metric is given in Sec. 2.
Table 20 describes ERP values for several migration policies along with
the CIAO and HeporCloud frameworks. In the case of “no migration”
technique, albeit performance is optimal (minimal); however, energy
consumption is maximum. For uncontrolled migrations (HPC, W1, W2,
W3), variations in energy consumption and workload performance can
be seen; along with significant overlaps, which represent that migrations
could be more expensive than the “no migration” approach. In such
scenarios, workload-specific resource allocation (for example Hepor
Cloud) could offer energy savings and performance guarantees. The
proposed HeporCloud approach has an ERP of 80.6 which is far better
than the CIAO’s ERP of 114.4.

5.7. Computational complexity

The computational complexity of the HeporCloudScheduler is based
on the time taken during the prediction module. If Tpred is the amount of
time needed to predict and categorize a particular workload w, then the
worst case computational complexity is given by Eq. (13):

ℴ

(

Tpred + α. β
platforms

)

(13)

where α, β and platforms denote the number of VMs—container, hosts
and platforms, respectively. In other words, β

platforms denotes the number
of hosts in a platform. The best case ℴ(Tpred) occurs when the
VM—container is placed in the first attempt. Furthermore, Tpred is
dependent on the prediction method i.e. linear regression, support
vectors, boosted tree, amount of data and available resources of the NAS
server.

The computational time of Alg. 2 is largely dependent on the time
needed to perform datacenter’ (or a particular platform) state optimi
sation i.e. optimise(si). The best case computational time for the opti
misation module can be described as ℴ(α.β). Furthermore, the worst
case complexity of Alg. 3 can be computed from the number of
migratable entities α′ ∈ α and hosts identified as under-loaded and/or
over-loaded β′ ∈ β, given by ℴ(α′

.β
′

). The computation cost incurred in
computing the power savings for all migratable entities can be described

as
∑α′

− 1
i=0 γi, where γ can be assumed as constant time. Therefore, the total

computational time for Alg. 3 and Alg. 1 is given by Eq. (14).

ℴ(α′

.β
′

) +
∑α
′
− 1

i=0
γi (14)

Integrating Eq. (14) into the cost incurred by Alg. 1, the total worst case
computational complexity of the HeportCloudOrchestrator module can
be computed using Eq. (15). Note that, complexity of the prediction
approach should be also taken into account.

ℴ(α.β)2
+ γ (15)

6. Related work

The Cloud Integrated Advanced Orchestrator (CIAO), proposed by
Intel. Runs VMs and containers within the same system. Since, there are
no such details or publications being offered by the Intel other than the
CIAO’s project code which is freely available online; thus, certain details
are still unknown. For instance, how: (i) explicit placement decisions are
made by the scheduler for various workloads; (ii) migration of VMs and
containers takes place; and (iii) no relevant publication showing eval
uation of the workload performance and IaaS energy efficiency. The
architecture proposed by Intel’s CIAO platform is shown in Fig. 13. It is
composed of: (a) a controller to implement how users communicate with
the system; (b) a scheduler which tells how user workloads are allocated
for resources; and (c) a launcher which is responsible for how each
compute server’s processing stats are collected. At each system,
controller and scheduler are executed individually whereas the launcher
executes on all compute servers within the IaaS cluster. Moreover, the
well-known FF heuristic is used for allocating resources instead of best
fit (BF) method. It is also evident that Intel’s researchers are biased for
the implementation simplicity and job dispatching speed rather than
absolute optimality. Still, BF or other workload-specific scheduler and
heuristic methods may be more beneficial for placement in the future,
particularly, for unknown workloads. Moreover, the scheduling choice
focuses, primarily, on memory, disk and CPU availability of various
compute nodes relative to the start of requested workload15.

The CIAO architecture does not support live migrations; however,
through check-pointing i.e. stopping and restating, a particular instance
could be migrated from one host to another host, seamlessly. Moreover,
several instances running on a particular host can also be migrated,

Table 21
Various methods and their pros and cons with respect to other approaches [for example Bare-metal offer the lowest utilisation levels and the highest energy con
sumption compared to VMs, Container, and Containers—VMs and so on].

Work Approach Pros and cons

resource utilisation workload performance energy consumption resource contention opportunities

placement consolidation

Technology Bare-metal lowest optimal highest low low –
VMs moderate low low high high high
Containers high high low very high very high very high
Containers—VMs very high moderate high very high highest highest
Hybrid – – – – – –

Scheduler Centralised very high high lowest low high lowest
Hierarchical high low low moderate moderate high
Distributed low low high high low very high

Migrations No migrations lowest high high moderate – –
Inter-platform high low moderate high – –
Intra-platform low high high low – –
Inter + Intra – – – – – –

14 http://epubs.surrey.ac.uk/841959/.

15 https://ciao-project.github.io/.
16 http://events17.linuxfoundation.org/sites/events/files/slides/Linuxcon%

20NA%202016.pdf.

A.A. Khan et al.

http://epubs.surrey.ac.uk/841959/
https://ciao-project.github.io/
http://events17.linuxfoundation.org/sites/events/files/slides/Linuxcon%20NA%202016.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Linuxcon%20NA%202016.pdf

Journal of Network and Computer Applications 173 (2021) 102869

23

concurrently, through a single command. This might be useful if a host
needs to be temporarily removed from the cluster for maintenance and
up-gradation purposes. The CIAO project documentation also suggests
that the scheduler currently implements a trivial approach which prefers
not using the Most-Recently-Used (MRU) compute host for workload
placement. Although, this could be inexpensive and may lead to enough
spread of new workloads across the cluster; however, this may not be
essentially energy efficient. Unfortunately, we are not aware of any
work, in the literature, which addresses the cluster’s energy consump
tion and performance of various workloads in a similar hybrid orches
tration platform; when various approaches to resource scheduling and
migration are taken into account.16 The study of bare metal, VMs and
individual containers in terms of workload performance, network usage,
disk I/O operations, memory use and boot time is discussed by Kominos
et al. (2017). It is still felt that there is no exploration of resource
consolidation in the context of resource management, IaaS energy effi
ciency, performance of workloads, and applications as well as resource
heterogeneities. Lubomski et al. (2016) have compared various virtu
alisation techniques such as VMs, containers; and suggested
non-significant performance loss when containers run within VMs.
However, Mavridis et al. (Mavridis and Karatza, 2017) suggest that the
performance loss could be significant. The pros and cons of various
existing works, regarding schedulers, and methods, are summarised in
Table 21. This will help readers to quickly identify gaps for further
consideration.

The HeporCloud framework uses the FILLUP allocation policy to place
user’s workloads onto available resources in a workload-specific way
(Zakarya, 2018b). It means that most energy and performance efficient
hosts are utilised first. However, the CIAO uses a FF policy to place the
workload onto resources without any prioritisation with respect to en
ergy and/or performance. Moreover, the HeporCloud framework selects
the best candidate for migration using the consolidation with migration
cost recovery (CMCR) (Zakarya, 2018b) and consolidation with migration
performance, energy costs recovery (CPER) (Khan et al., 2019b) policies.
Furthermore, HeporCloud bias towards migrating containers first
instead of VMs; as containers are lightweight that would finish their
migration quickly. However, CIAO implements a simple migration pol
icy which selects the top most instance, that could be either a container
or a VM. Moreover, migration occurs when the node’ utilisation de
creases certain threshold e.g. 20%. We assume that over utilisation will
not happen; as the HeporCloud policies will not place workloads on
nodes exceeding certain threshold e.g. 90%. Several studies (Kominos
et al., 2017),(Tay and GauravPavan, 2017) discuss the performance ef
ficiency of containers, VMs, and bare-metal, individually; however,
hybrid resource management with respect to energy efficiency is rela
tively ignored, and this is rarely addressed with the notable exception of
(Vaucher, 2015). In (Vaucher, 2015), the authors suggest that
bare-metal hardware might offer the highest levels of performance at the
lowest energy cost. Nevertheless, the evaluated outcomes take single
application (job) into account; and, thus, there outcomes are not ensured
as optimal or near to optimal, particularly, if a dynamic system is
considered.

Moreover, the authors in (Sharma et al., 2016), (Tay and Gaur
avPavan, 2017) have discussed VMs, containers and virtualised con
tainers (containers—VMs), however, bare-metal and energy efficiency
are not investigated. Tay et al. (Tay and GauravPavan, 2017) suggests
exploring different technologies including VMs and containers, in the
context of workload consolidation and migration policies. Sharma et al.
(2016) evaluated that containers running inside VMs offer performance
benefits; and neighbouring containers inside a VM could be trusted, as
well. Felter et al. (2015) explored resource management of VMs (KVM)
and containers (Docker), and associated the obtainable performance of
certain workloads and applications regarding bare-metal hardware.
Their examination and evaluation shows that for certain types of
workloads container’s and VM’s performance overlaps. Moreover, the
authors reject the finding that “IaaS should be implemented on VMs and

PaaS on containers” – since there is no technical cause. Unfortunately,
service migrations are not taken into account. The investigation of
performance for bare metal, VMs, containers and virtual/nested con
tainers, for running interactive game-based simulations, is discussed in
Mondesire et al. (2019). The authors suggest that the container’s per
formance is comparable with the performance of bare metal hardware;
and mingling VMs with containers gives performance advantages over
the use of containers and VMs, individually. Additionally, there is no
such investigation over scheduling and placement for hybrid platforms
in terms of energy usage and performance impacts due to consolidation
of workloads and resource heterogeneities.

Several researchers noted the under-utilisation nature of VMs in
public IaaS clouds (Tchana et al., 2015), (Tchana et al., 2016); and
anticipated a solution known as software consolidation. It accommo
dates multiple applications, at runtime, over the same VMs to reduce the
number of utilised VMs. Furthermore, VM consolidation can be com
bined with this technique to reduce the number of servers needed to run
particular workloads. Software consolidation might decrease: (i) the
energy usage; (ii) the total number of VMs needed; and (iii) users’ costs,
both in private and public IaaS clouds. The investigation also prevails
that ~40% energy could be saved within the authors’ private IaaS cloud.
Additionally, user’s budgetary cost is saved by about 40.5% for AWS
EC2 public IaaS cloud. The said work is relatively close to HeporCloud;
however, the algorithms presented in (Tchana et al., 2015), (Tchana
et al., 2016) are simple in deciding how running applications are to be:
hosted in VMs, containers, container—VM, and bare-metal; or migrated
in terms of energy consumption and possible performance impacts over
the workloads. In (Khan et al., 2019a), we neither considered nested
containers nor inter-platform and intra-platforms migrations. Further
more, performance of workloads across four platforms was not bench
marked. Similarly, we modelled performance of application
consolidation that runs either in VMs or containers in (Khan et al.,
2020); however, resource management in hybrid clouds were not taken
into account. Moreover, centralised schedulers were not investigated.
Besides these differences, workload predictions were also ignored in
(Khan et al., 2019a), (Khan et al., 2020). In (Mavridis and Karatza,
2019), the authors have studied the combination of virtualisation and
containerisation technologies through running containers on top of
VMs. Their aim is to improve containers’ key problem i.e. isolation
(since containers share the same kernel) and, to incorporate benefits of
containers into VMs. Therefore, containers were run on bare-metal, and
inside VMs (using KVM and Xen); and the authors suggest its possibility
subject to trivial performance overhead. Besides high resource uti
lisation, their evaluation suggests that running containers on KVM is
more energy-performance efficient than running them on Xen. Unfor
tunately, their work has ignored resource management aspects such as
scheduling, consolidating workloads, in hybrid clouds. Moreover, mi
grations are not examined.

Besides VM placement (Zakarya, 2017), container placement is also
largely studied in the literature. For example, in (Hu et al., 2020) au
thors have presented ECSched, a graph-based scheduler to handle con
current container requests in heterogeneous clusters subject to
multi-resource constraints. The ECSched scheduler assumes a batch of
requests, at the same time, to find a condensed placement. The authors
suggest that ECSched produces good results, in terms of low completion
times, and improved resource utilisation. However, the proposed
scheduler is impractical for online problems when tasks do not arrive in
batches; or, the online problem should be converted to an offline
problem in order to fetch requests at the same time. Moreover, VMs,
nested containers, hybrid platforms and their energy efficiency is not
explored. Similarly, KEIDS (Kaur et al., 2020) incorporate a container
scheduler/management system on top of Kubernetes to account for
interference and energy consumption of IoT applications in distributed
clouds (operated by different energy sources). The KEIDS scheduler is
approximately 14.42%, and 31.83%, better that the FCFS scheduler in
terms of improved energy utilisation, and minimal interference. In (Lv

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

24

et al., 2019), a communication-aware worst fit decreasing heuristic al
gorithm is proposed for container placement. Moreover, a container
reassignment strategy is presented to balance the containers distribution
across various servers and optimise application performance and
throughput. Albeit, renewable, and distributed clusters are taken into
account; however, except containers, other scenarios such as VMs, vir
tualised containers, hybrid platforms and migrations are not explored.

ProCon (Fu et al., 2019) schedules containers subject to: (i) the
instant resource utilisation of hosts; and (ii) estimation of future
resource usage. The ProCon scheduler balances the resource contentions
across the cluster and reduces task runtimes through monitoring their
execution progress. ProCon reduces completion time by up to 53.3% and
improves performance by 23.0% against the default scheduler available
in Kubernetes. Various approaches to virtualisation (full - KVM, para -
Xen and OS level - Docker) are discussed in (Chae et al., 2019). The
performance of KVM and Docker was compared in three different ways:
(a) the CPU and memory usage of the host, (b) Idleness of CPU, memory
usage and I/O performance through migrating a large file, and (c) per
formance of the Web server through JMeter. These comparisons show
that Docker is faster than KVM. The authors have only compared KVM
and Docker which were configured on a single host. Moreover, the au
thors demonstrate that placement algorithms affect the performance of
VMs and containers. The PIVOT task scheduler (Jiang et al., 2020)
supports cross-cloud, cross-region execution of data-intensive applica
tions while hiding the complexity of the underlying heterogeneous
systems and respecting cost and performance requirements of the con
tainerised application. PIVOT has two capabilities: (i) an application
scheduler schedules various tasks of an application; and (ii) the global
scheduler has a task queue that put tasks for final dispatching and
placement onto hosts. Furthermore, the scheduling problem is modelled
as a vector bin-packing problem and solved effectively using greedy
approximation algorithms such as first fit heuristic.

In (Rocha et al., 2019), a task-oriented and energy-aware scheduler
“HEATS” is suggested for containerised workloads that allows customers
to trade performance vs. energy needs and exploits the resource het
erogeneity. In the first phase (probing), HEATS learns the energy and
performance characteristics of hosts. In the second phase (monitoring),
it monitors tasks execution on hosts. In the third phase (scheduling),
HEATS speculatively migrates workload across various hosts to match
customers’ demands. Their evaluation suggests that, depending on the
workload type, HEATS can save up to 8.5% energy while marginally
affect the overall task runtimes (by at most 7%). Renewables along with
appropriate resource allocation and consolidation approaches can
mitigate the energy related issues in cloud environment. In (Kumar
et al., 2018), containerised workloads are placed on those clusters which
has enough renewable energy. Moreover, a container consolidation
scheme is designed to minimise the energy consumption of hosts. In (Hu
et al., 2019), authors have discussed bin-packing, approximate and
meta-heuristic algorithms. Moreover, a container scheduling approach
is suggested to account for various objectives such as load-balancing and
multi-resource guarantee. Other works have also suggested
meta-heuristic based approaches to solve the workload placement
problem (Adhikari and Narayana Srirama, 2019), (Kaur et al., 2019),
(Gill et al., 2019). However (Hu et al., 2019), suggests that
meta-heuristic approaches can take hours to reach a solution, and, are
not suitable for container scheduling. In the literature (Zakarya, 2018b),
(Kominos et al., 2017), (Mondesire et al., 2019), (Sharma et al., 2016),
(Tchana et al., 2016), (Nadgowda et al., 2017), various allocation and
consolidation with migration methods have been investigated for VMs
and containers, but, individually. Nevertheless, we are not aware of any
work that investigates the impact of energy savings and workload per
formance degradation when migrations of VMs, containers, containers
over VMs and bare-metal applications are taken into account, at the
same time. Similarly, no study describes scheduling for hybrid platforms
in terms of using a centralised scheduler and/or distributed schedulers
for various resource platforms. Moreover, inter-platform and Ta

bl
e

22

Su
m

m
ar

y
of

 th
e

re
la

te
d

w
or

k
[t

he
 s

ch
ed

ul
er

 a
rc

hi
te

ct
ur

e
ap

pl
ie

s
to

 w
or

ks
 in

 w
hi

ch
 m

ul
tip

le
 s

an
db

ox
in

g
te

ch
no

lo
gi

es
 a

re
 b

ei
ng

 u
se

d;
 a

nd
 th

e
sc

he
du

le
r

pl
us

 m
an

ag
em

en
t p

ol
ic

y
ar

e
us

ed
 to

 e
va

lu
at

e
th

e
pl

at
fo

rm
s

fo
r

va
ri

ou
s

m
et

ri
cs

].

Pa
ra

m
et

er
s

Re
la

te
d

W
or

k
H

ep
or

Cl
ou

d

Sh
ar

m
a

et
 a

l.
(2

01
6)

M

on
de

si
re

 e
t a

l.
(2

01
9)

M

av
ri

di
s

an
d

Ka
ra

tz
a

(2
01

7)

Ta
y

an
d

G
au

ra
vP

av
an

 (2
01

7)

Tc
ha

na
 e

t a
l.

(2
01

6)

Kh
an

 e
t a

l.
(2

01
9a

)
Ch

ae
 e

t a
l.

(2
01

9)

M
av

ri
di

s
an

d
Ka

ra
tz

a
(2

01
9)

CI

A
O

Pl
at

fo
rm

s
VM

s
×

×
×

×
×

×
×

×
×

×
×

×

Co
nt

ai
ne

rs

×
×

×
×

×
×

×
×

×
×

×

Co
nt

ai
ne

rs
-V

M
s

×
×

×
×

Ba
re

-m
et

al

×
×

×
×

×
×

M
et

ri
cs

En

er
gy

co

ns
um

pt
io

n
×

×
×

×
×

W
or

kl
oa

d
pe

rf
or

m
an

ce

×
×

×
×

×
×

×
×

×

Sc
he

du
le

r
ar

ch
ite

ct
ur

e
Si

ng
le

×

×

D
is

tr
ib

ut
ed

×

×
×

×
×

×
×

×
×

×
×

×

M
an

ag
em

en
t

po
lic

y
A

llo
ca

tio
n

×
×

×
×

×
×

×
×

M
ig

ra
tio

n
×

×
×

×

Ru
nt

im
e

Pr
ed

ic
tio

n

×

Pr
ob

ab
ili

st
ic

×

×

A.A. Khan et al.

Journal of Network and Computer Applications 173 (2021) 102869

25

intra-platforms migrations, which are possible in hybrid datacenters, are
also not discussed anywhere else. The summary of the comparison be
tween our proposed HeporCloud and other closely related works is given
in Table 22. We believe the information in Table 22 would also help the
readers to quickly identify gaps for further research and investigation.

7. Conclusions and future work

In this paper, we proposed a framework HeporCloud and, an inte
grated, workload-aware single resource scheduler and orchestrator for
hybrid cloud platforms. The proposed resource manager is able to
allocate and predict effective workloads placement and migration de
cisions. Using reasonable assumptions, our empirical evaluation sug
gests that HeporCloud can schedule and consolidate various kinds of
workloads energy, performance and, therefore, cost efficiently. Our
investigation suggests that: (i) using a, centralised, single scheduler is
more energy and performance efficient than using individual schedulers
in hybrid platforms; (ii) under certain configurations, it might be more
energy and performance efficient not to migrate workloads; and (iii)
inter-platform migrations are more energy efficient than intra-platforms
migrations, however, performance of the workload varies significantly.
Moreover, containers are more energy, performance efficient than VMs;
and energy efficient than bare-metal hardware due to high level of
resource utilisation. Furthermore, for certain kinds of workloads, vir
tualised containers may be as bad as good, as compared to VMs and
containers.

We identified few issues in the HeporCloud framework that needs to
be addressed. First, when more and more VMs—containers interact with
the HeporCloudScheduler and/or the HeporCloudOrchestrator then,
due to delay in communication or network congestion, the system
response might become slow. Secondly, the HeporCloudStat is a burden
on the cluster node that maintains and calculates statistical information
regarding resource consumption, in addition, to its necessary task of job
execution. Furthermore, it needs to update its information with the NAS
server, periodically. Further research is needed to account for these
important issues. A distributed-type implementation for the Hepor
CloudStat module would be an alternative solution. In that case, the
HeporCloudStat can be installed as an agent on every cluster host and
which are essentially connected to a master HeporCloudStat agent that
runs on a dedicated powerful server. In the future, we will consider
multi-objective minimisation and meta-heuristics to solve the placement
problem. We are keen to validate the proposed HeporCloud framework
on a real cloud test-bed; through importing it in the OpenStack (Kominos
et al., 2017). More technically, our aim would be to advise an archi
tecture or, more specifically, a hybrid resource manager to the Open
Stack community in order to integrate the Ironic, Nova, Magnum and
kolla services operating over raw bare-metal (hardware), VMs, system
containers and virtualised containers i.e. containers run inside VMs,
respectively. Moreover, migrations could affect the workload perfor
mance severely, particularly, if a single VM—container is migrated
several times (repeatable migrations) during a consolidation round
(Khan et al., 2019b). In the future, along with more accurate energy
consumption and migration models (Dayarathna et al., 2015), we would
add a migration control mechanism (Khan et al., 2019c), to HeporCloud
framework, to avoid repeatable migrations.

CRediT authorship contribution statement

Ayaz Ali Khan: Conceptualization, Methodology, Investigation.
Muhammad Zakarya: Supervision, Writing - original draft, Software.
Izaz Ur Rahman: Visualization, Data curation. Rahim Khan:

Supervision, Visualization, Formal analysis. Rajkumar Buyya: Valida
tion, Project administration, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is supported in part by the Abdul Wali Khan University
Mardan (AWKUM), Pakistan and in part by the Higher Education
Commission (HEC), Pakistan. This work is partially supported by an
Australian Research Council (ARC) Discovery Project.

References

Adhikari, Mainak, Narayana Srirama, Satish, 2019. Multi-objective accelerated particle
swarm optimization with a container-based scheduling for internet-of-things in
cloud environment. J. Netw. Comput. Appl. 137, 35–61.

Alzamil, Ibrahim, Djemame, Karim, 2016. Energy prediction for cloud workload
patterns. In: International Conference on the Economics of Grids, Clouds, Systems,
and Services. Springer, pp. 160–174.

Amaral, Marcelo, Polo, Jorda, Carrera, David, Mohomed, Iqbal, Unuvar, Merve,
Steinder, Malgorzata, 2015. Performance evaluation of microservices architectures
using containers. In: 2015 IEEE 14th International Symposium on Network
Computing and Applications. IEEE, pp. 27–34.

Calheiros, Rodrigo N., Ranjan, Rajiv, Beloglazov, Anton, De Rose, Csar AF.,
Buyya, Rajkumar, 2011. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software Pract. Ex. 41 (1), 23–50.

Callau-Zori, Mar, Samoila, Lavinia, Orgerie, Anne-Ccile, Pierre, Guillaume, 2018. An
experiment-driven energy consumption model for virtual machine management
systems. Sustain. Comput.: Inform. Syst. 18, 163–174.

Chae, MinSu, Lee, HwaMin, Lee, Kiyeol, 2019. A performance comparison of linux
containers and virtual machines using docker and kvm. Cluster Comput. 22 (1),
1765–1775.

Colmant, Maxime, Kurpicz, Mascha, Pascal, Felber, Huertas, Loc, Rouvoy, Romain,
Sobe, Anita, 2015. Process-level power estimation in vm-based systems. In:
Proceedings of the Tenth European Conference on Computer Systems. ACM, p. 14.

Cortez, Eli, Bonde, Anand, Muzio, Alexandre, Russinovich, Mark, Fontoura, Marcus,
Bianchini, Ricardo, 2017. Resource central: understanding and predicting workloads
for improved resource management in large cloud platforms. In: Proceedings of the
26th Symposium on Operating Systems Principles. ACM, pp. 153–167.

Dabbagh, Mehiar, Hamdaoui, Bechir, Guizani, Mohsen, Rayes, Ammar, 2014. Release-
time aware vm placement. In: Globecom Workshops (GC Wkshps), 2014. IEEE,
pp. 122–126.

Dabbagh, Mehiar, Hamdaoui, Bechir, Guizani, Mohsen, Rayes, Ammar, 2016. An energy-
efficient vm prediction and migration framework for overcommitted clouds. IEEE
Trans. Cloud Comput.

Dayarathna, Miyuru, Wen, Yonggang, Fan, Rui, 2015. Data center energy consumption
modeling: a survey. IEEE Commun. Surv. Tutor. 18 (1), 732–794.

Fan, Xiaobo, Weber, Wolf-Dietrich, Andre Barroso, Luiz, 2007. Power provisioning for a
warehouse-sized computer. In: ACM SIGARCH Computer Architecture News, ume
35. ACM, pp. 13–23.

Felter, Wes, Ferreira, Alexandre, Rajamony, Ram, Rubio, Juan, 2015. An updated
performance comparison of virtual machines and linux containers. In: Performance
Analysis of Systems and Software (ISPASS), 2015 IEEE International Symposium on.
IEEE, pp. 171–172.

Ferreto, Tiago C., Netto, Marco A.S., Calheiros, Rodrigo N., De Rose, Csar A.F., 2011.
Server consolidation with migration control for virtualized data centers. Future
Generat. Comput. Syst. 27 (8), 1027–1034.

Fu, Yuqi, Zhang, Shaolun, Terrero, Jose, Mao, Ying, Liu, Guangya, Li, Sheng,
Tao, Dingwen, 2019. Progress-based container scheduling for short-lived
applications in a kubernetes cluster. In: 2019 IEEE International Conference on Big
Data (Big Data). IEEE, pp. 278–287.

Gandhi, Anshul, Gupta, Varun, Harchol-Balter, Mor, Kozuch, Michael, 2010. Energy-
efficient Dynamic Capacity Provisioning in Server Farms. School of Computer
Science, Carnegie Mellon University. Tech. Rep. CMU-CS-10-108.

George, Amvrosiadis, Park, Jun Woo, Ganger, Gregory R., Gibson, Garth A.,
Baseman, Elisabeth, DeBardeleben, Nathan, 2017. Bigger, Longer, Fewer: what Do
Cluster Jobs Look like outside Google? Technical report, Technical Report CMU-PDL-
17-104 Carnegie Mellon Univedrsity Parallel Data.

A.A. Khan et al.

http://refhub.elsevier.com/S1084-8045(20)30334-9/sref1
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref1
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref1
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref2
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref2
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref2
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref3
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref3
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref3
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref3
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref4
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref4
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref4
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref4
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref5
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref5
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref5
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref6
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref6
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref6
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref7
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref7
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref7
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref8
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref8
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref8
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref8
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref9
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref9
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref9
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref10
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref10
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref10
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref11
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref11
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref12
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref12
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref12
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref13
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref13
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref13
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref13
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref14
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref14
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref14
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref15
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref15
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref15
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref15
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref16
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref16
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref16
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref17
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref17
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref17
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref17

Journal of Network and Computer Applications 173 (2021) 102869

26

Gill, Sukhpal Singh, Garraghan, Peter, Stankovski, Vlado, Casale, Giuliano,
Thulasiram, Ruppa K., Ghosh, Soumya K., Ramamohanarao, Kotagiri,
Buyya, Rajkumar, 2019. Holistic resource management for sustainable and reliable
cloud computing: an innovative solution to global challenge. J. Syst. Software 155,
104–129.

Gupta, Varun, 2011. Stochastic Models and Analysis for Resource Management in Server
Farms. PhD thesis. Intel Corporation.

Hu, Yang, De Laat, Cees, Zhao, Zhiming, et al., 2019. Multi-objective container
deployment on heterogeneous clusters. In: Proc. 19th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput.(CCGRID), pp. 592–599.

Hu, Yang, Zhou, Huan, de Laat, Cees, Zhao, Zhiming, 2020. Concurrent container
scheduling on heterogeneous clusters with multi-resource constraints. Future
Generat. Comput. Syst. 102, 562–573.

Jiang, Han-Peng, Chen, Wei-Mei, 2018. Self-adaptive resource allocation for energy-
aware virtual machine placement in dynamic computing cloud. J. Netw. Comput.
Appl. 120, 119–129.

Jiang, Fan, Ferriter, Kyle, Castillo, Claris, 2020. A cloud-agnostic framework to enable
cost-aware scheduling of applications in a multi-cloud environment. In: NOMS 2020
- IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary,
April 20-24, 2020. IEEE, pp. 1–9.

Kaur, Kuljeet, Garg, Sahil, Aujla, Gagangeet Singh, Kumar, Neeraj, Zomaya, Albert, 2019.
A multi-objective optimization scheme for job scheduling in sustainable cloud data
centers. IEEE Trans. Cloud Comput.

Kaur, K., Garg, S., Kaddoum, G., Ahmed, S.H., Keids, M. Atiquzzaman, 2020. Kubernetes-
based energy and interference driven scheduler for industrial iot in edge-cloud
ecosystem. IEEE Internet of Things J. 7 (5), 4228–4237.

Khan, Ayaz Ali, Zakarya, Muhammad, Khan, Rahim, 2019a. H2 a hybrid heterogeneity
aware resource orchestrator for cloud platforms. IEEE Syst. J. 13 (4), 3873–3876.

Khan, Ayaz Ali, Zakarya, Muhammad, Buyya, Rajkumar, Khan, Rahim, Khan, Mukhtaj,
Rana, Omer, 2019b. An energy and performance aware consolidation technique for
containerized datacenters. IEEE Trans. Cloud Comput.

Khan, Ayaz Ali, Zakarya, Muhammad, Khan, Rahim, 2019c. Energy-aware dynamic
resource management in elastic cloud datacenters. Simulat. Model. Pract. Theor. 92,
82–99.

Khan, Ayaz Ali, Zakarya, Muhammad, Khan, Rahim, Izaz Ur Rahman, Khan, Mukhtaj,
et al., 2020. An energy, performance efficient resource consolidation scheme for
heterogeneous cloud datacenters. J. Netw. Comput. Appl. 150, 102497.

Kominos, Charalampos Gavriil, Seyvet, Nicolas, Vandikas, Konstantinos, 2017. Bare-
metal, virtual machines and containers in openstack. In: Innovations in Clouds,
Internet and Networks (ICIN), 2017 20th Conference on. IEEE, pp. 36–43.

Kotikalapudi, Sai Venkat Naresh, February 2017. Comparing Live Migration between
Linux Containers and Kernel Virtual Machine: Investigation Study in Terms of
Parameters.

Kozhirbayev, Zhanibek, Sinnott, Richard O., 2017. A performance comparison of
container-based technologies for the cloud. Future Generat. Comput. Syst. 68,
175–182.

Kumar, Neeraj, Singh Aujla, Gagangeet, Garg, Sahil, Kaur, Kuljeet, Ranjan, Rajiv,
Garg, Saurabh Kumar, 2018. Renewable energy-based multi-indexed job
classification and container management scheme for sustainability of cloud data
centers. IEEE Trans. Industr. Inform. 15 (5), 2947–2957.

Lebre, Adrien, Pastor, Jonathan, Simonet, Anthony, Sdholt, Mario, 2019. Putting the next
500 vm placement algorithms to the acid test: the infrastructure provider viewpoint.
IEEE Trans. Parallel Distr. Syst. 30 (1), 204–217.

Liu, Haikun, Jin, Hai, Xu, Cheng-Zhong, Liao, Xiaofei, 2011. Performance and energy
modeling for live migration of virtual machines. Cluster Comput. 249–264.

Lubomski, Pawe, Kalinowski, Andrzej, Krawczyk, Henryk, 2016. Multi-level
virtualization and its impact on system performance in cloud computing. In:
International Conference on Computer Networks. Springer, pp. 247–259.

Lv, Liang, Zhang, Yuchao, Li, Yusen, Xu, Ke, Wang, Dan, Wang, Wendong, Li, Minghui,
Cao, Xuan, Liang, Qingqing, 2019. Communication-aware container placement and
reassignment in large-scale internet data centers. IEEE J. Sel. Area. Commun. 37 (3),
540–555.

Masdari, Mohammad, Khoshnevis, Afsane, 2019. A survey and classification of the
workload forecasting methods in cloud computing. Cluster Comput. 1–26.

Massie, Matthew L., Chun, Brent N., Culler, David E., 2004. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Comput. 30
(7), 817–840.

Mavridis, Ilias, Karatza, Helen, 2017. Performance and overhead study of containers
running on top of virtual machines. In: 2017 IEEE 19th Conference on Business
Informatics (CBI), ume 2. IEEE, pp. 32–38.

Mavridis, Ilias, Karatza, Helen, 2019. Combining containers and virtual machines to
enhance isolation and extend functionality on cloud computing. Future Generat.
Comput. Syst. 94, 674–696.

Medel, Vctor, Rana, Omer, Baares, Jos ngel, Arronategui, Unai, 2016. Modelling
performance & resource management in kubernetes. In: 2016 IEEE/ACM 9th
International Conference on Utility and Cloud Computing (UCC). IEEE, pp. 257–262.

Mondesire, Sean C., Angelopoulou, Anastasia, Sirigampola, Shehan, Goldiez, Brian,
2019. Combining virtualization and containerization to support interactive games
and simulations on the cloud. Simulat. Model. Pract. Theor. 93, 233–244.

Morabito, Roberto, Kjllman, Jimmy, Komu, Miika, 2015. Hypervisors vs. lightweight
virtualization: a performance comparison. In: 2015 IEEE International Conference on
Cloud Engineering. IEEE, pp. 386–393.

Nadgowda, Shripad, Suneja, Sahil, Bila, Nilton, Isci, Canturk, 2017. Voyager: complete
container state migration. In: Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on. IEEE, pp. 2137–2142.

O’Loughlin, John, 2018. A Workload-specific Performance Brokerage for Infrastructure
Clouds. PhD thesis. University of Surrey.

O’Loughlin, John, Gillam, Lee, 2014. Performance evaluation for cost-efficient public
infrastructure cloud use. In: International Conference on Grid Economics and
Business Models. Springer, pp. 133–145.

Piraghaj, Sareh Fotuhi, Dastjerdi, Amir Vahid, Calheiros, Rodrigo N., Buyya, Rajkumar,
2017. Containercloudsim: an environment for modeling and simulation of containers
in cloud data centers. Software Pract. Ex. 47 (4), 505–521.

Reiss, Charles, Wilkes, John, Hellerstein, Joseph L., 2011. Google Cluster-Usage Traces:
Format+ Schema. Google Inc., Mountain View, CA, USA. Technical Report.

Reiss, Charles, Tumanov, Alexey, Ganger, Gregory R., Katz, Randy H., Kozuch, Michael
a., 2012. Heterogeneity and dynamicity of clouds at scale. In: Proceedings of the
Third ACM Symposium on Cloud Computing - SoCC 12, pp. 1–13.

Rocha, Isabelly, Gttel, Christian, Felber, Pascal, Pasin, Marcelo, Rouvoy, Romain,
Schiavoni, Valerio, 2019. Heats: heterogeneity-and energy-aware task-based
scheduling. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE, pp. 400–405.

Ruan, Bowen, Huang, Hang, Wu, Song, Jin, Hai, 2016. A performance study of containers
in cloud environment. In: Asia-Pacific Services Computing Conference. Springer,
pp. 343–356.

Shai, Ohad, Shmueli, Edi, Feitelson, Dror G., 2013. Heuristics for resource matching in
intel’s compute farm. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, pp. 116–135.

Sharma, Prateek, Chaufournier, Lucas, J Shenoy, Prashant, Tay, Y.C., 2016. Containers
and virtual machines at scale: a comparative study. In: Middleware, p. 1.

Shehabi, A., Smith, S.J., Horner, N., Azevedo, I., Brown, R., Koomey, J., Masanet, E.,
Sartor, D., Herrlin, M., Lintner, W., 2016. United states Data Center Energy Usage
Report, vol. 4. Lawrence Berkeley National Laboratory, Berkeley, California. LBNL-
1005775.

Smith, Warren, Foster, Ian, Taylor, Valerie, 2004. Predicting application run times with
historical information. J. Parallel Distr. Comput. 64 (9), 1007–1016.

Tay, Y.C., Gaurav, Kumar, Pavan, Karkun, 2017. A performance comparison of
containers and virtual machines in workload migration context. In: Distributed
Computing Systems Workshops (ICDCSW), 2017 IEEE 37th International Conference
on. IEEE, pp. 61–66.

Tchana, Alain, De Palma, Noel, Safieddine, Ibrahim, Hagimont, Daniel, Diot, Bruno,
Vuillerme, Nicolas, 2015. Software consolidation as an efficient energy and cost
saving solution for a saas/paas cloud model. In: European Conference on Parallel
Processing. Springer, pp. 305–316.

Tchana, Alain, De Palma, Noel, Safieddine, Ibrahim, Hagimont, Daniel, 2016. Software
consolidation as an efficient energy and cost saving solution. Future Generat.
Comput. Syst. 58, 1–12.

technical white paper, H.P., 2016. Linux Container Performance on Hpe Proliant Servers:
Understanding Performance Differences between Containers and Virtual Machines.

Tsafrir, Dan, Etsion, Yoav, Feitelson, Dror G., 2007. Backfilling using system-generated
predictions rather than user runtime estimates. IEEE Trans. Parallel Distr. Syst. 18
(6), 789–803.

Tumanov, Alexey, Jiang, Angela, Park, Jun Woo, Kozuch, Michael A., Ganger, Gregory
R., 2016. Jamaisvu: Robust Scheduling with Auto-Estimated Job Runtimes.
Technical report, Technical Report CMU-PDL-16-104. Carnegie Mellon University.

Vaucher, Sbastien, 2015. Comparing Virtual Machines and Linux Containers.
Xu, Fei, Liu, Fangming, Jin, Hai, 2016. Heterogeneity and interference-aware virtual

machine provisioning for predictable performance in the cloud. IEEE Trans. Comput.
65 (8), 2470–2483.

Zakarya, Muhammad, 2017. Energy and Performance Aware Resource Management in
Heterogeneous Cloud Datacenters. PhD thesis. University of Surrey.

Zakarya, Muhammad, 2018a. Energy, performance and cost efficient datacenters: a
survey. Renew. Sustain. Energy Rev. 94, 363–385.

Zakarya, Muhammad, 2018b. An extended energy-aware cost recovery approach for
virtual machine migration. IEEE Syst. J. 13 (2), 1466–1477.

Zakarya, Muhammad, Gillam, Lee, 2016. An energy aware cost recovery approach for
virtual machine migration. In: International Conference on the Economics of Grids,
Clouds, Systems, and Services. Springer, pp. 175–190.

Zakarya, Muhammad, Gillam, Lee, 2017. Energy efficient computing, clusters, grids and
clouds: a taxonomy and survey. Sustain. Comput.: Inform. Syst. 14, 13–33.

Zakarya, Muhammad, Gillam, Lee, 2019. Managing energy, performance and cost in
large scale heterogeneous datacenters using migrations. Future Generat. Comput.
Syst. 93, 529–547.

A.A. Khan et al.

http://refhub.elsevier.com/S1084-8045(20)30334-9/sref18
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref18
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref18
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref18
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref18
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref19
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref19
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref20
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref20
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref20
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref21
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref21
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref21
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref22
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref22
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref22
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref23
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref23
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref23
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref23
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref24
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref24
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref24
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref25
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref25
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref25
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref26
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref26
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref27
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref27
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref27
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref28
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref28
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref28
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref29
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref29
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref29
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref30
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref30
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref30
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref31
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref31
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref31
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref32
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref32
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref32
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref33
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref33
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref33
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref33
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref34
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref34
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref34
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref35
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref35
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref36
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref36
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref36
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref37
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref37
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref37
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref37
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref38
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref38
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref39
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref39
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref39
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref40
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref40
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref40
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref41
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref41
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref41
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref42
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref42
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref42
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref43
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref43
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref43
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref44
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref44
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref44
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref45
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref45
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref45
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref46
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref46
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref47
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref47
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref47
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref48
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref48
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref48
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref49
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref49
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref50
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref50
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref50
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref51
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref51
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref51
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref51
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref52
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref52
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref52
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref53
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref53
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref53
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref54
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref54
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref55
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref55
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref55
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref55
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref56
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref56
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref57
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref57
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref57
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref57
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref58
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref58
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref58
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref58
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref59
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref59
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref59
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref60
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref60
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref61
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref61
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref61
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref62
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref62
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref62
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref63
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref64
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref64
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref64
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref65
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref65
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref66
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref66
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref67
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref67
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref68
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref68
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref68
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref69
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref69
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref70
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref70
http://refhub.elsevier.com/S1084-8045(20)30334-9/sref70

Journal of Network and Computer Applications 173 (2021) 102869

27

Ayaz Ali Khan is currently a PhD student in the Department of
Computer Science, Abdul Wali Khan University Mardan,
Pakistan. He completed his M.Phil (MS) in computer science
from COMSATS Institute of Information Technology (CIIT),
Islamabad, Pakistan. His area of research includes energy-
aware and performance-efficient scheduling, resource alloca
tion, placement and management, at datacenter level. More
over, he has enough knowledge of distributed systems,
optimisation, game theory and computer programming. His
work has been published in reputed internal journals.

Muhammad Zakarya received the PhD degree in computer
science from the University of Surrey, Guildford, U.K. He is
currently a Lecturer with the Department of Computer Science,
Abdul Wali Khan University Mardan, Pakistan. His research
interests include cloud computing, mobile edge clouds, per
formance, energy efficiency, algorithms, and resource man
agement. He has deep understanding of the theoretical
computer science and data analysis. Furthermore, he also owns
deep understanding of various statistical techniques which are,
largely, used in applied research. His research has been
appeared in several international journals of repute and
conferences.

Izaz Ur Rahman received the PhD degree in computer science
from the Department of Electronic and Computer Engineering,
Brunel University, UK. He is currently an Assistant Professor
with the Department of Computer Science, Abdul Wali Khan
University Mardan, Pakistan. His research interest includes
power systems, optimisation algorithms, internet of things and
artificial intelligence.

Rahim Khan received the PhD degree in computer science
from the Ghulam Ishaq Khan Institute (GIKI), Swabi, Pakistan.
He is currently an Assistant Professor with the Department of
Computer Science, Abdul Wali Khan University Mardan,
Pakistan. His research interest includes the Wireless Sensor
Networks (WSNs) deployment, Internet of Thing (IoT), routing
protocols, outliers’ detection, techniques for congestion con
trol, Decision Support System (DSS), vehicular ad-hoc net
works, data analysis and similarity measures.

Rajkumar Buyya is a Fellow of IEEE and Life Member of ACM,
Professor of Computer Science and Software Engineering,
Future Fellow of the Australian Research Council, and Director
of the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems, at
the University of Melbourne, Australia. His research interests
include cloud, grid, distributed, and parallel computing. R.
Buyya has a PhD in computer science from Monash University.
He is also serving as the founding CEO of Manjrasoft Pty Ltd., a
spin-off company of the University, commercialising its in
novations in Cloud Computing. He has co-founded five IEEE/
ACM international conferences: CCGrid, Cluster, Grid, e-Sci
ence, and UCC (Utility and Cloud Computing) and served as the
Chair of their inaugural meetings. He has presented over 400
invited talks (keynotes, tutorials, and seminars) on his vision
on IT Futures and advanced computing technologies at inter
national conferences and institutions in Asia, Australia,
Europe, North America, and South America. For further in
formation on Dr. Buyya, please visit: http://www.buyya.com.

A.A. Khan et al.

http://www.buyya.com/awards/ACM-LifeTimeMember.pdf
http://www.buyya.com

	HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments
	1 Introduction
	2 Problem description
	2.1 Mathematical formulation

	3 HeporCloud - system architecture and resource management algorithms
	3.1 The HeporCloud framework
	3.1.1 The HeporCloud scheduler
	3.1.2 The HeporCloud orchestrator
	3.1.3 The HeporCloudStat

	3.2 Resource predictions

	4 Modelling energy consumption and platforms heterogeneities
	4.1 Modelling energy consumption
	4.2 Modelling performance
	4.2.1 Virtualisation
	4.2.2 Containerisation
	4.2.3 Containerisation over virtualisation
	4.2.4 Bare-metal

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Experimental results
	5.3 Results discussion
	5.4 Datacenter configuration impact on energy consumption and performance
	5.5 Costs savings
	5.6 CIAO vs. HeporCloud framework
	5.7 Computational complexity

	6 Related work
	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

