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A B S T R A C T   

In major Information Technology (IT) companies such as Google, Rackspace and Amazon Web Services (AWS), 
virtualisation and containerisation technologies are usually used to execute customers’ workloads and applica
tions. The computational resources are provided through large-scale datacenters, which consume substantial 
amount of energy and have, therefore, ecological impacts. Since long, Google runs users’ applications in con
tainers, Rackspace offers bare-metal hardware, whereas AWS runs them either in VMs (EC2), containers (ECS) 
and/or containers inside VMs (Lambda); therefore, making resource management a tedious activity. The role of a 
resource management system is of the greatest importance, principally, if IT companies practice various kinds of 
sand-boxing technologies, for instance, bare-metal, VMs, containers, and/or nested containers in their data
centers (hybrid platforms). The absence of centralised, workload-aware resource managers and consolidation 
policies produces questions on datacenters energy efficiency, workloads performance, and users’ costs. In this 
paper, we demonstrate, through several experiments, using the Google workload data for 12,583 hosts and 
approximately one million tasks that belong to four different kinds of workload, the likelihood of: (i) using 
workload-aware resource managers in hybrid clouds; (ii) achieving energy and cost savings, in heterogeneous 
hybrid datacenters such that the workload performance is not affected, negatively; and (iii) how various allo
cation policies, combined with different migration approaches, will impact on datacenter’s energy and perfor
mance efficiencies. Using plausible assumptions for hybrid datacenters set-up, our empirical evaluation suggests 
that, for no migration, a single scheduler is at most 16.86% more energy efficient than distributed schedulers. 
Moreover, when migrations are considered, our resource manager can save up to 45.61% energy and can 
improve up to 17.9% workload performance.   

1. Introduction 

1Problems such as global warming, national and international energy 
supply, water complications, growing fuel costs, and computational 
business economics entirely bring the necessity for energy and perfor
mance, consequently, cost-efficient computation into sharp focus. 
Depletion in power plants that operate using coals, specifically, in the 
UK, offering an estimated safety margin for energy [i.e. capacity and 
demand ratio] of just 0.29% in 2017 (Shehabi et al., 2016), and the 
termination of several nuclear power plants in Germany and France, 
bring the actual risk of power outages and load-shedding in the very 
near future. Due to growth in renewables, a minor upsurge in energy 

safety margin of the UK can be realized in 2018 (i.e. an uptake from 
~29.0% to ~36.0%). If we presume similar rates of consumption to the 
world of about 3.0% of total energy usage, then ~9.6% rise in datacenter 
energy efficiency will transform to approximately two times growth in 
the UK’s energy safety margin (Shehabi et al., 2016), (Zakarya, 2018a). 
Similarly (Shehabi et al., 2016), also indicates that, until 2020, data
centers energy efficiency will remain unchanged, since industrial private 
workloads will migrate from internal private clouds to the public clouds. 
However, due to increase in mobile services and number of users, 
Internet of Things (IoT), and computing at scale, an increasing trend in 
energy consumption of the current datacenters can still be seen. Such an 
increase in energy consumption and the expected level of service 
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performance would certainly affect the environmental sustainability 
(3% Greenhouse gases), user’s monetary costs and cloud economics 
[\euro 183.98billions in 2016 to \euro 217.05billions in 2017 - ~18% 
increase]. For example, AWS experienced approximately 1% reduction 
in their sales due to only 100 ms loss in performance (Zakarya, 2018a). 
Therefore, it is essential to look deeply into the problem and identify 
possible causes, opportunities and appropriate solutions for energy 
savings and performance improvements (as agreed in Service Level 
Agreement - SLA document) (Zakarya, 2018a), (Zakarya and Gillam, 
2017). 

The above issues advise the necessity to investigate for the sources 
and reasons of growing energy consumption in IaaS (Infrastructure as a 
Service) clouds and try to get rid of the reasons and/or manage them 
using conceivable solutions under workload performance constraints. 
The growing quantity and practice of ICT (Information & Communica
tion Technology) equipment in IaaS cloud datacenters takes a conse
quential influence on the workload performance and IaaS energy 
consumption levels. Similarly, the falling practice of non-renewable 
energy sources, like coal, power plants, rises the necessity to design 
solutions to manage IaaS clouds resources in order to diminish the rising 
levels of energy usage, worldwide (Zakarya, 2018a). In respect of the 
former statement, datacenter’s resources are usually under-utilised and 
idle; thus, making it possible to use methods like virtualisation and 
containerisation to save energy. In respect of the later statement, 
workloads might be moved, across resources powered by various energy 
production methods such as coal and renewables, when it is essential (as 
renewables are intermittent) or more beneficial (cost-efficient) to do so. 

Virtualisation and containerisation enable same hardware for 
sharing among different users that: (i) increases resource utilisation; and 
(ii) creates opportunities for energy savings using resource consolida
tion. Besides these gains, virtualisation, containerisation and consoli
dation technologies could create performance-related problems due to 
migration and co-location (workloads compete for resources) leading to 
higher users’ monetary costs, VM runtimes, and energy consumption. 
Moreover, public clouds may also achieve IaaS energy and performance 
efficiencies through appropriate resource management, allocation, and 
placement policies (Zakarya, 2018b). In hyper-scale cloud environments 
such as Intel, Google and AWS, containers have nearly replaced VMs as 
computational instance of choice. Compared to traditional VMs, con
tainers have lower overheads of deployment and can, therefore, offer the 
best performance for certain workload types, as demonstrated in (Felter 
et al., 2015), (Kozhirbayev and Sinnott, 2017), (Kominos et al., 2017), 
(Mondesire et al., 2019), (Chae et al., 2019). Various applications have 
dissimilar business goals; few of them might run proficiently within VMs 
whereas few would perform best within containers or over bare-metal 
resources. Additionally, through running containers in VMs, supreme 
levels of resource utilisation are guaranteed through consolidation. 
Nevertheless, this may produce performance problems, in particular, 
when containers and VMs are being migrated collectively crosswise 
heterogeneous resources. Moreover, if workloads are running over 
various platforms in a datacenter, then there would be various migrat
able entities such as containers, VMs, hybrid (containers—VMs) and 
bare-metal workloads. Some of them would be more effective than the 
others and vice versa. For example, inter-platform migrations may occur 
in a particular platform; and intra-platform migrations may occur within 
platforms. 

VMs and containers have allowed the quick adoption of the cloud 
computing environment, and the necessities, in terms of utility 
computing, moved to incorporate various kinds of sand-boxing tech
nologies including virtualisation, containerisation, bare-metal and vir
tualised containerisation (Kominos et al., 2017). Generally, HPC (high 
performance computing) workers will favour provisioning the raw 
hardware (bare-metal) in order to deploy and run their workloads which 
decreases the hazards of performance degradation due to virtualisation. 
This is evidenced through the recent introduction of the bare-metal in
stances in the AWS cloud; which allows users to have full control over 

their provisioned resources. Moreover, certain workloads would 
perform better on containers than VMs and vice versa. For example, 
bank applications would run more securely in VMs than containers 
(isolation). In such circumstances, as shown in Fig. 1, variations in ap
plications runtimes would create questions on datacenter energy con
sumption, workload performance and cloud economics i.e. users 
monetary costs and energy bills. For example, Fig. 1 demonstrates that 
the performance of BZIP2 workload over E5-2630 (CPU model) signifi
cantly varies across various platforms i.e. 300–500 min on bare-metal, 
400–500 min on VMs, 300–500 min on containers, 550–700 min on 
containers over VMs. This suggests that the containerised applications’ 
performance is comparable to the bare-metal infrastructure. The CPU 
models correspond to processor families with different clock speed, in
struction set architecture (ISA), cache size, type, and performance var
iations during the fabrication process. Interested readers should refer 
(O’Loughlin, 2018), for further discussion of various CPU models and 
workload performance. 

Big data and IaaS providers, e.g. Intel, Google, Microsoft, Rackspace, 
and AWS, examine and explore leading-edge solutions made over the 
VMs and/or containers technologies. The desires of these progresses 
partake a crucial influence on the IaaS management systems that are 
utilised to design dedicated services to handle with heterogeneities of 
resources and users’ workloads. In consort with the difficulty of resource 
management system, up till then, such evolutions had been accom
plished independently, deprived of demonstrating whether accurate 
abstractions will let the supervision of any type of sand-boxing tech
nologies in a combined way (centralised) or in a distributed style. 
Furthermore, how various combinations of resource allocation and 
migration policies would affect IaaS energy consumption and workload 
performance. These sand-boxing technologies provide possibilities of 
affective resource scheduling, placement and consolidation. For 
example, workload could be scheduled or migrated to resources where 
its performance, high resource utilisation and energy efficiency are 
guaranteed. However, consolidation requires migrations that could be 
expensive in regard to energy consumption and performance loss 
(Zakarya, 2017). Moreover, similar workloads may perform quite 
differently on various platforms as described above. Similarly, certain 
cloud users may need full access to bare-metal resources in order to get 
total control of their provisioned hardware. This will, probably, soon 
force IaaS providers to rethink of using various platforms in their 
datacenters. Therefore, management complexities would further grow, 
when cloud providers will use a mixture of these technologies – in order 
to maximise their resource usage and reduce their operational costs. 
Thus, certain workloads may execute faster over the containers, or 
bare-metal hardware (non-virtualised) platforms; but, might perform 
the worst over VMs (technical white paper, 2016). The lowest execution 
times might mean the highest energy efficiency, and the least users’ 
costs. Moreover, IaaS energy efficiency might also relate to these 
sand-boxing technologies, workload types and energy profiles of hard
ware (Zakarya, 2017). 

This brings possibilities for hybrid datacenters which concurrently 
implement all sand-boxing technologies, e.g. the Intel’s CIAO (Cloud 
Integrated Advances Orchestrator),2 Magnum,3 Kolla4 and, subse
quently, higher opportunities for efficient workload placement, 
consolidation and migration decisions across various technologies. This 
could be achieved through clustering the IaaS resources such that each 
cluster corresponds to a particular sand-boxing technology. Further
more, each cluster may have either its own scheduler or share a cen
tralised scheduler. Using individual schedulers for each sand-boxing 
technology such as containerisation, virtualisation, containers—VMs, 
bare-metal might not be suitable regarding energy and performance 

2 https://ciao-project.github.io/.  
3 https://wiki.openstack.org/wiki/Magnum.  
4 http://docs.openstack.org/developer/kolla/. 
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efficiencies; due to the absence of entire datacenter’ state and resource 
usage details at each scheduling (platform) level. If these schedulers, can 
communicate and share entire datacenter state with each other (i.e. 
centralised scheduler); appropriate energy and performance efficient 
management decisions could be triggered (Zakarya, 2018a). Moreover, 
this will provide support for inter-platform and intra-platforms migra
tions; which are, to the best of our knowledge, unexplored in the existing 
literature of cloud computing. The former one occurs among the hosts of 
a particular platform e.g. VMs that could increase resource contention. 
The latter one would be more appropriate if certain workloads are 
misplaced during allocation. When both approaches are concurrently 
assumed, high levels of resource utilisation could be achieved. 

This research aims to identify additional probable savings through 
efficient resource placement, allocation and consolidation with migra
tions (i.e. resource management) to reduce datacenters energy usage so 
that the workload performance is not affected undesirably due to re
sources and workloads heterogeneities. Furthermore, we investigate the 
impact of inter-platform and intra-platforms migrations on IaaS energy 
efficiency and workload performance, therefore, costs. The objective is 
to deal with these challenges through suggesting an architecture 
(reference) and a single, platform-independent, resource manager. The 
key contest would be, possibly, to decide the right set of abstractions for 
the development of a combined-style service which leverages the key 
approach/methodology i.e. deprived of implementing a specific, dedi
cated service, e.g. individual schedulers (distributed approach) and 
platform-specific monitoring, for each sandboxing technology. We, 
then, propose a centralised, workload-aware, scheduler and a consoli
dation technique which reduces the datacenter’s energy consumption, 
and increases workload performance. In public clouds, reasonable best 
efforts would mean no loss in performance, as this will certainly affect 
the SLA’s; and violation to SLA’s would require a penalty to service 
providers. Whereas, in private clouds, increase in performance would be 
essential for certain workloads types such as HPC and database appli
cations. We perform expansive simulations of the suggested framework 

using real workloads from large-scale IaaS providers such as Intel (Shai 
et al., 2013), Microsoft Azure (Cortez et al., 2017) and Google (Reiss 
et al., 2011) clusters that correspond to HPC (bare-metal), virtualisation 
and containerisation workloads, respectively. 

The major contributions of our research are:  

• a reference architecture and a single, platform-independent, resource 
manager is advised;  

• an energy, performance and cost (EPC-aware) resource scheduler is 
presented that could effectively manage hybrid IaaS cloud in
frastructures that run different kinds of sand-boxing technologies; 

• an EPC-aware orchestrator is proposed that migrates various work
loads energy, performance and, therefore, cost-efficiently;  

• in order to concurrently simulate and evaluate hybrid clouds with 
various sand-boxing technologies, a cloud simulator is developed; 
and  

• investigate the impact of datacenter resource configuration (physical 
order of hosts) on energy consumption and workload performance. 

The rest of the paper is organised as follows. In Sec. 2, we discuss the 
resource allocation, placement and consolidation issue. In Sec. 3, we 
propose HeporCloud – a heterogeneity-aware hybrid approach that 
places and migrates workload appropriately. Sec. 4 describes various 
models to demonstrate energy and performance heterogeneities of 
various cloud platforms. We evaluate and validate HeporCloud through 
real workload datasets from Google, Intel and Azure clusters in Sec. 5 
and demonstrate its efficiency in terms of energy, performance and, 
therefore, cost with respect to existing methods. In Sec. 6, we offer an 
overview of the related work. Finally, Sec. 7 summarises the paper along 
with several future research directions. 

2. Problem description 

In this section, we transform our multi-objective optimisation 

Fig. 1. Variations in applications performance when running over various sand-boxing technologies and CPU models [from left to right and top to bottom: VMs, 
containers, containers—VMs and bare-metal] – performance of BZIP2 workload over E5-2630 significantly varies across various platforms. 
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problem into a single-objective problem. Multi-objective optimisation 
problems can be solved in two ways: (i) concurrently solve all objectives 
at once; and (ii) solve one objective first, and then make it a constraint 
on the next one. Moreover, various objectives can be combined into a 
single metric, and then solved as a single objective problem (Zakarya 
and Gillam, 2019). The three parties involved within the optimisation 
problem are: IaaS - service providers; SaaS - users or applications; and 
workloads. Furthermore, workloads can be assumed as SaaS. The aim of 
IaaS providers is to minimise energy consumption, SaaS wants to 
improve or, at least, maintain workload performance, and users wants to 
reduce their costs for the resources. The last two objectives are redun
dant across SaaS – as improved performance in terms of runtimes 
(reduced) will achieve the users objective (reduced costs). In the rest of 
this section, we mathematically formulate our objective optimisation 
problem. 

2.1. Mathematical formulation 

Assuming the above diverse requirements and circumstances (i.e. 
decreased runtimes, decreased costs, increased consumption of energy 
and reduced performance), our aim is to develop an allocation and 
consolidation model which: (i) predicts the energy consumption and 
levels of workload performance; (ii) correlates the predicted quantities 
(containers—VMs, performance and energy) to decide affective migra
tions; and (iii) lastly migrate best migratable entities to obtain optimal 
or approximate outcomes in terms of energy consumption and workload 
performance. The proposed technique is an effort to reduce infrastruc
ture energy consumption (IaaS) without negatively affecting the work
load performance (SaaS), even if migrated. We can describe the 
workload allocation or migration as a multi-objective optimisation 
(MOO) issue that consists of three nominal types of costs i.e. cost of 
energy consumption (EC), users’ monetary cost (UC), and workload 
performance cost (WPC). These costs are related to two different parties i. 
e. service providers (IaaS, SaaS) which are engaged in the whole pro
gression; and regarding their properties and characteristics, each cost is 
exactly mapped to a particular goal/objective as given underneath:  

I. IaaS → reduce the quantity of consumed energy during workload 
execution – EC;  

II. Workloads (SaaS) → improve or, at least, maintain the probable 
level of performance at the settled costs (in order to avoid pen
alties and meet SLAs - service level agreement) – in terms of 
execution time (R), where performance is expressed as the 
opposite of R and our aim is to reduce or, at least, maintain R – 
WPC; and  

III. Customers (SaaS) → are billed appropriately i.e. reduce cost or, at 
least, maintain the cost as per SLA agreement – UC. 

This could be understood spontaneously that UC is proportional to R 
(i.e. each user is billed subject to his/her submitted workload runtime), 
and thus, if objective (II) is achieved then objective (III) is also achieved, 
intuitively. Therefore, objective (III) is not taken into account, as a 
separate objective, in this paper. As a result, we transform and express 
the multi-objective optimisation problem into an equivalent bi-objective 
optimisation problem. The two objectives of the transformed bi- 
objective optimisation problem are: reduce energy consumption (E); 
and reduce workload runtime (R). Mathematically, these objectives can 
be expressed as an objective function f, given by Eq. (1): 

f =

⎧
⎨

⎩

minimise(E) where E =
∑platforms

i=1
Pi and P =

∑hosts

j=1
Ej

minimise(R) where R =
∑w

j=1
Runtimej

(1)  

subject to: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H,V and 𝒮 set of hosts, VMs∣containers and resources
e.g.CPU, memory, disk

(i)
∑

h∈H
xhv = 1 where xhv = {0, 1} ⟹ xhv = 1

if VM v is mapped to host h
(ii)

∑

v∈V
uvrxhv ≤ chryh where uvr denotes VM∣container resources

∀ v ∈ V and h ∈ H
chr denotes amount of host′ resources ∀ r ∈ 𝒮

yh = {0, 1} ⟹ yh = 1
if host h is used otherwise yh = 0

(2)  

where P denotes the total energy consumed by all hosts in a particular 
platform and Ej is the energy consumption of a specific host j that can be 
assumed as a linear function of the host’ CPU utilisation level or number 
of running VMs (virtualised hosts). Moreover, the datacenter’ total en
ergy consumption is denoted by E. Furthermore, Runtimej denotes the 
execution time of a particular VM—container—task that belongs to 
workload w in a specific platform. The sum of all tasks’ execution times 
in a workload is represented by R. Lower values for R mean higher 
performance and, subsequently, lower users’ monetary costs UC – VMs 
are billed according to execution times (Pay As You Go i.e. PAYG 
model). The constraints of container—VM placement problem are: (i) 
each container—VM is exactly allocated to a single VM—host at a time; 
(ii) the sum of all containers—VMs accommodated on a particular 
VM—host should not exceed the VMs—hosts individual capacities; and 
(iii) user’s monetary cost remains as per SLA, as shown in Eq. (2) (Fer
reto et al., 2011). Besides various constraints of the optimisation prob
lem, Eq. (2) also illustrates various parameters and variables. For 
example, the variables xhv corresponds to the mapping factor when a 
VM—container is allocated to a host. In consolidation scenarios, energy 
consumption could also be minimised through minimising the number 
of used hosts i.e. min(

∑
h∈Hyh). 

In order to transform the above bi-objective optimisation problem 
(min-min) into a single objective minimisation problem, we can combine 
these objectives in different ways. For instance, Gupta et al. (Gupta, 
2011) proposed the ERP metric (i.e. Energy Response time Product) 
which captures the trade-off that exists between energy, performance 
and, therefore, cost. Moreover, ERP is a widely used and appropriate 
evaluation metric to represent comparable trade-offs in the cloud com
munity (Zakarya and Gillam, 2019), (Gandhi et al., 2010). Note that, 
reducing ERP can be assumed as maximising the “Performance-Per-
Watt” ratio (PPW - performance achieved when one Watt-hour energy is 
consumed)5 – where performance of the workload is expressed as 
reciprocal of the response time. In our formulation, workload perfor
mance is computed through runtime R which is assumed equivalent to 
the response time, grounded on the factor of time. Consequently, we 
reread the specified name of the ERP metric as the Product of Energy and 
Runtime (ERP). The ERP evaluation metric is given by Eq. (3): 

ERP = E × R (3)  

Hypothetically, the single objective of our bi-objective optimisation 
issue is to reduce, investigate and assess the behaviour of the ERP for 
numerous allocation and consolidation with migration policies, as 
specified by Eq. (4): 

min(ERP) (4)  

5 https://www.spec.org/power_ssj2008/. 
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This transforms the above bi-objective optimisation problem into a 
single objective. The reason behind this simplification and using simple 
heuristic approach is to bias for dispatching speed and implementation 
simplicity over an absolute optimality. Albeit, multi-objective mini
misation and meta-heuristic techniques can offer optimal results for off- 
line problems (Adhikari and Narayana Srirama, 2019), (Kaur et al., 
2019); however, for on-line problems they are not preferable since the 
workload is not known and it will take long time to reach a placement 
decision (Zakarya, 2017), (Hu et al., 2019). From an experimental point 
of view, ERP of every host is estimated, for each placement and/or 
migration decision, using energy and runtime prediction techniques, as 
discussed in Sec. 3. The incoming workload is assigned and/or migrated 
to the host having the least ERP. Through realistic and plausible as
sumptions in a significantly modified version of an event driven cloud 
simulator “CloudSim” (Calheiros et al., 2011), we investigate how 
various resource placement, and consolidation with migration policies 
in a heterogeneous cloud, may affect the energy consumption of the IaaS 
cloud, performance of the SaaS workloads, and users’ monetary cost 
when various types of heterogeneous workloads are taken into account. 

3. HeporCloud - system architecture and resource management 
algorithms 

In this section, we propose “HeporCloud” that uses a single scheduler 

and orchestrator to manage heterogeneous hybrid datacenters re
sources, energy and performance, therefore, cost efficiently. The 
HeporCloud architecture is shown in Fig. 2. The scheduler and orches
trator both uses certain types of predictors to take effective scheduling 
decisions. Note that, the orchestrator looks/collects opportunities for 
consolidations, and, subsequently, which VMs and/or containers to 
migrate to where (hosts); and informs the scheduler to complete the 
operation. The proposed architecture consists of four IaaS resource types 
(VMs, containers, containers over VMs, bare-metal) and a storage 
module. The storage module is responsible to hold workload details and 
previous placement and migration actions which are used by the pre
dictors to take appropriate decisions. Next sections, describes this in 
more detail. 

3.1. The HeporCloud framework 

We suggest a resource manager/architecture called “HeporCloud” 
which empowers the management of numerous, dissimilar, sand-boxing 
technological resolutions; and assess the performance of the projected 

resource manager through simulations along with plausible assumptions 
and real workload datasets. The proposed resource manager, as shown 
in Fig. 3, comprises three major modules: (i) a single scheduler 
[HeporCloudScheduler]; (ii) an orchestrator [HeporCloudOrchestrator]; 
and (iii) HeporCloudStat which is responsible to collect node level sta
tistics such as resource utilisation levels, workload runtimes, placement 
and migration statistics and etc. The HeporCloudStat is an agent very 
similar to the cluster monitoring systems such as DataDog6 and 
Ganglia.7 The collected data is stored over a shared server, preferably, a 
Storage Area Network (SAN) that is accessible to the scheduler and 
orchestrator over a network. The HeporCloudScheduler and Hepor
CloudOrchestrator are installed on a separate host while HeporCloud
Stat is installed on every host of the datacenter. 

The HeporCloudScheduler and HeporCloudOrchestrator are aware 
of the whole infrastructure (multiple platforms); and use predictors for 
workload-aware resource allocation and migration decisions. Since, the 
proposed HeporCloud framework uses a centralised approach rather 
than a distributed one (Khan et al., 2019a); therefore, when more and 
more VMs and/or containers interact with the HeporCloudScheduler 
and/or HeporCloudOrchestrator then due to either: (i) delay in 

Fig. 2. The proposed HeporCloud architecture for hybrid clouds [SAN - Storage 
Area Network]. 

Fig. 3. The proposed HeporCloud framework [from an implementation point of view].  

6 https://www.datadoghq.com/.  
7 http://ganglia.sourceforge.net/. 
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communication; or (ii) some other reason (e.g. huge number of migra
tions, network congestion), the response may become slow. Subse
quently, it will affect the system performance with respect to time, 
placement and migration decisions and will therefore, further, impacts 
on users monetary costs and energy consumption. This issue is more 
likely to arise with increase in number of VMs, containers or both. 
Fortunately, datacenters have their own dedicated networks and, we 
believe, this might be tolerable. 

3.1.1. The HeporCloud scheduler 
From an implementation point of view, the HeporCloudScheduler 

can be assumed as a centralised scheduler that interconnects various 
hardware technologies such as virtualised, containerised, virtual con
tainerised (i.e. containers run inside VMs) and bare-metal, in the cloud 
platform. In order to optimise resource allocation and management, the 
scheduler maintains a history (ℋ𝒴) of resource utilisation, various ap
plications, their energy consumption and performance. Since, history or 
historical information is generated with the passage of time; which 
means that history may not be available when the model initially starts 
working. In such cases, the scheduler uses the well-known First Fit (FF) 
technique to place workload on available resources. Later on, they might 
be migrated to appropriate resources in next consolidation round. The 
pseudocode for HeporCloudScheduler is described in Alg. 1. 

The scheduler predicts the future workload type and categorize it 
according to its energy consumption and performance. The prediction 
module, as shown in Fig. 4, looks for a platform where the application’s 
performance is best at minimum energy cost. In the first phase, the 
runtime for the submitted job is predicted, as shown in Fig. 5. Due to 
high level of correlation between job runtimes, and three other job pa
rameters i.e. its submitting user, job name and job logical name, our 
model predicts runtime using these parameters. Furthermore, along 
with runtimes, other job characteristics such as its submission time, job 
priority, and resource (CPU, memory, disk) actual usage and resource 
requirements can also be taken into account. However, it will increase 
the algorithmic complexity. In the second phase, the prediction module 
searches the features’ history of previous executed jobs on various 
platforms (hosts) and their performance or runtimes. The submitted job 
is compared to other jobs, using various parameters such as submitting 
user, name, and closer, most similar, jobs along with platforms are 
noted. The idea of these two phases stems, basically, from (George et al., 
2017), (Tumanov et al., 2016). In the third phase, the estimator chooses 
the best platform (host) that could run the workload with the minimum 
product of energy consumption and runtime (ERP). For example, if job X 
ERP is Y when run in a container and Z when run in a VM, and Y > Z, 
then the containerised platform is selected. If there are more than one 
platforms—hosts, then all platforms—hosts within a particular clus
ter—platform are sorted out in decreasing order of their ERPs (objective 

Fig. 4. Prediction of workload platform – in the first phase, similar jobs are 
being collected from the feature history; in the second phase, a best platform is 
being chosen (George et al., 2017). 

Fig. 5. Prediction of workload runtimes – in the first phase, similar jobs are 
being collected from the feature history; in the second phase, a particular sta
tistical method is used to estimate runtimes (Tumanov et al., 2016). 

Algorithm 1 
The HeporCloudScheduler. 
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function). Thus, if the predicted workload falls within the category of 
HPC (bare-metal applications), VM, container—VM, or container, then 
the scheduler runs it, as appropriate, either on the most 
energy-performance efficient bare-metal, VM, virtualised container, or 
container, respectively. Unfortunately, if there is no suitable platform or 
host, then the job is packed in a VM and allocated to a host on the FF 
policy. Furthermore, if all the platforms are equally good for a certain 
workload, then the job is allocated with random (RND) allocation pol
icy. Note that, the predictor is a history-based, and the HeporCloudStat 
(as explained later in this section) collects node level statistics and up
dates the previous history, at a separate host (probably attached to a 
Network Area Storage - NAS), at regular intervals of time e.g. 5 min. 
Once a VM terminates, its runtime, submitting user, hosts, resource 
usage, placement, and migration details are saved to an NAS. As shown 
in Fig. 2, the predictor associated with the HeporCloudScheduler is 
responsible to read workload details from a NAS server. In (Tsafrir et al., 
2007), the authors have used a very simple predictor for runtimes which 
only averages the runtimes of the last two tasks submitted by a particular 
user. Their results ascertain that, counter-intuitively, using the most 
recent data is more significant than taking out longer history for com
parable tasks. Thus, we believe, that maintaining a long history ℋ𝒴

would have, only, a negative impact on the algorithm complexity. 

3.1.2. The HeporCloud orchestrator 
The HeporCloudOrchestrator executes sporadically or as soon as 

there are consolidation occasions, possibly, because of lesser demand for 
resources 𝒮. From implementational viewpoint, as soon as the resource 
(CPU, memory, disk) utilisation levels of some particular hosts either 
upsurges or declines from some pre-defined threshold values (Ulow and 
Uup), then the HeporCloudOrchestrator is triggered to optimise the 
current state of the datacenter resources through consolidation with 
migration technique. We assume Ulow = 0.2 and Uup = 0.8, as described 
later in Sec. 5.1, which mark hosts which are less than 20% utilised as 
under-utilised and those which are more than 80% utilised as over- 
utilised. The orchestrator forecasts whether an application ought to be 
migrated across various platforms with the intention to lessen energy 

consumption and, also, performance degradation. The steps involved in 
the optimisation are described in Alg. 2. Firstly, all migratable entities 
(workload, VM, container) are searched for [step 1]. The optimise(si) 
module searches across all hosts (H) for under-utilised (Hunderutilised) and 
over-utilised (Hoverutilised) hosts using the pre-defined threshold values 
(Zakarya and Gillam, 2016). Secondly, for every migratable entity, a 

suitable platform is estimated as its target platform using a predictor and 
the features’ history [step 2–6]. This could be achieved using the 
HeporCloutScheduler, as shown in Fig. 4. Thirdly, the HeporCloud
Scheduler is directed to take appropriate decision i.e. migrate or do not 
migrate [step 7–14]. Moreover, various characteristics of the migratable 
entities on both source and target hosts, such as energy consumption, 
remaining runtime, and performance requirements, are considered 
during the migration decisions, as shown in Alg. 3. 

Note that, Alg. 3 computes the total savings, in terms of energy and 
performance, which are achievable through migrating a particular 
VM—container to an appropriate host or platform. In the first phase, 
optimisation and migratable entities are estimated [step 1–2]. In the 
second phase, energy and performance of the target hosts h′∕∈{Hunderu

tilised, Hoverutilised} is computed [step 3–7]. The energy consumption of a 
particular migratable entity is computed using the model proposed in 
(Liu et al., 2011) and given by Eq. (5) - where energy is largely consumed 
during transferring the VM data from source to destination. 

Emig = 0.512 × VMdata + 20.165 (5)  

where VMdata is the amount of data transferred (in MBs) during the 
migration process. This model is suggested more than 90% accurate. 
Furthermore, we use the transformed linear power model, as given by 
Eq. (12), to predict the container—VM energy consumption. Similarly, 
the performance of the migratable entity is estimated using the bench
mark data (in terms of statistical distributions, means and standard 
deviations) and Eq. (8), as described later in Sec. 3.2 and Sec. 4.2. In 
third phase, expected remaining runtimes of VMs—containers are esti
mated using a particular prediction technique [step 8]. In fourth phase, 
the expected energy savings and performance gains are computed [step 
9]. If migrations are affective i.e. savings are possible, then it is added to 
the migration list, otherwise next migration entity is considered for the 
above steps [step 10–17]. Finally, the migration list is sorted in 
decreasing order of VMs—containers savings (to prioritise entity for 
higher savings); and passed to the HeportCloudOrchestrator to take 
appropriate decisions [step 18–20]. 

Furthermore, if there are several migration opportunities, then we 
prioritise that migratable entity that could: (a) spend less energy on 
migration; and (b) save more energy or money (perform better) after the 
migration. The savings are calculated using Alg. 1. Note that, savings are 
possible only if migrations are performed to more energy and perfor
mance efficient target hosts than the source host. We use the host 

Algorithm 2 
The HeporCloudOrchestrator. 
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efficiency factor Ef which is described as the product of host’ energy 
consumption and performance (runtime) for a particular workload 
(Zakarya, 2017). For every migratable entity, we use Ef to compare its 
source and target in terms of energy consumption and expected level of 
performance [step 1–2]. Note that, PCsource and μCsource 

denote the energy 
consumption and expected level of performance of a particular workload 
on source host. If Ef > 1, this means that the target is more energy and/or 
performance efficient that the source; therefore, savings are possible. 
The savings are computed with our previous models i.e. CMCR - 
Consolidation with Migration Cost Recovery (Zakarya, 2018b), (Zakarya 
and Gillam, 2016) and Consolidation with migration Performance, En
ergy costs Recovery - CPER (Khan et al., 2019b) [step 3–9]. Further
more, CMCR ensures to offset the migration cost with possible savings 
which runs in three steps: (i) compute the level of differences between 
source and target i.e. δx [step 4]; (ii) compute the time point where 
migration cost has been recouped back i.e. toff [step 6]; and (iii) predict 
workload runtime in order to compute its remaining runtime (ts), after 
which it has recovered its migration cost, for possible savings ℘savings 

[step 7–9]. Note that, ℘savings can be computed through multiplying the 
task remaining runtime with the difference between efficiencies of 

source and target hosts. If Ef ≤ 1, then savings are not guaranteed, 
therefore, such migratable entities are removed from the migration list 
[step 10–17]. Finally, migratable entity along with saving is returned to 
Alg. 3 [using Alg. 4]. In order to calculate the remaining runtime of a 
migratable entity rtime on the target platform, its total runtime is pre
dicted with the predictRuntime() routine, using the features’ history, as 
shown in Fig. 5. There is already rich literature which has focused on 
application runtimes prediction (Tumanov et al., 2016), (Smith et al., 
2004). An application’s runtime can be predicted in two steps: (i) find 
similar applications that were executed in the past; and (ii) use a sta
tistical approach to estimate its runtime. In respect of (i), application 
characteristics like submitting user, resource requirement, past runtime 
can be used to gather similar applications and their data from a data
base. The database is to be maintained either on each host or over a 
centralised SAN server. The accuracy of the prediction is strongly related 
to the accuracy of the similarity measures. In respect of (ii), techniques 
like mean, moving average, and regression analysis could be used to 
reach an estimation. Further details on runtime prediction can be found 
in (Tumanov et al., 2016), (Tsafrir et al., 2007), (Smith et al., 2004). 

Table 1 
Different workloads‘ runtimes over various CPU architectures and VM instances [696 MB input file to BZIP2 - Ubuntu 10.04 AMD desktop ISO file], container two types, 
virtualised containers (container—VMs), and bare-metal hardware, CoV is computed through dividing σ over the μ (Felter et al., 2015), (Kominos et al., 2017), 
(Zakarya, 2017), (O’Loughlin and Gillam, 2014), (Vaucher, 2015).  

Sandboxing technology Workload type CPU model m1.small m1.medium 

(μ) (σ) Min Max CoV (μ) (σ) Min Max CoV 

Virtualisation BZIP2 E5-2665 241.3 1.18 237.97 245.2 0.005 – – – – – 
PXZ E5540 709.6 7.8 680.4 733.6 0.011 393.6 3.4 381.9 403.9 0.009  

E5-2630 535 20 470.4 606.6 0.037 – – – – –  
X5560 1680 32.5 1625 1755 0.019 – – – – – 

– 
STREAM E5-2665 59.2 1.88 52.16 65.0 0.032 – – – – – 
POVRAY E5540 623.9 3.2 612.5 636.8 0.005 241.1 2.9 231.9 250.7 0.012  

E5-2630 128 2 120.5 134.2 0.016 – – – – –  
X5560 525.5 0.6 524.4 526.8 0.001 – – – – – 

Containerisation PXZ E5540 685.2 3.9 670.68 698.17 0.006 387 7.6 362.55 410.53 0.02  
E5-2665 290.9 0.98 287.4 293.9 0.003 – – – – – 

BZIP2 E5-2630 495 159 42.1 1048.8 0.321 – – – – –  
X5560 1622 21.75 1580 1667 0.013 – – – – – 

– 
STREAM E5540 211.7 2.5 204 219.9 0.012 131.2 1.4 126.9 136 0.011  

E5-2665 73.5 0.64 71.7 75.3 0.009 – – – – – 
POVRAY E5-2630 118 32 30.9 221.9 0.27 – – – – –  

X5560 524.5 1.05 521.2 525.4 0.002 – – – – – 
Containers—VMs PXZ E5-2665 284.2 1.45 279.8 288.7 0.005 – – – – –  

E5540 683.8 2.8 674.7 695.4 0.004 388.9 3.8 375.8 402.1 0.01 
BZIP2 E5-2630 621 23 535.1 687.9 0.037 – – – – –  

X5560 1634 26 1584 1688 0.016 – – – – – 
– 
STREAM E5-2665 62.2 1.33 58.3 65.9 0.022 – – – – –  

E5540 211.3 2.1 205.3 219.9 0.01 131.4 2.1 124.7 138 0.016 
POVRAY E5-2630 149 2 142.6 155.8 0.013 – – – – –  

X5560 527 0.5 526 528 0.000 – – – – – 
Bare-metal PXZ E5-2665 290.8 1.13 287.6 294.4 0.004 – – – – –  

E5540 670.8 6.9 647.7 694.4 0.010 360.4 4.3 343.4 376.4 0.013 
BZIP2 E5-2630 418 37 307.8 518.2 0.088 – – – – –  

X5560 1600 23.75 1575 1670 0.015 – – – – – 
– 
STREAM E5-2665 76.2 0.93 73.2 79.1 0.012 – – – – –  

E5540 192.0 0.8 189.6 194.3 0.004 109.5 1.0 106.4 112.8 0.009 
POVRAY E5-2630 100 10 61.9 134.8 0.101 – – – – –  

X5560 521.6 0.625 520.4 522.9 0.001 – – – – –  
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3.1.3. The HeporCloudStat 
The HeporCloudStat module is running on every cluster node; and is 

responsible to collect node level statistic, periodically (e.g. regularly at 
5 min intervals) or when needed (e.g. when migrations are performed). 
These statistics, including resource (CPU, memory, disk) consumption, 
utilisation levels, platform type, energy consumption, workload run
times (performance), submitting users, and allocation along with 
migration details are stored on the same or on a separate host; 

preferably, a NAS server within the datacenter. Moreover, every agent of 
the HeporCloudStat on each node is connected to the master Hepor
CloudStat module that runs on the NAS server - which is responsible to 
collect and store node statistics on NAS. The HeporCloudScheduler and 
HeporCloudOrchestrator use these details for various purposes such as 
workload-aware resource allocation, platform/host selection and pre
diction of effective migrations (either VMs, or containers), respectively. 
Furthermore, certain APIs and built-in functionalities of the hypervisor 

Algorithm 3 
Feasible migration technique. 

Algorithm 4 
Calculate power savings. 
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can be used to gather these node level details (e.g. dstat, ps). Moreover, 
third party cluster monitoring tools, either centralised or distributed 
that runs like an agent or daemon on each cluster node, such as DataDog 
and Ganglia, can also be used to gather node statistics (Massie et al., 
2004). 

We are aware that the HeporCloudStat is a burden on the cluster 
node that: (i) keeps on maintaining and/or calculating statistical details 
of hosts regarding VMs—containers in addition to performing its 
essential task of job execution; (ii) update its information with NAS 
server periodically or on-demand; and (iii) for hundreds or thousands of 
cluster nodes updating their information on NAS server will itself 
generate a lot of network traffic and, subsequently, burden on the 
datacenter network that may result in performance degradation in terms 
of longer latencies. In respect of (ii) and (iii), it might be tolerable due to 
datacenters internal dedicated networks and multi-cast channels (Mas
sie et al., 2004). However, in respect of (i) this could degrade the cluster 
node performance and, most importantly, the available capacity for 
virtualised or containerised workloads. However, for a single node this 
overhead is very small, probably, less than 0.1% (CPU) and approxi
mately 0.9 MB i.e. 0.09% (memory), as demonstrated in (Massie et al., 
2004), for Ganglia monitoring tool on PlanetLab cluster. For other sys
tem, these values could be up to 0.025% (CPU) and 1.3 MB i.e. 0.25%. 
We further believe, a centralised HeporCloudStat, which runs on a 
dedicated powerful server, probably closer to the NAS server will resolve 
these issues to some extent. We prefer the distributed HeporCloudStat 
over the centralised one due to: no single point of failure; and quick 
communication with system other modules. 

3.2. Resource predictions 

Application’s runtime prediction techniques have at least two major 
benefits: (i) efficient resource scheduling (placement) decisions can be 
made – e.g., VMs—containers with similar applications (or runtimes) 
can be placed on the same host (Dabbagh et al., 2014); (ii) if a host needs 
maintenance, the resource manager can estimate runtimes of all 
VMs—containers located on it – to determine when maintenance can be 
scheduled, and whether VMs—containers need to be migrated or not 
(Cortez et al., 2017); and (iii) cost effective migration decisions can be 
triggered – e.g. if certain co-located workloads perform worst, they can 
be migrated to other hosts (Khan et al., 2019a). In (Cortez et al., 2017), 
the authors have demonstrated that most runtimes of VMs in Azure 
cloud are relatively short i.e. more than 90% of runtimes are shorter. The 
curves show a knee around a day and then almost flatten out; suggesting 
that, if a particular VM runs for a day, it will very likely run much longer. 
Moreover, the relatively small percentage of long-running VMs actually 
account for more than 95% of the total resource usage. These findings 
are very similar to Google cloud, where applications run in containers 
(Zakarya, 2017), (Reiss et al., 2011). 

As noted in Sec. 3.1, the HeporCloud framework consists of three 
prediction techniques: (i) predict the workload type; (ii) predict the 
workload runtime; and (iii) use workload runtimes and previous runs to 
predict an appropriate platform/host. In respect of (i) and (iii), appro
priate resources and technology could be selected to run these work
loads. In respect of (ii), appropriate migration decisions could be made. 
Cortez et al. (2017) suggests that same subscriptions have almost similar 
workloads, largely, with similar CPU utilisations. The author have used 
Fast Fourier Transform (FFT) to find periodicity in various workloads 
and categorized them as either potentially interactive or 
delay-insensitive (batch workloads). Moreover, the literature is signifi
cantly vast that describe various techniques, such as resource utilisation 
levels, priorities and submitting users, to profile and predict cloud 
workloads. The providers can use this knowledge in packing VMs and 
containers on hosts, as appropriate. For example, delay-insensitive 
workloads can be packed more tightly; while interactive workloads 
can be loosely packed onto hosts. Furthermore, the provider can avoid 
over-subscription of resources that run interactive workloads while 

allowing over-subscription for other workloads. Lastly, it is also possible 
to choose an appropriate and most affective sand-boxing technology 
(VM, container, container—VM, bare-metal) to run these workloads in 
an energy and performance efficient way. 

To simplify the implementation, we use the workload priority as a 
representation of its type. This is in-line with previous assumptions as 
the task’s priorities affect billing in Google cloud (Reiss et al., 2012). In 
our dataset, each job is submitted along with its priority. In order to 
predict the workload runtimes, we use the two most important features 
i.e. submitting user and workload type (priority). This is also in-line with 
previous work as demonstrated in (Cortez et al., 2017), (Tsafrir et al., 
2007) – users, largely, submit similar jobs in Azure cloud. We are aware 
that there would be other efficient ways, such as machine learning 
techniques (gradient boost trees, performance monitoring), to estimate 
runtimes (Masdari and Khoshnevis, 2019); however, they might be 
impractical in large environments - requiring storage to log and main
tain records and then searching the log for predictions. In (Tsafrir et al., 
2007), the authors demonstrated that simple averaging the recent du
rations of jobs by the same user can result in good prediction outcomes. 
Moreover, their outcomes demonstrate that good predictability may not 
be always inline with good performance. Therefore, we believe complex 
predictors might be expensive in large-scale systems. Once the workload 
type and its estimated runtimes are known, we can use the ERP of every 
host to select the most energy, performance and cost-efficient host. The 
process also involves transforming the remaining runtime of a particular 
workload on a source host to equivalent remaining runtime on a target 
host. This can be achieved using the z-score normalisation (Zakarya and 
Gillam, 2019). The z-score (also known as standard score), as specified 
by Eq. (6), is usually used for computing the likelihood or probability of 
a particular score (x) that happens in the interior of a normally 
distributed dataset. Besides this, the concept of z-score also offers a 
technique to associate two or more than two scores that belong to 
different datasets having normal distributions. 

z =
x − μ

σ (6)  

Eq. (7) can be used to find runtime of the migrated workload (estimated) 
on the target host with given statistical means (μ, μ1) and standard de
viations (σ, σ1) of source and target hosts (for normal distributions). 

x − μ
σ =

x1 − μ1

σ1
(7)  

where x and x1 denote the probable execution times of the migrated 
workload on the source and target hosts, correspondingly. Moreover, the 
right and left sides of Eq. (7) narrate to the z-scores of the target and 
source hosts, correspondingly. This formulation permits us to analyse 
and estimate the likelihood of a score (i.e. the anticipated growth or 
reduction in execution time of the workload on the target host) 
happening inside a normally distributed dataset. Note that, the dataset 
consists of the performance (runtime) dissimilarities due to resource, 
workload and/or platform heterogeneities. The above Eq. (7) can be 
redrafted, to find the anticipated runtime (x1) of the migrated workload 
on the target host given its remaining runtime (x) on the source host, as 
Eq. (8). For lognormal distributions, both x and x1 are replaced with log 
(x), log(x1) according to the definitions of normal and lognormal dis
tributions (Zakarya and Gillam, 2019). 

x1 = exp
(

σ1 ×

{
log(x) − μ

σ

}

+ μ1

)

(8)  

Note that, the remaining runtime of the workload running inside a 
VM—container can be computed through subtracting current time from 
the workload total runtime - predicted using the model, as shown in 
Fig. 5. 
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4. Modelling energy consumption and platforms heterogeneities 

In Sec. 4.1, we discuss how the energy consumption of a contain
er—VM or physical host should be measured in simulations. In Sec. 4.2, 
we describe the performance of various benchmarks workloads when 
run over various platforms such as virtualisation, containerisation, vir
tualised containers and bare-metal hardware. 

4.1. Modelling energy consumption 

We use actual data for energy consumption of various servers that 
was collected by SPECpower8 standards; so that, subsequently, the total 
energy consumed by datacenter is calculated [as described in Sec. 5.1]. 
Though, there is no defined method to calculate energy usage by a VM as 
well as container straight away; consequently, we use numerous math
ematical models to obtain their estimated energy usage. Alternative 
method is division of server’s total energy usage by total number of 
VMs/containers executing on that particular server. The aggregated 
energy usage (P) for a non-virtualised host is assessed by using linear 
power model, obtained by Eq. (9); where the extent of energy used is 
directly proportional to consumption level of the CPU (Zakarya, 2017). 

P = Ptrivial + (Pmaximum − Ptrivial) × U (9)  

where CPU usage level is given by U, Pmaximum and Ptrivial give energy 
usage once CPU usage is 100% and trivial i.e. 0%, respectively. Fan et al. 
(2007) experimentally evaluated the accuracy of this model as high as 
95% over a few hundred servers. The authors also suggested a non-linear 
power model, given by Eq. (10); and demonstrated its accuracy as high 
as 99% (Dayarathna et al., 2015). 

P = Ptrivial + (Pmaximum − Ptrivial) × (2U − Ur) (10)  

where r is the calibration parameter to minimise the square error and 
needs to be computed experimentally. Largely, it is used as equal to 1.4 
in existing works (Dayarathna et al., 2015). Furthermore, considering 
containerised/virtualised servers, alone the VM—container energy 
usage is directly related with the number of VMs—containers executing 
over that specific server (Zakarya and Gillam, 2016), (Alzamil and 
Djemame, 2016). Thus, it is realistically sensible to forecast/estimate 
the VM—container energy usage in context with the linear CPU energy 
usage model (Zakarya, 2017) by having use of Eq. (11): 

℘V M∣container =

(
Ptrivial

N

)

+𝒲V M∣container × (Pmaximum − Ptrivial)

×UV M∣container

(11)  

where aggregated VMs—containers housed on a server is given by N, the 
extent of server’s resources, like number of cores allotted to VM—con
tainer, is given by 𝒲V M∣container, and usage level of VM—container is 
shown by UVM|container (Khan et al., 2020). In a real cluster setup, authors 
in (Alzamil and Djemame, 2016) demonstrated that this model has mean 
error as low as 1.75. Additionally, Ptrivial and Pmaximum show the server’s 
energy usage, calculated in Watt-hours, when the server is 0% (trivial) 
and 100% utilised, respectively (Zakarya and Gillam, 2016). The 
aforementioned model can be used to forecast energy consumption of a 
particular VM on a specific server at suitable usage levels (Alzamil and 
Djemame, 2016). Similarly, if a VM is executing M containers, then each 
container’s energy consumption ℘container can be computed through 
transforming Eq. (11) to Eq. (12): 

℘container =

(
℘vmtrivial

M

)

+ 𝒱container × (℘vmmaximum − ℘vmtrivial ) × Ucontainer (12)  

where the usage level of container is given by Ucontainer and the fraction 
of resources for VM allotted to a container is given by 𝒱container. 
Furthermore, ℘vmtrivial and ℘vmmaximum denote the VM energy consumption 
when idle and fully utilised, respectively. We are aware of the fact that 
there may be several other precise models which may predict the energy 
usage of a server, VM, and container more accurately (Dayarathna et al., 
2015), (Colmant et al., 2015), (Callau-Zori et al., 2018), (Lebre et al., 
2019). However, the energy usage for a VM—container have been seen 
by these models as fraction of resources allocated from the physical 
server along with its usage levels. In the perspective of our efforts in this 
work, we use SPECpower standards for host’s energy usage that settles 
for CPU, memory and/or disk. Thus, we believe that the datacenter total 
energy usage will not be affected using any other energy consumption 
model. As, in this paper, we focus on datacenter’s energy efficiency, but, 
not a complete cloud environment, therefore, we assume that the above 
model is enough accurate and reasonable to measure the energy con
sumption of a datacenter. To have desperate cloud scenario, the energy 
usage within communication networks and/or other parts of the envi
ronment should be taken in consideration (Jiang and Chen, 2018). 
Further, energy used by containers—VMs during communication which 
are placed at various hosts should be considered when predicting total 
energy use. For further details, interested readers should read (Day
arathna et al., 2015), (Khan et al., 2020). 

4.2. Modelling performance 

Due to non-availability of a representative cloud workload (perfor
mance-specific) and CPU performance benchmarks; we model resource 
and application heterogeneities using statistical distributions. First, we 
collect data and simulate them using monte-carlo simulations. Using 
mapping techniques, we, then, relate this data to available real dataset 

Fig. 6. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY), when run over different sand-boxing technologies, on X5560 CPU platform 
[BZIP2 in containers and bare-metal has comparable runtimes; POVRAY in containers performs better than VMs and virtualised containers]. 

8 https://www.spec.org/. 
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(runtimes) in order to extract resource and application performance 
parameters (Zakarya and Gillam, 2019). In this section, we discuss 
heterogeneities of various applications when run on four different 
sand-boxing technologies. Morabito et al. (2015) and Felter et al. (2015) 
have discussed virtualisation, containerisation and virtualised con
tainers. Their investigation suggests that virtualisation performs worse 
than the other techniques (~45.76%); however, virtualised containers 
performs better than virtualisation (~4%) and worse than containers 
(~26.46%). These variations in performance can be related to CPU 
models (O’Loughlin and Gillam, 2014); and affect user monetary costs 
and providers revenues. 

4.2.1. Virtualisation 
Virtualisation can increase the utilisation levels of datacenter re

sources (such as CPU, memory, disk), however, they suffer from per
formance degradation due to resource contention or interference – 
particularly when VMs with similar workloads compete for same re
sources (Xu et al., 2016). Moreover, similar workloads (running inside 
similar instance types) perform quite differently on various CPU archi
tectures (O’Loughlin and Gillam, 2014). The distribution of runtimes of 
a particular workload on a specific CPU platform can be modelled as 
log-normal. Moreover, certain platforms could offer the best perfor
mance for certain workloads; however, their performance is question
able for other kinds of workloads. As shown in Table 1, these variations 
in runtimes, given in terms of minimum (Min), maximum (Max), mean 
(μ), standard deviation (σ), and coefficient of variance (CoV), could be 
significant – thus have notable impact on infrastructure energy effi
ciency, workload performance and, therefore, users monetary costs. 
Note that, PXZ is also a compression tool, similar to BZIP2; which is widely 

available in Ubunto and Fedora operating systems. Furthermore, we 
assume the STREAM workload throughput (i.e. data copied in MB/s) as a 
proxy of VMs—containers runtimes; and the order of hosts performance 
is adjusted to MB/s. As lower MB/s means longer runtime to transfer 
data, therefore the graph in Fig. 6, Fig. 7, Fig. 8 would be interpreted 
with the best performance from right to left (Zakarya, 2017). 

4.2.2. Containerisation 
Containerisation is an alternative technique to virtualisation; that 

have been largely used in public datacenters such as Google. Similar to 
VMs, containers suffer from performance variations for similar work
loads (Ruan et al., 2016). These variations can also be related to various 
CPU platforms, as shown in Table 1. Management platforms, for 
example the Google’s Kubernetes, impose affinity constraints (for 
co-location) in order to guarantee that numerous workloads and appli
cations (with resemblances in resource demands and usage) could be 
crowded and accommodated over same hosts (Medel et al., 2016). In 
Kubernetes, this is achieved though groups of containers known as pods. 
Sharma et al. (2016) experimentally proved that compared to VMs, 
co-located containers suffer from large performance degradation and 
interference. Consequently, container placement and migration policies 
desire to be more improved in order to pick the precise set of co-located 
and neighbouring containers on a particular host. Kozhirbayev et al. 
(Kozhirbayev and Sinnott, 2017) have compared bare-metal and two 
containerised platforms i.e. LXC and Docker, using various benchmark 
workloads. Their evaluation, on a real cluster, suggests that the per
formance of both containerised platforms vary for various workloads. 
Since, containers share the operating system, and other binaries of the 
physical host; therefore, it is possible to fit three times more containers 

Fig. 7. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY) when run over different sand-boxing technologies, on E5-2630 CPU platform 
[both applications, when run in virtualised containers, may perform better than VMs and containers; containers could be as bad as best in certain scenarios]. 

Fig. 8. Variation in runtimes of two different applications (left: BZIP2 – right: POVRAY) when run over different sand-boxing technologies, on E5-2665 CPU platform 
[both applications, when run in virtualised containers, may perform better than VMs and containers; containers could be as bad as best in certain scenarios]. 
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on the host as VMs. 

4.2.3. Containerisation over virtualisation 
The lack of isolation and efficient resource sharing with resource 

over-subscription (soft limits) makes running containers inside VMs a 
more feasible architecture [as happens in AWS EC2 container service, 
Lambda that uses Dockers and Google container engine]. Soft limits 
enable applications to use resources beyond their allocated limits if 
those resources are not in use (over-subscription). For VMs, resource 
limits are usually hard which means that VMs are not allowed to utilise 
more resources than their provisioned resources even if the resources are 
idle. Soft limits and over-subscribing resources may provide efficient 
resource utilisation and management (Dabbagh et al., 2016). Merging 
containers with VMs could provide both the benefits of containers and 
VMs. For example, VMs are securer than containers and containers could 
provide better resource utilisation levels than VMs. Furthermore, 
Sharma et al. (2016) stated that containers in VMs provide performance 
benefits as well. The authors suggest that neighbouring containers 
within a VM can be trusted because containers from a single tenant may 
be allowed to run in a particular VM. Mondesire et al. (2019) suggest 
that running containers inside VMs instead on bare-metal have at least 
two advantages: (i) if a particular container needs restarting, only the 
VM, which accommodate this container, will be restarted; and (ii) 
snapshots of VMs could be migrated to other hosts, if needed. 

Table 1 show variations in runtimes when various workloads or 
functions are being executed in virtualised containers (containers run 
inside VMs) over different CPU architectures. These statistics were 
collected from various published works (Felter et al., 2015), (Kominos 
et al., 2017), (Vaucher, 2015). Using monte-carlo simulations for these 
statistics (with respect to mean and standard deviation), we observed 
that containers running inside VMs could increase resource utilisation; 
however, the workload performance is negatively affected, probably, 
due to large number of co-located containers (O’Loughlin, 2018). 
Moreover, for certain workloads, virtualised containers may provide for 
comparable performance to bare-metal; however, for other workloads, 
the reverse might be true as their performance is lower than VMs. This is 
illustrated visually in Fig. 8. 

4.2.4. Bare-metal 
The business requirements of organisation may include full and 

privileged access to raw hardware which they provision for their ser
vices. This may also happen for certain workloads types, such as HPC 
and real-time applications, that need the best performance. Therefore, it 
would be essential to run user’s application on bare-metal hardware 
instead of packing it in a container or a VM. Amazon AWS has recently 
launched bare-metal instance class which offers complete access to the 
provisioned resources (the recent M5 instances). Similarly, the Rack
space cloud also offers bare-metal hardware known as “OnMetal”. 
Moreover, bare-metal offers several advantages over containers and 
VMs, e.g.: (i) security - multiple containers—VMs on a single VM—host 
create chances for network attacks such as denial of service; and (ii) 
performance is affected - the “noisy neighbour” or co-location problem. 
Few works have characterized the performance of containers, VMs, 
virtualised containers and bare-metal; and largely, the later one per
forms better than the former ones (Felter et al., 2015), (Morabito et al., 
2015), (Sharma et al., 2016). As shown in Table 1, variations in runtimes 
can be seen across various CPU platforms (architectures) for various 
kinds of applications and hardware platforms (VMs, containers, 
container over VMs, bare-metal). Several reasons, such as resource or 
CPU contention, cache design, for these kinds of variations over 
bare-metal hardware are described in (O’Loughlin, 2018). 

In Table 1, some statistics such as μ, Min and Max were being 
calculated manually; as they were not available in the literature. For 
example, where Min and Max values were not found but μ and σ were 
present, we used monte-carlo simulations and statistical distributions 
(log-normal for VMs and normal for others) to calculate them from the μ 

and σ. Moreover, where μ and σ were not found, we used range equation 
to calculate them from the Min and Max. Figs. 6–8 show the perfor
mance (runtimes) of various applications, when run over various sand- 
boxing technologies. Large variations can be seen for POVRAY bench
mark on X5560 as compared to BZIP2. Moreover, containers could be of 
comparable performance to bare-metal; however, in certain scenarios 
their performance may be even worse than VMs and containers—VMs 
both. We speculate this situation might happen due to numerous co- 
located containers on a host, with similar workloads competing for 
same resources. Fig. 8 illustrates that containers could offer comparable 
performance to bare-metal; however, bare-metal consume more energy 
due to lower resource utilisation levels. Moreover, for certain work
loads, the performance of virtualised containers may be worse than VMs. 

5. Performance evaluation 

Bin-packing issues are NP hard and are, therefore, solved using 
heuristics approaches, usually. Albeit, heuristics may not ensure optimal 
outcomes, however, they can quickly reach to an approximate (or near 
to optimal) solution for large-scale problems (Ferreto et al., 2011). We 
consider the resource placement and consolidation problem as 
migrating from a particular datacenter state (current) to an ideal state. 
The ideal state is the one that uses the fewest hosts in order to run all 
workloads, possibly, those which are energy, performance, therefore, 
cost efficient. We obtain a datacenter state through the implementation 
of the proposed HeporCloud framework, along with consolidation policy 
that ensures both energy and performance efficiencies. To demonstrate 
the impact of this on IaaS resources and workloads, we presume: (i) no 
migration; (ii) migrate all; (iii) migrate workloads individually either 
from VMs, containers, bare-metal, or virtualised containers (containers 
over VMs); and (iv) HeporCloud which predicts an effective migration 
among various migrations possibilities. Moreover, we consider various 
scheduling policies. Furthermore, we also investigate migrations per
formed within a particular platform (inter-platform) and those triggered 
across various platforms (intra-platforms). 

We presume the process of consolidation with migration as an 
optimisation issue with the aim to reduce the number of hosts needed to 
run a particular workload. The optimisation module runs after each 5 
min, based on the current levels of utilisation of all switched on hosts. 
The whole process happens in three steps; (a) VMs—containers selection: 
All hosts are regularly monitored and when their current utilisation 
levels are lower than some pre-defined low threshold value Ulow (e.g. 
25%), then all accommodated VMs and containers on these particular 
hosts are marked for migration. In case, there are several VMs and/or 
containers appropriate for migrations, then the proposed VMs—con
tainers selection policy [Alg. 2] prioritises those VMs or containers 
which may offer higher margins for costs savings (℘savings) – (we prefer to 
migrate one VM or container from a particular host, at a time, to reduce 
performance loss); (b) hosts selection: The migration approach looks for 
the most appropriate (i.e. EPC aware) host from all available hosts that 
might run these migratable VMs and/or containers energy and perfor
mance, therefore, cost efficiently. Nevertheless, in order to further 
reduce the total number of active hosts, the allocation and migration 
policies circumvent allocations to: (i) switched off hosts (if possible); 
and (ii) hosts that might change their status to idle or switched off states 
(i.e. hosts which are switched on but are idle); and (c) placement: The list 
of all VMs and containers which are appropriate for migrations is sorted 
in decreasing order of their estimated future runtimes (Rpredicted). This 
further ensures that long-running VMs—containers will be migrated first 
– since they guarantee effectiveness of their migration efforts. In last, a 
particular VM and/or a container allocation algorithm(s) (heuristics) is 
(are) used to re-allocate all migratable VMs and containers. Note that, 
placement of migratable entities is a sub-problem of the overall 
consolidation with migration procedure (Zakarya, 2017). 

Evaluation metrics: We consider total number of migrations (inter- 
platform and intra-platforms), energy consumption (KWh) and 
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Table 2 
Various characteristics of Intel, Microsoft Azure and Google datasets.  

Dataset Size (Zip) GB Number of instances Number of users Period (traced) Important fields Runtime distribution 

Intel 2.46 48,821,850 4727 Oct 2016 life time, user, cores, lognormal    
Nov 2016 memory 

Azure 18.8 2,013,767 5958 Nov 16, 2016 life time, average CPU, lognormal    
Feb 16, 2017 memory, disk, VM size, category 

Google 41.0 24,281,242 922 May 2011 runtime, CPU, memory, lognormal     
disk, priority, user  

Table 3 
Various characteristics and properties of different datasets (sampled) used in simulations; variations in these statistics might produce different outcomes.  

Dataset Size (no of tasks) Runtimes (seconds) CPU demands (utilisation %) Memory demands (MBs) Instance type 

μ σ μ σ μ σ 

Intel 6.12k 25.42 11.89 51.09 5.56 764.32 541.89 server 
Microsoft Azure 6.25k 49.92 16.65 44.32 5.32 1002.45 994.87 vCPUs 
Google 6.01k 49.36 9.83 67.34 10.34 865.45 654.66 cores 
Synthesized 6.31k 102.58 37.06 63.76 11.78 982.87 867.99 cores—vCPUs  

Fig. 9. Mapping Google data to real benchmarks (left) and plausible assumptions for choosing appropriate hosts (right) (Zakarya and Gillam, 2019) – performance 
parameters for various hosts are shown in Table 4 [POVRAY workload performs best on E5430 and worst on E5645]. 

Table 4 
Different benchmarks runtime parameters for lognormal distribution (Zakarya and Gillam, 2019), (O’Loughlin and Gillam, 2014).  

Workload Benchmark CPU Model Real benchmarks Google data ℱ

(μ) (σ) Min Max (μ) (σ) Min Max 

Gratis POVRAY E5430 439 11 421 467 438.06 9.42 421 467 ℱ < 7.65  
E5-2650 468 12 451 500 473.87 11.93 451 500 9.75 > ℱ ≥ 7.65  
E5645 507 10 490 535 498.55 10.44 490 535 ℱ ≥ 9.75   

Table 5 
Hosts various characteristics for Amazon’s cloud (simulated).  

CPU MODEL SPEED (MHz) NO OF CORES NO OF ECUs MEMORY (GB) PIDLE (Wh) PMAX (Wh) AMOUNT 

E5-2630 2300 12 27.6 128 99.6 325 12,583 
E5430 2830 8 22.4 16 166 265 
E5507 2533 8 20 8 67 218 
E5-2620 2000 12 24 32 70 300 
E5645 2400 12 28.8 16 63.1 200 
E5-2650 2000 16 32 24 52.9 215 
E5-2651 1800 12 21.6 32 57.5 178 
E5-2670 2600 16 41.6 24 54.1 243 
E5540 2500 4 10 72 151 312 
X5560 2800 8 22.4 128 133 288 
E5-2665 3000 8 24 256 117 314 
X5650 2666 12 31.2 64 80.1 258  
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workload performance (execution time measured in minutes) as the 
performance evaluation metrics. 

Datasets: The datasets used in this paper relate to three different 
workloads i.e. HPC - Intel (Shai et al., 2013), Virtualised - Microsoft 
Azure (Cortez et al., 2017), and containerised - Google’s cluster (Reiss 
et al., 2011). Due to non-availability of a virtualised containers work
loads, we used synthesized workloads, extracted from benchmark results 
which are described in Table 1. Each dataset consists of various task’ 
parameters such as submit & finish time, resource (CPU, memory, disk) 
demand & usage, task priorities, submitting user, VM type & category, 
scheduling or workload class, and etc. The type of each workload cor
responds to tasks’ priorities (containers in Google) and VM category 
(virtual machines in Microsoft Azure). In Azure cloud, the runtimes 
curves show a knee around 24 h (i.e. more than 90% VM life times are 
short), and then the curve is almost flattened out. This demonstrates 
that, VMs that run for 24 h are likely to run for longer. Moreover, a small 
amount of long-running VMs account for CPU resources. The same ob
servations can also be seen for Google’s cluster data (Zakarya, 2017) – 
where 90% tasks run for less than an hour. In Intel’s clusters, largely jobs 
require a single core, and, largely, jobs runs for short durations [80% 
jobs run for less than 10 min and 90% run for less than an hour] (Shai 
et al., 2013). 

This discussion is relevant to aggregation-based placement and 
migration since: (i) aggregating shorter and longer tasks might be af
fective(w.r.t energy consumption and performance); and (ii) migrating 
shorter tasks may not be affective as their migration efforts might be 
wasted (Zakarya and Gillam, 2019). Moreover, VM workloads runtimes 
are strongly correlated to workload types (Cortez et al., 2017); while 
container workloads runtimes can be highly related to submitting users 
and resource i.e. CPU, memory, disk usage patterns. Several important 
characteristics and properties of these three datasets are shown in 
Table 2. 

Since, it will take significant time and, most importantly, a cluster of 
resources to simulate and replay all these workloads. Due to non- 
availability of a cluster, we consider random samples where each sam
ple comprises approximately six thousands tasks, extracted from each of 
these datasets as representative workload. The tasks runtimes, inside a 
particular workload type, are assumed as proxies to represent variations 
in performance. The histogram of each sampled dataset can be seen as a 
multi-modal distribution, where modality relates to different CPU ar
chitectures and the statistics of each model denote the CPU perfor
mance. Various characteristics and properties of these sampled datasets, 
in terms of tasks level statistics, are shown in Table 3. Note that, the 
sums of execution times (in hours), of all tasks in different workloads are 

approximately 43.22, 68.67, 82.41, and 179.8, respectively. These 
execution times are, then, used to compare the performance of various 
workloads (evaluation metric). 

Unfortunately, the above datasets does not have neither resource 
contention, nor workload and machine performance details - in terms of 
VM placement and migration techniques. Therefore, in order to extract 
parameters for resource contention for each workload on every host, we 
mapped runtimes’ histograms of these workloads and real benchmarks. 
In order to carry out that, we plot these histograms on the same scale 
(Zakarya and Gillam, 2019). To find closer similarity among the mapped 
histograms, we used their statical values i.e. means (μ, μ1) and standard 
deviations (σ, σ1) - where μ, σ and μ1, σ1 denote the means and standard 
deviations of above workloads (Table 2) and real benchmarks (Table 1). 
The closer the means and standard deviations, the more accurate is the 
mapping. This method enable us to find the best CPU models for our 
workloads, and therefore, appropriate performance parameters. For 
example, the right-hand side of Fig. 9 shows the distributions of run
times over the same scale for both Google data (priority 0) (Zakarya and 
Gillam, 2019) and real benchmarks (O’Loughlin and Gillam, 2014). The 
left-hand side of Fig. 9 shows various hosts or CPU models i.e. E5430, 
E5-2650, E5645; which are chosen using a distribution factor (ℱ ), as 
described in Table 4. The closest statistical means and standard de
viations without overlaps are assumed as the mapping criteria and 
extract performance parameters. Further details on the statistical map
ping of the Google data to benchmark workloads are discussed in 
(Zakarya, 2017). 

5.1. Experimental setup 

We performed all the experiments in an event-driven simulation 
environment through integrating two well-known cloud simulators i.e. 
CloudSim (Calheiros et al., 2011) and ContainerCloudSim (Piraghaj 
et al., 2017). The former one offers support for virtualisation technology 
(VMs) and the latter one is recognized for containerisation technology 
(containers). Nevertheless, ContainerCloudSim does not provide the 
ability of running nested/virtualised containers (containers that run 
inside VMs). Furthermore, its presently existing version does not care for 
VMs migration, nevertheless, partial operation of the optimisation 
segment can be realized in the current code. We prolonged its numerous 
classes, like the optimisation segment and the broker, in order to 
accomplish our evaluation and experimentations. The extended version 
of the broker class has the competence to boot up a VM—container, 
during simulations, as soon as a request is received. The request arrival 
matches task arrival durations from the Google cluster workload trace. A 
cluster (simulated using extended CloudSim) of 12,583 heterogeneous 
hosts/servers, which consists of various architecture types (regarding 
fluctuating performance) and CPU hardware specifications – as shown in 
Table 5 - is ready to execute numerous types of benchmarked workloads. 
The simulated servers are configured based on several reasonable as
sumptions as described in Sec. 4. The hardware specification (CPU) and 
energy usage details for various servers were taken from the well-known 
SPECpower9 benchmarks. The servers’ energy consumption, 
VMs—containers migration energy costs and performance of VMs— 
containers were supposed as illustrated in (Zakarya, 2017). Addition
ally, we used four different types of workloads, i.e. HPC (bare-metal), W1 
(VMs), W2 (containers) and W3 (virtualised containers), that belong to 
real data from major cloud providers i.e. Intel’s compute cloud (Shai 
et al., 2013), Google (Reiss et al., 2011) and Microsoft Azure (Cortez 
et al., 2017) clusters, respectively. 

Our simulation environment consists of six types of VMs and three 
types of containers which relate to Amazon’s instance classes as given in 
Table 6 and Table 7, respectively. Further, the VMs and containers types 
are ranked (regarding their performance levels and resource capacities) 

Table 6 
Amazon different instance types and their characteristics – MEM means memory 
(RAM).  

Instance 
type 

No of 
vCPUs 

No of 
ECUs 

Speed (GHz) 
MIPS 

MEM 

(GB) 
Storage 
(GB) 

t2.nano 1 1 1.0 0.5 1 
t1.micro 1 1 1.0 0.613 1 
t2.micro 1 1 1.0 1 1 
m1.small 1 1 1.0 1.7 160 
m1. 

medium 
1 2 2.0 3.75 410 

m3. 
medium 

1 3 3.0 3.75 4  

Table 7 
Container types and their characteristics.  

Container type Speed (MHz) Cores ECU’s Memory (MB) 

A 1000 1 1 128 
B 1225 1 1.23 256 
C 1500 1 1.5 512  

9 https://www.spec.org/power_ssj2008/. 
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according to the terminology and measurement of Amazon’s for gauging 
performance rating of their offered instances – ECU (EC2 Compute Unit), 
which is defined as: “equivalent CPU capacity of a 1.0 GHz–1.2 GHz 
2007 Opteron or 2007 Xeon processor”. Moreover, for certain workload 
types, variations in their performance levels over various instances in 
the AWS cloud are suggested as equal to ~20% (1.0 GHz–1.2 GHz) of the 
workloads original runtimes (O’Loughlin and Gillam, 2014). Note that, 
the above ECU rating is described as per core, thus, the total rating of a 
particular host or VM (with multiple cores or vCPUs) can be computed 
through multiplying their ECU rating and total number of cores or 
vCPUs (O’Loughlin and Gillam, 2014). 

We presume that these hosts and VMs are equitable by just a single 
measure which allows for performance ranking, and for which we 
consider the CloudSim’s “Million of Instructions Per Second (MIPS)” 
terminology as a proxy. One possible approach for VM sizing is to assign 
every VM a single core (hyper-threaded) for the maximum value of 1, 
half a core for 0.5, and assume that higher gearing of a VM leads to a 
quarter of a hyper-threaded core for 0.25. However, along lines with 
specific service providers (IaaS), and to more flexibly address the 
resource allocation, we map frequencies of hosts’ CPUs to that of Am
azon’s notion of ECUs as: 1 GHz CPU, 1.7 GB RAM, giving various 
instance (container—VM) types10 (Zakarya, 2017). Moreover, to keep 
consistency with the “CloudSim” simulator each ECU maps the notion of 
MIPS (Table 6), and we assume that every container—VM, at least, 
needs 1 ECU and 1 vCPU (hyper-threaded core) or more, as shown in 
Table 6. Therefore, the speed of every container—VM type (also called 
the MIPS rating) is the multiplication of the total number of ECUs (1 
ECU = 1 GHz) and vCPUs (hyper-threaded cores). For example, the CPU 
speed of a m3.medium VM type, as shown in Table 6, is 3 (ECUs) × 1 
(vCPU) = 3 (GHz). 

To address a public cloud terminology more closely, for example 
Amazon Lambda, each Azure’s, Google’s task is allocated to a single, 
notional, VM or container, that relates to Google machine types with the 
only exception that all VMs and containers are exactly single core, as 
given in Table 7. Further, very similar to sizing of VMs, containers are 
also sized (according to MIPS) and every VM can host, at least, one or 
more than one container. For example, an instance m1.medium can host 

exactly one container of type C (no resource over-subscription), while 
two containers of type A, and so on. Moreover, every task utilises its 
allocated resources (CPU, memory, disk) according to resource usage 
and tasks’ statistics in Intel’s cloud (Shai et al., 2013), Google (Reiss 
et al., 2011) and Microsoft Azure datasets (Cortez et al., 2017). Note 
that, in our experiments we do not account for resource 
over-subscription of containers and/or VMs (Dabbagh et al., 2016). 

Each container is assumed to run four workload types that belong to 
either Intel’s cloud (Shai et al., 2013), Google’s cluster (Reiss et al., 
2011) or Microsoft Azure (Cortez et al., 2017) datasets. These datasets 
denote four various kinds of workloads i.e. HPC (bare-metal), con
tainers, VMs, containers—VMs, respectively. Due to the unavailability of 
the fourth dataset i.e. virtualised containers (when containers run inside 
VMs), we used a synthesized workload which was derived from various 
statistics such as mean (μ) and standard deviation (σ), as shown in 
Table 1. Further, the utilisation of each workload type is modelled as a 
normal distribution function over the mean CPU usage, as calculated 
from the original traces, at 5 min intervals. Moreover, the total execu
tion time of each application is the sum of its every tasks‘ execution 
times. Each dataset consists of approximately 6000 tasks whose sum of 
execution times are 43.22, 68.67, 82.41 and 179.8, in hours. 

To begin with, all containers and VMs were assigned resources 
conferring to: (a) the resource necessities well-defined by the type of 
container—VM; (b) container placement strategy; and (iii) VM place
ment strategy. To ensure that each workload executes on a cheap (cost- 
effective) and suitable container—VM, the instance-type selection al
gorithm, as proposed in (Zakarya, 2018b), was implemented. This en
sures reduction in stranded resources. It is notable that entirely 
containers—VMs were assigned to VMs—hosts by means of the 
workload-aware FF placement strategy and their coming match to task 
coming epochs and proportion in Google and Azure clusters datasets 
(Zakarya, 2017). Nevertheless, by means of the workload trace, if con
tainers—VMs exploit their provisioned IaaS resources fewer, this pro
duce chances for resource consolidation. Furthermore, every 
container—VM is arbitrarily given a workload data trace from one of the 
instance types (Intel + Azure + Google + Synthesized datasets) which 
executes till its computation is finished. Throughout the consolidation 

Table 8 
Virtualisation and containerisation total migration-time and down-time (in seconds) at various workloads with different utilisation levels (Kotikalapudi, 2017).  

Workload 66% utilisation 100% utilisation 

mean std. dev. min max mean std. dev. min max  

KVM 
Downtime 14 1.886 12 17 16 2.404 13 21.5 
Migration time 119.1 3.281 115 125 129.8 3.553 125 135  

LXC 
Downtime 8 1.155 6 10 10 1.886 7 12.5 
Migration time 82 3.266 77 90 95.7 1.703 92 98  

Table 9 
Configuration times in seconds [ProLiant DL580 Gen8 with Ubuntu Server 
14.04] – the host configuration energy consumption is computed based on its 
maximum power consumption and the transition times from one state to another 
(Zakarya, 2017), (Dabbagh et al., 2016).   

Container VM Container—VM Host 

Start 1.623 3.005 4.628 600 (Kominos et al., 
2017) Off 2.493 64.422 66.915 

Restart 
(soft) 

4.209 125.463 129.672 

Restart 
(hard) 

4.338 6.043 10.381 

Delete 2.473 3.767 6.24  

Table 10 
Energy consumption in kWh [the values followed by ± symbol denote standard 
deviations] - the overlap for no migration and migrate all approaches under 
HeporCloud field represents the trade-off between efficient allocation and 
migration.  

Policy Bare-metal VMs Containers Containers—VMs HeporCloud 

No migrations 2563 2678 2792 2934 2412 [±121] 
Migrations – 
Migrate all 2982 2856 2921 2785 2353 [±437] 
HeporCloud – 
inter-platform 2456 2087 2873 3173 1782 [±57] 
intra-platforms 2389 2129 2666 3198 1759 [±98]  

10 http://www.ec2instances.info. 
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phase, the optimisation part governs the under-utilised and over-utilised 
servers by means of two procedures: (a) the one threshold strategy – that 
practices a static higher utilisation threshold (e.g. 80%) for every server; 
and (b) two threshold’s strategy – that practices two thresholds values i. 
e. a lower threshold (e.g. 20%) and an upper threshold (e.g. 80%). 
Regarding the outcomes offered in this manuscript, we practice the later 
method i.e. double threshold policy. In case, there exist numerous 
migratable containers—VMs, at that moment the consolidation strategy 
practices their rating [computed as the product of energy usage and 
estimated execution time – as described in Sec. 3] to rank first those 
containers—VMs which might save large energy whereas supreme levels 
of workload performance is preserved (℘savings). Additionally, the 
destination hosts—VMs for all migratable VMs—containers are recog
nized by means of a modified version of the default host selection policy 
in ContainerCloudSim (Piraghaj et al., 2017). The modified host selec
tion policy accounts for host’s ERP in order to pick an energy and 

performance efficient one for the migratable entity. 
In order to account for migration costs (energy usage and perfor

mance loss), we made minor amendments to the above experimenta
tions. The migration duration of each VM is computed from its size, type 
and network capacity (bandwidth), along with the period wanted to 
boot up the fresh VM. Previous works (Calheiros et al., 2011), (Piraghaj 
et al., 2017) have supposed that half of the entire network capacity is 
accessible for the migration of VMs—containers, whereas the remaining 
half is kept for communication between VMs—containers. Other works 
(Felter et al., 2015), (Amaral et al., 2015) adopt that the migration 
period of a container is the duration desirable to boot up a fresh 
container at the destination server. In case, a previously existing VM 
cannot run a particular container, at that point a fresh VM is booted first 
– thus, the migration period of the container is the sum of booting up a 
VM and a container along with the memory pages dirtied by the 
container during the migration. To simplify concerns, these works 
further accept that the container is stateless, subsequently leading to no 
dirtied pages that should to be migrated. In our experiments, the 
migration total time and down time are taken from (Kotikalapudi, 
2017), which are experimentally evaluated and account for network 
costs in terms of communication and delay, as shown in Table 8. 
Furthermore, datacenters are usually equipped with dedicated net
works; and these costs would largely impact migrations across several 
datacenters (geographically distributed). This study is limited to various 
types of migration, however, within a single datacenter. Moreover, 
consolidation can bring several hosts to idle states, thus making it 
possible to switch off (bring to sleep states) them in order to save energy. 
Switching on/off and states transitions of hosts can bring scheduling 

Table 11 
Performance of various workloads using different techniques to migrations and virtualisation (in minutes) [the workload prediction accuracy represents scheduling 
and resource prediction accuracy corresponds to the efficiency of hosts].  

Migration policy Workload type Sand-boxing technology Prediction accuracy 

Bare-metal VMs Containers Containers—VMs HeporCloud Workload Resource 

NO HPC 43.22 67.32 51.52 65.83 43.22 – – 
W1 66.89 72.77 69.8 73.1 68.67 – – 
W2 71.43 98.19 87.71 91.88 82.41 – – 
W3 173.2 211.8 198.2 191.9 179.8 – – 
HeporCloud 170.91 207.29 199.11 190.87 172.77 59.8% 78.8% 

inter-platform migrations 
HPC HPC 44.98 67.32 51.52 66.32 43.22 – – 

W1 69.12 72.77 69.8 74.9 68.67 – – 
W2 76.89 98.19 87.71 94.76 82.41 – – 
W3 147.1 172.3 168.9 167.9 155.6 – – 

W1 HPC 43.22 78.86 51.52 55.56 43.22 – – 
W1 66.89 79.74 69.8 80.8 68.67 – – 
W2 71.43 99.14 87.71 99.12 82.41 – – 
W3 147.1 172.3 168.9 167.9 155.6 – – 

W2 HPC 43.22 67.32 52.67 69.54 43.22 – – 
W1 66.89 72.77 70.1 69.98 68.67 – – 
W2 71.43 98.19 87.93 88.34 82.41 – – 
W3 147.1 172.3 168.9 167.9 155.6 – – 

W3 HPC 43.22 67.32 52.67 69.54 43.22 – – 
W1 66.89 72.77 70.1 69.98 68.67 – – 
W2 71.43 98.19 87.93 88.34 82.41 – – 
W3 141.9 170.1 166.9 167.0 151.4 – – 

Migrate all HPC 44.99 68.89 52.56 65.99 44.67 56.1% 43.23% 
W1 69.78 72.01 68.88 75.31 68.12 60.4% 44.8% 
W2 77.17 98.79 88.34 93.97 84.09 58.9% 46.2% 
W3 149.87 177.11 169.88 177.55 159.11 59.7% 47.8% 

HeporCloud HPC 43.29 68.21 53.78 56.67 45.22 60.1% 79.9% 
W1 67.34 72.89 70.3 68.12 68.97 62.2% 80.2% 
W2 71.67 99.7 88.01 81.07 72.99 58.9% 80.3% 
W3 141.9 170.1 166.9 167.0 151.4 59.5% 79.5% 

intra-platforms migrations 
HPC 51.91 69.23 55.89 60.78 49.32 – – 
W1 66.99 71.56 73.67 69.32 65.21 – – 
W2 74.32 94.12 89.45 82.78 74.1 – – 
W3 139.23 169.89 165.54 164.87 153.23 – – 
Migrate all 141.76 168.12 164.32 165.89 155.99 61.45% 48.8% 
HeporCloud 138.89 166.23 165.23 165.98 148.23 62.98% 84.8%  

Table 12 
Energy consumption (in kWh) using single and distributed schedulers 
[Improvement means using single (centralised) scheduler instead of distributed 
(individual) for all platforms].  

Policy Distributed scheduler Single scheduler Improvement (%) 

No migrations 2742 [±159] 2412 [±121] 7.62–16.86 
Migrations 

Migrate all 2886 [±85] 2353 [±437] 0.39–20.8 
inter-platform 2647 [±475] 1782 [±57] 15.33–44.75 
intra-platforms 2596 [±458] 1759 [±98] 13.14–45.61  
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delays. We assume container—VM start, reboot, off times as shown in 
Table 9. These costs (delays) are very important, in the context of cloud 
computing, as users are charged for the total duration of their service 
[workloads runtimes + instances launch times]. These values are also 
used inside ContainerCloudSim (Piraghaj et al., 2017), by default. 
Furthermore, containers—VMs performance is affected as described in 
Sec. 4. Transitions among various states of a host also incur 
non-negligible energy overheads (Zakarya, 2017). 

5.2. Experimental results 

The simulated cloud environment is composed of 12,583 hosts, 3800 
containers—VMs with configuration shown in Table 5, Table 6 and four 
kinds of workloads that belong to bare-metal, virtualised, containerised 
and virualised containers, respectively. When a container—VM request 
is received, a container—VM is created from a list of available flavours 
as shown in Table 7, Table 6 and is placed on a suitable host or a VM 
which is already running on a particular host. The scheduler is workload 
aware which predicts the type of workload; then the platform which 
might offer performance benefits; and then a most energy and perfor
mance efficient host to run the workload. Moreover, the scheduler uses a 
FF heuristic to place similar workloads in a particular platform. If there 
is no suitable VM to accommodate the container, then a new VM is 
created from a list of available instance types as shown in Table 6. 
Various container types are described in Table 7. We assume that the 
container workload is heterogeneous and, therefore, changes when a 
container is being migrated from one host to another. For bare-metal, 
the container is assigned solely to a particular host; and no other allo
cation is possible to this host until the container is being terminated and 
the host resources are free. The allocation policy is workload-aware that 
allocate containers to appropriate platform. After each 5 min interval, 
the HeporCloud technique checks for consolidation opportunities, and 

selects effective migrations from a list of possible migratable entities. 

5.3. Results discussion 

The obtained results of numerous scheduling and consolidation with 
migration policies are described in Table 10 (overall energy usage) and 
Table 11 (workload runtimes). Besides trivial decrease in performance 
approximately from 2.14% to 3.02%, the suggested HeporCloud 
framework can considerably reduce the overall energy consumption of 
the IaaS cloud, that might be as high as 30.47%, and the total number of 
migrations. Large variations in energy consumption for the migrate all 
approach demonstrate that uncontrolled migrations could lead to 
datacenter inefficiency. In our experiments, we found that efficient 
allocation could be approximately 10.18% more energy efficient than 
the no migration technique. Similarly, an overlap between inter- 
platform and intra-platforms migrations shows an existing trade-off 
that is, largely, dependent on the workload type and datacenter 
configuration. From performance perspective, intra-platforms migra
tions are more effective than the inter-platform migrations; if and only if 
migrations are triggered to more performance efficient hosts. Otherwise, 
if migrations are uncontrolled then intra-platforms migration are worse 

Table 13 
Energy consumption and workload performance using single and distributed schedulers for various datacenter set-up, workload types [the results are averaged over 
different platforms].  

Policy Datacenter size Workload type Single scheduler Distributed scheduler 

Energy Performance Energy Performance 

(KWh) (hours) (KWh) (hours) 

No migrations   2993 142.67 3003 143.88 
Migrate all 12,583 W1 + W2 2283 126.56 2487 129.43 
HeporCloud   2109 128.33 2349 128.82 

No migrations   3789 213.67 3237 200.78 
Migrate all 25,166 W1 + W3 3822 218.43 3101 193.56 
HeporCloud   3203 199.32 3002 185.08 

No migrations   2984 294.79 2903 291.34 
Migrate all 12,583 W1 + W2 + W3 2845 301.68 2699 290.56 
HeporCloud   2601 281.2 2576 274.93  

Fig. 10. Energy consumption (KWh) [left] and overall performance (execution times in hours) [right].  

Table 14 
Percentages of migratable entities, cost recovery and prediction accuracy [the 
sign ± denotes standard deviation over various runs].  

Migration policy Migratable % Cost recovered % Runtime accuracy 

NO  – – – 
Migrate all inter-platform 4.01 (±2.1) 24.87 (±2.8) 78.45% (±1.01) 
HeporCloud  3.17 (±1.4) 79.02 (±4.2) 79.33% (±1.11) 
NO  – – – 
Migrate all intra-platforms 6.87 (±2.3) 41.76 (±3.8) 69.41% (±1.88) 
HeporCloud  5.01 (±1.2) 75.89 (±2.6) 70.34% (±2.26)  
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than inter-platform migration. 
An interesting behaviour can be observed when using a single 

(centralised) scheduler and distributed (individual) schedulers, as 
shown in Table 12. For example, when migrations are not taken into 
account, single scheduler is approximately 7.62%–16.86% more energy 
efficient than the distributed schedulers. However, when migrations are 
considered, then: (i) for uncontrolled migrations – the single scheduler 
produces large variations in energy consumption; and (ii) for controlled 
migrations – the distributed schedulers produces large variations in 
energy consumption. In both cases, using a single (centralised) scheduler 
is more energy efficient than using the distributed, but, individual 
schedulers for each sand-boxing platform. Moreover, the total number of 
triggered migrations and, therefore, performance of various applications 
is affected when a single scheduler or several distributed schedulers are 
used. Since, the single scheduler has knowledge of all platforms and 
resources; therefore, more performance aware migration decisions can 
be triggered as compared to distributed schedulers. Moreover, single 
scheduler can reduce the resource contention and interference that 
could occur due to co-location i.e. when similar workloads co-located on 
same hosts and compete for similar resources. However, distributed 
schedulers can put similar workloads on same resources that subse
quently degrade workload performance and, therefore, increases energy 
consumption. Similarly, centralised scheduler have better control over 
the available resources, therefore, resource placement and migration 
can result in well-utilised state for the datacenter (minimum resources 
switched on). In contrast, distributed schedulers will keep more re
sources switched on. 

Unfortunately, the centralised scheduler suffers from single point of 
failure. Moreover, when more number of VMs—containers interact with 
the centralised scheduler, its response could be degraded due to the 
delay involved in communication with available resources. Moreover, 
the scalability of the single scheduler is affected with increase in data
center size and workload resource consumptions. Unfortunately, 

networks and communication delays are not within the scope of this 
paper. Therefore, in order to investigate the scalability of the single 
scheduler, we run several experiments over different datacenter set-ups 
(sizes) and various kinds of workloads - using same simulation set-up, 
energy and performance parameters, as initially described in Sec. 5.1. 
Table 13 summarises our outcomes. Our evaluation shows that for large- 
scale datacenters, distributed schedulers are performance efficient than 
the single scheduler [6.03%–11.39%]. However, energy consumption 
overlaps for both schedulers. Moreover, certain workloads and, there
fore, resource placement and migration decisions also create large var
iations in the performance and energy efficiencies of the single resource 
scheduler. Therefore, various requirements, datacenter characteristics 
and workload information must be considered, essentially, before 
deciding to use either a single or a distributed resource scheduler. 

As shown in Fig. 10, the HeporCloud technique is more energy effi
cient (approximately from 14.61% to 37.97%) and more performance 
efficient (from 7.23% to 20.0%) than the only virtualisation and 
containerisation technologies, respectively. When migrations are 
disabled, our approach is ~6.3% more energy efficient than the bare- 
metal. However, the savings can be up to 37.8%, if migrations are 
taken into account to consolidate workloads on fewer hosts. These 
savings for virtualised containers were observed as 17.8% and 43.8%, 
respectively. Moreover, our evaluation demonstrates that bare-metal 
hardware offers optimal performance; however, the energy consump
tion is reliant, largely, on the workload type and patterns for job arrival 
(% of job requests in a particular time window). Perhaps, the resource 
utilisation pattern of a workload (i.e. CPU usage) has higher impacts on 
overall infrastructure energy consumption. Although, a single job can be 
run much fast and quickly that could, subsequently, decrease the energy 
consumption of that particular job; however, the provisioned resources 
can not be allocated to those jobs which are waiting in the waiting queue. 
Resultantly, increased wait times for jobs increases latencies and run
times. Furthermore, bare-metal resources are largely under-utilised. 
These issues may potentially increase job wait times and, therefore, 
negatively affects the workload performance, user cost and datacenter 
energy efficiency. 

Similarly, VMs might increase IaaS energy consumption due to 
longer runtimes (poor performance of workloads), in particular, due to 
co-location which might happen very frequently if VMs workloads 
compete for same resources. In case of virtualised containers i.e. con
tainers run over VMs, the performance of the containerised workload is 
limited to the actual resource usage and available capacities of VMs that 

Fig. 11. Variations in energy consumption (KWh) with respect to various migration policies and datacenter configurations [left: INC – middle: NR – right: DEC].  

Fig. 12. Variations in workload performance (minutes) with respect to various migration policies and datacenter configurations [left: INC – middle: NR – right: DEC].  

Table 15 
Variations in energy consumptions (KWh) for various models and workloads.  

Policy Energy model Workload utilisation 

mean st. dev. mean st. dev. 

No migrations 2114.87 8.89 1934.2 297.93 
Migrate all 2467.54 29.87 21.52 892.83 
HeporCloud 1741.49 21.83 1877.81 501.1  
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results in longer runtimes and, therefore, lower energy efficiency. The 
approach “bare-metal i.e. containers run directly on bare-metal” offers 
for the highest energy, performance and cost efficiencies. Moreover, if 
the placement and/or migration policies have knowledge of the type of 
workloads, and infrastructure, then it is possible to obtain optimal en
ergy, performance, and, therefore, cost efficiencies. 

When resource migrations are enabled, then our proposed technique 
“HeporCloud” and algorithms offer for higher energy efficiency at 
equitable cost of performance to that of the “bare-metal” approach. 
Furthermore, since the HeporCloudOrchestrator is aware of all four 
environments (sand-boxing technologies), therefore, it is possible to 
decide appropriate, energy, performance and cost efficient (EPC-aware) 
migrations (Zakarya, 2018b). Unlike several demonstrated outcomes 
(Vaucher, 2015), our empirical evaluation shows that bare-metal 
hardware are expensive regarding energy usage, possibly because of 
the lowest levels of resource utilisation (i.e. whole resources are pro
vided to a single VM—container) (Kominos et al., 2017). Virtualised 
containers, those run over VMs offer the highest and peak resource 
utilisation levels; but, unfortunately their performance is limited to VMs 
performance that hosts them – therefore, consuming more energy than 
VMs and containers, as shown in Fig. 10. Another reason for this low 
performance of virtualised containers is, probably, the large ration of 
co-location and neighbouring containers that might compete for same 
resources. This suggests a trade-off between VMs and containers (when 
run inside VMs) with respect to energy consumption and workload 
performance. 

Table 14 shows the migration statistics such as the percentage of 
migratable entities, those which were able to recover their migration 
costs, and the accuracy of the prediction technique. The data show that 
HeporCloud has significantly reduced the total number of migrations 
and, largely, migrations have recovered their costs. We observed more 
number of triggered migrations across platforms (intra-platforms) as 
compared to with a particular platform (inter-platform). The prediction 
accuracy is computed through analysing the data we gathered during 
numerical simulations. For example, in case of inter-platform migra
tions, approximately 79.33% of the migrated entities were continued to 
run until they recovered their migration costs toff. In other words, the 

prediction accuracy does not reveal that how accurately runtimes were 
estimated; instead, it reveals that how many runtimes were lengthier 
than the toff; and the migratable entities were able to recover their 
migration costs. In next section, we briefly evaluate the impact of 
datacenter configurations and energy consumption models on overall 
infrastructure energy efficiency. 

5.4. Datacenter configuration impact on energy consumption and 
performance 

How hosts are arranged and addressed in an IaaS datacenter 
(configuration) has a possible impact on the resource allocation 
approach. For instance, if hosts are kept and arranged in an increasing 
order of their energy consumption (efficiency factor – Ef) and a partic
ular algorithm is used to allocate these resources; then, the total energy 
consumption would be different in circumstances if same hosts are or
dered in decreasing order of their energy efficiencies. Moreover, if hosts 
are kept physically or ordered logically based on their expected levels of 
performance (CPU models), or both energy consumption and perfor
mance (ERP), then the trade-off between energy consumption and per
formance would vary for various resource allocation, consolidation 
(migration) policies and workloads. We demonstrate the potential 
impact of host ordering and allocation approaches (how hosts are 
addressed logically) on infrastructure energy efficiency and workload 
performance, therefore, costs. Each resource allocation and migration 
policy chooses a particular host to execute the given workload; where 
the starting point for such re-allocation decisions could, possibly, pro
duce variations in energy consumption, performance and, therefore, 
users monetary costs. For instance, if the initial ordering were reversed, 
this may change the experimental outcomes in terms of energy con
sumption and workload performance (Zakarya, 2017). 

Table 16 
Variations in average energy consumptions (KWh) and performance for various prediction models.  

Policy Model Eq. (8) (distributions mapping) Model Average (recent job runtimes) 

E (KWh) P (minutes) Migrations Accuracy E (KWh) P (minutes) Migrations Accuracy 

Migrate all 2467.54 156.83 856 68.04% 2398.66 157.93 803 83.01% 
HeporCloud 1741.49 137.21 589 69.72% 1801.03 139.07 644 82.99%  

Table 17 
Costs savings [Energy and users monetary costs are described in US dollars].  

Policy Energy costs 
($) 

Users monetary costs 
($) 

Total costs savings 
(%) 

No 
migrations 

2654.26 1057.35 – 

Migrate all 2793.65 973.75 7.91 
HeporCloud 1702.7 907.17 14.2  

Table 18 
Energy consumption of the CIAO and HeporCloud architectures in KWh [mini
mum values are “best”]; these improvements can be translated to providers 
energy bills.  

Policy CIAO HeporCloud Improvement 

No migrations 2662 2412 9.4% 
Migrations – 
inter-platform 2076 1782 14.20% 
intra-platforms 2076 1759 15.27%  

Table 19 
Performance comparison of the CIAO and HeporCloud architectures – perfor
mance means workload execution time in minutes [the “best” results are shown 
in boldface]; these improvements can be translated to users monetary costs.  

Workload type Performance Improvement 

CIAO HeporCloud 

HPC 55.09 45.22 17.9% 
W1 70.18 68.97 1.7% 
W2 86.46 72.99 15.6% 
W3 170.91 151.4 11.42%  

Table 20 
Energy Runtime Product (ERP)14 to demonstrate the trade-off between energy 
consumption and performance using CIAO and HeporCloud frameworks [min
imum values are “best”].  

Policy Energy (E) Performance (P) ERP 

E × P 

No migrations 2662 44.89 119.5 
HPC 2221 55.09 122.4 
W1 2189 70.18 153.6 
W2 2299 86.46 198.8 
W3 2311 151.4 349.9 
CIAO 2076 55.09 114.4 
HeporCloud 1782 45.22 80.6  
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In order to determine how datacenter configuration affects IaaS en
ergy consumption and workload performance, we run the experiments 
from Sec. 5.1 ten times with three different initial orders for hosts: (a) 
INC – increasing order based on Ef; (b) NR – no order i.e. random; and (c) 
DEC – decreasing order based of Ef. For every host, the Ef is computed 
through dividing the host peak power consumption (Pmax – energy 
consumed at 100% utilisation level) by the total number of available 
slots (cores, vCPUs or GCEUs). For instance, if we have four hosts (H1, 
H2, H3 and H4) having EH1

f = 4, EH2
f = 1, EH3

f = 2 and EH4
f = 3; where 

larger Ef denotes higher energy efficiency. Then the corresponding or
ders would be: INC – [H2, H3, H4, H1]; NR – [H1, H2, H3, H4]; and DEC – 
[H1, H4, H3, H2]. We can also use other metrics such as ERP to compute 
order for hosts. Various orders of hosts create various levels of energy 
and performance efficiencies. Fig. 11 and Fig. 12 demonstrate variations 
in workload performance (runtime) and energy consumption for various 
kinds of workloads and orders of hosts. Note that, ordering here is dis
cussed in terms of logical addressing which means through allocation 
policies and is, therefore, not a physical shift. As a future work, this 
might be transformed to: (a) physically shifting hosts within a particular 
rack or across several racks; and/or (b) putting hosts in different racks. 
These empirical evaluations demonstrate that the physical order of hosts 
is a major concern for service providers that could affect IaaS energy 
consumption and performance, therefore, cost of running workloads in 
large-scale datacenters. In order to show how energy consumption 
models for VM—container would affect the IaaS energy efficiency, we 
repeatedly performed the above experiments with four different models 
– two models from Sec. 4.1 and two from (Alzamil and Djemame, 2016) 
were selected. Moreover, we changed the workload utilisation levels to 
stress and release the CPU demand to see its impact. Surprisingly, our 
evaluation suggests that there are very small variations in IaaS energy; 
due to the fact that the entire energy relates to physical hosts and their 
benchmarked values at various utilisation levels. Since, every 
VM—container energy is computed as part of the SPECpower bench
marks at particular utilisation level; therefore, the impact is lower. 
These variations were observed larger when workload types or uti
lisation levels are changed, as shown in Table 15. 

For the above experiments, we changed the runtime prediction 
model in order to see the impact of the accuracy of a prediction approach 
on IaaS energy efficiency (E) and workload performance (P). As shown 
in Table 16, the accuracy of the prediction approach may significantly 
affect the scheduling decisions, particularly, the total number of mi
grations. However, the energy efficiency and performance of the 
workloads are not affected, severely. For example, in the case of ‘migrate 
all’ approach, number of migrations are reduced; however, in the case of 
‘HeporCloud’ the total number of migrations were increased. Albeit, the 
accuracy of the averaging-based approach is higher than the 
distribution-based approach; but, the impacts over energy consumption 
and performance is not non-trivial. However, these findings are not 
inline with previous work (Tsafrir et al., 2007); and this might be related 
or specific to our abstraction and simulation of a real system. Further
more, these impacts would vary to the use of prediction e.g. (i) whether 
runtimes are predicted in the initial scheduling phase or in the optimi
sation phase; and/or (ii) whether workload types, utilisation patterns, or 
runtimes are predicted. In the future, we will do further investigation on 
how various machine or deep learning based prediction approaches will 
affect the resource management of hybrid IaaS clouds. 

5.5. Costs savings 

The total electricity bill, user monetary costs and costs savings (in US 
dollars - $) are described in Table 17. For these analyses, we assume a 
PUE11 i.e. power usage effectiveness of 1.10 and energy price of 0.88$ 

per KWh12 that mimic a Google datacenter located in the Oklahoma 
state, USA. The PUE is a simple ratio of power consumed in computation 
and power used in other parts of the datacenters e.g. cooling, offices etc. 
A minimum value for PUE of 1 means that all the power consumed in 
datacenter is for computational purposes. Moreover, we assume that the 
users bills are computed at 0.0017$ per second.13 In practice, various 
providers offer various pricing for their instances. The providers could 
save up to 35.9% energy costs using the proposed HeporCloud technique 
rather than using simple allocation and migration heuristic approaches. 
Moreover, the users costs could also be reduced up to approximately 
7.91%–14.2% as compared to simple management policies. We believe, 
these savings would translate to a million dollars savings per year for big 
service providers, such as AWS, Google, that operate and manage 
thousands of machines in their computational clusters. 

5.6. CIAO vs. HeporCloud framework 

The results in terms of energy consumption and workload perfor
mance are shown in Table 18 and Table 19, respectively. The Hepor
Cloud orchestrator is approximately 9.4%–14.2% more energy and 
1.7%–17.9% more performance efficient than the Intel’s CIAO frame
work when several combinations of workloads and migration policies 
are taken into account. We also observed a similar behaviour of the 
CIAO framework; due to the existing trade-off between energy con
sumption and workload performance (Khan et al., 2019a). Using several 
reasonable assumptions, our evaluation suggests that approximately 
13.57% energy could be saved at cost of 3.88% loss in performance. 
These savings seem to be in line with possible savings using the 
HeporCloud framework i.e. ~30.47% energy savings at cost of 2.14% 
loss in performance. When migrations are considered, the HeporCloud 
framework could be as high as 14.2% cost-effective than the CIAO ar
chitecture. Similarly, if costly migrations are avoided, then approxi
mately 15.27% performance improvements are achievable. The 
performance improvements for various workloads are shown in 
Table 19. 

These results demonstrate the efficiency of our proposed HeporCloud 
framework. Due to the existing trade-off between energy consumption 

Fig. 13. The CIAO architecture.16.  

11 https://www.google.co.uk/about/datacenters/efficiency/. 

12 https://www.eia.gov/electricity/monthly/.  
13 https://aws.amazon.com/ec2/pricing/. 
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and workload performance, it is impossible to improve both; however, 
the best approach would improve one factor with a slight decrease in 
another factor. The trade-off can be observed accurately using a single 
metric i.e. Energy Runtime Product (ERP)14  – the product of energy 
consumption (P) and performance (R); where runtime is the inverse of 
performance (as lower workload run-times mean good performance and 
vice versa). A detail discussion of the ERP metric is given in Sec. 2. 
Table 20 describes ERP values for several migration policies along with 
the CIAO and HeporCloud frameworks. In the case of “no migration” 
technique, albeit performance is optimal (minimal); however, energy 
consumption is maximum. For uncontrolled migrations (HPC, W1, W2, 
W3), variations in energy consumption and workload performance can 
be seen; along with significant overlaps, which represent that migrations 
could be more expensive than the “no migration” approach. In such 
scenarios, workload-specific resource allocation (for example Hepor
Cloud) could offer energy savings and performance guarantees. The 
proposed HeporCloud approach has an ERP of 80.6 which is far better 
than the CIAO’s ERP of 114.4. 

5.7. Computational complexity 

The computational complexity of the HeporCloudScheduler is based 
on the time taken during the prediction module. If Tpred is the amount of 
time needed to predict and categorize a particular workload w, then the 
worst case computational complexity is given by Eq. (13): 

ℴ

(

Tpred + α. β
platforms

)

(13)  

where α, β and platforms denote the number of VMs—container, hosts 
and platforms, respectively. In other words, β

platforms denotes the number 
of hosts in a platform. The best case ℴ(Tpred) occurs when the 
VM—container is placed in the first attempt. Furthermore, Tpred is 
dependent on the prediction method i.e. linear regression, support 
vectors, boosted tree, amount of data and available resources of the NAS 
server. 

The computational time of Alg. 2 is largely dependent on the time 
needed to perform datacenter’ (or a particular platform) state optimi
sation i.e. optimise(si). The best case computational time for the opti
misation module can be described as ℴ(α.β). Furthermore, the worst 
case complexity of Alg. 3 can be computed from the number of 
migratable entities α′ ∈ α and hosts identified as under-loaded and/or 
over-loaded β′ ∈ β, given by ℴ(α′

.β
′

). The computation cost incurred in 
computing the power savings for all migratable entities can be described 

as 
∑α′

− 1
i=0 γi, where γ can be assumed as constant time. Therefore, the total 

computational time for Alg. 3 and Alg. 1 is given by Eq. (14). 

ℴ(α′

.β
′

) +
∑α
′
− 1

i=0
γi (14)  

Integrating Eq. (14) into the cost incurred by Alg. 1, the total worst case 
computational complexity of the HeportCloudOrchestrator module can 
be computed using Eq. (15). Note that, complexity of the prediction 
approach should be also taken into account. 

ℴ(α.β)2
+ γ (15)  

6. Related work 

The Cloud Integrated Advanced Orchestrator (CIAO), proposed by 
Intel. Runs VMs and containers within the same system. Since, there are 
no such details or publications being offered by the Intel other than the 
CIAO’s project code which is freely available online; thus, certain details 
are still unknown. For instance, how: (i) explicit placement decisions are 
made by the scheduler for various workloads; (ii) migration of VMs and 
containers takes place; and (iii) no relevant publication showing eval
uation of the workload performance and IaaS energy efficiency. The 
architecture proposed by Intel’s CIAO platform is shown in Fig. 13. It is 
composed of: (a) a controller to implement how users communicate with 
the system; (b) a scheduler which tells how user workloads are allocated 
for resources; and (c) a launcher which is responsible for how each 
compute server’s processing stats are collected. At each system, 
controller and scheduler are executed individually whereas the launcher 
executes on all compute servers within the IaaS cluster. Moreover, the 
well-known FF heuristic is used for allocating resources instead of best 
fit (BF) method. It is also evident that Intel’s researchers are biased for 
the implementation simplicity and job dispatching speed rather than 
absolute optimality. Still, BF or other workload-specific scheduler and 
heuristic methods may be more beneficial for placement in the future, 
particularly, for unknown workloads. Moreover, the scheduling choice 
focuses, primarily, on memory, disk and CPU availability of various 
compute nodes relative to the start of requested workload15. 

The CIAO architecture does not support live migrations; however, 
through check-pointing i.e. stopping and restating, a particular instance 
could be migrated from one host to another host, seamlessly. Moreover, 
several instances running on a particular host can also be migrated, 

Table 21 
Various methods and their pros and cons with respect to other approaches [for example Bare-metal offer the lowest utilisation levels and the highest energy con
sumption compared to VMs, Container, and Containers—VMs and so on].  

Work Approach Pros and cons 

resource utilisation workload performance energy consumption resource contention opportunities 

placement consolidation 

Technology Bare-metal lowest optimal highest low low – 
VMs moderate low low high high high 
Containers high high low very high very high very high 
Containers—VMs very high moderate high very high highest highest 
Hybrid – – – – – – 

Scheduler Centralised very high high lowest low high lowest 
Hierarchical high low low moderate moderate high 
Distributed low low high high low very high 

Migrations No migrations lowest high high moderate – – 
Inter-platform high low moderate high – – 
Intra-platform low high high low – – 
Inter + Intra – – – – – –  

14 http://epubs.surrey.ac.uk/841959/. 

15 https://ciao-project.github.io/.  
16 http://events17.linuxfoundation.org/sites/events/files/slides/Linuxcon% 

20NA%202016.pdf. 
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concurrently, through a single command. This might be useful if a host 
needs to be temporarily removed from the cluster for maintenance and 
up-gradation purposes. The CIAO project documentation also suggests 
that the scheduler currently implements a trivial approach which prefers 
not using the Most-Recently-Used (MRU) compute host for workload 
placement. Although, this could be inexpensive and may lead to enough 
spread of new workloads across the cluster; however, this may not be 
essentially energy efficient. Unfortunately, we are not aware of any 
work, in the literature, which addresses the cluster’s energy consump
tion and performance of various workloads in a similar hybrid orches
tration platform; when various approaches to resource scheduling and 
migration are taken into account.16 The study of bare metal, VMs and 
individual containers in terms of workload performance, network usage, 
disk I/O operations, memory use and boot time is discussed by Kominos 
et al. (2017). It is still felt that there is no exploration of resource 
consolidation in the context of resource management, IaaS energy effi
ciency, performance of workloads, and applications as well as resource 
heterogeneities. Lubomski et al. (2016) have compared various virtu
alisation techniques such as VMs, containers; and suggested 
non-significant performance loss when containers run within VMs. 
However, Mavridis et al. (Mavridis and Karatza, 2017) suggest that the 
performance loss could be significant. The pros and cons of various 
existing works, regarding schedulers, and methods, are summarised in 
Table 21. This will help readers to quickly identify gaps for further 
consideration. 

The HeporCloud framework uses the FILLUP allocation policy to place 
user’s workloads onto available resources in a workload-specific way 
(Zakarya, 2018b). It means that most energy and performance efficient 
hosts are utilised first. However, the CIAO uses a FF policy to place the 
workload onto resources without any prioritisation with respect to en
ergy and/or performance. Moreover, the HeporCloud framework selects 
the best candidate for migration using the consolidation with migration 
cost recovery (CMCR) (Zakarya, 2018b) and consolidation with migration 
performance, energy costs recovery (CPER) (Khan et al., 2019b) policies. 
Furthermore, HeporCloud bias towards migrating containers first 
instead of VMs; as containers are lightweight that would finish their 
migration quickly. However, CIAO implements a simple migration pol
icy which selects the top most instance, that could be either a container 
or a VM. Moreover, migration occurs when the node’ utilisation de
creases certain threshold e.g. 20%. We assume that over utilisation will 
not happen; as the HeporCloud policies will not place workloads on 
nodes exceeding certain threshold e.g. 90%. Several studies (Kominos 
et al., 2017),(Tay and GauravPavan, 2017) discuss the performance ef
ficiency of containers, VMs, and bare-metal, individually; however, 
hybrid resource management with respect to energy efficiency is rela
tively ignored, and this is rarely addressed with the notable exception of 
(Vaucher, 2015). In (Vaucher, 2015), the authors suggest that 
bare-metal hardware might offer the highest levels of performance at the 
lowest energy cost. Nevertheless, the evaluated outcomes take single 
application (job) into account; and, thus, there outcomes are not ensured 
as optimal or near to optimal, particularly, if a dynamic system is 
considered. 

Moreover, the authors in (Sharma et al., 2016), (Tay and Gaur
avPavan, 2017) have discussed VMs, containers and virtualised con
tainers (containers—VMs), however, bare-metal and energy efficiency 
are not investigated. Tay et al. (Tay and GauravPavan, 2017) suggests 
exploring different technologies including VMs and containers, in the 
context of workload consolidation and migration policies. Sharma et al. 
(2016) evaluated that containers running inside VMs offer performance 
benefits; and neighbouring containers inside a VM could be trusted, as 
well. Felter et al. (2015) explored resource management of VMs (KVM) 
and containers (Docker), and associated the obtainable performance of 
certain workloads and applications regarding bare-metal hardware. 
Their examination and evaluation shows that for certain types of 
workloads container’s and VM’s performance overlaps. Moreover, the 
authors reject the finding that “IaaS should be implemented on VMs and 

PaaS on containers” – since there is no technical cause. Unfortunately, 
service migrations are not taken into account. The investigation of 
performance for bare metal, VMs, containers and virtual/nested con
tainers, for running interactive game-based simulations, is discussed in 
Mondesire et al. (2019). The authors suggest that the container’s per
formance is comparable with the performance of bare metal hardware; 
and mingling VMs with containers gives performance advantages over 
the use of containers and VMs, individually. Additionally, there is no 
such investigation over scheduling and placement for hybrid platforms 
in terms of energy usage and performance impacts due to consolidation 
of workloads and resource heterogeneities. 

Several researchers noted the under-utilisation nature of VMs in 
public IaaS clouds (Tchana et al., 2015), (Tchana et al., 2016); and 
anticipated a solution known as software consolidation. It accommo
dates multiple applications, at runtime, over the same VMs to reduce the 
number of utilised VMs. Furthermore, VM consolidation can be com
bined with this technique to reduce the number of servers needed to run 
particular workloads. Software consolidation might decrease: (i) the 
energy usage; (ii) the total number of VMs needed; and (iii) users’ costs, 
both in private and public IaaS clouds. The investigation also prevails 
that ~40% energy could be saved within the authors’ private IaaS cloud. 
Additionally, user’s budgetary cost is saved by about 40.5% for AWS 
EC2 public IaaS cloud. The said work is relatively close to HeporCloud; 
however, the algorithms presented in (Tchana et al., 2015), (Tchana 
et al., 2016) are simple in deciding how running applications are to be: 
hosted in VMs, containers, container—VM, and bare-metal; or migrated 
in terms of energy consumption and possible performance impacts over 
the workloads. In (Khan et al., 2019a), we neither considered nested 
containers nor inter-platform and intra-platforms migrations. Further
more, performance of workloads across four platforms was not bench
marked. Similarly, we modelled performance of application 
consolidation that runs either in VMs or containers in (Khan et al., 
2020); however, resource management in hybrid clouds were not taken 
into account. Moreover, centralised schedulers were not investigated. 
Besides these differences, workload predictions were also ignored in 
(Khan et al., 2019a), (Khan et al., 2020). In (Mavridis and Karatza, 
2019), the authors have studied the combination of virtualisation and 
containerisation technologies through running containers on top of 
VMs. Their aim is to improve containers’ key problem i.e. isolation 
(since containers share the same kernel) and, to incorporate benefits of 
containers into VMs. Therefore, containers were run on bare-metal, and 
inside VMs (using KVM and Xen); and the authors suggest its possibility 
subject to trivial performance overhead. Besides high resource uti
lisation, their evaluation suggests that running containers on KVM is 
more energy-performance efficient than running them on Xen. Unfor
tunately, their work has ignored resource management aspects such as 
scheduling, consolidating workloads, in hybrid clouds. Moreover, mi
grations are not examined. 

Besides VM placement (Zakarya, 2017), container placement is also 
largely studied in the literature. For example, in (Hu et al., 2020) au
thors have presented ECSched, a graph-based scheduler to handle con
current container requests in heterogeneous clusters subject to 
multi-resource constraints. The ECSched scheduler assumes a batch of 
requests, at the same time, to find a condensed placement. The authors 
suggest that ECSched produces good results, in terms of low completion 
times, and improved resource utilisation. However, the proposed 
scheduler is impractical for online problems when tasks do not arrive in 
batches; or, the online problem should be converted to an offline 
problem in order to fetch requests at the same time. Moreover, VMs, 
nested containers, hybrid platforms and their energy efficiency is not 
explored. Similarly, KEIDS (Kaur et al., 2020) incorporate a container 
scheduler/management system on top of Kubernetes to account for 
interference and energy consumption of IoT applications in distributed 
clouds (operated by different energy sources). The KEIDS scheduler is 
approximately 14.42%, and 31.83%, better that the FCFS scheduler in 
terms of improved energy utilisation, and minimal interference. In (Lv 
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et al., 2019), a communication-aware worst fit decreasing heuristic al
gorithm is proposed for container placement. Moreover, a container 
reassignment strategy is presented to balance the containers distribution 
across various servers and optimise application performance and 
throughput. Albeit, renewable, and distributed clusters are taken into 
account; however, except containers, other scenarios such as VMs, vir
tualised containers, hybrid platforms and migrations are not explored. 

ProCon (Fu et al., 2019) schedules containers subject to: (i) the 
instant resource utilisation of hosts; and (ii) estimation of future 
resource usage. The ProCon scheduler balances the resource contentions 
across the cluster and reduces task runtimes through monitoring their 
execution progress. ProCon reduces completion time by up to 53.3% and 
improves performance by 23.0% against the default scheduler available 
in Kubernetes. Various approaches to virtualisation (full - KVM, para - 
Xen and OS level - Docker) are discussed in (Chae et al., 2019). The 
performance of KVM and Docker was compared in three different ways: 
(a) the CPU and memory usage of the host, (b) Idleness of CPU, memory 
usage and I/O performance through migrating a large file, and (c) per
formance of the Web server through JMeter. These comparisons show 
that Docker is faster than KVM. The authors have only compared KVM 
and Docker which were configured on a single host. Moreover, the au
thors demonstrate that placement algorithms affect the performance of 
VMs and containers. The PIVOT task scheduler (Jiang et al., 2020) 
supports cross-cloud, cross-region execution of data-intensive applica
tions while hiding the complexity of the underlying heterogeneous 
systems and respecting cost and performance requirements of the con
tainerised application. PIVOT has two capabilities: (i) an application 
scheduler schedules various tasks of an application; and (ii) the global 
scheduler has a task queue that put tasks for final dispatching and 
placement onto hosts. Furthermore, the scheduling problem is modelled 
as a vector bin-packing problem and solved effectively using greedy 
approximation algorithms such as first fit heuristic. 

In (Rocha et al., 2019), a task-oriented and energy-aware scheduler 
“HEATS” is suggested for containerised workloads that allows customers 
to trade performance vs. energy needs and exploits the resource het
erogeneity. In the first phase (probing), HEATS learns the energy and 
performance characteristics of hosts. In the second phase (monitoring), 
it monitors tasks execution on hosts. In the third phase (scheduling), 
HEATS speculatively migrates workload across various hosts to match 
customers’ demands. Their evaluation suggests that, depending on the 
workload type, HEATS can save up to 8.5% energy while marginally 
affect the overall task runtimes (by at most 7%). Renewables along with 
appropriate resource allocation and consolidation approaches can 
mitigate the energy related issues in cloud environment. In (Kumar 
et al., 2018), containerised workloads are placed on those clusters which 
has enough renewable energy. Moreover, a container consolidation 
scheme is designed to minimise the energy consumption of hosts. In (Hu 
et al., 2019), authors have discussed bin-packing, approximate and 
meta-heuristic algorithms. Moreover, a container scheduling approach 
is suggested to account for various objectives such as load-balancing and 
multi-resource guarantee. Other works have also suggested 
meta-heuristic based approaches to solve the workload placement 
problem (Adhikari and Narayana Srirama, 2019), (Kaur et al., 2019), 
(Gill et al., 2019). However (Hu et al., 2019), suggests that 
meta-heuristic approaches can take hours to reach a solution, and, are 
not suitable for container scheduling. In the literature (Zakarya, 2018b), 
(Kominos et al., 2017), (Mondesire et al., 2019), (Sharma et al., 2016), 
(Tchana et al., 2016), (Nadgowda et al., 2017), various allocation and 
consolidation with migration methods have been investigated for VMs 
and containers, but, individually. Nevertheless, we are not aware of any 
work that investigates the impact of energy savings and workload per
formance degradation when migrations of VMs, containers, containers 
over VMs and bare-metal applications are taken into account, at the 
same time. Similarly, no study describes scheduling for hybrid platforms 
in terms of using a centralised scheduler and/or distributed schedulers 
for various resource platforms. Moreover, inter-platform and Ta
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intra-platforms migrations, which are possible in hybrid datacenters, are 
also not discussed anywhere else. The summary of the comparison be
tween our proposed HeporCloud and other closely related works is given 
in Table 22. We believe the information in Table 22 would also help the 
readers to quickly identify gaps for further research and investigation. 

7. Conclusions and future work 

In this paper, we proposed a framework HeporCloud and, an inte
grated, workload-aware single resource scheduler and orchestrator for 
hybrid cloud platforms. The proposed resource manager is able to 
allocate and predict effective workloads placement and migration de
cisions. Using reasonable assumptions, our empirical evaluation sug
gests that HeporCloud can schedule and consolidate various kinds of 
workloads energy, performance and, therefore, cost efficiently. Our 
investigation suggests that: (i) using a, centralised, single scheduler is 
more energy and performance efficient than using individual schedulers 
in hybrid platforms; (ii) under certain configurations, it might be more 
energy and performance efficient not to migrate workloads; and (iii) 
inter-platform migrations are more energy efficient than intra-platforms 
migrations, however, performance of the workload varies significantly. 
Moreover, containers are more energy, performance efficient than VMs; 
and energy efficient than bare-metal hardware due to high level of 
resource utilisation. Furthermore, for certain kinds of workloads, vir
tualised containers may be as bad as good, as compared to VMs and 
containers. 

We identified few issues in the HeporCloud framework that needs to 
be addressed. First, when more and more VMs—containers interact with 
the HeporCloudScheduler and/or the HeporCloudOrchestrator then, 
due to delay in communication or network congestion, the system 
response might become slow. Secondly, the HeporCloudStat is a burden 
on the cluster node that maintains and calculates statistical information 
regarding resource consumption, in addition, to its necessary task of job 
execution. Furthermore, it needs to update its information with the NAS 
server, periodically. Further research is needed to account for these 
important issues. A distributed-type implementation for the Hepor
CloudStat module would be an alternative solution. In that case, the 
HeporCloudStat can be installed as an agent on every cluster host and 
which are essentially connected to a master HeporCloudStat agent that 
runs on a dedicated powerful server. In the future, we will consider 
multi-objective minimisation and meta-heuristics to solve the placement 
problem. We are keen to validate the proposed HeporCloud framework 
on a real cloud test-bed; through importing it in the OpenStack (Kominos 
et al., 2017). More technically, our aim would be to advise an archi
tecture or, more specifically, a hybrid resource manager to the Open
Stack community in order to integrate the Ironic, Nova, Magnum and 
kolla services operating over raw bare-metal (hardware), VMs, system 
containers and virtualised containers i.e. containers run inside VMs, 
respectively. Moreover, migrations could affect the workload perfor
mance severely, particularly, if a single VM—container is migrated 
several times (repeatable migrations) during a consolidation round 
(Khan et al., 2019b). In the future, along with more accurate energy 
consumption and migration models (Dayarathna et al., 2015), we would 
add a migration control mechanism (Khan et al., 2019c), to HeporCloud 
framework, to avoid repeatable migrations. 
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