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a b s t r a c t

Cloud computing provides resources over the Internet and allows a plethora of applications to be
deployed to provide services for different industries. The major bottleneck being faced currently in
these cloud frameworks is their limited scalability and hence inability to cater to the requirements
of centralized Internet of Things (IoT) based compute environments. The main reason for this is
that latency-sensitive applications like health monitoring and surveillance systems now require
computation over large amounts of data (Big Data) transferred to centralized database and from
database to cloud data centers which leads to drop in performance of such systems. The new paradigms
of fog and edge computing provide innovative solutions by bringing resources closer to the user and
provide low latency and energy efficient solutions for data processing compared to cloud domains. Still,
the current fog models have many limitations and focus from a limited perspective on either accuracy
of results or reduced response time but not both. We proposed a novel framework called HealthFog
for integrating ensemble deep learning in Edge computing devices and deployed it for a real-life
application of automatic Heart Disease analysis. HealthFog delivers healthcare as a fog service using IoT
devices and efficiently manages the data of heart patients, which comes as user requests. Fog-enabled
cloud framework, FogBus is used to deploy and test the performance of the proposed model in terms
of power consumption, network bandwidth, latency, jitter, accuracy and execution time. HealthFog
is configurable to various operation modes which provide the best Quality of Service or prediction
accuracy, as required, in diverse fog computation scenarios and for different user requirements.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Fog and Cloud computing paradigms have emerged as a back-
bone of modern economy and utilize Internet to provide on-
demand services to users [1]. Both of these domains have cap-
tured significant attention of industries and academia. But be-
cause of high time delay, cloud computing is not a good option for
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applications requiring real-time response. Technological develop-
ments like edge computing, fog computing, Internet of Things
(IoT), and Big Data have gained importance due to their robust-
ness and ability to provide diverse response characteristics based
on target application [2]. These emerging technologies provide
storage, computation, and communication to edge devices, which
facilitate and enhance mobility, privacy, security, low latency,
and network bandwidth so that fog computing can perfectly
match latency-sensitive or real-time applications [2–11]. Now,
cloud computing frameworks also extend support to emerging
application paradigms such as IoT, Fog computing, Edge, and Big
Data through service and infrastructure [12,13]. Fog computing
uses routers, compute nodes and gateways to provide services
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with minimum possible energy consumption, network latency
and response time.

Mutlag et al. [7] explored the challenges of Fog computing in
healthcare applications and identified that latency and response
time are the most important and difficult to optimize Qual-
ity of Service (QoS) parameters in real time fog environments.
Healthcare is one of the prominent application areas that re-
quires accurate and real-time results, and people have introduced
Fog Computing in this field which leads to a positive progress.
With Fog computing, we bring the resources closer to the users
thus decreasing the latency and thereby increasing the safety
measure. Getting quicker results implies fast actions for critical
heart patients. But faster delivery of results is not enough as
with such delicate data we cannot compromise with the accuracy
of the result. One way to obtain high accuracies is by using
state-of-the-art analysis softwares typically those that employ
deep learning and their variants trained on a large dataset. In
the recent years, deep learning [14] has seen an exponential
growth in the fields ranging from computer vision [3] to speech
recognition, but has more recently been proven useful in natural
language processing, sequence prediction, and mixed modality
data settings. Moreover, ensemble learning [15] is used to get
the best of multiple classifiers. One of the ensemble methods is
called bagging classifier where the estimator fits trains the base
classifier on random subsets of data and then aggregates their
individual predictions either by voting or by averaging to get the
final prediction. Such estimators help in reducing the variance as
compared to a single estimator by introducing randomization into
the dataset distribution procedure. Another advancement of deep
learning has been to predict and classify healthcare data with
extremely high accuracies [14]. However, recent deep learning
models for healthcare applications are highly sophisticated and
require large number of computational resources both for train-
ing and prediction [16]. It also takes large amount of time to train
these complex neural networks and analyze data using them. The
higher the accuracy required, the more sophisticated the network
and higher is the prediction time [17]. This has been a major
problem for healthcare and similar IoT applications where it is
critical to obtain results in real-time. As computation on the Edge
has the great advantage of reducing response time, this gives a
new direction of research of integrating complex ensemble deep
learning models with Edge Computing such that we obtain high
accuracy results in real-time. One of the fundamental aims of
this work is to bridge this gap and provide a computing platform
that not only provides low latency results by leveraging edge
resources but also is able to use deep learning based frameworks
to provide highly accurate results. There has been some work to
bring computation to the Edge devices, closer to the patient to
reduce result delivery time. Some of these works still depend on
simulations [4] and have not provided a deploy-able framework.
This work also aims to fill this void in healthcare industry.

Usually, detecting heart problems is difficult [18,19] and many
times people do not even get to know that they are in critical
condition till they get heart related problems like tachycardia
or even stroke. Conventionally symptoms of heart problems are
difficult to identify and requires an experienced doctor to observe
the patient to ascertain that he/she has a heart problem. This is
difficult to do practically due to shortage of doctors as most coun-
tries still do not trust computer systems to be able to detect heart
problems with the required accuracy and explain-ability [20,21].
Existing healthcare systems that are deployed on IoT driven Fog
or cloud computing frameworks connect pre-configured devices
for patient data processing such that the results are delivered to
users within the deadline time. Many prior works have tried to
use IoT to predict health problems related to heart but are unable
to ascertain with the accuracies required by the stringent regula-
tions of medical standardization agencies. In recent past, as deep

learning has gained popularity more recent technologies can even
surpass doctors in heart disease detection accuracy [22,23]. This
work aims to bring together deep learning and IoT in healthcare
industry in hope that it motivates medical standardization agen-
cies to adopt this model providing low latency and high accuracy
to mitigate the problem of lack of doctors. There exist very few
works that aim to bring together these two paradigms like [24],
but none utilize the distributed nature of edge computing to im-
prove accuracy by utilizing ensemble deep learning models. We
present more comprehensive comparisons in Sections 2 and 7.9.
Moreover, extension of deep learning models to allow ensembling
of results is a non trivial extension as it requires careful balance
of accuracy improvement and latency increase to provide the
most desired service quality. Furthermore, building on previous
works like [2,9,24], HealthFog provides a novel architecture for
healthcare computation integrating/harnessing diverse backend
frameworks like FogBus [6] and Aneka [25] making it a scalable
model.

Prior works have reported that there are two major types
of healthcare data collection schemes for heart patients using
different devices (IoT sensors and file input data). The first is
Little data which is processed at fog nodes and the second is Big
data processed at Cloud Data Centers (CDC) [1,12]. The healthcare
patient data is received by the network at high speeds (250 MB
per minute or more) [1]. Existing frameworks are not versatile
enough to capture and provide results for both types of data
scenarios and thus there is a need to utilize edge and cloud
resources in order to cater to applications with these types of
data volumes. Data is stored and processed on edge nodes or
cloud servers after collection and aggregation of data from smart
devices of IoT networks.

To provide efficient compute services to heart patients and
other users requiring real-time results, an integrated Edge-Fog-
Cloud based computation model is required to deliver healthcare
and other latency sensitive results with low response time, min-
imum energy consumption and high accuracy. The lack of such
models or frameworks that integrate the power of high accuracy
of deep learning models simultaneously with low latency of edge
computing nodes motivated this work.

In this work, we propose a Fog based Smart Healthcare System
for Automatic Diagnosis of Heart Diseases using deep learning
and IoT called HealthFog . HealthFog provides healthcare as a
lightweight fog service and efficiently manages the data of heart
patients which is coming from different IoT devices. HealthFog
provides this service by using the FogBus framework [6] and
demonstrates application enablement and engineering simplicity
for leveraging fog resources to achieve the same.

The key contributions of this paper are:

• Proposed a generic system architecture for development of
ensemble deep learning on fog computing

• Developed a lightweight automatic heart patient data diag-
nosis system using ensemble deep learning called Health-
Fog.

• Deployed HealthFog using FogBus framework for integration
of IoT-Edge-Cloud for real-time data analysis.

• Demonstrated and analyzed the HealthFog deployment in
terms of various performance metrics like accuracy, re-
sponse time, network bandwidth and energy consumption.
All analysis has been done for heart patient data for predic-
tion if the patient has a heart problem or not.

The rest of the paper is organized as follows. Section 2 presents
related work of existing healthcare systems. Background of Fog-
Bus and Aneka are is provided in Section 3. Proposed model
is presented in Section 4 and its design and implementation is
described in Section 5. Section 7 describes the experimental setup
and presents the results of performance evaluation. Section 8
presents conclusions with future work proposed.
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2. Related work

Fog computing environment is an emerging paradigm for effi-
cient processing of healthcare data, which is coming from differ-
ent IoT devices. Fog computing is capable to handle the data of
heart patients at edge devices or fog nodes with large computing
capacity to reduce latency, response time or delay because edge
devices are closer to the IoT devices than cloud data center.

Gia et al. [26] proposed a Low Cost Health Monitoring (LCHM)
model to gather the health information of different heart pa-
tients. Moreover, sensor nodes monitor and analyze the Electro
Cardio Graphy (ECG) in a real-time manner for processing of
heart patients data efficiently, but LCHM has more response time
which reduces the performance. Further, sensor nodes gather
ECG, respiration rate, and body temperature and transmits to
a smart gateway using wireless communication mode to take
automatic decision quickly to help patient. Orange Pi One based
small-scale testbed is used to test the performance of LCHM
model in terms of execution time, but LCHM consumes more
energy during collection and transmission of data. He et al. [5]
proposed an IoT based healthcare management model called Fog-
CepCare to integrate cloud layer with sensor layer to find out the
health status of heart patients and reduces the execution time
of job processing at runtime. FogCepCare uses the partitioning
and clustering approach and a communication and parallel pro-
cessing policy to optimize the execution time. The performance
of FogCepCare is compared with existing model using simulated
cloud environment and optimizes the execution time but this
work lacks the evaluation of performance in terms of important
QoS parameters such as power consumption, latency, accuracy
etc. Ali and Ghazal [27] proposed an IoT e-health service based
an application using Software Defined Network (SDN), which
collects data through smartphone in the form of voice control and
finds the health status of patients. Further, an IoT e-health service
finds the type of heart attack using mobile application based
conceptual model but performance of the proposed application
is not evaluated on cloud environments. Akrivopoulos et al. [28]
proposed an ECG-based Healthcare (ECGH) system to diagnose
cardiac abnormalities [40] using ECG but has low accuracy and
high response time of detecting abnormal events because they
are fetching data directly without using data analytics or other
feature extraction techniques. Further, the data transmission to
cloud server in case of large number of requests increases latency
and consumes more energy consumption, which degrades the
performance of the system. Manikandan et al. [29] proposed
an Autonomous Monitoring System (AMS) model for Internet of
Medical Things (IoMT) to provide healthcare facilities. In this re-
search work, a reward-based mechanism designed which utilizes
the Analytical Hierarchy Process (AHP) for fair distribution of
energy among the nodes. The simulated cloud environment is
used to test the performance of the AMS model in terms of energy
consumption and AMS model performs better than FGCS method
but the communication time among nodes leads to high latency
of processing a patient request.

Choi et al. [30] proposed a Graph-based Attention Model
(GRAM) for healthcare representation learning that supplements
electronic health records with hierarchical information inher-
ent to medical ontologies. Further, the performance of GRAM is
optimized in terms of training accuracy. GRAM uses predictive
analysis to predict the chances of heart attack and compared
the performance of GRAM with Recurrent Neural Network (RNN)
using very small dataset and performs better than RNN in terms
of training accuracy. The performance of GRAM can be degraded
in case of large datasets. Nicholas et al. [31] proposed a Smart
Fog Gateway (SFG) model for end-to-end analytics in wearable
IoT devices and demonstrated the role of the SFG in orchestrating

the process of data conditioning, intelligent filtering, smart ana-
lytics, and selective transfer to the cloud for long-term storage
and temporal variability monitoring. SFG model optimizes the
performance in terms of execution time and energy consumption,
but it does not consider latency as a performance parameter.
Iman et al. [24] proposed Hierarchical Edge-based deep learning
(HEDL) based healthcare IoT system to investigate the feasibility
of deploying the Convolutional Neural Network (CNN) based clas-
sification model as an example of deep learning methods. Further,
a case study of ECG classifications is used to test the performance
of proposed system in terms of accuracy and execution time.
Liangzhi et al. [32] proposed Fog based Efficient Manufacture
Inspection (FEMI) system using deep learning for smart industry
to process a large amount of data in an efficient manner. Further,
FEMI system adapts the CNN model to the fog computing envi-
ronment, which significantly improves its computing efficiency
and optimizes the performance only in terms of testing accuracy.

Mahmud et al. [33] proposed a Fog-based IoT-Healthcare (FIH)
solution structure and explore the integration of Cloud-Fog ser-
vices in interoperable Healthcare solutions extended upon the
traditional Cloud-based structure. Further, iFogSim simulator [39]
is used to test the performance of FIH solution in terms of power
consumption and latency only. The performance of FIH solution
can be evaluated in terms of execution time and accuracy. Ra-
bindra and Rojalina [34] proposed a fog-based machine learning
model for smart system big data analytics called FogLearn for
application of K-means clustering in Ganga River Basin Manage-
ment and real-world feature data for detecting diabetes patients
suffering from diabetes mellitus. Alvin et al. [35] proposed a
Scalable and Accurate deep learning (SADL) model with electronic
health records of patients based on the Fast Healthcare Interop-
erability Resources (FHIR) format. The deep learning methods in
SADL model using FHIR representation are capable of accurately
predicting multiple medical events from multiple centers without
site-specific data harmonization. Further, proposed approach is
validated using de-identified Electronic Health Record (EHR) data
from two US academic medical centers with 216,221 adult pa-
tients hospitalized for at least 24 h and improves the accuracy
of prediction. Table 1 compares the proposed model (HealthFog)
with existing models.

Pham et al. [36] proposed a Cloud-based Smart Home Envi-
ronment (CoSHE) to deliver home healthcare to provide human’s
contextual information and monitors the vital signs using robot
assistant. Initially, CoSHE uses non-invasive wearable sensors to
gather the audio, motion and physiological signals and delivers
the contextual information in terms of the resident’s daily activ-
ity. Further, the CoSHE allows healthcare professionals to explore
behavioral changes and daily activities of a patient to moni-
tor the health status periodically. Moreover, the case study of
robotic assistance is presented to test the performance of CoSHE
by utilizing Google APIs. However, CoSHE is general healthcare
application to collect and process patient data at small scale
without data analytics and they have not evaluated on real cloud
environment to test its performance in terms of QoS parameters.

Alam et al. [37] proposed a general Edge-of-Things Compu-
tation (EoTC) framework for healthcare service provisioning to
optimize the cost of data processing. Further, a portfolio opti-
mization solution is presented for the selection of Virtual Ma-
chines (VMs) and designed Alternating Direction Method of Mul-
tipliers (ADMM) based distributed provisioning technique for ef-
ficient processing of healthcare data. Further, experimental re-
sults demonstrate that EoTC framework performs better than
greedy approach in terms of cost, but this framework lacks in
performance evaluation in terms of QoS parameters.

Sahoo et al. [38] proposed a Service Level Agreement (SLA)
based Healthcare Big Data Analytic (SLA-HBDA) architecture to
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Table 1
Comparison of existing models with HealthFog.

Work Fog IoT Deep Ensemble Heart disease Performance parameters
prediction Power Latency Execution Arbitration Network Jitter Testing Training

computing learning learning system consumption time time bandwidth accuracy accuracy
LCHM [26] ✓ ✓
FogCepCare [5] ✓ ✓
IoT e-health service [27] ✓ ✓
ECGH [28] ✓ ✓ ✓
AMS [29] ✓ ✓
GRAM [30] ✓ ✓ ✓
SFG [31] ✓ ✓ ✓ ✓
HEDL [24] ✓ ✓ ✓ ✓ ✓
FEMI [32] ✓ ✓ ✓
FIH [33] ✓ ✓ ✓ ✓
FogLearn [34] ✓
SADL [35] ✓ ✓
CoSHE [36] ✓
EOTC [37] ✓ ✓
SLA-HBDA [38] ✓ ✓
CFBA [39] ✓ ✓
HealthFog (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

perform the ranking of patient’s data, which improves its pro-
cessing speed. Further, an efficient data distribution technique
is developed to allocate batch and streaming data using Spark
platform to predict the health status of the patient. SLA-HBDA
architecture improves the performance in terms of accuracy as
compared to Naive-Bayes (NB) algorithm but it does not consider
latency and other important QoS parameters.

Abdelmoneem et al. [39] proposed a Cloud-Fog Based Archi-
tecture (CFBA) for IoT based healthcare applications to monitor
the health status of the patience. Further, a task scheduling and
allocation mechanism is proposed for the processing of health-
care data by distributing the healthcare tasks in an efficient
manner. The performance of CBFA is evaluated using iFogSim
simulator [41] in terms of only latency. Research work [36–39]
developed general healthcare applications at small scale and none
of the work focused on heart patient-based healthcare application
to diagnose the health status of heart patients.

Sanaz et al. [9] proposed an end-to-end security scheme for
mobility enabled healthcare IoT, which uses Datagram Transport
Layer Security (DTLS) handshake protocol to establish secure
communication among various interconnected smart gateways
without requiring any reconfiguration at the device layer. Further,
the proposed scheme is implemented using simulation environ-
ment (Cooja) and demonstrate that the proposed scheme is effec-
tive in reducing communication overhead by 26% and latency by
16%. Building on this work, HealthFog aims to deploy healthcare
applications on real systems and fog nodes providing a more
promising solution.

Amir et al. [2] proposed a system called Smart e-Health Gate-
way to exploit the strategic position of such gateways at the edge
of the network to provide various services such as embedded
data mining, real-time local data processing and local storage.
Further, it distributes the burden of various sensors by creating a
Geo-distributed intermediary layer of intelligence between Cloud
and sensor nodes, which increases the reliability, energy effi-
cient and scalability. Further, proposed system is validated using
an mobile application of IoT-based Early Warning Score (EWS)
health monitoring. Building on this work, HealthFog architecture
provides additional features of being able to use distributed deep
learning models in ensembling fashion to further increase the
prediction accuracy and provide more precise results for critical
heart patients.

There is a need to solve the following challenges [5,24,26–
36,38,39,41–44] to recognize the full capability of IoT based
fog-computing for healthcare systems: (a) An efficient IoT based
Healthcare application is needed which can process a large
amount of heart patients data with minimum energy consump-
tion and low response time, (b) a well-organized resource sche-
duling technique is needed for fog computing environments to
execute user workloads with maximum resource utilization to

fulfill the deadline of workloads and (c) ensemble deep learning
based fog computing model to automatically diagnose the heart
disease severity in patients in real-time.

3. Background technologies

FogBus [6] is a framework for development and deployment of
integrated Fog-Cloud environments with structured communica-
tion and platform independent execution of applications. FogBus
connects various IoT sensors which can be healthcare sensors
with gateway devices to send data and tasks to fog worker nodes.
The resource management and task initiation is done on fog
broker nodes. To ensure data integrity, privacy and security, Fog-
Bus uses blockchain, authentication and encryption techniques
which increase the reliability and robustness of the fog environ-
ment. FogBus uses HTTP RESTful APIs for communication and
seamlessly integrates fog setup with Cloud using Aneka software
platform [25].

Aneka [25] is a software platform and framework facilitating
the development and deployment of distributed applications onto
clouds. Aneka provides developers with APIs for exploiting vir-
tual resources on the cloud. The core components of the Aneka
framework are designed and implemented in a service-oriented
fashion. Dynamic provisioning is the ability to dynamically ac-
quire resources and integrate them into existing infrastructures
and software systems. In the most common case, resources are
Virtual Machines (VMs) acquired from an Infrastructure-as-a-
Service (IaaS) cloud provider. Dynamic provisioning in Aneka
happens as part of the Fabric Services by offering provisioning
services for allocating virtual nodes from public cloud providers
to complement local resources. This is mainly achieved as a result
of the interaction between two services: the Scheduling Service
and the Resource Provisioning Service. Aneka currently supports
four different programming models [25]: Bag of tasks model, Dis-
tributed threads model, MapReduce model, and Parameter sweep
model. In HealthFog, we used the Bag of tasks model for task
distribution across cloud VMs. HealthFog uses FogBus to harness
fog resources and Aneka to harness cloud resources.

4. System architecture

The HealthFog model is an IoT based fog-enabled cloud com-
puting model for healthcare, which can manage the data of heart
patients effectively and diagnose the health status to identify
heart disease severity. HealthFog integrates diverse hardware
instruments through software components and allows structured
and seamless end-to-end integration of Edge-Fog-Cloud for fast
and accurate delivery of results. Fig. 1 presents the architecture
of HealthFog which comprises of various hardware and software
components that are described next.



S. Tuli, N. Basumatary, S.S. Gill et al. / Future Generation Computer Systems 104 (2020) 187–200 191

Fig. 1. HealthFog Architecture.

4.1. Healthfog hardware components

The HealthFog model comprises of following hardware com-
ponents:

1. Body Area Sensor Network: Three different types of sen-
sors constitute this component: medical sensors, activity
sensors and environment sensors. Medical sensors include
Electro Cardio Gram (ECG) sensor, Electro Encephalo Gram
(EEG) sensor, Electro Myo Graphy (EMG) sensor, oxygen
level sensor, temperature sensor, respiration rate sensor
and glucose level sensor. This component senses the data
from heart patient and transfers to connected gateway
devices.

2. Gateway: There are three different types of Gateway de-
vices (mobile phones, laptop and tablets), which are acting
as a fog device to collect sensed data from different sensors
and forward this data to Broker/Worker nodes for further
processing.

3. FogBus Modules: The FogBus framework comprises of the
following:

(a) Broker node: This component receives the job re-
quests and/or input data from Gateway devices. Re-
quest input module receives job requests from Gate-
way devices just before transferring the data. Secu-
rity Management module provides secure commu-
nication between different components and protects
the collected data from unauthorized access or ma-
licious tampering of data to improve system credi-
bility and data integrity. Arbitration module (part of
Resource Manager in broker node) takes as input the
load statistics of all worker nodes and decides which
node or subset of nodes to send jobs to in real time.

(b) Worker node: This is the component that performs
tasks allocated by the Resource Manager of the Bro-
ker node. Worker nodes can comprise of embed-
ded devices and Single Board Computers (SBC) like
Raspberry Pis. In HealthFog, Worker nodes can con-
tain sophisticated deep learning models to process
and analyze the input data and generate results.
Apart from this, the Worker node can include other
components for data processing, data filtering and
mining, Big Data analytics and storage. The Worker

Fig. 2. Resource Scheduling in HealthFog.

nodes directly get the input data from the Gateway
devices, generate results and share with the same. In
HealthFog model, the Broker node can also behave as
a Worker node.

(c) Cloud Data Center: When the fog infrastructure be-
comes overloaded, services are latency tolerant or
the input data size is much larger than average size,
then HealthFog harnesses resources of Cloud Data
Centers (CDC). This makes it more robust, capable of
performing heavy load tasks quickly and also makes
data processing location independent.

4.2. Healthfog software components

The HealthFog model comprises of the following software
components:

• Data filtering and pre-processing: The first step after data
input is to pre-process it. This includes data filtering us-
ing data analytics tools. The filtered data is reduced to
a smaller dimension using Principal Component Analysis
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(PCA) using Set Partitioning In Hierarchical Trees (SPIHT)
algorithm [45] and encrypted using Singular Value Decom-
position (SVD) technique [46] with the goal of extracting key
components of data feature vectors that affect the health
status of patients. Based on the extracted data, it automat-
ically makes the decision, which recommends medication
and suitable check-up based on the continuous training data
of healthcare providers and doctors and stores in database
for re-training when required.

• Resource Manager: This comprises of two modules: work-
load manager and arbitration module [6]. Workload man-
ager maintains job request and task queues for data process-
ing. It also handles bulk of data which needs to be processed.
The Arbitration module schedules the provisioned fog or
cloud resources for processing of tasks queued and main-
tained by the workload manager. Arbitration module resides
in the Broker node and decides which Fog computing node
should be forwarded the data to obtain the results, the
Broker itself, Fog worker node or the Cloud Data Center [6].
The main goal is to divide tasks to different devices to
balance load and provide optimum performance. HealthFog
allows users to set their own load balancing and arbitration
schemes based on the application requirements. The current
scheme is described as a flowchart in Fig. 2.

• Deep learning Module: This module uses the dataset to
train a Neural Network to classify data-points which are
feature vectors obtained after pre-processing the data ob-
tained from the Body Area Sensor Network. Based on the
task allocated by the Resource Manager, it also predicts and
generates results for the data obtained from the Gateway
devices.

• Ensembling Module: This module receives prediction re-
sults from different models and uses voting to decide the
output class which is whether the patient has heart disease
or not. This module resides in the FogBus node which is
assigned the task and is responsible for distributing data and
collecting results from other worker nodes.

4.3. Healthfog topology

The HealthFog components described previously share large
amount of data, information and control signals among them-
selves. To facilitate this stable network communication is nec-
essary. In addition, the communication should be persistent and
fault-tolerant. Taking all these into account, the components are
structured in a topology shown in Fig. 1. The communication
across all devices on the Edge is facilitated using FogBus [6] and
that with Cloud VM is using Aneka [25].

The Network topology in HealthFog follows Master-Slave fash-
ion where the Broker Node (Master) controls the Worker Nodes
(Slaves). In HealthFog all the edge devices including the Gateway
devices, Broker node and Worker nodes are present in the same
Local Area Network (LAN). The Resource Manager software com-
ponent resides in the Broker Node and thus the Gateway devices
send job requests to it. The arbitration results obtained from
the Resource Manager is received by the Gateway device which
instructs it where to send the data. Three scenarios arise here: (1)
Broker processing data as Worker Node, (2) Another Worker node
to send data and (3) Cloud Data Center based processing. Based
on the scenario, the Gateway device may send the data directly
to Worker node or Broker node (with/without cloud forwarding).
Broker may provide computation services for tasks only when it
has sufficient resources and/or the worker nodes are overloaded.
If the data is to be forwarded to Cloud, then it goes through the
Broker node as the Gateway may not have access to the Virtual
Private Network (VPN) in which the Cloud Virtual Machine is

Fig. 3. Communication sequence in HealthFog.

present. Apart from this, the Worker nodes periodically send
heartbeat packets to the Broker to indicate that they are alive.
These packets also include load information that is used by the
Resource manager for load balancing.

4.4. Sequence of communication

In HealthFog, all hardware components interact based on pre-
defined protocols described in Fig. 3 for the three scenarios de-
fined earlier: Broker Only, Worker Node or Cloud. In every sce-
nario the Gateway first sends a Job request to the Broker node.
Based on the scenario, the Broker node sends the Gateway either
the Worker IP address (of the same LAN) or Master IP address
(with/without cloud forwarding). In the Broker only case, the
Broker node may or may not check loads of workers. If all workers
have heavy loads or all are compromised and Cloud is disabled,
then the Broker sends the Gateway devices its IP without cloud
forwarding. If there exist workers not heavily loaded then the
Broker sends the IP address of least loaded Worker node to
the Gateway device. Increasing the number of Workers would
increase the arbitration time as more load checks need to be done.
In non-cloud case, the Gateway device sends job i.e. input data for
analysis to Worker/Broker node which then run pre-processing,
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Fig. 4. Age distribution.

prediction model and send results back to Gateway device. In
cloud forwarding case, as the Gateway device may not be on
the VPN, so it sends the input data to Broker node which then
forwards it to the CDC. This also ensures that the IoT sensors
and gateway devices are protected from malicious entities and
hackers as they may not be connected to Internet but only the
LAN with other Fog nodes. Due to larger resource availability at
Cloud, the Execution time is expected to be lower but latency
higher due to communication overheads and queuing delay at
both Broker and CDC. When ensemble is enabled then the data
received by the Broker/worker node is forwarded to all other edge
nodes and majority class is chosen by the worker node to which
the data was sent using bagging.

5. Healthfog design

The fog computing model described in Section 4 takes heart
patient data as input from the sensors and sends back results
which comprise of whether the patient has heart disease or not,
with the confidence of the claim. This is implemented with com-
ponents which include data pre-processing modules, ensemble
deep learning modules and gateway interface described next.

5.1. Heart patient data pre-processing

The data obtained from common pule-oximeters or ECG de-
vices is in plain graphical format and needs to be pre-processes
to find values of many features of the input to the deep learning
model [47,48]. This requires application specific domain knowl-
edge to be fed into the system. Normalizing the age data as it
was slightly skewed as shown in Fig. 4. Similarly, the Rest Blood
Pressure (BPS) data is also skewed and patients having a heat
disease showed a higher blood pressure compared to patients
not having a heart disease. Patient cholesterol levels also show
some target specific behavior, the healthy patients’ distribution
is leptokurtic. Even with maximum heart rate, healthy people
have quite higher maximum heart rate (around 160) compared to
those with heart disease (around 150). Other features like chest
pain and fasting blood sugar had to be converted from continuous
values to categorical values. Also, the slope of the peak exercise
ST segment and the heart status as retrieved from Thallium test.

5.2. Ensemble deep learning application

We have used an ensemble of deep neural network as a
model for the predictive analysis, and for our application the
model is used for binary classification problem. The model is first
trained on the heart patient data in the Cleveland Dataset and
corresponding known output class and then the trained model is
used for predicting results of real time data input as shown in
Fig. 5.

Fig. 5. Training and Testing of the application.

We divide the data into training, validation and testing set
in the ratio of 70:10:20. The training set is used for training
the model, the validation set is used for tuning the model and
the test set is used for testing how the model performs on new
data. The trained model can be stored in all the nodes which
are capable of processing by first storing in a common database.
Other approach can be to train models separately by distributing
the training dataset points across different models. In distributed
training, data distribution uses techniques like boosting which
randomly samples data from the dataset with replacement and
sends to different edge nodes for training individual models [15].
At diagnosis time, whenever a node is assigned a task, it gets
the patient’s data which is a vector of size 13. This data is fed
as input to the model, makes a forward pass on the deep neural
network and outputs 1 or 0 i.e whether the patient has heart
disease or not. At diagnosis time, we use the ensemble method of
Bagging to combine the results of various models to provide more
accurate results. The worker that gets the input data multicasts it
to other worker nodes. Each worker then adds this to its queue
and the prediction results of each worker node are sent back to
the worker assigned for this task. Then the majority prediction
class obtained in by bagging is sent it to the gateway device.
HealthFog allows users to disable this feature when the results
needed are latency critical. In Section 7 we show that ensemble
learning gives better accuracies but also has higher response time
and network overheads.

5.3. Android interface and communication

An android executable named FastHeartTest was used in the
Gateway device to send data to the Broker/Worker nodes. The
application interface is shown in Fig. 6. This application allows the
Gateway to act as a mediator between the Body Sensor Network
and the Worker nodes. The communication is achieved using
HTTP RESTful APIs. We used HTTP POST to upload input data from
and download results to the Gateway device. Each Worker node,
the Broker node and CDC contains a pre-trained deep learning
model and pre-processing softwares.
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Fig. 6. Gateway Interface of HealthFog.

6. Implementation

The components mentioned in Section 5 were implemented in
various programming languages. The pre-processing and ensem-
ble deep learning components were implemented using Python.
The pre-processing module normalizes the data based on the
maximum and minimum values of the field parameters in the
dataset and their distribution.

The ensemble deep learning application used SciKit learn Li-
brary [49]. We have used BaggingClassifier of the SciKit learn
Library to implement our voting scheme. The model takes the
type of base classifier which is deep neural network in our case
and the number of classifiers as input. Now the model randomly
distributes the data among the classifiers to train them. At diag-
nosis time it takes all predicted classes as input and outputs the
majority prediction. The following are the parameters of the best
base model on our data set after tuning:

• Size of input layer: 13 (number of features of the data)
• Size of output layer: 2 (Binary classification; whether the

patient has heart disease or not)
• Number of hidden layers: 3
• Layer descriptions: Fully connected (FC) layer with 20 nodes,

FC layer with 20 nodes and FC Layer with 10 nodes
• Optimizer: Adam
• Activation function: ReLU
• Learning rate: 0.0001

The Android application was built using MIT’s App Inventor1
and communicated with the FogBus Broker node. The android
application saves the data attributes in a Comma Separated Value

1 MIT App Inventor 2: http://ai2.appinventor.mit.edu/.

Fig. 7. Different modules in HealthFog.

(.csv) file and uploads it to the broker node using HTTP POST to
the Data Catalogue Module.

The broker node also has an Arbitration Module which decides
which worker node to select for task execution. This worker
selection process is done as per the default FogBus policy of
selecting worker with minimum CPU load. Whichever worker is
selected, is sent the CSV file for analysis. The Execution Interface
Module in each worker receives the data and instantiates the En-
semble Deep Learning code for analysis of the data. The returned
result is sent back to the Worker/Broker node which sent the
data file. The result is ensembled using the bagging strategy and
forwarded to the gateway device (android application).

A diagrammatic representation of different modules and their
interaction is shown in Fig. 7.

7. Performance evaluation

To demonstrate the feasibility and efficacy of the proposed
HealthFog model, we implemented and deployed it on actual Fog
framework of devices using the FogBus framework [6]. The model
has been used for a real-world application of detecting Heart
problems for patients instantly using state-of the art deep learn-
ing techniques using a Fog based computing environment. We
have analyzed the accuracy and response times with network and
energy overheads to show that the HealthFog model is productive
and has low overheads.

7.1. Experimental setup

The system setup for the HealthFog evaluation and the hard-
ware configurations are described below:

• Gateway Device: Samsung Galaxy S7 with android 9
• Broker/Master Node: Dell XPS 13 with Intel(R) Core(TM)

i5-7200 CPU @ 2.50 GHZ, 8.00 GB DDR4 RAM and 64-bit
Windows 10. The deployment used Apache HTTP Server
2.4.34.

• Worker Node: Raspberry Pi 3B+, ARM Cortex-A53 quad-
core SoC CPU @ 1.4 GHz and 1 GB LPDDR2 SDRAM and IEEE
802.11Wifi. Raspbian Stretch Operating system with Apache
HTTP server 2.4.34.

• Public Cloud: Microsoft Azure B1s Machine, 1vCPU, 1 GB
RAM, 2 GB SSD, Windows Server 2016.

Fig. 8 depicts the real implementation of this system model.
During the experiments, data parameters are recorded using Mi-
crosoft Performance Monitor at the Master and the Azure VM
whereas at the Raspberry Pi circuits NMON Performance Monitor
is used [50,51]. To measure the network bandwidth consumption
Microsoft Network Monitor 3.4 was used at the Broker node [52]
and the vnStat [53] tool in Raspberry Pis.

http://ai2.appinventor.mit.edu/
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Table 2
Sample patient record data from Cleveland database.
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

63 1 3 145 233 1 0 150 0 2.3 0 0 1 1
37 1 2 130 250 0 1 187 0 3.5 0 0 2 1
41 0 1 130 204 0 0 172 0 1.4 2 0 2 1
56 1 1 120 236 0 1 178 0 0.8 2 0 2 1
57 0 0 120 354 0 1 163 1 0.6 2 0 2 1
62 0 0 140 268 0 0 160 0 3.6 0 2 2 0
63 1 0 130 254 0 0 147 0 1.4 1 1 3 0
53 1 0 140 203 1 0 155 1 3.1 0 0 3 0
56 1 2 130 256 1 0 142 1 0.6 1 1 1 0
48 1 1 110 229 0 1 168 0 1 0 0 3 0

Fig. 8. Real HealthFog deployed model and test setup.

7.2. Dataset

For the experimental results, we have considered the data
of heart patients to find the presence of heart disease in the
patient [44,47,48,54], which is an integer valued 0 (no presence)
or 1 (presence). The Cleveland database [44] is used to conduct
the experiments which was created by Andras Janosi (M.D.) at
the Gottsegen Hungarian Institute of Cardiology, Hungary and
others. The patient names and their patient numbers are kept
confidential. We have used 14 important attributes of data to find
out the status of patient health: (1) age: age in years, (2) sex:
two values (1 = male; 0 = female), (3) cp: chest pain type: -
Value 1: typical angina – Value 2: atypical angina – Value 3: non-
anginal pain – Value 4: asymptomatic, (4) trestbps: resting blood
pressure (in mm Hg on admission to the hospital), (5) chol: serum
cholesterol in mg/dl, (6) fbs: (fasting blood sugar > 120 mg/dl)
(1 = true; 0 = false), (7) restecg: resting electro-cardiographic
results – Value 0: normal – Value 1: having ST-T wave abnor-
mality (T wave inversions and/or ST elevation or depression of >
0.05 mV) – Value 2: showing probable or definite left ventricular
hypertrophy by Estes’ criteria, (8) thalach: maximum heart rate
achieved, (9) exang: exercise induced angina (1 = yes; 0 = no),
(10) oldpeak = ST depression induced by exercise relative to rest,
(11) slope: the slope of the peak exercise ST segment – Value
1: upsloping – Value 2: flat – Value 3: downsloping, (12) ca:
number of major vessels (0–3) colored by flourosopy, (13) thal:
3 = normal; 6 = fixed defect; 7 = reversable defect, (14) target
(num): diagnosis of heart disease (angiographic disease status) –
Value 0: < 50% diameter narrowing – Value 1: > 50% diameter
narrowing (in any major vessel). Table 2 describes the details of
just 10 heart patients.

7.3. Framework characteristics experiments

Using the dataset mentioned in Section 7.2, we test our model
on how well it performs to predict if the patient has a heart
disease or not based on the values of the parameters specified

for each patient. The dataset was divided into two parts of 70%,
10% and 20% of the whole data. The first part was used to train the
model, the second for validation and tweaking the model parame-
ters. The last part was used for testing the model performance. To
measure the performance of the HealthFog model the following
characteristics were observed and analyzed:

1. Prediction accuracies: The dataset consists of 1807 exam-
ples out of which 1355 were used for training the model
and 452 were used for testing. The training examples were
divided equally across all worker/broker nodes equally to
obtain their respective trained deep learning models. As
the number of Fog nodes increases to use all resources for
training the dataset examples would have to be distributed
to all nodes. This reduces the training time but also the
test accuracy. To observe such effects, the training and
test accuracies were analyzed. We define accuracy more
formally as the percentage of the total patients for which
the model predicts correctly if they have heart disease or
not. We compare accuracies for different fog settings, by
changing the number of edge nodes and with or without
ensembling of results.

2. Time characteristics: A representative subset of the differ-
ent timing parameters shown in Fig. 3 were also observed
and studied. These include arbitration time, latency, execu-
tion time and jitter. We compare these timing parameters
for different fog settings by having no edge nodes or up
to 2 edge nodes (with or without ensembling) or having a
cloud only computation infrastructure.

3. Network bandwidth usage: As the scenario i.e. Broker
only, Workers or Cloud and the number of Worker nodes
affect the network consumption this was studied to find
out the network usage in different cases. Similar to the
experiments for timing parameters, we compare the net-
work bandwidth consumption for the different fog scenar-
ios. This was done to find out the dependence of band-
width consumption with different fog configurations that
HealthFog provides.

4. Power consumption: Energy being a crucial reason of shift
from cloud to fog domains, we also studied the power
consumption in different scenarios. Based on the power
consumption studies and other experiments described ear-
lier we discuss how different HealthFog configurations can
be used for various user and application requirements.

7.4. Prediction accuracies

Fig. 9 shows the variation of training accuracy with number
of Edge nodes (Broker plus Worker nodes). We can observe that
the training accuracy gradually increases as the number of worker
nodes increase. This is because each node learns a model for the
data received by it, and as the number of nodes increase, the
number of examples received by each node becomes lesser and
hence training the model for multiple epochs over-fit the samples
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Fig. 9. Training accuracy with number of edge nodes.

Fig. 10. Test accuracy with number of edge nodes.

Fig. 11. Confidence of the model for different subsets of Cleveland Data.

and hence training accuracy increases. Fig. 10 shows the variation
of test data accuracy as the number of Edge nodes increase. As
expected, test accuracy decreases with higher number of nodes
because each node gets a smaller subset of training data and
hence is unable to generalize the model. Another observation is
that ensemble learning always gives much better accuracy than
the without ensemble case (best or average).

7.5. Prediction confidence

Whenever the deep learning model predicts whether the pa-
tient has heart disease or not it generates two probabilities: p0
(probability of no disease) and p1 (probability of heart disease),
such that p0 + p1 = 1. The confidence measure of a prediction
(p0, p1) is quantified as 100 × (2 × max(p0, p1) − 1) and thus
has range [0, 100]. Thus, if prediction probabilities is (0.5, 0.5)
then the confidence is 0 and when they are (0.9, 0.1) then the
prediction class is 0% and confidence is 80%. Fig. 11 shows the
variation of confidence of the binary classifier for the complete
test dataset, subset on which the model predicted correctly and
that where prediction was incorrect. We see that the confidence
is higher for the datapoints where the prediction was correct

Fig. 12. Arbitration time in different cases.

Fig. 13. Latency in different cases.

compared to those datapoints where the prediction was incorrect.
The maximum confidence with which the model predicts incor-
rectly is 49.7%, thus if confidence is less that 50% then our model
suggests the patient to consult the doctor as the prediction may
be unreliable.

7.6. Timing characteristics

Fig. 12 shows the variation of arbitration time at the Bro-
ker node for different Fog scenarios: (1) Broker only, (2) Single
Worker node, (3) Two worker nodes and (4) Cloud. We see that
arbitration time is negligible (nearly 115 ms) when the task is to
be sent directly to Broker/Master or Cloud. As the number of edge
nodes increase, the Broker needs to check loads at every Worker
node and find the minimum load worker to send task, hence
the arbitration time increases as number of Edge nodes increase.
When the data is sent to worker nodes for ensemble learning,
then also the broker does not need to do any load checking as
majority class choice needs to be done by one of the worker
nodes, thus arbitration time is similar to without ensembling
case.

Fig. 13 shows the variation of latency, which as per Fig. 3 is
the addition of communication time and queuing delay. We see
that if the task is sent to Broker or any of the edge nodes, then the
latency is nearly same as all communication is through single hop
data transfers. In ensemble case, the latency is slightly higher. For
cloud setting, the latency is very high due to multi-hop transfer
of data outside the LAN.

Jitter is the variation of response time for consecutive job
requests. It is a critical parameter for most real-time applications
including health data analysis. Fig. 14 (log vertical scale) shows
the variation of jitter with the Fog configurations. We observe
that jitter is higher for Broker only case compared to the case
where tasks are sent to worker nodes. This is because of other
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Fig. 14. Jitter in different cases.

Fig. 15. Execution time in different cases.

tasks including arbitration, resource management and security
checking are also performed by Broker. As the workers increase,
due to difference in loads of workers jitter slightly increases for
two edge nodes compared to single edge node. Jitter is also high
in ensemble case. Jitter is very high when tasks are sent to CDC.

Fig. 15 shows the variation of execution time. As expected, the
execution time in Cloud setup is very low due to higher resource
availability. Broker execution time is lesser than the worker nodes
as HealthFog workers are Raspberry Pis which have processor
with low clock frequency. Also, when ensemble prediction is
enabled then the execution time is higher because the worker
node now needs to check which class is majority among all
predicted classes.

7.7. Network bandwidth usage characteristics

Fig. 16 shows the variation of Network bandwidth usage of
all edge nodes in different scenarios. We see that as the worker
nodes increase, the network usage also increase because more
heartbeat packets, security checks and data transfer (with cloud)
are required. In ensemble case, as data is sent to all worker nodes
the network bandwidth consumption is highest.

7.8. Power characteristics

We also tested HealthFog energy consumption characteristics
in different scenarios. As shown in Fig. 17, the power consump-
tion of CDC is very high compared to the Broker node (laptop) or
Worker nodes (Raspberry Pi). This leads to very high power con-
sumption in Cloud case compared to Edge case. As the number of
Worker nodes increase, the power consumption of the HealthFog
framework also increases.

Fig. 16. Network usage in different cases.

Fig. 17. Power consumption in different cases.

7.9. Analysis with related work

Other works that propose computing models for healthcare
applications in Fog Computing do not consider various aspects
which HealthFog does. Many prior works [27,29,30,34–36,38] do
not leverage resources close to the edge of the network. As per
Fig. 13, such models provide a much higher latency as all com-
putation is done on the cloud and hence has higher data transfer
times. With the advancement of deep learning based prediction
models, HealthFog is able to use state-of-the-art Neural Network
models for highly accurate prediction of health characteristics
of patients. Other works like [2,9] or [5,26–29,31,37,39] lack the
ability to integrate such models and hence provide lower disease
detection accuracy. This is crucial to provide low latency and
highly accurate results in critical healthcare applications espe-
cially those concerned with heart related problems like heart
attack, stroke or arrhythmia. Furthermore, works that use deep
learning [24,30,32] do not use ensembling methods to provide
even better results by leveraging fog resources for parallel com-
putation and providing significantly higher accuracy. As shown
by results in Section 7.4, with ensemble, the prediction accu-
racy increases by 16% for the case with 5 edge nodes which is
significantly higher than what existing systems (not leveraging
ensemble deep learning) can provide.

Moreover, unlike prior work HealthFog uses the FogBus frame-
work [6] to provide a diverse set of configurations with different
accuracy, response time, network and power usage characteris-
tics. Based on different application and user requirements dif-
ferent configurations can be used as described in the following
section. This allows users to customize the framework as per
their needs. This non-trivial extension of integration and synchro-
nization among fog computing nodes allows execution ensemble
based deep learning models which not only improves disease de-
tection accuracy but is also adaptive as per diverse requirements.
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Hence, HealthFog provides a novel architecture of healthcare
computation not offered by existing works.

7.10. Discussion and recommendations

In earlier work [6], the power of FogBus and comparisons with
earlier such Fog frameworks were demonstrated showing how
FogBus provides more efficient implementation of applications
harnessing the Edge and Cloud resources. This work developed a
latency and accuracy sensitive application of Heart patient analy-
sis using the FogBus framework with engineering simplicity and
in low time to efficiently use Edge and Cloud resources. The appli-
cation deployment system provided different configurations that
provide better accuracy or latency based on user requirements.
Based on the experimental results we propose HealthFog to be
used in the following settings based on the target applications:

• For latency critical and lightweight tasks or energy con-
straint environments, worker nodes should be used. This
provides very low result delivery time due to close prox-
imity of worker nodes. If energy and network bandwidth
constraints exist then ensemble bagging should be disabled
but if not, enabling bagging would give better accuracy.

• For heavy and latency tolerant tasks CDC configuration must
be used otherwise such tasks would not be able to success-
fully complete on resource constraint edge worker nodes.

8. Conclusions and future work

Healthcare as a service is a huge project. In this research
work, we only focus on the healthcare aspects for heart patients
by proposing a novel Fog based Smart Healthcare System for
Automatic Diagnosis of Heart Diseases using deep learning and
IoT called HealthFog. HealthFog provides healthcare as a fog
service and efficiently manages the data of heart patients which
is coming from different IoT devices. HealthFog integrates deep
learning in Edge computing devices and deployed it for a real-life
application of Heart Disease analysis. Prior works for such Heart
Patient analysis did not utilize deep learning and hence had very
low prediction accuracy which renders them useless in practical
settings. Deep learning based models with very high accuracy
require very high compute resources (CPU and GPU) both for
training and prediction. This work allowed complex deep learning
networks to be embedded in Edge computing paradigms using
novel communication and model distribution techniques like en-
sembling which allowed high accuracy to be achieved with very
low latencies. This was also validated for real-life heart patient
data analysis by training neural networks on popular datasets and
deploying a working system that provides prediction results in
real-time. We used FogBus framework to validate HealthFog in
fog computing environment and tested the efficiency of proposed
system in terms of power consumption, network bandwidth,
latency, jitter, training accuracy, testing accuracy and execution
time.

As part of the future work, we propose to extend HealthFog to
allow cost-optimal execution given different QoS characteristics
and fog-cloud cost models. Currently HealthFog works with file
based input data which can be converted to seamlessly inte-
grated to take data directly from sensors to make it user-friendly.
Moreover, the model training strategy used currently uses sepa-
rate training at each worker node. The trained models at each
node have combined using various ensemble model of bagging.
More intelligent ensemble models can be deployed for further
improving the accuracy. Further, proposed architecture can be
made robust and generic to incorporate other fog computing
applications such as agriculture, healthcare, weather forecast-
ing, traffic management and smart city. HealthFog can also be

extended towards other important domains of healthcare such
as diabetes, cancer and hepatitis, which can provide efficient
services to corresponding patients.

Software availability

We released HealthFog as an open source software. The im-
plementation code with experiment scripts and results can be
found at the GitHub repository: https://github.com/Cloudslab/
HealthFog.
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