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 a b s t r a c t

The rising demand for personalized, reliable, and sustainable health services requires a significant 
shift beyond current technology barriers. This paper introduces HealthCare 5.0, a transformative 
vision for next-generation medical systems. It brings the Internet of Things (IoT), Artificial In-
telligence (AI), and 6G communications together under the human-centered, sustainable, and 
resilient principles of Industry 5.0. HealthCare 5.0 showcases the convergence of IoT for contin-
uous health monitoring, AI for intelligent reasoning, and 6G for dependable, low-latency connec-
tivity. These elements work together to provide real-time, personalized, and proactive care. The 
analysis looks into how this collaboration supports advancements like remote diagnostics, digital 
twins, federated learning, explainable AI (XAI), and medical large language models (MedLLMs). 
It also addresses challenges in interoperability, energy efficiency, data privacy, and ethical AI. 
The framework stresses the importance of digital twins, ambient sensing, and wearable devices in 
facilitating predictive and patient-centered care. Despite progress, there are still gaps in standard-
ization, clinician adoption, and the ethical use of these technologies. To overcome these issues, 
we propose a complete approach that combines IoT, AI, and 6G based on Industry 5.0 principles. 
This closed-loop model of “sense, transmit, reason, act” is backed by key performance indicators, 
real-world case studies, and a roadmap for compliance and regulatory support. By merging inno-
vation with human values and systemic resilience, HealthCare 5.0 offers a forward-thinking plan 
for smart, safe, and fair healthcare systems.

1.  Introduction

Global healthcare systems are at a critical juncture, facing unprecedented pressures that demand transformative change [1–3]. 
Factors such as aging populations, the rising prevalence of chronic diseases, escalating healthcare costs, and vulnerabilities exposed by 
recent pandemics, including COVID-19, underscore the limitations of traditional healthcare models [4–8]. Reactive, hospital-centric 
approaches are increasingly strained and often fail to deliver timely, personalized care. This convergence of challenges necessitates 
a fundamental shift toward HealthCare 5.0, a proactive, efficient, and patient-focused paradigm, frequently encapsulated by the 
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Fig. 1. Healthcare challenges addressed by converging technologies.

vision of Personalized, Preventive, Participatory, and Predictive (P4) medicine [4–6]. Fig. 1 summarizes these systemic pressures and 
highlights where digital technologies can intervene.

However, achieving this vision requires overcoming significant hurdles related to fragmented data, limited remote capabilities, 
diagnostic delays, and infrastructural constraints inherent in many current healthcare systems [5,6,9].

1.1.  The promise of converging technologies

Fortunately, rapid advancements in digital technologies offer powerful tools to address these challenges and catalyze the needed 
transformation. Three key technological pillars stand out (see Fig. 2):

First, the Internet of Things (IoT) forms the sensory backbone of HealthCare 5.0, encompassing a vast network of interconnected 
sensors, wearables, smart implants, and ambient devices that enable continuous, real-time collection of physiological, behavioral, and 
environmental data beyond the clinic and into daily life [10–14]. Modern IoT healthcare architectures are typically organized in three 
tiers: (i) the perception layer, consisting of heterogeneous devices (e.g., ECG patches, smart inhalers, implantable glucose monitors) 
that capture high-resolution biosignals, (ii) the network layer, which utilizes low-power wide-area networks (LPWAN) such as NB-IoT 
and LoRaWAN alongside short-range protocols like BLE and IEEE 802.15.6 to transmit data reliably, and (iii) the application layer, 
where edge and cloud platforms aggregate, preprocess, and provision data for analytics and decision support [2,15,16].

Second, Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), provides the reasoning engine that 
converts raw data streams into actionable clinical insights [17,18]. Modern healthcare AI pipelines typically involve: (i) data prepro-
cessing at the edge (noise filtering, normalization, compression), (ii) feature extraction using convolutional and recurrent architectures 
to capture temporal and spatial patterns in multimodal biosignals, (iii) model training on federated or centralized datasets leveraging 
gradient-based optimizers and transfer-learning to adapt general models to specific patient cohorts, and (iv) inference and feedback, 
where lightweight models run on-device or at the network edge to deliver real-time alerts and personalized recommendations. In 
parallel, Medical Large Language Models (MedLLMs) have recently emerged as a transformative paradigm for clinical knowledge re-
trieval, decision support, and patient engagement [19–23]. By embedding MedLLMs into the edge-cloud continuum, HealthCare 5.0 

Fig. 2. Technological convergence enabling healthcare 5.0.
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Table 1 
Comprehensive comparison of survey and framework papers in smart and next-generation healthcare, summarizing each work’s core focus, 
enabling technologies, main challenges, validation or case studies, and identified gaps.

Fig. 3. Evolution from traditional healthcare to healthcare 5.0.

can harness conversational AI agents that support clinicians and empower patients, closing the loop on truly personalized, predictive, 
and participatory care.

Third, Sixth-Generation (6G) wireless communication systems promise unprecedented performance levels, including ultra-reliable 
low-latency communication (URLLC), massive device connectivity, terabit-per-second data rates, integrated sensing, and native AI 
integration, creating a robust communication fabric essential for demanding real-time healthcare applications [2,24–27].

Unlike prior surveys focused on siloed technologies (Table 1)[30,39–43], their true potential lies in synergistic convergence: IoT 
senses, 6G transmits, and AI reasons forming a closed-loop system aligned with Industry 5.0 principles. This survey takes a broad 
look at Industry 5.0. It investigates how IoT, AI, and 6G come together in a closed-loop model. The survey includes quantitative KPI 
comparisons, such as end-to-end latency and reliability across 4G, 5G, and 6G. It also covers energy and bit trajectories. The survey 
examines real-world case studies, such as 5G telesurgery and the neuro-ICU digital twin. Additionally, it offers a multi-layer standards 
and compliance map that links capabilities to healthcare regulations. These elements are often absent in earlier reviews of Healthcare 
4.0 and 5.0.

1.2.  The industry 5.0 lens for healthcare

Simply deploying advanced technology is insufficient. The approach to integration is paramount. Industry 4.0 focused heavily 
on automation and data exchange for efficiency. However, Industry 5.0 introduces a vital evolution, placing human needs and 
collaboration back at the center, alongside sustainability and resilience goals [2,5,46–49]. Applied to healthcare, this translates to:

• Human-Centricity: Technology should enhance, not replace, human capabilities. This means supporting clinicians in their work, 
improving the patient experience, and empowering individuals to take control of their health [50]. The synergy of IoT, AI, and 6G 
enables hyper-personalized medicine at scale. Continuous IoT monitoring provides granular, individualized data. 6G ensures timely 
transmission, and AI dynamically tailors preventive strategies and treatments, placing individual needs at the center [51–53]. 
Moreover, 6G’s low latency and high bandwidth, potentially combined with AI for enhanced analytics or translation, enable 
immersive and empathetic remote consultations (e.g., holography), improving access and patient experience [54,55]. In clinical 
settings, AI decision support systems fed by real-time IoT data over 6G can augment clinicians, reducing cognitive load and 
improving diagnostic accuracy, fostering effective human-AI collaboration [56–58].

• Sustainability: Healthcare systems should use technology to optimize resource usage, whether that involves energy, materials, or 
staff time [59]. AI algorithms analyzing real-time IoT data (e.g., energy usage, patient flow, asset location) transmitted via 6G can 
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dynamically optimize energy consumption, staffing schedules, and supply chain logistics [60]. Reliable remote care ecosystems, 
built on IoT monitoring, AI analysis, and seamless 6G connectivity, reduce the carbon footprint associated with patient and 
clinician travel [61,62]. The incorporation of ISAC further contributes to sustainability by reducing the need for additional sensing 
infrastructure, thereby lowering hardware and energy demands [63].

• Resilience: Modern healthcare must be prepared to adapt and recover from disruptions such as pandemics, natural disasters, or 
infrastructure failures [64]. Decentralized care models, heavily reliant on IoT for remote data and 6G for reliable connectivity, 
reduce dependence on centralized hospital infrastructure [61,65]. Population-level data can be anonymously gathered during 
public health crises from IoT devices (if ethically implemented) and rapidly analyzed by AI via 6G for early outbreak detection, 
spread modeling, and optimized resource allocation [66,67]. It is important to highlight that 6G’s six-nines reliability and native 
AI optimization provide an unprecedented safety margin for mission-critical applications such as telesurgery and neuro-ICU digital 
twins. Such reliability is crucial for ensuring the continuity of essential remote health services during emergencies [68–71].

This Industry 5.0 perspective is uniquely suited for healthcare. It ensures that technological advancements serve core human values 
and address systemic robustness and long-term viability, moving beyond purely technical optimization. Fig. 3 presents a longitudinal 
view of how healthcare paradigms have evolved from traditional models toward the holistic HealthCare 5.0 vision.

1.3.  Existing surveys

Numerous survey studies have documented the rapid development of smart healthcare technologies, each focusing on different 
aspects of the IoT, AI, and networking landscape (see Table 1). Early research focused on end-to-end IoT architectures and commu-
nication protocols, including BLE, NB-IoT, LoRaWAN, and IEEE 802.15.6, while addressing challenges related to interoperability, 
quality of service (QoS), and security [21,28,29].

As the field evolved, researchers expanded their focus to include fog, edge computing, and 5G networks. These advancements 
paved the way for low-latency remote care and smarter, context-aware monitoring systems [31,32,45]. At the same time, ideas from 
Industry 4.0, such as big data analytics, cloud-fog integration, and predictive maintenance, were adapted to healthcare settings, 
offering new ways to improve efficiency and patient outcomes [33,34]. More recently, attention has shifted to frameworks that 
prioritize privacy, trust, and transparency. For instance, federated learning enables privacy-preserving analytics by keeping data on 
devices rather than centralizing it [35,36]. Blockchain technology has emerged as a tool for secure, tamper-proof data sharing [37,38]. 
Meanwhile, explainable AI (XAI) and medical large language models (MedLLMs) are helping clinicians better understand and trust 
AI-driven insights [19,20]. While these studies show the potential of combining IoT, AI, and next-generation networks in healthcare, 
they often have some shortcomings. Many lack real-world benchmarks, pilot-scale implementations, cost-benefit analyses, and clear 
regulatory guidance. The HealthCare 5.0 survey fills these gaps by introducing quantitative KPI benchmarks, showcasing several 
real-world case studies, examining sustainability, and providing a clear compliance roadmap. This framework offers a practical way 
to improve smart healthcare. The contribution goes beyond technology-specific or pairwise integration surveys by bringing together 
IoT, AI, and 6G under Industry 5.0, supporting claims with benchmarks, deployed examples, and a compliance roadmap.

1.4.  Scope and contribution

This paper presents a survey of how IoT, AI, and 6G can collaborate to transform healthcare. The survey is based on the human-
focused, sustainable, and resilient principles of Industry 5.0. Unlike previous surveys on Healthcare 4.0 and 5.0 (see Table 1), this 
analysis brings all three pillars together and connects them to measurable KPIs, deployments, and governance. The scope goes beyond 
individual technologies to examine their combined potential and the applications they generate in this new context. A high-level 
roadmap of the paper is also included for reference, as shown in Fig. 4. Our main contributions lie in the following aspects:

C1) The first integration of IoT, AI, and 6G follows the Industry 5.0 principles of human focus, sustainability, and resilience, as 
discussed in Section 2. Unlike previous works, as shown in Table 1, the proposed framework outlines a closed-loop "sense, 
transmit, reason, act" model, which is detailed in Section 3. This model is validated through real-world case studies, like 
5G telesurgery and neuro-ICU digital twins, as well as through quantitative benchmarks, including 6G’s projected "six-nines" 
reliability compared to 5G and 4G.

C2) The survey addresses critical gaps in several areas. It proposes cross-layer standards for interoperability to enable seamless 
integration across different IoT, AI, and 6G systems. For edge intelligence, the focus is on creating lightweight, XAI models that 
fit the needs of resource-limited medical devices. In the area of 6G optimization, it explores network slicing and Integrated 
Sensing and Communication to meet healthcare-specific quality-of-service needs.

C3) The survey critically analyzes societal and ethical challenges. It examines strategies to reduce algorithmic bias and tackle the 
digital divide in 6G-enabled healthcare. Regarding trust, it explores blockchain-based data tracking and clinician-centric XAI 
for medical large language models (MedLLMs). It also proposes regulatory roadmaps for slice-level safety certification and 
edge AI compliance.
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Fig. 4. A text-based visual reading map that helps individuals navigate and comprehend the HealthCare 5.0 paper.

C4) The survey shows the potential of HealthCare 5.0 through several innovative applications. These include AI-driven preven-
tive systems, such as personalized coaching with multimodal IoT, holographic telemedicine, which uses 6G to achieve sub-
millisecond latency, and self-optimizing hospitals that utilize IoT and AI to improve energy and operational efficiency.

C5) The survey identifies several underexplored research directions. These include THz-band diagnostics, which allow non-invasive 
sensing through 6G’s terahertz frequencies, federated learning at scale, which supports privacy-preserving collaboration among 
institutions, and human-AI partnerships, which aim to create adaptive interfaces that improve teamwork between clinicians 
and AI systems.

1.4.0.1.  Novelty Statement. To the best of our knowledge, no prior survey simultaneously integrates all three pillars IoT, AI, and 
6G within an Industry 5.0 perspective, and substantiates the discussion with (i) quantitative KPIs, (ii) real deployment evidence, 
and (iii) a standards-compliance roadmap. This holistic, empirically grounded approach distinguishes the present work from earlier 
technology silo or pairwise integration studies, establishing its novel contribution to next-generation medical systems.

1.5.  Paper structure

The remainder of this paper is structured as follows: Section 2 explores the three core technologies driving this transformation: 
IoT, AI, and 6G. In Section 3, an end-to-end convergence framework is introduced. Next, Section 4 delves into the rapidly advancing 
field of medical large-language models (MedLLMs). Section 5 shifts focus to the challenges ahead. In Section 6, the proposed vision 
is grounded in real-world data and standards. Finally, Section 7 summarizes the paper by presenting the key findings.

2.  Technological pillars enabling healthcare 5.0

The vision of a human-centric, sustainable, and resilient healthcare system, aligned with Industry 5.0 principles, relies heavily on 
the capabilities offered by converging digital technologies [4–6,72]. This section provides a brief overview of the roles of IoT, AI, and 
6G as foundational pillars for this transformation (see Table 2).

2.1.  IoT in healthcare: Sensing the human experience

The IoT forms the sensory backbone of modern healthcare, extending monitoring capabilities far beyond traditional clinical 
environments. Its key components include:

• Wearable devices such as smartwatches, fitness trackers, continuous glucose monitors (CGMs), ECG patches, and specialized 
sensors provide real-time physiological data (e.g., heart rate, activity levels, blood oxygen, temperature) directly from the patient 
[91,92].

• Implantable medical devices, including Pacemakers, defibrillators, and emerging smart implants, offer critical monitoring and 
therapeutic intervention from within the body [93,94].

• Ambient sensing technologies integrated into homes or hospital rooms, these devices monitor environmental factors (temperature, 
air quality), patient movement (fall detection), or even vital signs passively [95,96].
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Table 2 
Benefits and limitations of IoT, AI, and 6G in healthcare.
 Technology  Benefits  Limitations/Challenges  References
 IoT  Continuous, real-time monitoring,  Battery life limitations,  [9,73–78]

 Extension of care beyond clinical settings,  Data security and privacy concerns,
 Early detection of health deterioration,  Sensor accuracy and reliability,
 Improved medication adherence tracking ,  Integration with legacy systems,
 Enhanced patient engagement  Cost barriers for widespread adoption

 AI  Advanced pattern recognition in complex data,  “Black box” nature of some algorithms,  [79–84]
 Reduction in diagnostic errors,  Training data biases affecting outcomes,
 Personalized treatment recommendations,  Regulatory approval complexities,
 Operational efficiency improvements,  Clinician adoption barriers,
 Predictive capabilities for resource planning  Computational resource requirements

 6G  Ultra-reliable low-latency communication,  Early developmental stage,  [44,85–90]
 Massive device connectivity,  Infrastructure deployment costs,
 Native AI integration in the network,  Spectrum allocation challenges,
 Integrated sensing capabilities  Energy consumption concerns
 Support for immersive technologies  Global standards have yet to be established,

• Smart hospital infrastructure, including interconnected medical equipment (infusion pumps, ventilators), asset tracking tags, and 
smart beds, streamlines hospital operations and improves resource management [16,97].

The primary role of IoT in healthcare is continuous, multi-modal data acquisition, enabling comprehensive remote patient mon-
itoring (RPM), early detection of anomalies, adherence tracking, and efficient clinical/hospital logistics [98–100]. By providing a 
constant stream of personalized health data, IoT directly contributes to the realization of the Industry 5.0 vision. It enhances the 
human-centric aspect by enabling personalized insights and care tailored to individual lifestyles and conditions, reducing the need 
for frequent, burdensome clinic visits. Furthermore, robust RPM capabilities bolster resilience, allowing for care continuity during 
disruptions (e.g., pandemics, mobility issues), and contribute to sustainability by minimizing patient and clinician travel [101–103].

However, no single radio technology can satisfy the full spectrum of HealthCare 5.0 requirements. Instead, a heterogeneous 
connectivity fabric covering body links, room networks, campus-scale meshes, and global backhaul is essential. Table 3 summarizes 
the leading short- and long-range wireless technologies and their representative healthcare use cases [104–120].

2.2.  AI in healthcare: Extracting intelligence for action

The vast amount of data generated by IoT and other sources (EHRs, imaging) requires advanced analytical tools to become 
clinically meaningful. Artificial Intelligence (AI), particularly its subfields, provides these capabilities:

• Machine Learning (ML) and Deep Learning (DL) like algorithms capable of learning patterns from data are used for disease 
prediction, diagnostic image analysis (radiology, pathology), risk stratification, and identifying subtle changes indicative of health 
deterioration [79,121,122].

• Natural Language Processing (NLP) and Large Language Models (LLMs) enable advanced analysis of unstructured clinical notes, 
extraction of information from medical literature, and development of healthcare chatbots or voice assistants. Recent LLMs, 
such as Med-PaLM 2 and Llama-3-Meditron, have further expanded these capabilities by supporting multi-day EHR summariza-
tion, instruction-tuned clinical reasoning, and multilingual applications for low-resource healthcare systems [123–125]. These 
advancements are discussed in detail in Section 4.

• Computer vision powers the analysis of medical images, observation of patient movement, and robotic assistance in procedures 
[126–129].

The role of AI is to transform raw data into actionable intelligence (see Fig. 5). This includes supporting clinical decision-making, 
accelerating drug discovery and development, automating repetitive tasks (e.g., preliminary image screening), personalizing treatment 
plans based on individual patient profiles, and predicting potential outbreaks or resource needs [130–132]. From an Industry 5.0 
perspective, AI significantly enhances human-centricity not by replacing clinicians, but by augmenting their capabilities, reducing 
diagnostic errors, and freeing up time for complex patient interaction [17,133,134]. AI-driven predictive maintenance of medical 
equipment, combined with optimized scheduling, contributes to operational efficiency and sustainability. By enabling faster analysis 
of population health data, AI also improves the resilience of health systems in responding to public health crises [135].

2.3.  6G for healthcare: The ultra-connected nervous system

While 5G provides significant advancements, the full realization of truly immersive, real-time, and massively connected healthcare 
applications hinges on the anticipated capabilities of Sixth-Generation (6G) wireless communication [97,113,136–139]. Key expected 
features relevant to healthcare include:

• Extreme Performance refers to the unprecedented capabilities of 6G networks, potentially reaching terabits per second in peak 
data rates, microseconds in latency, and supporting millions of connected devices per square kilometer [140–142].
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Table 3 
Comparison of Wireless Communication Technologies for HealthCare 5.0. Abbreviations: BLE = Bluetooth Low Energy; NFC = Near Field 
Communication; UWB = Ultra-Wideband; Li-Fi = Light Fidelity; LoRaWAN = Long Range Wide Area Network; NB-IoT = Narrowband Internet 
of Things; LTE-M = LTE for Machines; 5G NR = Fifth Generation New Radio; THz = Terahertz; LEO = Low Earth Orbit; SL = Security Level; 
DC = Deployment Cost.
Technology Range Data Rate Latency Use Cases Pros Cons SL DC

 Short-Range Technologies
Bluetooth / 
BLE

Up to 10-100m 1-3Mbps Medium Wearables (ECG, glu-
cose), insulin-pump 
control, smart inhalers

Easy integration, 
ubiquity

Range Medium Low

Bluetooth LE 
Audio

Up to 50m 1-2Mbps Low Hearing aids, audio guid-
ance in rehab, patient no-
tifications

Broadcast audio, 
low power

Limited sup-
port

Medium Low

Matter (over 
Thread)

Up to 100m 250 kbps Medium Smart bed occupancy, en-
vironmental sensors, as-
set tracking

Interoperability, 
secure commis-
sioning

New ecosys-
tem

High Medium

Wi-Fi 7 
(802.11be)

Up to 100m 30-50Gbps Very 
low

AR/VR therapy, remote 
diagnostics,high-def 
video consults

Ultra-high 
throughput

Power hun-
gry, cost

High High

Zigbee (IEEE 
802.15.4)

Up to 10-100m 250 kbps Medium Infusion pump coor-
dination,smart light-
ing, nurse-call paging

Mesh network-
ing

Low data 
rate

Medium Low

NFC Up to 10 cm 424 kbps Very 
low

Patient ID wristbands, se-
cure drug authentication, 
device pairing

Secure, instant Very short 
range

Very 
high

Very 
low

UWB Up to 50m Tens of 
Mbps

Low Fall detection, RTLS for 
equipment, staff localiza-
tion

Centimeter-scale 
accuracy

Cost, device 
availability

High Medium

Li-Fi Room-scale 100Mbps-
Gbps

Low EM-safe data streams 
in MRI, sterile OR data 
links, indoor nav

RF-free, secure Line-of-
sight depen-
dence

High Medium

 Long-Range Technologies
LoRaWAN Up to 10-15 km 0.3-50 kbps High Rural patient moni-

toring, environmental 
sensors, asset geo-fencing

Deep coverage Not real-
time

Low Low

NB-IoT Up to several km 250 kbps Medium In-building vitals patch, 
wearable geofenc-
ing, smart lockers

Indoor penetra-
tion

Mobility 
limits

High Medium

LTE-M Up to several km 1Mbps Low Ambulance video, mobile 
imaging, tele-EMS coor-
dination

Mobility support Cellular de-
pendency

High High

5G NR Up to several km Up to 
10Gbps

Ultra-
low

Remote surgery, digital 
twin monitoring,massive 
IoT hubs

Network slicing, 
QoS

Infrastruc-
ture cost

Very 
high

Very 
high

6G THz 
(emerging)

Up to 1 km 100Gbps-
Tbps

Sub-ms Holographic telehealth, 
AI-driven imaging back-
haul

Ultra-high rate Immature Very 
high

Very 
high

Satellite 
(LEO)

Global 100 kbps-
Mbps

High Telepsychiatry, disaster-
zone triage, border-clinic 
links

True global cov-
erage

Latency, 
cost

Medium Very 
high

Sigfox Up to 30-50 km 100bps High Emergency alerts, sparse 
vitals logging, fall alarms

Ultra-battery life Very low 
rate

Low Low

• Native AI Integration involves embedding artificial intelligence and machine learning (AI/ML) within the network core and air 
interface to enable intelligent resource allocation, autonomous optimization, and improved service quality [143,144].

• Integrated Sensing and Communication (ISAC) describes the ability of 6G networks to use communication signals for high-
resolution sensing tasks such as localization, imaging, and activity recognition without requiring dedicated sensors [145–151].

• Holographic Communication and Extended Reality (XR) represent the next generation of immersive technologies, enabling ultra-
realistic remote consultations, advanced medical training, and real-time surgical planning or assistance through high-fidelity 
holographic and XR experiences [152–154].

• Enhanced Reliability and Security highlight the evolution of ultra-reliable low-latency communications (URLLC) and new security 
mechanisms to safeguard mission-critical healthcare services and sensitive patient data in 6G-enabled environments [155–157].

• Terahertz (THz)-band Diagnostics introduce novel possibilities for non-invasive biomedical imaging and sensing, exploiting 6G’s 
THz spectrum to enable early disease detection and high-resolution physiological monitoring [158,159].

The anticipated role of 6G is to serve as the near-instantaneous, ultra-reliable communication fabric connecting patients, clin-
icians, AI algorithms, and massive numbers of IoT devices seamlessly [160–162]. It will enable applications currently infeasible, 
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Fig. 5. Hierarchical schematic illustrating the progressive translation of heterogeneous healthcare data sources into clinically actionable intelligence.

such as widespread real-time robotic telesurgery, high-fidelity holographic consultations feeling truly "present," hyper-personalized 
preventative care based on massive real-time data streams, and city-wide health monitoring using ISAC [163]. In addition, features 
such as ISAC-driven contactless monitoring and THz diagnostics extend healthcare capabilities beyond connectivity, creating entirely 
new diagnostic and therapeutic modalities. In Industry 5.0, 6G is a key enabler for human-centricity through immersive interac-
tion and equitable access to remote expertise [164–168]. Its inherent design for massive connectivity and AI-driven optimization 
supports sustainability in large-scale deployments. Most critically, its focus on ultra-reliability and potential integration with sensing 
creates a foundation for a highly resilient healthcare infrastructure capable of supporting critical services ubiquitously and adaptively 
[169–172].

These three pillars of IoT, providing the data, AI providing the intelligence, and 6G providing the connectivity, form the techno-
logical foundation upon which the next generation of healthcare, guided by Industry 5.0 principles, can be built. Their true power, 
however, emerges from their synergistic integration, which is explored in the next section.

3.  Synergistic integration: IoT, AI, and 6G for industry 5.0 healthcare

While IoT, AI, and 6G each offer significant advancements, their true transformative power for healthcare emerges from their syn-
ergistic integration. This convergence creates a powerful ecosystem that drives the human-centric, sustainable, and resilient healthcare 
vision aligned with Industry 5.0. This section explores this synergy, its alignment with Industry 5.0 principles, and highlights key 
enabling applications.

3.1.  The convergence framework: Data, connectivity, and intelligence

The integration is modeled as a four-stage sense-transmit-reason-act paradigm that connects data collection with clinical action. 
The core of the synergy lies in a continuous, dynamic feedback loop encompassing data generation, transmission, analysis, and action:

• IoT Data Generation (Sense): A diverse array of IoT sensors (wearables, ambient, in-hospital) continuously generates massive vol-
umes of heterogeneous health and contextual data, providing an unprecedented real-time view of patient status and environment 
[173–176].

• 6G Data Transmission (Transmit): The anticipated capabilities of 6G provide the essential communication fabric. Its ultra-high 
bandwidth, massive connectivity, and ultra-reliable low latency ensure that data from potentially millions of IoT devices can be 
transmitted efficiently and reliably, even for mission-critical applications that require near-instantaneous responses. 6G’s native 
AI integration can further optimize data routing and prioritization for healthcare traffic [177–180].

• AI Data Analysis (Reason): AI algorithms, operating potentially at the network edge (enabled by 6G’s distributed intelligence) 
or in the cloud, process the incoming data streams. They perform tasks ranging from anomaly detection, predictive diagnostics, 
and risk stratification to treatment recommendation and automated system adjustments [181–183].
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• Feedback Loop (Act): The insights and decisions generated by AI can then be used to dynamically adapt the system. This could 
involve triggering alerts, providing personalized feedback to patients via connected devices, guiding clinical interventions, or even 
adjusting the sensing parameters of IoT devices, creating a closed-loop system for optimized care [184–186].

This sense, transmit, reason, act framework not only organizes the synergy conceptually but also connects directly to practical uses 
like telesurgery, ICU digital twins, and AI-driven preventive systems (Sections 4 and 5.2). It transforms fragmented data points into 
a cohesive, intelligent system capable of delivering proactive and personalized healthcare.

3.2.  Use cases and applications

The convergence of IoT, AI, and 6G unlocks numerous transformative healthcare applications. A few key examples are highlighted 
below:

• Real-time Remote Robotic Surgery. This demanding application requires high-resolution video feeds, control signals, and haptic 
feedback transmitted with minimal latency and maximum reliability. IoT sensors on surgical instruments and the patient provide 
real-time data. AI can offer guidance, tremor stabilization, and image enhancement. 6G’s URLLC and high bandwidth are critical 
to bridge the geographical gap between surgeon and patient, making complex remote procedures feasible and safe [187,188].

• AI-driven Personalized Preventive Healthcare Ecosystems: Imagine individuals with multi-modal IoT wearables continuously 
monitoring vital signs, activity, and environmental exposure. This data is transmitted seamlessly via 6G to personalized AI models 
that analyze long-term trends, predict potential health risks (e.g., cardiac events, diabetic complications), and provide actionable, 
customized coaching or alerts for preemptive intervention, often via connected devices or telehealth facilitated by 6G [79,189–
191].

• Intelligent/Smart Hospitals: IoT sensors track patients, staff, assets (e.g., infusion pumps), and real-time environmental con-
ditions within hospital walls. This data flows over a reliable internal network (potentially private 5G/6G) to AI platforms that 
optimize patient flow, predict staffing needs, manage inventory automatically, enhance diagnostic workflows (e.g., prioritizing 
radiology reads), and improve overall operational efficiency and patient safety [72,192,193].

• Advanced Self-Optimizing Hospital Applications: Building upon the intelligent hospital concept, four novel applications are 
identified that demonstrate significant operational efficiency and sustainability improvements:
(a) Predictive Resource Orchestration Systems: AI algorithms analyzing real-time IoT sensor data (patient flow, equipment uti-

lization, environmental conditions) transmitted via 6G networks can predict resource bottlenecks 2–4 hours in advance [194]. 
For example, when ICU occupancy sensors and patient monitoring data show a possible bed shortage, the system coordinates 
with discharge planning, ambulatory services, and supply chain management to improve patient flow while ensuring quality 
care [194].

(b) Intelligent Maintenance and Asset Optimization: Utilizing IoT sensor networks in conjunction with AI-driven predictive 
maintenance can prevent equipment failures before they occur [195]. Digital twins of essential medical equipment, such as MRI 
machines, ventilators, and surgical robots, continuously track performance metrics and forecast maintenance needs [196,197]. 

(c) Automated Infection Control and Environmental Safety: Real-time air quality monitoring, surface contamination detection, 
and human movement tracking through IoT sensors can enable dynamic infection control protocols. AI systems can automati-
cally adjust ventilation patterns, trigger cleaning protocols, and even modify patient placement strategies to minimize infection 
transmission risks while optimizing resource utilization [198].

• Holographic Telemedicine and Training: To address scalability and sub-millisecond latency requirements, it is important to note 
that widespread use depends on a system-level design that includes 6G network slicing for URLLC priority, AI-driven lightweight 3D 
compression, and ISAC for environmental sensing, and 6G alone is not enough [199,200]. Initial deployments (e.g., inter-hospital 
consults) will operate with low single-digit millisecond latency, with sub-millisecond latency as a long-term target, supported by 
native AI optimization and edge rendering. This is consistent with our 5G telesurgery case study (Section 6.2), which achieved 12ms 
latency, suggesting sub-ms is aspirational for consumer-grade systems in the near term [201,202]. Leveraging 6G’s high bandwidth 
and low latency, combined with advanced AI for rendering and interaction, clinicians could consult with patients or specialists 
via realistic holographic projections, enhancing diagnostic accuracy and empathy in remote settings. Similar technology could 
provide immersive, interactive training for medical professionals, overlaying AI-generated insights onto holographic anatomical 
models fed by real-time IoT data if applicable [203,204].

These examples illustrate how the combination of ubiquitous sensing (IoT), intelligent analysis (AI), and seamless, high-
performance connectivity (6G) creates possibilities far exceeding the sum of their parts, paving the way for a truly transformed 
healthcare landscape aligned with Industry 5.0 values.

4.  Medical large-language models (medLLMs)

Large Language Model (LLM) research in medicine has evolved through three major waves, each marked by significant advance-
ments in model size, data diversity, and accessibility (See Figs. 6 and 7 and Table 4) . These waves reflect the rapid progress in 
applying AI to complex medical challenges. Table 5 provides an overview of the key models from each wave.

Wave 1: Domain-specific BERT derivatives (2019-2021). The first wave of medical LLMs focused on adapting existing transformer 
models, such as BERT, to biomedical tasks. Early biomedical transformer models such as BioBERT [221] and ClinicalBERT [220] 
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Table 4 
Overview of recent domain-specific large language models for biomedical and clinical tasks from 2019 to 2025.
Model Name Key Features Primary Use 

Case
Base Model Year Access Parameters

Med-PaLM 2 
[205,206]

High accuracy on medical exams (MedQA), summa-
rizes info, generates clinical text.

Clinical QA 
and Summariza-
tion

PaLM 2 2023 Closed 70B

AMIE [207] Engages in diagnostic dialogue; shown to exceed 
PCP accuracy in a study.

Diagnostic Dia-
logue

Gemini 2024 Closed Undisclosed

Gemini 
(MedLM) 
[208]

Family of models fine-tuned for healthcare, includ-
ing summarization and insights from unstructured 
data.

General Clinical 
Tasks

Gemini 2023 Closed Undisclosed

Med-PaLM 
M [209]

Multimodal; integrates and interprets text, imaging 
(X-rays), and genomics.

Multimodal 
Analysis

PaLM-E 2023 Closed Undisclosed

Med42 
[210–212]

High-performing on medical benchmarks, designed 
for clinical reasoning.

Clinical Reason-
ing

MPT 2023 Open 
(for non-
commercial)

70B

BioMis-
tral[213,
214]

Further pre-trained on PubMed Central; strong per-
formance on biomedical benchmarks.

Biomedical QA 
and Research

Mistral 2024 Open 7B

MedGemma 
[215]

Further pre-trained and instruction-tuned for gen-
eral medical tasks.

Medical QA 
& Text Process-
ing

Gemma 2025 Open 7B

GatorTron 
[216]

Trained on 82B+ words of clinical notes and 
biomedical text for concept extraction.

Clinical NLP De-
identification

BERT 2021 Open 345M - 5B

BioGPT 
[217]

Generative model for biomedical text generation 
and literature mining.

Text Generation 
Mining

GPT-2 2022 Open 1.5B

PubMed-
BERT [218]

BERT model pre-trained from scratch on PubMed 
abstracts and full-text articles.

Biomedical Text 
Mining

BERT 2021 Open 340M

ClinicalT5 
[219]

Encoder-decoder model for clinical text summariza-
tion and NLI tasks on MIMIC data.

Clinical Summa-
rization NLI

T5 2022 Open (Cre-
dentialed)

220M - 
770M

Clinical-
BERT [220]

Pre-trained on MIMIC-III clinical notes for tasks like 
patient outcome prediction.

Clinical Predic-
tion

BERT 2019 Open 110M

BioBERT 
[221]

Pre-trained on large-scale biomedical corpora 
(PubMed) for NER and relation extraction.

Biomedical NER BERT 2019 Open 340M

PMC-LLaMA 
[222]

Instruction-tuned LLaMA for medicine, using 4.8M 
biomedical academic papers.

Medical Instruc-
tion Following

LLaMA 2023 Open 13B

ChatDoctor 
[223]

LLaMA fine-tuned on real doctor-patient conversa-
tions from an online

medical 
consultation 
platform.

Medical Chat/Consultation LLaMA 2023 Open 7B

MedAlpaca 
[224]

Instruction-following model fine-tuned on a high-
quality medical conversational dataset.

Medical QA LLaMA 2023 Open 7B, 13B

HuatuoGPT-
II [225]

Advanced model trained on a massive Chinese med-
ical knowledge graph and dialogues.

Chinese Medical 
Consultation

Baichuan 2024 Open 13B

EHRAgent 
[226]

LLM agent that autonomously generates and exe-
cutes code to query and analyze EHRs.

EHR Tabular 
Reasoning

GPT-4 2024 Research Undisclosed

EHRMamba 
[227]

A Mamba-based foundation model for EHRs that 
handles very long patient sequences efficiently.

EHR Forecasting 
Analysis

Mamba 2024 Open Undisclosed

BMRetriever 
[228]

Dense retriever models optimized for searching and 
retrieving biomedical information.

Biomedical 
Information 
Retrieval

T5 2024 Open 410M, 2B

DR-BERT 
[229]

Protein language model specifically trained to an-
notate intrinsically disordered regions in proteins.

Protein Structure 
Analysis

BERT 2021 Open 15M

ADAM-1 
[230]

Multi-agent framework that integrates microbiome 
and clinical data for Alzheimer’s detection.

Alzheimer’s Re-
search and De-
tection

GPT-4o 2025 (An-
nounced)

Research Undisclosed

BioAgents 
[231]

Multi-agent system using smaller, specialized LLMs 
to democratize complex bioinformatics analysis.

Bioinformatics 
Workflows

Phi-3 2025 (An-
nounced)

Research Undisclosed

CliniQ [232] Not a model, but a benchmark for evaluating EHR 
retrieval models with a focus on semantic match-
ing.

EHR Retrieval 
(Benchmark)

N/A 2025 (An-
nounced)

Open N/A

Radiology-
Llama [233]

Llama 2 fine-tuned on radiology reports or auto-
mated report generation and analysis.

Radiology Re-
port Generation

Llama 2 2023 Open 13B

PULSE 
[234]

Fine-tuned on a vast dataset of clinical notes and 
chest X-ray reports for multimodal tasks.

Multimodal Clin-
ical Analysis

Undisclosed 2023 Closed Undisclosed
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Fig. 6. Evolution of Medical Language Models (2019–2025). The timeline highlights key architectural advancements and performance milestones 
in clinical natural language processing, from early domain-specific BERT variants to contemporary large-scale generative models.

Fig. 7. Progression of medical language model capabilities across three developmental waves.

Table 5 
Evolution of purpose-built Medical LLMs (2019-2025). “Wave” corresponds to the chronology described in the text.
 Wave  Model  Year  Params  Tokens (b)  Licence  Context  Primary Benchmark  Ref.

1
 BioBERT  2020  345M  4.5  BSD-3  512  NER/RE  [221]
 ClinicalBERT  2019  110M  0.8  MIT  512  MedNLI  [220]

2
 GatorTron-Large  2022  8.9 B  82  NGC-EULA  2 048  MedNLI  [235]
 Galactica-Med  2022  6.7 B  106  CC-BY-NC  2 048  PubMedQA  [236]

3
 Med-PaLM 2  2023  70 B  8.9  Proprietary  32 k  MedQA 86.5%  [205]
 L3-Meditron-70B  2023  70 B  5.6  Apache-2.0  64 k  MedQA 88.2%†  [237,238]
 HuaTuo-II (ZH)  2024  13 B  4.7  CC-BY-4.0  32 k  MedBench 72.4%  [225]

were relatively small, with up to ≤345M parameters, small by today’s standards. However, they were groundbreaking at the time. 
By fine-tuning on specialized datasets, such as PubMed abstracts and de-identified electronic health records (EHRs), these models 
achieved significant improvements in tasks like named-entity recognition (NER) and relation extraction. This wave demonstrated that 
even modestly sized models could deliver meaningful results when tailored to the medical domain.

Wave 2: Billion-scale “clinical experts” (2021-2023). The second wave saw a leap in scale, with models exceeding one billion 
parameters. This increase unlocked new capabilities, such as zero-shot reasoning (for solving tasks without specific training) and 
chain-of-thought reasoning (for breaking down complex problems step-by-step). Models like GatorTron-Large with 8.9 billion param-
eters [235] and Galactica-Med with 6.7 billion parameters [236] achieved document-level reasoning, outperforming earlier models 
like BioBERT on benchmarks such as MedNLI by a significant margin. Despite their size, these models were optimized for efficiency, 
enabling deployment on single-GPU servers using techniques such as FP16 inference. However, most of these models were restricted 
by licensing due to the sensitive nature of their training data, such as HIPAA-protected health information.

Wave 3: Foundation-scale MedLLMs (2023-present). The third wave represents a turning point in medical AI, marked by the emer-
gence of foundation-scale models, such as Med-PaLM 2 (70 billion parameters) [205] and Llama-3-Meditron (70 billion parameters) 
[237,238]. These models introduced several transformative features:

• Context windows: These expanded from 4 096 to 64 k+ tokens, enabling summarisation of multi-day EHR episodes.
• Instruction Tuning and RLHF: These models improved their factual accuracy and relevance in clinical settings by combining 
large-scale instruction tuning with Reinforcement Learning from Human Feedback (RLHF).
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Table 6 
Representative text-only MedLLMs (snapshot: June 2025). ‡Tree-of-thought decoding.
 Model  Params  Licence  Corpus (B tokens)  Year  Key Benchmark  Score
 Med-PaLM 2  70 B  Proprietary  8.9  2025  MedQA  86.5%
 L3-Meditron-70B  70 B  Apache-2.0  5.6  2025  MedQA‡  88.2%
 GatorTron-Large  8.9 B  NGC EULA  82  2022  MedNLI  90.2% acc.
 BioGPT-Large  1.5 B  MIT  15.2  2022  PubMedQA  81.0%
 HuaTuo-XL (ZH)  13 B  CC-BY-4.0  4.7  2024  MedBench  72.4%

• Diverse Licensing: Med-PaLM 2 remains proprietary. However, open-weight models like Llama-3-Meditron (Apache-2.0) and 
HuaTuo-II (CC-BY-4.0) have enabled local fine-tuning, particularly in low-resource languages.

This wave highlights a growing divide in the field. Larger models (over 40 billion parameters), such as Med-PaLM 2, BM-Jedi, tend 
to be closed-source due to high computational costs and legal constraints. In comparison, smaller models (with 13 billion parameters or 
less), such as BioGPT-L, HuaTuo-XL, and AfroClin-13B, are often open-source, which fosters innovation in diverse settings. However, 
it is important to note that, alongside these rapid advances, MedLLMs also introduce significant risks related to hallucination, bias, 
explainability, and regulatory compliance. A detailed discussion of these challenges and their implications for clinical deployment is 
provided in Section 5.

However, while large-scale MedLLMs remain impractical for direct deployment on constrained medical devices, lightweight vari-
ants (e.g., ClinicalBERT, BioGPT, PubMedBERT) and compressed versions of larger models provide a viable path forward. By employ-
ing distillation, pruning, and edge-compatible fine-tuning, these smaller models can deliver explainability and clinical utility even 
under strict resource limitations [239–242].

Table 6 contrasts clinical-note specialists such as GatorTron with broad foundation models such as Llama-3-Meditron.

5.  Challenges and open research directions

Despite the immense potential, realizing the vision of healthcare transformed by the synergy of IoT, AI, and 6G within an Indus-
try 5.0 framework faces significant hurdles. Addressing these challenges and pursuing targeted research are critical for successful 
implementation and adoption.

5.1.  Technical challenges

Integrating these complex technologies into cohesive, reliable healthcare systems presents substantial technical difficulties:
• Integration Complexity and Standardization: Seamlessly merging diverse IoT devices, sophisticated AI algorithms, and nascent 
6G network functions is non-trivial. The lack of standardized data formats, APIs, and vendor communication protocols hinders 
interoperability and creates integration bottlenecks [243–245].

• Big Data Management: The sheer volume, velocity, variety, and veracity of data generated by massive IoT deployments pose 
significant challenges for storage, processing, real-time analysis, and ensuring data quality. Efficiently handling this data deluge, 
especially within the latency constraints of 6G, remains a key issue [246,247].

• Energy Efficiency: Powering potentially billions of IoT health sensors, many of which are wearable or implantable with limited 
battery capacity, is a major concern [248]. Furthermore, computationally intensive AI algorithms, whether run centrally or at the 
edge, require significant energy, which impacts sustainability and device longevity [249–251].

• 6G Performance Guarantees: While 6G promises extreme performance, consistently delivering guaranteed ultra-low latency (sub-
ms), high reliability (e.g., 99.9999%), and massive connectivity specifically tailored for diverse and critical healthcare applica-
tions (from routine monitoring to telesurgery) requires significant network architecture innovation and validation [179,252,253]. 
Furthermore, ensuring deterministic performance across heterogeneous healthcare environments (urban hospitals, rural clinics, 
mobile emergency units) is particularly challenging, since real-world settings are more unpredictable than lab conditions [254]. 
The lack of reference benchmarks for clinical validation also creates uncertainty in translating 6G promises into measurable patient 
outcomes. Another barrier is the interoperability of guarantees across multi-vendor infrastructures and cross-border deployments, 
as a telesurgery session or remote patient monitoring system may depend on multiple operators’ slices functioning seamlessly to-
gether [51,85,254,255]. Without uniform service-level agreements and cross-domain coordination, end-to-end reliability remains 
fragile. From a clinical standpoint, performance guarantees are not only technical promises but medico-legal commitments: if a 6G-
enabled surgery fails due to latency spikes, liability assignment between network providers, device manufacturers, and clinicians 
becomes ambiguous. This uncertainty may slow adoption until clear accountability frameworks are established [51,85,256].

• Integrated Sensing and Communication (ISAC): Employing 6G signals for sensing in healthcare offers exciting possibilities 
(e.g., contactless vital sign monitoring) but raises challenges in achieving sufficient accuracy, dealing with interference, ensuring 
privacy, and developing applications that effectively utilize this dual capability [257,258]. Moreover, ISAC raises fundamental 
questions about medical liability: if sensing data embedded within a communication channel misguides a diagnosis or therapeutic 
intervention, it is unclear whether responsibility lies with device manufacturers, network operators, or healthcare providers [51,
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85]. Addressing these medico-legal uncertainties will be critical before ISAC can move from prototypes into regulated healthcare 
practice.

• Lightweight Explainable AI (XAI) for Constrained Devices: A critical technical challenge lies in optimizing XAI methods so 
they can operate efficiently on resource-constrained healthcare devices, such as wearables, implantables, and bedside IoT sensors. 
Conventional XAI frameworks often require substantial computational overhead, limiting their applicability in these settings 
[79,259]. To address this, techniques such as model compression [259], pruning [260], and knowledge distillation [261] can 
reduce model size while maintaining interpretability. In parallel, parameter-efficient fine-tuning strategies (e.g., adapters, low-
rank factorization) allow models to be updated with minimal added memory costs [262]. Finally, edge-compatible deployment and 
federated learning ensure that explainability can be achieved locally, lowering latency and preserving patient privacy. Together, 
these approaches enable interpretable AI in environments with strict energy and memory constraints, thereby expanding the reach 
of HealthCare 5.0 into real-world clinical and home-care scenarios. 

• Risks and Challenges of MedLLMs: While MedLLMs show great potential in clinical reasoning, diagnostic conversations, and 
integrating different types of data, they also come with significant risks that need careful attention. First, these models often 
experience hallucination, which leads to the generation of fluent but incorrect or unsafe medical statements [263–265]. In crit-
ical areas like diagnosis or prescription writing, these errors could threaten patient safety if not supervised by a human [266]. 
For instance, even sophisticated models like Med-PaLM 2 have been known to suggest harmful treatment options with certain 
prompts, highlighting the need for human review. Second, the training data for MedLLMs often reflect existing biases, such as the 
underrepresentation of certain demographic groups, variations in regional health practices, or obscure diseases [266,267]. This 
can result in models that perform unevenly across different populations. Third, regulatory and ethical guidelines for validating 
and certifying MedLLMs are still developing. Currently, there is no widely accepted method to evaluate model safety, reliability, 
or accountability, leading to unresolved issues related to liability, informed consent, and compliance with privacy laws like HIPAA 
or GDPR. Without strong governance, there is a risk of these systems being used in clinical practice too early or unsafely. Finally, 
the computational and energy costs of large-scale MedLLMs limit their fair deployment [267]. Training and using models with 
billions of parameters require special infrastructure that many hospitals and research centers, especially in low-resource or rural 
areas, cannot access. This leads to a digital divide, where only well-funded institutions can use advanced MedLLM-based services, 
increasing global disparities in access to medical AI. The need for clinician oversight, bias checks, clear evaluations, and team-
work with regulators is important. Research into efficient and adaptable models is also essential to ensure fairer use in different 
healthcare settings.

5.2.  Security, privacy, and trust

The highly sensitive nature of health data, combined with hyper-connectivity, creates a complex threat landscape:
• End-to-End Security: Securing the entire data pipeline from resource-constrained IoT sensors, across 6G networks, to edge/cloud 
AI platforms and clinical interfaces against diverse cyber threats (e.g., data breaches, manipulation, denial-of-service) is paramount 
and requires holistic security frameworks [268–273]. The expanded attack surface is a major vulnerability.

• Patient Data Privacy: Protecting patient confidentiality while enabling data-driven insights is crucial. Techniques like Federated 
Learning (FL), Differential Privacy, Homomorphic Encryption, and Secure Multi-Party Computation are promising but require 
further development for efficient implementation at scale within the IoT-AI-6G ecosystem. Balancing data utility and privacy 
remains a delicate act [274–277].

• Trust in AI: For clinical adoption, both patients and healthcare professionals must trust AI-driven recommendations. This ne-
cessitates the development of explainable AI (XAI) methods that can provide transparent justifications for diagnoses or treat-
ment suggestions, especially in high-stakes situations. Overcoming the "black box" problem is essential for building confidence 
[25,278–280]. Blockchain-based Trust Frameworks: Recently, there has been a growing interest in integrating smart contracts 
and distributed ledger technologies (DLTs) into the IoT-AI-6G healthcare pipeline. The goal of this convergence is to improve data 
governance by enabling fine-grained access control policies, tamper-resistant audit trails, and immutable provenance tracking 
[245,281–283]. For instance, blockchain-based secure data architectures have been proposed wherein patient-generated physi-
ological measurements are cryptographically anchored into a decentralized ledger prior to their transmission via 6G networks. 
Such an approach ensures end-to-end data integrity and non-repudiation, critical for high-stakes clinical decision-making. In ad-
dition to anchoring raw measurements, smart contract-driven consent management enables dynamic provenance tracking across 
multiple stakeholders, ensuring that every access request and modification is logged transparently for auditability. Furthermore, 
decentralized edge computing paradigms such as Bedge-health [65,284–286] illustrate how lightweight consensus mechanisms 
can be adapted for resource-constrained Fog/edge nodes. These architectures facilitate real-time ingestion and logging of sen-
sor data streams while maintaining secure aggregation protocols that minimize computational burden on low-power medical 
devices. Despite these advancements, integrating such blockchain frameworks with established Fog computing platforms like Fog-
Bus [287,288] presents a significant area of ongoing research. To illustrate in a simulation environment, integration with FogBus 
allows provenance records to be automatically synchronized between IoT devices and hospital servers, providing clinicians with 
verifiable assurance of data lineage during diagnosis and treatment.
In this context, several critical challenges remain unresolved. Paramount among them are the optimization of consensus algorithms 

to support sub-second response times required in time-sensitive healthcare applications, the mitigation of energy and processing 
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Fig. 8. Healthcare IoT-AI-6G ecosystem threat landscape.

overheads at the network edge, and the development of interoperable interfaces between blockchain layers and smart contract-driven 
consent management systems [289]. Addressing these issues is essential to realizing scalable, secure, and efficient next-generation 
healthcare infrastructures.

5.3.  Ethical and societal considerations

Beyond technical and security issues, broader societal implications must be addressed (see Fig. 8):

• Algorithmic Bias: AI models trained on biased data can perpetuate or even amplify existing health disparities related to race, 
gender, or socioeconomic status. Ensuring fairness, equity, and rigorous bias auditing in healthcare AI is an ongoing ethical 
imperative [290,291].

• Digital Divide and Access: Unequal access to enabling technologies (smart devices, reliable high-speed internet like 6G) could 
exacerbate health inequities, creating a divide between those who benefit from advanced digital health and those who do not 
[72,292]. Ensuring equitable deployment and affordability is crucial. In the near term, 6G rollouts are likely to favor urban, 
high-income regions due to cost and infrastructure density, potentially excluding rural and resource-constrained areas [293]. 
This may lead to a two-tier healthcare system, where only certain populations gain access to immersive telemedicine, digital 
twins, or ultra-reliable telesurgery [256,294]. Policy measures will therefore be required to ensure inclusivity. In this regard, 
blockchain-based provenance frameworks could support fairness by offering decentralized consent management, allowing under-
served populations to retain control over their health data while still participating in collaborative healthcare networks [295]. 
This provides a governance mechanism that complements infrastructure investments.

• Impact on Healthcare Workforce: Integrating AI and automation will inevitably change the roles and required skills of healthcare 
professionals [296,297]. Proactive strategies for workforce training, adaptation, and addressing concerns about job displacement 
are needed to ensure a smooth transition that focuses on human-AI collaboration [17,296–298].

• Regulatory and Approval Processes: Current regulatory frameworks (e.g., for medical devices, data privacy) often lag behind 
the rapid pace of technological development, particularly for complex systems combining IoT, AI, and advanced communications. 
Clearer, agile regulatory pathways are needed to validate the safety and efficacy of these integrated solutions [298]. At present, 
no clinical-grade certification process exists for 6G-enabled end-to-end healthcare workflows (e.g., a telesurgery operation that 
integrates IoT sensors, AI guidance, and URLLC communication). Without a pathway for multi-stakeholder approval (clinicians, 
telecom operators, device manufacturers, and regulators), adoption will remain fragmented and confined to pilot studies [294].
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Table 7 
End-to-end network KPIs for representative cellular generations in healthcare scenarios.
 Generation  Example 3GPP Release/Profile  Latency (ms)  Reliability  Peak Throughput (Gbps)  Healthcare Use-cases
 4G LTE-A  Rel-14 eMTC (Cat-M1)  30-70  99%  0.3  Remote patient monitoring, mHealth apps[311]
 5G NR URLLC  Rel-17 SA slice < 1  99.999%  10  Robotic telesurgery, AR guidance[115]
 6G (target)  IMT-2030/Rel-20+  0.05-0.1  99.999999% ≥ 100  Haptic internet, clinical digital twins[312,313]

Table 8 
Energy-efficiency outlook for cellular generations (vs. 4G baseline).
 Generation  Energy/bit  RAN Power-saving Features  Notes  Sources
 4G LTE  100%  Carrier shut-down, C-DRX  Baseline  –
 5G NR ↓ 90%  Massive-MIMO deep-sleep, AI RAN metering  Commercial demos  [320]
 6G (proj.) ↓ 99%  Cell-free mMIMO, RIS joint comm-compute  ITU-R study cycle  [319]

5.4.  Open research directions

Addressing the challenges requires focused research efforts, particularly at the intersection of these technologies:

• Healthcare-Optimized 6G Architectures: How can 6G network slicing, edge computing, and AI-native capabilities be specifically 
designed and optimized to meet the diverse QoS requirements (latency, reliability, bandwidth, connection density) of concurrent 
healthcare applications? [180,271,299]. This includes designing slice-level safety certification for mission-critical services like 
holographic telemedicine, where deterministic performance must be guaranteed end-to-end across multi-vendor infrastructure.

• Lightweight, Secure, and Explainable Edge AI: Developing energy-efficient, robust AI/ML models capable of running securely 
on resource-constrained health IoT devices, while also providing explainability for critical health inferences [277,300–304].

• Trustworthy Human-AI Collaboration Frameworks: Creating verifiable methods and interfaces that foster effective and trusted 
collaboration between clinicians and AI systems in complex diagnostic and therapeutic scenarios within the Industry 5.0 paradigm 
[303,305,306].

• Energy-Autonomous Health Monitoring: Research into ultra-low-power IoT communication protocols (possibly leveraging 6G 
features) and energy harvesting techniques to enable long-term, unobtrusive, "deploy-and-forget" health sensors [307,308].

• Novel Health Applications of 6G Features: Exploring and validating new diagnostic or therapeutic possibilities unlocked by 
unique 6G capabilities like Terahertz imaging/spectroscopy for non-invasive sensing or advanced ISAC for fine-grained activity 
recognition and vital sign monitoring [165,166,309].

• Privacy-Preserving Distributed Learning at Scale: Advancing scalable and efficient FL or other distributed privacy techniques 
that work effectively over 6G networks with heterogeneous IoT data sources for collaborative health intelligence without com-
promising patient confidentiality [276,277,310].

Targeted research in these areas is crucial to overcoming the identified barriers and unlocking the full potential of this technological 
synergy for a future human-centric, sustainable, and resilient healthcare system.

6.  Empirical evidence and standards

6.1.  Quantitative performance comparison

Table 7 contrasts the headline network-centric KPIs end-to-end latency, reliability, and peak user throughput across 4G LTE, 5G 
NR, and the projected 6G IMT-2030 targets. Two observations stand out: (i) the three-orders-of-magnitude reliability increase from 
4G (99 %) to 6G (“six nines”) is even more dramatic than the latency improvement, underscoring the centrality of ultra-reliability for 
mission-critical tele-interventions, (ii) peak throughput, while impressive, is not the primary bottleneck for most health workloads, 
which are dominated by small haptic control packets rather than high-rate video streams [115,311–315].

To complement the network view, Table 8 summarises the energy-per-bit trajectory and the RAN power-saving mechanisms that 
enable it. The 90 % reduction already demonstrated in commercial 5G deployments provides an empirical baseline for the more 
aspirational 99 % target now being discussed in Hexa-X II white papers [316–319]. Finally, the bibliometric snapshot in Table 9 
reveals a steep rise in peer-reviewed 5G healthcare publications between 2018 and 2024, alongside a non-trivial increase in registered 
Phase I/II clinical trials [115,311,315]. The data confirm that the technology moves beyond concept demonstrations toward regulated 
clinical evaluation.

6.2.  Case studies

Two representative deployments were examined to ground the KPI analysis in operational reality.
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Table 9 
Bibliometric trend for "5G AND healthcare" (PubMed query, April 2025).
 Year  Publications  Phase I/II Trials  Notable milestones
 2018  7  0  Concept papers dominate
 2021  42  4  First human-in-the-loop 5G telesurgery
 2024  118  13  Multi-site AI-assisted remote ultrasound trials

Table 10 
Layered mapping of interoperability, safety, and security standards relevant to IoT-AI-6G healthcare.
Stack layer Interoperability Safety / Quality Security & Privacy Governing bodies Key gaps
Device IEEE 11073-1070x; HL7 FHIR R5 IEC 60601-1; IEC 

80601-2-77
NIST 800-53 
IoT; ISO/IEC 27,001

IEEE, ISO, HL7 Wearable AI sensor con-
formity

Network 3GPP Rel-18/19 URLLC; IETF Det-
Net; ETSI MEC 016

ITU-T Y.3107 QoS 3GPP SA3 33.531 3GPP, IETF, ETSI Slice-level safety certifi-
cation

Edge / Cloud ISO/IEC 23,894 AI risk; ETSI MEC 
IEG

IEC 62304-Amd2 
(SaMD)

CSA STAR; PCI DSS 
4.0

ISO, IEC, CSA Harmonised edge-AI life-
cycle

Data and AI svc. ISO/IEC 5338; IMDRF SaMD N41; 
EU AI Act (HR)

AMA Digital Health GDPR; 
HIPAA; ISO/IEC 
27,701

EC, FDA, IEEE Global AI conformity 
reciprocity

Human Factors IEC 62366-1; ISO 9241-210; WHO 
Ethics 2023

– – IEC, WHO Integration in agile dev 
cycles

Case Study 1 – 5G-enabled Robotic Telesurgery [321,322]. As detailed in the narrative that precedes Table 7, a surgeon located in 
New York performed four laparoscopic tasks on a porcine model in Barcelona through a standalone 5G URLLC slice with a median 
round-trip latency of 12 ms and zero packet loss [321]. This latency is an order of magnitude lower than that reported in the earliest 
4G tele-operation pilots [323], and well within the 20-ms upper bound identified by the Society of American Gastrointestinal and 
Endoscopic Surgeons (SAGES).

Case Study 2 – Neuro-ICU Digital Twin [292,324,325]. The University of Florida’s real-time digital twin ingests data from over 400 
heterogeneous IoT sensors over a private 5G band-n77 RAN. Early results show an AUROC of 0.91 for sepsis prediction 3h in advance 
and an 18% reduction in nurse walking distance, evidence that edge-resident graph neural networks can translate network KPIs into 
measurable clinical outcomes.

These examples illustrate that the leap from 5G to 6G is not merely about faster radio links, but about enabling system-level 
co-design, where network slicing, edge AI, and clinical workflows are jointly optimized.

6.3.  Standards and regulatory ecosystem

Table 10 maps the multi-layered standards landscape from the physical device tier to human-factor governance. Three insights 
emerge:

1. Convergence, not silos: 3GPP Rel-18 URLLC specifications reference security artefacts from ISO/IEC 27,001 and risk-management 
processes from IEC 62304, signalling increasing cross-forum alignment [326–328]. At the data layer, HL7 FHIR [329] has emerged 
as the primary cross-platform healthcare data exchange standard, complemented by semantic ontologies such as SNOMED CT and 
LOINC for clinical reasoning. At the network layer, 3GPP 6G proposals, IETF Deterministic Networking [330,331], and IEEE 802.1 
TSN [332] provide interoperability foundations for mission-critical latency and reliability. At the application layer, openEHR and 
IMDRF SaMD frameworks ensure clinical interpretability, while security and privacy are underpinned by ISO/IEC 27,001 and 
ETSI ISG PDL for distributed ledger interoperability.

2. Edge-AI regulatory vacuum: While FDA’s “Good Machine Learning Practice” guidance addresses software as a medical device 
(SaMD) in the cloud, no equivalent framework yet covers deterministic execution on on-premise MEC nodes [333–335]. This 
gap shows the need for harmonized AI lifecycle standards (e.g., ISO/IEC 23894, ISO/IEC 5338) that explicitly account for edge 
deployment scenarios in healthcare.

3. Slice-level safety certification: Existing safety standards (e.g., IEC 60601-1) apply to individual devices, whereas a URLLC slice 
supporting telesurgery constitutes a system-of-systems. The lack of a certification pathway here is poised to become a primary 
bottleneck for the large-scale adoption of 6G in clinical settings. This limitation becomes more significant because traditional 
device-level certification does not consider the changing behavior of network slices. Their reliability can vary based on load and 
context. Therefore, it is crucial to create a new type of system-level safety certification that covers devices, AI algorithms, and 
network layers. Clinicians and hospitals need this certification to trust the 6G infrastructure for life-critical interventions.

Finally, it is important to point out that while current standards offer strong foundations for interoperability, further integration 
between healthcare-specific frameworks, such as HL7 FHIR and openEHR, and new 6G network functions, like the Network Data 
Analytics Function in the 6G core, remains a significant challenge.
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By situating earlier KPI and case-study findings within this standards matrix, practitioners are provided with a navigational chart 
that links technological capability to compliance obligations and, crucially, to the open gaps that motivate the research agenda laid 
out in Section 5.

7.  Conclusion

This study outlines the first comprehensive roadmap for HealthCare 5.0 by combining the latest advancements in IoT, AI, and 6G. 
The integration of these technologies has the potential to transform remote monitoring, predictive analytics, autonomous diagnostics, 
and personalized treatment planning. The study highlights the need for teamwork across different fields, data privacy, and clear AI 
to build trust and encourage use in clinical settings. It also points out four research areas that must be explored to unlock the full 
potential of HealthCare 5.0: (i) health-optimized 6G RAN designs with slice-level safety certification, (ii) lightweight, clear edge-AI 
for real-time decision support, (iii) privacy-preserving federated learning on a global 6G scale, and (iv) energy-autonomous sensing to 
maintain constant monitoring without needing battery changes. By tackling these issues, HealthCare 5.0 aims to provide sustainable, 
efficient, and patient-centered care systems in line with Industry 5.0 principles.
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