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Abstract Large-scale MapReduce clusters that routinely process big data bring chal-
lenges to the cloud computing. One of the key challenges is to reduce the response
time of these MapReduce clusters by minimizing their makespans. It is observed that
the order in which these jobs are executed can have a significant impact on their overall
makespans and resource utilization. In this work, we consider a scheduling model for
multiple MapReduce jobs. The goal is to design a job scheduler that minimizes the
makespan of such a set of MapReduce jobs. We exploit classical Johnson model and
propose a novel framework HScheduler, which combines features of both classical
Johnson’s algorithm and MapReduce to minimize the makespan for both offline and
online jobs. Our Offline HScheduler reaches the theoretical lower bound (optimum)
and Online HScheduler is 2-competitive which is the best-known constant ratio for
minimizing the makespan. Through extensive real data tests, we find that HSched-
uler has better performance than the best-known approach by 10.6-11.7 % on average
for offline scheduling and 8—10 % on average for online scheduling. The HScheduler
can be applied to improve responsive time, throughput and energy efficiency in cloud
computing.
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1 Introduction

With the rapid increase in size and number of jobs that are being processed in the
MapReduce framework, efficiently scheduling multiple jobs under this framework is
becoming increasingly important. Job scheduling in MapReduce framework brings
a new challenge to Cloud computing [1] such as minimizing the makespan, load
balancing and reducing data skew. Originally, Hadoop was designed for periodically
running large batch workloads with a First-In-First-Out (FIFO) scheduler. As the
number of users sharing the same MapReduce cluster increased, there are Capacity
scheduler [2] and Hadoop Fair Scheduler (HFS) [3] which intend to support more
efficient cluster sharing. There are also a few research prototypes of Hadoop schedulers
that aim to optimize explicitly some given scheduling metrics, e.g., FLEX [4], ARIA
[5]. A MapReduce simulator called SimMR [6] is also developed to simulate different
workloads and performances of MapReduce. Yao et al. [7] proposed a scheme which
uses slot ratio between Map and Reduce tasks as a tunable knob for dynamically
allocating slots. However, as pointed out in [1], the existing schedulers do not provide
a support for minimizing the makespan for a set of jobs.

Starfish project [8] proposes a workflow-aware scheduler that correlates data (block)
placement with task scheduling to optimize the workflow completion time. Moseley
et al. [9] formulate MapReduce scheduling as a generalized version of the classical
two-stage flexible flow-shop problem with identical machines; they provide a 12-
approximation algorithm for the offline problem of minimizing the total flow time,
which is the sum of the time between the arrival and the completion of each job. Zhu et
al. [7] consider non-preemptive case to propose %-approximation for offline schedul-
ing regarding the makespan. In [1,10], the authors propose heuristics to minimize the
makespan, the proposed algorithm called BalancedPools by considering two pools for
a Hadoop cluster. This work is closely related to our research in that both are based on
Johnson’s model and minimizing the makespan. However, our present work modifies
Johnson model and provides optimal solution to offline scheduling and 2-competitive
solution to online scheduling while Verma et al. [10] did not modify Johnson’s model
and provided separating pools (called BalancedPools) for minimizing the makespan.
BalancedPools is a heuristic approach but not optimal in many cases, and there is
still room for improving the performance of MapReduce regarding minimizing the
makespan.

As for online scheduling, Zheng et al. [11] propose a new analytical technique for
MapReduce schedulers by minimizing the total flow time of online jobs and claim
that no online algorithm can achieve a constant competitive ratio for non-preemptive
tasks, and provide a slightly weaker metric of performance called the efficiency ratio
for evaluation.

In summary, there are only a small number of online scheduling algorithms in open
literature and still much room for improving the performance of MapReduce regard-
ing minimizing the makespan. Therefore, we propose new modeling and scheduling
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approaches for both offline and online jobs in the following sections. The major con-
tributions of this paper include:

(1) provided a new modeling and scheduling approach for multiple MapReduce jobs;

(2) proposed an optimal algorithm for offline scheduling considering Map and Reduce
phases by adapting classical Johnson’s model,

(3) the proposed online scheduling is 2-competitive, which is the best-known approx-
imation for online scheduling of multiple MapReduce jobs regarding minimizing
the makespan.

(4) validating both offline and online algorithms through real-data tests and simula-
tion.

2 Problem formulation

A MapReduce performance model is introduced in [1,5,10]. The model can be used
for predicting the completion time of the Map and Reduce stages as a function of the
input dataset size and allocated resources. In this paper, we consider Map and Reduce
two stages where Map stage includes time for job set-up, splitting, mapping to pro-
duce (key, value) pairs and Reduce stage includes time for combining, sorting, shuffle,
generating final outputs. Same as in [1], we define the job execution time as the sum of
the complementary, non-overlapping map and reduce stage execution times, i.e., we
represent the duration of the first shuffle using a fraction of its non-overlapping time
with the duration of the map stage. So that for each job, its Map stage and Reduce
stage are not overlapped.

Definition 1 MapReduce slots. Depending on the configuration of a Hadoop cluster,
each node in the cluster can proceed P,®* map and P/™** reduce tasks simultaneously.
This Hadoop cluster is called having P"®* x P™® MapReduce slots.

Definition 2 Execution waves. If the required number of MapReduce slots of a task
is greater than the number of MapReduce slots available in the cluster, the task assign-
ment proceeds in multiple rounds, each round is called an execution wave.

Definition 3 The makespan of a set of MapReduce jobs is the total time length (the
difference) between the end-time of the last scheduled MapReduce job and the start-
time of the first scheduled MapReduce job. We denote the makespan as Cpyax.-

Figure 1 shows an example executed in two waves of 20 x 20 MapReduce slots.
Consider a job thatis represented as a set of n tasks processed in Hadoop environments.
Each MapReduce job consists of a specified number of map and reduce tasks. The job
execution time and specifications of the execution depend on the amount of resources
(map and reduce slots) allocated to the job. A simple abstraction is adopted [1], where
each MapReduce job j; is defined by durations of its Map and Reduce stages m; and
ri, respectively, i.e., j; = (m;, r;). Let us consider the execution of two independent
MapReduce jobs ji and j» in a Hadoop cluster with an FIFO scheduler. There are no
data dependencies between these jobs. Therefore, once the first job completes its Map
stage and begins Reduce stage processing, the next job can start its map stage execution
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Fig. 1 An execution example of Terasort [12] in a 20 x 20 MapReduce slots

with the released map resources in a pipelined fashion. There may be an “overlap” in
executions of map stage of the next job and the reduce stage of the previous one.

We further consider the following problem. Let J = {ji, j2, ..., ju} be a set of
n MapReduce jobs with no data dependencies between them. j; requests R x R
MapReduce slots and has Map and Reduce phase durations (m;, r;), respectively. The
system scheduler can change a job’s MapReduce slot allocation depending on available
resources. Let Cax be the makespan of all n jobs. For this, we aim to determine an
order (a schedule ¢) of execution of jobs j; € J such that the makespan of all jobs is
minimized. Let us set the end-time of Map stage and start-time of Reduce stage of job j;
as (i, 1!), respectively; and actually allocated MapReduce slots for job j; is Pl x P;.
The max available MapReduce slots in the Hadoop cluster is P x P, Formally,
the problem of minimizing the makespan (Cpax) therefore can be formulated as:

Min Cpax (1)
subject to:  V j;, PL < PM™*  and P! < pmx, 2)
Vi, ti>1t . and A3)
Vji, Ji is non-preemptive. “4)

Notice that the constraint in (2) is for the available capacity constraint, i.e., actu-
ally allocated MapReduce slots to any job is not greater than the number of available
MapReduce slots in the system, (3) is the non-overlapping time constraint of Map and
Reduce stage for a single job, i.e., for the same job, the start time of its reduce stage
should not earlier than the end-time of its map stage (this is reasonable because we con-
sider that reduce stage includes combing, sorting, shuffle and outputing final results),
and (4) considers the non-preemptive tasks. Based on the problem formulation, we
propose a new approach to minimize the makespan of a set of given MapReduce jobs.
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3 HScheduler: a new approach to minimize the makespan in
MapReduce

3.1 Offline scheduling

The original Johnson’s algorithm [13] considers that “There are n items which must
go through one production stage or machine and then a second one. There is only one
machine for each stage. At most one item can be on a machine at a given time”. One
challenging issue is that we cannot directly apply Johnson algorithm to MapReduce.
To adapt the MapReduce model, we treat the Map and Reduce slots (stage resources)
respectively as a whole (like a single machine) and consider Map and Reduce as two-
stage non-overlapped for each job, then we can apply Johnson’s algorithm to find the
lower bound. Let us consider a collection of n jobs, where each job j; is represented by
the pair (m;, r;) of map and reduce stage durations, respectively. Each job j; = (m;, r;)
with an attribute S; defined as follows:

Si = (%)

(m;, m), if min(m;, r;) = m;,
(ri,r), otherwise

The first argument in S; (i.e., m; or r;) is called the stage duration and denoted as Sl.l.

The second argument (i.e., m or r) is called the stage type (map or reduce) and denoted

as Sl.z. Notice that, when all r; = 0, Johnson’s algorithm reduces to the shortest process

time first (SPT) algorithm, which is known to be optimal for minimizing total finish

time of all jobs.

Algorithm 3.1 presents the pesudo-code of revised Johnson’s algorithm to find the
lower bound of the makespan in multiple MapReduce jobs. It first sorts all the n jobs
from the original set J in the ordered list L in such a way that job j; precedes job j; 4 if
and only if min(m;, ri11) < min(m;41, r;), the proof is provided in Lemma 2. It finds
the smallest value among all durations, if the stage type in S; is m, i.e., it represents
the Map stage, then the job j; is placed at the head of the schedule; otherwise, j; is
placed at the tail. Then, the allocated job is removed and other jobs are considered in
the same fashion. The complexity of Johnson’s algorithm is dominated by the sorting
operation and thus is O (nlogn).

Theorem 1 Johnson’s algorithm obtains theoretical lower bound of the makespan of
two-stage production system when all jobs go through the same two stages and each
Jjob utilizes all resource of each stage. The detailed proof for Theorem 1 is provided
in [13]. For completeness, we sketch the key points in the following. Let X; be the idle
period of time for the Reduce phase immediately before the ith item comes onto the
Reduce phase. If, for example, we consider the job sequence ¢ =1, 2, 3, ..., n, we
have the following time relationship as shown in Fig. 2:
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input : Estimating all Jobs’ Map and Reduce durations (m;, r;) [1] by utilizing all available Map
and Reduce slots in the system, the total number MapReduce slots (P,;*, P/"%*) for a
Hadoop cluster

output: scheduled jobs, makespan

1 List the Map and Reduce’s durations in two vertical columns (implemented in a list);

2 for all j; € J do

3 Find the shortest one among all durations (min (m;, r;));

4 In case of ties, for the sake of simplicity, order the item with the smallest subscript first. In case

of a tie between Map and Reduce, order the item according to the Map;

5 IF it is first Map type, place the corresponding item at the first place;

6 ELSE it is first Reduce type, place the corresponding item at the last place;

7 IF it is Map type, place the corresponding item right next to the previous job (i.e., in

non-decreasing order);

8 ELSE it is Reduce type, place the corresponding item left next to the previous job (i.e., in

non-increasing order);

9 Remove both time durations for that task;

10 Repeat these steps on the remaining set of items;

11 end

12 Compute the makespan (Cjqx);

Algorithm 3.1: Revised Johnson algorithm (RJA Algorithm) for the lower bound

X1 =m
X, = max(m; +my —r; — X1, 0),
X1+ Xo = max(my +mo —ry, my)

3 2 2
X3 = max Zmi —Zri —ZX,-,O

i=1 i=1 i=1 (6)
3 3 2 2
> =mas (w3 Y x,
i=1 i=1 i=1 =l
3 2 2
= max Zmi - Zri, Zm,- —r,m
i=1 i=1 =l
In general,
n
> X =max!_ K 7)
i=1
where
J Jj—1
KJ-:Zmi—Zri. (8)
i= i=1
Let
F(¢) = max’j_, K; )
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Fig. 2 Two-stage diagram for MapReduce jobs

where ¢ is the job sequence. To minimize F, we need a job sequence ¢* such that
F(¢*) < F(¢o) for any ¢y.

Lemma 1 An optimal ordering is given by the following rule (1), job j precedes job
Jj+1if
min(m;, ri41) < min(m;i, ri) (10)

Lemma 1 is proved in [13].
Lemma 2 Rule (1) is transitive.

Let consider there are three jobs 1, 2, and 3. Suppose min (my, r2) < min (mo, rq)
and min (my, r3) < min (m3, rp). Then, min (m1, r3) < min (m3, r1) except possibly
when job 2 is indifferent to both job 1 and 3.

Proof Case 1: my; < rp,mp,r1 and my < r3,m3,rp; then m; < mp < m3 and
mi1 < r1som; <min(ms,ry).
Case 2: o < my,mp, r; and r3 < mp, m3,rp; thenry <rp, <ryand r3 < ms so
r3 < min(ms, ry).
Case 3: my < rp, mp, r; and r3 < mo, m3,rp; then m; < ry and r3 < m3 so that
min(m, r3)< min(ms, ry).
Case 4: rp < my, mp, r1 and my < r3, m3,ry; then mp = rp and we have job 2
indifferent to job 1 and job 3. In this case, job 1 may or may not precede job 3 but
there is no contradiction to transitivity as long as we order job 1 and job 3 first,
then put job 2 anywhere. O

The rule (I) is transitive (also proved in [13]), thus leading to a job sequence ¢*,
which is unique. Then, F(¢*) < F(¢p) for any job sequence ¢ since ¢* can be
obtained from phip by successive interchanges of consecutive jobs according rule (I),
and each interchange will give a value of F smaller than or the same as before (Fig.
3).
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Fig. 3 Five MapReduce Jobs
Examples
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From Revised Johnson’s algorithm, we can obtain theoretical lower bound of the
makespan as follows:

(1) Considering there are n tasks for map and reduce stages. Let m; be work time of
the ith task on Map phase, and r; be the corresponding time on the Reduce phase
for a given Hadoop cluster with P’ x P™® MapReduce slots.

(2) Then, the optimal total elapsed time (makespan) is

n
T = Zri + max],_, K, (11
i=1

where

u u—1
Ku=zm,~—zr,~. (12)
i=1 i=1

Observation 1 If each job utilizes all map and all reduce slots during its processing,
there is a match between the assumptions of the classic Johnson algorithm for two-
stage production system and MapReduce jobs, then RJA Algorithm can be applied to
find the theoretical lower bound of minimizing the makespan of all MapReduce jobs.

Example 1 For the five MapReduce jobs given in [1], we reproduce it in Fig. 2a,
b, where (a) shows the durations of Map and Reduce stages of each job, and (b)
provides ordered list of the five jobs by applying Johnson’s algorithm. All jobs
request 30 x 30 MapReduce slot. According to Johnson’s algorithm, the optimal
sequence is ¢ = (2,5, 1, 3, 4). The total delay time for this sequence can be com-
puted using Eq. 12, i.e., 1 units, and the total elapsed time (makespan) is 47 units (using
Egs. (11, 12)). If one reverses the order of the jobs, then the worst-case result can be
obtained (as the upper bound), i.e., 78 units.

Observation 2 The job duration at each stage closely depends on the amount of

allocated Map and Reduce slots. If the system scheduler allocates more or less number

of MapReduce slots than the required slots, a jobs’ duration can be changed.
Observation 2 is straightforward practice from MapReduce framework.
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Fig. 4 Five MapReduce Jobs Execution in One Cluster
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Fig. 5 New Result of Five MapReduce Jobs Execution

Example 2 Consider Example 1 again, now let jobs ji, j», and js be comprised of
30 map and 30 reduce tasks, and jobs j3 and j4 consist of 20 map and 20 reduce
tasks, other parameters are the same as in Example 1. We reproduce results in Fig. 4
that visualizes the execution of these five MapReduce jobs according to the gen-
erated Johnson’s schedule, ¢ = (j2, js, j1, J3, ja). For job j3 and js, we allow
that any job can use all available MapReduce slots in the system when execution
(this can be implemented easily in Hadoop, for example by splitting the large input
files based on available number of MapReduce slots. The configuration APIs include
mapred.task.tracker. map.tasks.maximum, mapred.task.tracker.reduce.tasks.maximum
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and conf.setNumReduceTasks. Also, changing chunk size of the input file is possible
before uploading to HDFS). Now job j3 and js can use all available 30 x 30 MapRe-
duce slots, then j3 will have Map and Reduce durations (20, %), respectively; ja will
have Map and Reduce durations (4, 20), respectively, both shorter than only using
20 x 20 MapReduce slots. Therefore, the makespan will be 35% as shown in Fig. 5,
where X| = 1. This result is about 12 % smaller than the result (40 time units) obtained
by two-pool approach [1], and is about 31.7 % smaller than the result (47 time units)
where total available slots are not fully utilized. Therefore, the following principle is
the key strategy for our results.

Claim 1 The system scheduler can decrease or increase the allocated number of
MapReduce slots to a job based on the total available MapReduce slots in the system.

Using Hadoop APIs [2] explained in Example 2, the scheduler can easily adjust
the MapReduce slots. Assuming that there are P™* x P™* MapReduce slots in the
given Hadoop cluster, there are two Jobs A and B, each has requested MapReduce
slots (R, R4) and (RE, R®), respectively. Their allocated MapReduce slots can be
adjusted based on P;'** x PM¥* Notice that their theoretical makespan Cpax can be
easily computed using Eqs. (11, 12) directly. In the following, we consider offline and
online scheduling, respectively.

3.2 Offline HScheduler

Based on Theorem 1, Observation 1 and Claim 1, we design a new approach called
HScheduler for efficiently scheduling of MapReduce jobs to minimize makespan.
Algorithm 3.2 presents the pesudo-code of Offline HScheduler algorithm. It first allo-
cates all available MapReduce slots to a given set of jobs by recomputing their actual
durations based on available slots. This is to change their Map and Reduce durations
by taking more or less execution waves based on available slots. Then, it calls RJA
algorithm to schedule all updated jobs.

Theorem 2 HScheduler is optimal regarding minimizing the makespan of a given set
of jobs when considering Map and Reduce phases only.

Proof Since HScheduler satisfies the condition of Johnson’s algorithm, and from The-
orem 1 we know that Johnson’s algorithm is optimal for two-stage MapReduce-like
systems when Observation 1 is satisfied; therefore, HScheduler is optimal given a set
of jobs when considering Map and Reduce phases.

This completes the proof. O

The complexity of HScheduler is dominated by Johnson’s algorithm and thus is
O(nlogn).
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input : The total number of slots P,’%* x P/** for a Hadoop cluster, all Jobs’ Map and Reduce
durations estimated by the methods suggested in [1] through utilizing all available
MapReduce slots
output: scheduled jobs, makespan
1 for all jobs do
2 IF a job’s required slots Rin > P)1%* or R£ > P4 (total available slots), THEN allocates all
available slots to it and adds more execution waves (waves=max([ R, / P47 [RL / P/M4XT)
based on tasks’ splitting of large input files on Map file block size;
3 ELSE ajust MapReduce slot settings and allocates all available slots to it and records actual
execution waves;
End;
end
Call RJA Algorithm;
Compute the makespan (Cyax);

Algorithm 3.2: Offline HScheduler
3.3 Online HScheduler

To evaluate the performance of online algorithm, a well-known approach is to compare
its results against theoretical (optimal) results obtained in offline scheduling.

Definition 4 The competitive ratio is the ratio of the makespan of mutilple online
MapReduce jobs over the optimum makespan of these jobs considered in offline
scheduling in which all durations are known a priori and their executing order can
be arranged in advance.

Algorithm 3.3 presents the pesudo-code of OnHScheduler algorithm for online
MapReduce. All online jobs are proceeded in First-in-First-out (FIFO) manner. It first
allocates all available MapReduce slots to online jobs by recomputing their actual
durations based on available slots. This is to change their Map and Reduce durations
by taking more or less execution waves based on available slots. Notice that this is
different from FIFO which does not adjust MapReduce slots based on available slots.
Then according to the arrival time of the jobs, OnHScheduler allocates MapReduce
slots to jobs.

input : The total number of slots P)'%* x P/"“X for a Hadoop cluster, a Jobs’ Map and Reduce
durations estimated by the methods suggested in [1] through utilizing all available
MapReduce slots
output: scheduled jobs, makespan
1 for all jobs do
2 IF a job’s required slots R,in > P4*, or Rﬁ > P/"% (total available slots), THEN allocates all
available slots to it and adds more execution waves (waves=max( (R,"n /Pmax, [R£ /P
based on tasks’ splitting of large input files on Map file block size;
3 ELSE ajust MapReduce slot settings and allocates all available slots to it and records actual
execution waves;
4 End;
5 end
6 Compute the makespan (Cpqx)-

Algorithm 3.3: OnHScheduler
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Next, we analyze the competitive ratio of OnHScheduler.
Theorem 3 OnHScheduler is 2-competitive.

Proof The two-stage diagram of MapReduce is shown in Fig. 2, where X; is the
delay time between two consecutive Reduce jobs. Using Eq. (11) and the feature of
OnHScheduler, the proof is as follows.

Set Kop = max],_; K" and Kope = max),_; K ,fpt respectively for OHLScheduler
and optimal result in Eq. (11), which is the sum of delay time in the second (Reduce)
phase. Set the makespan of OnHScheduler and optimal result as Ton and Top respec-
tively, then

(i) Assuming that >, m; > > 7, r;, from Eqgs. (11, 12), we know that Ty =
D1 i+ Kope =207 mi +max!_ r;. Kope will be very small (or close to zero)
for optimal result and K, in the worst case will be close to Z?:l m;, SO

Ton _ z:‘l:l ri + Kon

Topt - Zl"lzl ri + Kopt
it 2l mi
>y mi +max!_r;
Sicin

n A n .
D i—ymi +max}_ r;

n n
2 (sinceZmi > Zri) (13)
i=1 i=1

IA
+

IA

(ii) Assuming that >/, m; < >, ri, weknow Koy < >7_, r;, then

Ton _ Z:’:I ri + Kon
Topt N 2?21 ri + Kopt
- it 2T
T 2t Kot

n
<2 (sinceO < Kopt < Zri) (14)

i=1

This completes the proof. O
Theorem 4 The upper bound of 2-competitive is tight for OnHScheduler.

Proof Considering the following worst case for OnHScheduler. There are 2n jobs,
the first n jobs are Map types with Map duration m; = Crpax and Reduce duration
r; = nt; and other n jobs are Reduce types with Map duration m; = nt and Reduce
duration r; = Cyyqx. By applying Johnson’s algorithm, the optimal makespan is Topy =
(14n+n?)Cnax using Egs. (11, 12) and Algorithm 3.1. On the other hand, supposing
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Fig. 6 The example of online
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Fig. 7 The scheduling result of online jobs

all jobs come in reverse order (the worst case for OnHScheduler), we can easily find
that the makespan is Ton = (1 + 212)Cpax. So the competitive ratio in this case is

T, 14 2n?)t
°“=—(+n)2 A2, as n — o0o. (15)
Topt (I +n+n-)t

(]
Example 3 For the five MapReduce jobs in Example 1, we reproduce it in Fig. 6
where the arrival time of each job is denoted as #; for online scheduling. Assuming
that 30 x 30 MapReduce slots are used for all jobs. Figure 7 provides scheduling results

by OnHScheduler for these online jobs with a total makespan of 52 units, which is 5
units larger than the optimal offline result of 47 units.

4 Performance evaluation

In this section, we conduct performance evaluation based on real data traces of Word-
counts [14] and Terasort [12]. Note that it is possible to estimate their durations for
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different types of MapReduce jobs in a given configuration of Hadoop cluster, a solu-
tion for the estimation is provided in [1].

4.1 Configuration of Hadoop cluster

The Hadoop cluster (YARN version) in the test is formed by four Dell R720 servers
connected by 1 Gbs Eithernet LAN. One Master node and 32 Slave nodes are set. There
are 8 virtual machine (VM) data nodes on each of four servers. Each server has 2 Intel
Xeon 2520, 32 GB memory, 1TB hard disk and each VM node has 2 GB memory and
160GB hard disk. Altogether 64 x 64 MapReduce slots are created similar to the
environment introduced in [1] so that comparative study can be conducted.

4.2 Replay with real data traces

We use the similar workloads as in [1] in our experiments so that comparative study
can be conducted:

— This workload represents a mixed number of MapReduce jobs that is based on the
analysis performed on the Yahoo! M45 cluster [1]. The number of Map and Reduce
tasks is generated by Normal distribution; the durations of Map and Reduce phases
are obtained from real data of Wordcount [14] and TeraSort [12].

— Unimodel: where a set of 50 Wordcount [14] (with mean Map duration of 65 s and
mean Reduce duration of 57 s uniformly distributed) and 50 Terasot jobs [12] (with
mean Map duration of 73 s and Reduce duration of 58 s uniformly distributed) are
tested, it uses a single scale factor for the overall workload, i.e., the scale factor for
each job is drawn uniformly from [1,9], and normal distribution with parameter
(N(154,558) x 0.1) for the number of Map tasks and (N (19, 145) x 0.1) for
Reduce tasks.

— Bimodel: where a subset of 20 Wordcounts from [14] (with mean Map duration
of 448 s and mean Reduce duration of 413 s uniformly distributed) and 20 Terasot
jobs from [12] (with mean Map duration of 287 s and Reduce duration of 306 s
uniformly distributed). In this case, 80 % of jobs are scaled using a factor uniformly
distributed between [ 1, 10] and the remaining jobs (20 %) are scaled using [4,9], and
Normal distribution with parameter round (N (154, 558) x 0.3) for the number of
Map tasks and round (N (19, 145) x 0.3) for Reduce tasks. This mimics workloads
that have a large fraction of short jobs and a small subset of long jobs.

All results are obtained by the average of 10 runs.

4.3 Different scheduling algorithms compared

We compare the following algorithms:

— Random Order (Rand): this algorithm just schedules all jobs in a random order of
their job IDs.
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Fig. 8 The comparison of offline makespn in unimodel (seconds)

— The Lower Bound (LowerBound): this is computed by revised Johnson’s algorithm,
which works as a theoretical lower bound because it does not consider additional
process time caused by jobs’ setting up, dispatch and migration in the real Hadoop
cluster.

— The Upper Bound (UpperBound): this algorithm schedules all jobs in reversed
order of revised Johnson algorithm. This provides the worst case (upper bound)
regarding makespan of all jobs and is proved in [13].

— BalancedPools (BP) is another way to minimize the makespan for offline schedul-
ing proposed in [1], it partitions the Hadoop cluster into two balanced pools and
then allocated each job to a suitable pool to minimize the makespan.

— HScheduler: our proposed algorithms, HScheduler for offline and OnHScheduler
for online, respectively.

In all tests, 32 data nodes each with 2 MapReduce slots are set, 2 pools each with 22
and 42 MapReduce slots are set respectively for BalancedPools (BP) algorithm.

For offline scheduling, Figs. 8 and 9 present the makespan comparison of four
algorithms; the UpperBound (Reversed Order Jonhson’s algorithm) is the worst case,
working as the upper bound of makespan while results obtained from Johnson’s algo-
rithm are the theoretical lower bounds (LowerBound). Random-order scheduling and
UpperBound have higher makespan than HScheduler. HScheduler has 8-10% less
makespan on average than BP(BalancedPools). HScheduler is on average 15 and 13 %
larger than theoretical lower bounds in Unimodel and Bimodel, respectively. This is
because HScheduler has additional process time such as job setting up, dispatch and
migration, and all map and reduce jobs may not finish at the same time in real Hadoop
environment. Observation 2 is also validated. In Fig. 10, we also conduct tests by
50 Terasort data (with mean Map duration of 73 s and Reduce duration of 58 s uni-
formly distributed) without considering Bimodel or Unimodel. From extensive real
experiments, similar results are observed.
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Fig. 10 The comparison of offline makespan (seconds) of 50 Terasorts Jobs

As for online scheduling, Figs. 11 and 12 present the makespan comparison of four
algorithms; the UpperBound (Reversed Order Jonhson’s algorithm) is the worst case,
working as the upper bound of makespan while results obtained from Johnson’s algo-
rithm are the theoretical lower bounds. Random-order scheduling and UpperBound
have higher makespan than OnHScheduler. OnHScheduler has 10—11 % less makespan
on average than Rand. OnHScheduler is on average 10 and 15 % larger than Johnson
lower bound in Unimodel and Bimodel, respectively. This is because OnHScheduler
has additional process time such as job setting up, dispatch and migration, and the
waiting time in real Hadoop environment.
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5 Conclusions and further work

In this work, by adopting a new strategy, implementation of allocating available
MapReduce slots, and combining the features of classical Johnson’s algorithm, we
propose and validate new scheduling algorithms for MapReduce framework to mini-
mize the makespan. The proposed approaches have better performance in comparison
to other algorithms in the literature. The HScheduler can be applied to improve energy
efficiency, throughput, and response time in data centers. There are a few research
directions under consideration:

— Providing evaluation by classifying different types of MapReduce jobs. For exam-

ple, we can consider three general types: compute-intensive (such as sorting),
memory-intensive (such as wordcounts) and IO-intensive (such as searching). For
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each type of jobs, we schedule them to a separate Hadoop cluster to compare the
makespan and other performance metrics.

— Considering more performance metrics than the makespan. Energy efficiency met-

rics such as total power and energy consumptions can be added; Load-balance
metrics such as average utilization and skewness can be considered too.

— Proposing approaches to consider priorities such as preemption. In this paper, non-

preemptive case is discussed and we are extending our study to preemptable job
scenario and other priority strategies.
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