
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

HGraphScale: Hierarchical Graph Learning for
Autoscaling Microservice Applications in

Container-based Cloud Computing
Zhengxin Fang, Graduate Student Member, IEEE, Hui Ma, Senior Member, IEEE, Gang Chen, Senior

Member, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Microservice architecture has become a dominant
paradigm in application development due to its advantages of
being lightweight, flexible, and resilient. Deploying microservice
applications in the container-based cloud enables fine-grained
elastic resource allocation. Autoscaling is an effective approach to
dynamically adjust the resource provisioned to containers. How-
ever, the intricate microservice dependencies and the deployment
scheme of the container-based cloud bring extra challenges of re-
source scaling. This article proposes a novel autoscaling approach
named HGraphScale. In particular, HGraphScale captures mi-
croservice dependencies and the deployment scheme by a newly
designed hierarchical graph neural network, and makes effective
scaling actions for rapidly changing user requests workloads.
Extensive experiments based on real-world traces of user requests
are conducted to evaluate the effectiveness of HGraphScale.
The experiment results show that the HGraphScale outperforms
existing state-of-the-art autoscaling approaches by reducing at
most 80.16% of the average response time under a certain VM
rental budget of application providers.

Index Terms—Autoscaling, Microservice application,
Container-based cloud, Graph neural network, Deep
reinforcement learning

I. INTRODUCTION

Microservice applications is marking a paradigm shift in
how software systems are designed and managed [8]. These
modern applications are composed of lightweight and scal-
able microservices, which improve scalability, agility, and
resilience [7]. Each microservice is instantiated by one or
more containers. Building on this paradigm, cloud computing
serves as a critical enabler for hosting and scaling microservice
applications [1].

The dynamic resource adjustment in cloud computing,
known as autoscaling [4], [28], [30], [53], empowers mi-
croservice applications to efficiently handle fluctuating user
requests [51] by leveraging horizontal scaling and vertical
scaling techniques. Horizontal scaling creates or deletes rapli-
cas of containers, while vertical scaling adjusts the resources
(e.g., CPU) provisioned to individual container.

The effectiveness of autoscaling is further enhanced by
the container-based cloud [14], [21], [46], which offers fine-
grained resource allocation tailored to dynamic workloads.

Z. Fang, H. Ma and G. Chen are with the School of Engineering and Com-
puter Science & Centre for Data Science and Artificial Intelligence, Victoria
University of Wellington, Wellington, New Zealand. E-mail: {zhengxin.fang,
hui.ma, aaron.chen}@ecs.vuw.ac.nz.

R. Buyya is with the School of Computing and Information
Systems, the University of Melbourne, Melbourne, Australia. Email:
rbuyya@unimelb.edu.au

As illustrated in Fig. 1, microservice applications deployed
in the container-based cloud follow a hierarchical structure:
containers are hosted within Virtual Machine instances (VMs),
which, in turn, are deployed on Physical Machine instances
(PMs).

Microservice application

Container-based CloudApplication users

Requests

Responses

User requests worload

Physical machine

Virtual machine

Container

Fig. 1: Microservice application deployed in the container-
based cloud with fluctuating user requests.

Within the container-based cloud, the Quality of Service
(QoS) of microservice applications, such as their average
response time [11], depends on the number of containers and
the resources provisioned to them [4], [44], [57]. To maintain
high QoS under fluctuating user requests workload (as shown
in Fig. 1), this article investigates the critical problem of
Autoscaling Microservice applications in the Container-based
cloud, referred to as the AMC problem in the remaining of
this paper.

In the AMC problem, provisioning excessive resources to
containers may help meet the service level objectives (SLOs)
of application providers but often leads to significant resource
wastage [3], [37]. The cloud resources wastage increases cost
for application providers due to unnecessary VM rentals [25],
[44], [57]. Additionally, resource constraints at the PM and
VM levels further increase the complexity of container re-
source provisioning and autoscaling.

Given the above challenges, an effective autoscaling ap-
proach is essential to enhance the QoS of applications while
adhering to a defined cost budget. However, many existing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

approaches rely on simple threshold-based mechanisms, such
as Amazon auto-scaling service [2] and Horizontal Pod Auto-
scaler (HPA) [9]. These methods make scaling actions based
on a pre-defined threshold. Nonetheless, manually selecting a
threshold for changing workload is non-trivial. An inappropri-
ate threshold can easily result in under-provisioning, leading to
QoS degradation, or over-provisioning, causing unnecessarily
high costs [26].

To address the limitations of threshold-based approaches,
Deep Reinforcement Learning (DRL) is a promising approach
for autoscaling [4], [31], [33], [34]. It can automatically
learn generalizable scaling policies that adapt to dynamic
environments. DRL-based methods employ deep neural net-
works, such as Graph Neural Networks (GNNs), to obtain
container embeddings. These embeddings capture implicit
characteristics and complex dependencies among containers,
which are then used to guide scaling decisions. However,
it is not intuitive to design an effective embedding learning
approach for the AMC problem since the container-based
cloud is a rather complex system. Two major issues have not
been addressed by existing studies.

First, existing DRL-based autoscaling approaches [4], [34],
[44] do not explicitly consider the deployment scheme of the
container-based cloud [10]. The deployment scheme models
the hierarchical placement of containers to VMs and VMs to
PMs, together with network communication among containers.
Ignoring such deployment information leads to suboptimal
autoscaling decisions, increased physical network communi-
cation overhead, inefficient resource utilization, and ultimately
degraded QoS. However, existing approaches only focus on the
features of individual components, such as containers, VMs
and PMs. The deployment scheme is critical because different
deployment schemes result in varying resource constraints
(e.g., the capacities of VMs and PMs), which directly influence
the effectiveness of scaling actions. Ignoring this factor can
lead to suboptimal scaling actions and resource utilization.

Second, GNNs employed in existing autoscaling ap-
proaches [33], [47] aggregate information in a flat way. In
this flat structure, containers, VMs and PMs are modeled
in a single layer. As a result, long-range dependencies (e.g.,
between containers on different PMs) require many message-
passing steps to capture. Studies [32], [55], [61] have shown
that the flat GNN structure cannot effectively capture long-
range dependencies for learning node embeddings. This issue
becomes more aggravated in the AMC problem with the in-
creasing number of containers, VMs and PMs in the container-
based cloud.

To address the above issues, this paper focuses on de-
signing a novel embedding learning approach to improve
the performance of the DRL-based autoscaling approach. For
this purpose, we construct a three-layer hierarchical graph.
It models both the dependencies among containers and the
deployment scheme. The hierarchical structure of this graph,
from bottom to top, is: PM layer, VM layer and container
layer. Then, we design a novel Hierarchical Graph Neural
Network (HGNN) to solve the issue of long-range information
aggregation.

HGNN is a solution for the issue of long-range informa-

tion aggregation [32], [61]. However, existing HGNN ap-
proaches [32], [59] mainly learn whole-graph embeddings
by aggregating information in a fine-to-coarse manner. These
approaches are effective for tasks that require holistic graph
representations. However, it is not well-suited for the AMC
problem, where precise scaling actions depend on embeddings
at the granularity of individual containers rather than the entire
graph.

To fill this gap, we proposed a Cloud-oriented Hierarchical
Graph Neural Network (CHGNN), which is an HGNN de-
signed to effectively learn container embeddings from cloud
environment. Unlike traditional methods, CHGNN first aggre-
gates information locally within lower-layer nodes and then
propagates it to higher layers. This bottom-up information
aggregation mechanism establishes shortcut connections [22],
[32], [55] between distant nodes in the graph, enabling effec-
tive processing of global context. Consequently, CHGNN can
capture comprehensive global information from the container-
based cloud for the container layer. This mechanism not only
represents a departure from existing HGNN paradigms but also
delivers a more precise and scalable solution for the AMC
problem.

Through developing CHGNN, this paper makes the follow-
ing main contributions:

• We represent the container-based cloud as a three-layer
hierarchical graph. Meanwhile, we design a novel HGNN,
i.e., CHGNN, to learn container embedding from the
hierarchical graph. To our knowledge, this is the first
work to learn embedding for autoscaling using HGNN,
allowing to make more effective scaling actions for the
AMC problem than existing approaches.

• We propose a novel bottom-up information aggregation
mechanism for CHGNN to effectively capture thorough
global information from the container-based cloud. This
mechanism provides an accurate and scalable autoscaling
solution to the AMC problem.

• We propose a novel DRL-based autoscaling approach
that leverages CHGNN with a bottom-up information
aggregation mechanism to effectively learn container em-
beddings. In addition, a newly designed scaling policy
network is employed to make scaling decisions. We name
this autoscaling approach as HGraphScale. Experiment
results based on real-world traces indicate that HGraph-
Scale can outperform five state-of-the-art autoscaling
approaches.

The rest of this article is organized as follows. Sec-
tion II presents the literature review of existing autoscaling
approaches. Section III presents formal problem definitions
of the problem. Section IV gives details of HGraphScale
for autoscaling. The experiment designs, results and further
analysis are shown in Section V. At last, Section VI makes
conclusions and gives potential future directions.

II. RELATED WORK

In this section, we review existing autoscaling approaches
for microservice applications.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

TABLE I: Comparison of HGraphScale with DRL-based and GNN-based autoscaling approaches

Approaches
[31] [19] [34] [44] [4] [20] [37] [33] [38] [31] Ours

Vertical scaling ✓ ✓ ✓
Horizontal scaling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
QoS improvement ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cost saving ✓ ✓ ✓ ✓ ✓ ✓ ✓
High dimensional state ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Microservice dependency ✓ ✓ ✓ ✓ ✓ ✓ ✓
Deployment scheme ✓

A. Heuristic-based Autoscaling

AWS-Scale [2] and Horizontal Pod Auto-scaler (HPA) [9]
are autoscaling techniques that rely on manually determined
thresholds. For example, the resources provisioned to contain-
ers are increased if the resource utilization is higher than a
given threshold; otherwise, it decreases the resources provi-
sioned to containers. However, manually designing a threshold
for changing workload is challenging.

To address the above issue, some heuristic-based autoscal-
ing approaches are proposed to make scaling actions based
on predicted future workload. ProScale [11] is a proactive
autoscaling method that leverages the accurate and fast Simple
Moving Average (SMA) to predict future request workloads.
Then, the resource adjustment of containers is based on
a greedy method. PBScaler [57] is proposed to detect the
bottleneck microservices in an application. Subsequently, a
genetic algorithm is applied to decide the number of contain-
ers required by bottleneck microservices. StatusScale [53] is
a status-aware autoscaling approach that selects appropriate
autoscaling strategies for resource scheduling based on load
status.

The above autoscaling methods require substantial human
efforts to design the heuristics or fine-tune the thresholds.
Meanwhile, the heuristics methods exhibit poor generalization
ability in dynamically changing environments [58].

B. Reinforcement Learning-based Autoscaling

Existing studies [4], [19], [20], [34], [44], [60] have shown
that the RL-based autoscaling methods can effectively ad-
just the resource allocation to handle the changing work-
load. For example, A-SARSA is proposed [60] to combine
neural network based workload prediction and the SARSA
algorithm [52] to make scaling actions based on predicted
workload.

A Q-learning based autoscaling approach [19] is proposed
for workflow autoscaling, which considers the workflow struc-
ture when making scaling actions. [20] further compared
the performance of Q-learning and SARSA for workflow
autoscaling, considering the workflow structures. Their results
show that SARSA can achieve significantly better performance
in many scenarios compared to Q-learning.

The above approaches use table-based RL techniques, strug-
gling to handle high-dimensional state spaces. To tackle this
limitation, the DRL-based autoscaling approach has been
gaining more attention in recent years. For instance, a Deep
Q-Newtork (DQN) [35] based autoscaling method, called

HRA [34], is proposed to make holistic autoscaling actions for
microservice applications. Similarly, DeepScale [44] integrates
DQN and heuristics methods to make scaling actions for
applications. DRPC [4] is a TD3 [18] based DRL approach
to make scaling actions based on embedding learned by
multiple distributed neural networks. ASTRA [30], a recently
introduced approach, leverages an adversarial DRL algorithm
for autoscaling.

The above DRL-based approaches fail to explicitly consider
the deployment scheme, which impacts scaling actions. This
hinders the effectiveness of these methods in addressing the
AMC problem.

C. Graph Neural Network-based Autoscaling

Beyond heuristic and DRL-based autoscaling methods,
GNN-based approaches have emerged as a popular solution
for autoscaling. For instance, DeepScaler [33] is proposed
to estimate resource utilization by GNN, which is further
utilized to guide the autoscaling decisions. GRAF [37], [38] is
proposed to predict tail latency of microservice applications.
The predicted latency is leveraged for proactive autoscaling
decision making. AGQ [31] is an autoscaling approach that
utilizes a GNN-based resource usage predictor, which directly
informs the autoscaler’s scaling decisions.

In a summary, existing GNN-based autoscaling approaches
are designed for prediction tasks, either forecasting resource
usage or predicting latency. Such prediction tasks require large
datasets for training, and these GNNs do not account for the
deployment scheme in the cloud environment.

D. Summary

To address the above limitations of existing autoscaling
approaches, this article proposes HGraphScale, a novel DRL-
based autoscaling approach that incorporates a newly designed
GNN and information aggregation mechanism. The details of
comparison between HGraphScale and other DRL-based and
GNN-based autoscaling approaches are shown in TABLE I

III. PROBLEM DESCRIPTION

In this section, we formulate the problem of Autoscaling
Microservice application in the Container-based cloud (the
AMC problem).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

A. System Overview

Fig. 2 presents the system model of the container-based
cloud, where containers of each microservice application are
deployed on VMs, which are further hosted by PMs. A
microservice application can be modeled as a Directed Acyclic
Graph (DAG) App = ⟨Vapp, Eapp⟩, as shown in Fig. 2.
Vapp = {ms0,ms1, . . . ,msn} represents n microservices.
eappij ∈ Eapp denotes the execution dependency between a pair
of adjacent microservices msi and msj . Following existing
studies [5], [14], [50], [62], a microservice msi is instantiated
by at least one container Conj

i , where j denotes the index of
the container.

Microservice Application

Container-based Cloud

... ...

...

Users

deployment data transition request/responseinstantiated

Fig. 2: An example microservice application

Each user request triggers the execution of a work-
flow instance WF = ⟨Vwf , Ewf ⟩ [50]. Vwf =
{tstart, t1, t2, . . . , tn, tend} denotes tasks in a user request,
where tstart and tend are dummy starting and ending tasks,
respectively. ewf

ij ∈ Ewf represents ti is the predecessor task
of tj while tj is the successor task of ti. Task ti can only
be executed by a container of the corresponding microservice
msi.

B. QoS and Cost Modeling

Let eti denote the execution time of ti with one vCPU, and
concpuj

i denotes the amount of vCPU provisioned to Conj
i .

This study focus on resource adjustment of vCPU [12], [38],
[44]. This is because existing studies showed that CPU is the
dominant factor affecting microservice application response
time [29], [38], [53]. Accordingly, the execution time of ti in
Conj

i is

ET j
i =

eti

concpuj
i

. (1)

As assumed in existing studies [5], [42], [50], [58], a
container can execute at most one task at any time. Mean-
while, each container maintains a pending queue of task,
following [42], [44]. Each task starts execution only after the
preceding task in the queue has been completed. As a result,
the finish time FT of a task ti in Conj

i is calculated by:

FT j
i = ST j

i + ET j
i , (2)

where ST j
i indicates the start time of ti in Conj

i . Particularly,
Particularly, ST j

i is defined as

ST j
i = WT j

i + FT prei + TT prei , (3)

where WT j
i is the waiting time of ti in the pending queue of

Conj
i . FT prei denotes the finish time of predecessor tasks

(tprei) of ti. TT prei is the data transmission time from
predecessor task.

Let reqr represent a user request for a microservice appli-
cation, the response time RTr of reqr is calculated by:

RTr = FTend (4)

As shown in Fig. 2, each container is deployed in a VM
instance, while each VM is deployed in a PM instance [14],
[15], [46], [50]. A VM/PM instance can host multiple con-
tainer/VM instances. VMk = (vmcpuk, pricek) represents a
VM instance, where vmcpuk denotes the amount of vCPU
provided by VMk (i.e., CPU capacity) and pricek indicates
the hourly rental fee. The CPU capacity of a PM instance
constrains the total CPU capacity of the VMs deployed in it,
which further limits the available amount of vCPU provisioned
to containers deployed in those VMs. The rental fee Costk of
any VM instance VMk is calculated by:

Costk = pricek ×
FT k

last − ST k
first

3600
, (5)

where FT k
last and ST k

first are the finish time and the start
time of the last task and the first task executed in VMk,
respectively. The total cost Cost(T) of renting VMs over a
period of time T is calculate by:

Cost(T) =
∑

k∈ACTV M (T)

Costk, (6)

where ACTVM (T) is the index set of active VMs over T .

C. Optimization Objective

In this article, we evaluate the QoS of microservice ap-
plications by Average Response Time (ART) [4], [10], [44].
Therefore, the aim of the AMC problem is to autoscaling
containers to minimize the ART over a time period T while
the Cost(T) is under a cost budget, which is formulated as

minART (T) =min

∑
r∈REQ(T) RTr

num
(7)

s.t. Cost(T) ≤ budget(T) (8)

where REQ(T) is the index set of user requests over T and
num is the number of requests. budget(T) is the cost budget
of an application provider given over T .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Evolutionary Reinforcement Learning

Update

Status
......

Cloud environment

Scaling action
executor

Instance
embedding

Scaling action

CHGNN

Hierarchical Graph

HGraphScale agent

Scaling
policy

network

Fig. 3: The overall framework of HGraphScale for the AMC problem.

The number of user requests sent to microservice applica-
tions varies over time. Thus the autoscaling process needs to
dynamically 1) identify the containers that require scaling, and
2) determine the optimal amount of scaling resources.

IV. PROPOSED AUTOSCALING APPROACH

The details of HGraphScale are introduced in this section.
Specifically, we model the process of the AMC problem as a
Reinforcement Learning (RL) problem in Section IV-A. The
overall framework of HGraphScale is shown in Fig. 3. In each
iteration, the state of the container-based cloud is extracted and
represented as a hierarchical graph, detailed in Section IV-B.
Then, a novel Cloud-oriented Hierarchical Graph Neural Net-
work (CHGNN) is proposed to learn the embedding of every
container, introduced in Section IV-C. The learned container
embedding is fed into a newly designed scaling policy network
to produce scaling actions, as described in Section IV-D. A
scaling action executor performs either vertical or horizontal
scaling in the container-based cloud based on the scaling
actions, as outlined in Section IV-E. Section IV-F presents
how HGraphScale handles load balancing.

Evolutionary Reinforcement Learning (ERL) [25], [40],
a widely recognized and practically popular algorithm, is
leveraged to train the neural networks of HGraphScale. This
is because ERL demonstrates strong exploration ability, en-
sures a stable training process, and requires relatively few
hyperparameters for fine-tuning [25], [40]. Moreover, recent
studies have shown its effectiveness in several cloud-related
applications [25], [41]. The detailed process of training by
ERL is provided in Section IV-G.

A. RL Formulation

We formulate the process of solving AMC problems as an
RL problem. Particularly, at each decision step t, the cloud
environment provides the state st as a hierarchical graph. The
HGraphScale agent in Figure 3 generates a scaling action at
based on st. The environment then performs at and transitions
to the next state st+1. The key components of this RL problem
are outlined below.

1) State: Each state st is a snapshot of the status of
the PMs, VMs and containers in the container-based cloud
at a decision step t. We design a novel hierarchical graph
H = ⟨V, E⟩ to represent the states st, detailed in Section IV-B.
The number of nodes in this hierarchical graph dynamically
changes with the addition or removal of containers.

The status of a PM instance p is defined as
⃗hpm
p = {µpmp ,Ωpmp}, which denotes the resource

utilization (µpmp
) and the capacity (Ωpmp

) of pmp,
respectively. Status of a VM instance v is defined as
⃗hvm
v = {µvmv

,Ωvmv
, pricevmv

, rentalvmv
, artvmv

}, which
indicates the resource utilization (µvmv

), the capacity (Ωvmv
),

the per hour price (pricevmv), the current rental fees
(rentalvmv) of vmv , and the average response time (artvmv)
of containers that are deployed in vmv .

Similarly, status of a container c is defined as ⃗hcon
c =

{Ωconc
, ζconc

, dconc
, pendingconc

, artconc
, predictedconc

}.
Specifically, Ωconc denotes the resource capacity of conc.
ζconc represents the remaining resources of the VM that hosts
conc, indicating that container autoscaling is constrained by
the resources of its hosting VM. The degree of conc in the
graph is denoted as dconc

. Moreover, pendingconc
denotes

pending requests, artconc
the average response time, and

predictedconc the future workload of conc.

This article follows [11] to employ an effective and efficient
workload predicting method, i.e., the SMA method, to predict
the number of future requests predictedconi

for a container
coni. The predicted future workload is based on the informa-
tion from the historical workload.

2) Action: A scaling action at at time t of HGrapScale
is represented as a 2-dimensional tuple: ⟨Ind, Scale⟩. Ind ∈
[0, n] ∩ Z+ denotes the index of the container that requires
scaling. Here, n is the current number of containers, which
changes dynamically over time. Scale ∈ [−m,+m] ∩ Z+ in-
dicates the amount of resources for scaling. The sign of Scale
determines whether to increase or decrease the provisioned
resources for container Ind. If Scale equals 0, it indicates
that the resource provisioned to the Ind container remains
unchanged.

3) Optimization objective: To minimize the ART (t) and
ensure the cost adheres to the budget, the optimization objec-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

PM layer

VM layer

Container
layer

VMs deployment Containers deploymentData transition

(a) Graph structures (b) Hierarchical graph

Fig. 4: An example of the hierarchical graph representation of the container-cloud.

tive of this RL problem is defined as

Obj(T) = −ART (T)− ρ ·max
(
0, (Cost(T)− budget(T))

)
(9)

where Obj(T) is the objective value over a time period T
and ρ controls the penalty intensity when the cost exceeds the
given budget.

B. Hierarchical Graph Representation

To capture the hierarchical structure of containers, VMs and
PMs in container-based clouds, as well as the communication
relationships among containers, we represent the cloud state
using a hierarchical graphH = ⟨V, E⟩. Node set V = C∪V∪P
consists of sets of container Nodes C, VM nodes V and PM
nodes P. Edge set E = Edepvm∪Edepcon∪Epm∪Evm∪Econ,
where Edepvm and Edepcon represent the deployment scheme,
Epm, Evm and Econ represent the data transition between
machines.

In particular, Fig. 4(a) presents three main structures of
H. The edge between two PM nodes PM0, PM1 ∈ P
is undirected {PM0, PM1} ∈ Epm. It represents data
transmission caused by interactions between containers run-
ning on different PMs, which causes additional communi-
cation overhead and thus affect QoS. Similarly, the edge
between two VM nodes VM0, V M1 ∈ V is also undi-
rected {VM0, V M1} ∈ Evm. For container nodes, there
exist execution orders between connected containers. Thus,
the edge between two container nodes Con0, Con1 ∈ C
is directed, i.e., (Con0, Con1) ∈ Econ. Directed edges
(PM0, V M0), (PM0, V M1) ∈ Edepvm in the VMs deploy-
ment structures, indicating VM0 and VM1 are deployed in
PM0. Likewise, if Con0 and Con1 are deployed in VM0,
there are directed edges (VM0, Con0), (VM0, Con1) ∈
Edepcon.

When new container is joined by autoscaling, a new con-
tainer node is added to the container layer. If the new container
requires new VM/PM for deployment, new VM/PM node
are added to the VM/PM layer accordingly. Edges are then
established among the container, VM, and PM nodes based
on the deployment relationships.

At each decision step t, the hierarchical graph (Fig. 4(b))
serves as the system state st for autoscaling decisions.
The hierarchical graph consists of the PM layer, VM layer
and Container layer. We denote PM features as hpm =

{ ⃗hpm
0 , . . . , ⃗hpm

P }, VM features as hvm = { ⃗hvm
0 , . . . , ⃗hvm

V },

and container features as hcon = { ⃗hcon
0 , . . . , ⃗hcon

C }. The
values P , V , and C correspond to the numbers of PMs, VMs,
and containers, respectively. Our newly designed CHGNN
learns container embedding from this hierarchical graph and
the raw features of each node.

C. Cloud-Oriented Hierarchical Graph Neural Network

Given the hierarchical graph represented state, we proposed
CHGNN to learns container embedding progressively through
a bottom-up information aggregation mechanism, as shown in
Fig. 5. Specifically, HCGNN first learns PM embedding in
the PM layer, then PM embedding is propagated to the VM
layers for VM embedding learning. At last, VM embedding
is propagated to the Container layer for container embedding
learning. Details of embedding learning in each layer and the
bottom-up information aggregation are provided as follows.

PM raw features

R
eLU

Feed Forw
ard

PM embeddings
PM embedding learning

R
eLU

Feed Forw
ard

VM raw features

R
eLU

Feed Forw
ard

VM embeddings

VM embedding learning

R
eLU

Feed Forw
ard

Container raw features

Container embeddings

Container embedding learning

Bottom-up
information
aggregation

Fig. 5: The architecture of the CHGNN.

1) Machine embedding Learning: We stack graph attention
layers [48] to construct Graph Attention Networks (GATs)
(i.e., GATp, GATv , and GATc in Fig. 5) to learn embeddings
of PMs, VMs and containers. The input to each graph attention
layer consists of a graph and its node features. It then applies
attention weights to aggregate neighbor information, resulting
in updated node features.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Consider an example of learning PM embeddings by GATp.
The GATp dynamically assigns attention weights αi,j to
PM pi and its neighbor pj in the PM layer, indicating the
importance of pj’s features to pi [48]. The αi,j is calculated
by

αi,j =
exp (LeakyReLU(⃗aT [Wp

⃗hpm
i ∥Wp

⃗hpm
j]))∑

k∈Ni
exp (LeakyReLU(⃗aT [Wp

⃗hpm
i ∥Wp

⃗hpm
k]))

,

(10)
where Wp ∈ RF ′×F is a learnable weight matrix in GATp,
transforming the input features into high-level features. ∥
indicates the concatenation operation. a⃗ ∈ R2F ′

is the learn-
able weight vector of a feedforward network. Following [48],
LeakyReLU is applied for non-linear transformation. Ni is
the neighbor nodes of pi in the PM layer.

The updated features ⃗
hpm′

i of a pi is generated by a graph
attention layer according to

⃗
hpm′

i = σ(
∑
j∈Ni

αi,jWp
⃗hpm
i), (11)

where σ is the sigmoid activation function that enables mod-
eling of nonlinearity. The GATp outputs node embedding
embpm = {embpm0 , . . . , embpmP } of the PM layer after
passing through multiple stacked graph attention layers. The
VM layer and container layer follow the same process of
embedding learning by GATv and GATc, respectively.

2) Bottom-Up Information Aggregation: In our proposed
bottom-up information aggregation mechanism, the learned
PM embedding embpm = {embpm0 , . . . , embpmP } propagates
to the VM layer. Thus, the inputs of GATv are the concatena-
tion of VM raw features and PM embedding hvm∥embpm.
The VM embedding embvm = {embvm0 , . . . , embvmV } are
learned by the GATv and feed forward networks.

Similarly, the inputs of the GATc are the concate-
nation of container raw features and VM embedding
hcon∥embvm, which outputs the container embedding
embcon = {embcon0 , . . . , embconC }. Through bottom-up in-
formation aggregation, the Container layer effectively incor-
porates global information of the container-based cloud into
container embeddings. These embeddings allow the proposed
scaling policy network to make system-aware scaling deci-
sions.

D. Scaling Policy Network

To generate a scaling action, we design a scaling policy
network, which takes the container embedding embcon =
{embcon1 , embcon2 , . . . , embconC } as input and outputs scaling
actions, as illustrated in Fig. 6. A scaling action is defined as
a tuple ⟨Ind, Scale⟩. To generate such actions, we design the
scaling policy network with two MLPs: the instance selector
MLPϕ and the scale selector MLPω .
MLPϕ is designed to calculate the priority values of each

container i:

pi = MLPϕ(embconi). (12)

A container with a higher priority value implies a greater need
for scaling. Thus, the index of the container to be scaled (e.g.,
Ind) is identified by

Ind = argmax
i=1,2,...,C

(
pi
)
, (13)

where C is the current number of containers.

Instances
priorities

Feed Forward

Sigmoid

Feed Forward

Sigmoid

Feed Forward

Scales
priorities

argmax

Sc
al

e
se

le
ct

or
:

...

Container embeddings

...

max

In
st

an
ce

 se
le

ct
or

:
Feed Forward

ReLU

Feed Forward

ReLU

Feed Forward

... ...

Fig. 6: The architecture of policy network

After identifying the container for scaling, the correspond-
ing container embedding embconInd ∈ R1×d is selected and fed
into MLPω . As shown in Fig. 6, embconInd is passed through a
feedforward network. The output is then concatenated with
a vector S = {S0, S1, . . . , Sl}, where Sj ∈ Z indicates
the amount of scaling resource, resulting in a new vector
I = {embconInd||S0, embconInd||S1, . . . , embconInd||Sl}. I is further
processed by feed-forward networks. Finally, MLPω outputs
the priority p′j of each Scalej ∈ S. Therefore, the amount of
scaling resources is determined by

Scale = max
j=0,1,2,...,l

(pj). (14)

Afterwards, Ind and Scale are combined to create a com-
plete scaling action ⟨Ind, Scale⟩.

E. Scaling Action Executor

The scaling action executor transforms the scaling action
⟨Ind, Scale⟩ to vertical scaling, horizontal scaling or both.
Algorithm 1 summarizes the process of scaling action execu-
tor. Firstly, a container tar con is selected based on Ind (line
1).

If Scale > 0, the scaling action executor increases the
resource provisioned to tar con (lines 3 to 12). To be specific,
if the remaining CPU capacity max vcpu of the VM hosting

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 1 Scaling action executor
Input: Scaling action: ⟨Ind, Scale⟩
Output: vertical scaling or horizontal scaling

1: tar con← container list[Ind]
2: tar vm← the VM that hosts tar con
3: if Scale > 0 then
4: max vcpu← the remaining vCPUs of tar vm
5: if max vcpu > Scale then ▷ vertical scaling
6: Increase Scale vCPUs to tar con
7: else ▷ horizontal scaling
8: Increase max vcpu vCPUs to tar con
9: vcpu← Scale−max vcpu

10: Create a new container with vcpu vCPUs
11: end if
12: else
13: con vcpu ← number of vCPUs provisioned to

tar vm
14: if con vcpu > Scale then ▷ vertical scaling
15: Decrease Scale vCPUs to tar con
16: else ▷ horizontal scaling
17: Delete tar con
18: end if
19: end if

the tar con is larger than the Scale, vertical scaling is applied
to provision Scale vCPUs to the container (line 6); otherwise,
max vcpu vCPUs are provisioned to tar con, then a new
container is created by horizontal scaling. The newly created
container is provisioned (Scale − max vcpu) vCPUs (lines
7 to 11).

The scaling action executor reduces the resource provi-
sioned to tar con when Scale < 0 (lines 12 to 19). If Scale is
larger than the total vCPUs of tar con, the vCPUs of tar con
are reduced by the Scale number (line 15). Otherwise, the
container tar con is deleted as a result of horizontal scaling
(line 17). Note that the scaling action executor allows a
microservice to be encapsulated within containers with hetero-
geneous resources, which can reduce resource wastage [45],
[54]. As a result, a load balancer is implemented to dispatch
user requests among heterogeneous containers, as detailed in
Section IV-F.

F. Capacity-based Load Balancing

HGraphScale applies Capacity-based Weighted Round-
Robin (CWRR) [6], [24], [39], [44] to dispatch user requests
to a suitable container for the purpose of load balancing.
Specifically, the weightWj of a container Conj

i is determined
by

Wj
i =

γj
i∑

k∈set(msi)
γk
i

, (15)

where γj
i indicates the resource allocation of Conj

i and
set(msi) denotes the container set of microservice msi.

The rationale for adopting CWRR in HGraphScale is three-
fold. First, CWRR is widely employed in practice owing to
its simplicity [39]. Second, CWRR demonstrates low compu-
tation overhead in handling load balancing. Third, it provides

effective load balancing by dispatching more user requests to
containers with higher capacities. Thus, CWRR can prevent
any container from being heavily utilized, reducing long tail
response times [6], [24].

G. Evolutionary Reinforcement Learning
In this article, we adapt ERL [40] to train the neural net-

works of HGraphScale. ERL is a population-based approach
to estimate the gradients of neural networks. Algorithm 2
presents the pseudo-code of the ERL.

Algorithm 2 Evolutionary Reinforcement Learning (ERL)
Input: Population size: N , maximum generation: max gen,

initial policy parameters: θ̂, learning rate: η, multi-variance
gaussian noise standard deviation: σ

Output: Trained neural network
1: gen← 0
2: while gen ≤ max gen do
3: for i = 0 to N do
4: Sample perturbation ϵi ∼ N (0, 1)
5: Update the neural network by using θi ← θ̂ + σϵi
6: Calculate Fitness F (θi) based on Eq. 9
7: end for
8: Estimate policy gradient ∇θEϵi∼N (0,1)F (θ̂ + σϵi)

9: θ̂ ← θ̂ + σF (θ̂ + σϵi)
10: end while

In particular, the CHGNN and scaling policy network
of HGraphScale initial all trainable parameters θ̂ =
{a⃗,Wp,Wv,Wc, ϕ, ω}, randomly. Each iteration starts with
sampling N perturbations [ϵi]i=0,1,...,N from standard gaus-
sian distribution N (0, 1) (line 4). Then, a population of N
individuals [θi]i=0,1,...,N is generated by adding noise to θ̂
(line 5).

The fitness of an individual θi is evaluated based on the
optimization objectives defined in Eq. (9) (line 6), which is
calculated by

F (θi) = Obj(T). (16)

Then, the parameters of the policy network are updated by
the estimated gradient, which is the expectation of individuals’
fitness (line 8). Specifically, the gradient is estimated by

∇θEϵ∼N (0,1)F (θ̂ + σϵ) =
1

σ
∇θEϵ∼N (0,1)[F (θ̂ + σϵ)ϵ]

≈ 1

Nσ

N∑
i=1

[F (θ + σϵi)ϵi].
(17)

Finally, the policy parameters are updated by gradient descent
(line 9).

V. PERFORMANCE EVALUATION

In this section, we conduct comprehensive experiments to
test the performance of our proposed HGraphScale. We first
present the setup of experiments, the HGraphScale configu-
ration and the competing approaches. Then, the experiment
results are shown. Code of implementation, dataset and con-
figuration are made publicly available1.

1https://github.com/sine-fandel/HGraphScale

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

A. Experiment Setup

All experiments are carried out in a simulator that imple-
mented based on OpenAI Gymnasium [17]. The simulator
models dynamic resource allocation across containers, VMs,
and PMs, and reproduces fluctuating workload. It also simu-
lates autoscaling behaviors with transient effects. The worst-
case scenarios analysis in Appendix B enhances the fidelity of
the simulator to real-world environments.

Three real-world traces of user requests, i.e., NASA2, Wiki3

and Alibaba4 are used to create workloads for our experiments.
Fig. 7 illustrates the workload patterns over the 960-time-
unit period (2 days) of NASA, Wiki and Alibaba, with each
time unit representing a 3-minute interval. The workload trace
patterns are shown in Fig. 7. The first 480 time units (one day)
of workload from NASA or Wiki are extracted for training,
while the remaining time units of workload are used for
test [44]. In this article, a scaling action is made every 3
minutes, following [44].

0 500 1000
Time

50

100

150

200

W
or

kl
oa

d

NASA

0 500 1000
Time

200

300

Wiki

0 500 1000
Time

50

100

150
Alibaba

Fig. 7: Traces of user requests.

Four medium-scale microservice applications [23], [42],
[43] and a large-scale microservice application [11] are used
for our experiments, as summarized in Fig. 8. Each microser-
vice application has a different number of microservices and
application structures. For convenience, we denote them as
“A11”, “A12”, “A13”, “A14” and “A30”, according to their
microservices number.

Moreover, the cloud environment is equipped with 5 VM
types from Amazon EC25. The details of VM types are
summarized in Tabel II. Each PM in the cloud environment
has 64 vCPUs and 3200 GiB, following [46], [49].

TABLE II: Five VM types used in experiments

VM type vCPU Memory (GiB) Hourly price ($)
m5.xlarge 4 16 0.192
m5.2xlarge 8 32 0.384
m5.4xlarge 16 64 0.768
m5.8xlarge 32 128 1.536

m5.12xlarge 48 192 2.304

To sum up, there are 15 scenarios designed for exper-
iments based on three real-world traces and five types of
microservice applications. In the initial stage of each scenario,
each microservice is instantiated with a container, allocated

2http://ita.ee.lbl.gov/html/traces.html
3http://www.wikibench.eu/wp-content/uploads/2010/10/vanbaaren-

thesis.pdf
4https://github.com/alibaba/clusterdata/tree/master/cluster-trace-

microservices-v2021
5https://aws.amazon.com/ec2/pricing/on-demand/

A11 A12

A13 A14

A30

Fig. 8: Microservice applications used in experiments

with a vCPU and evenly deployed across three “m5.4xlarge”
VMs [16], [46]. This seting allows each VM has enough
remaining resources to support further vertical scaling.

B. HGraphScale Configuration

This article sets the number of graph attention layers as: in
container layer Lc = 2, in VM layer Lv = 1 and PM layer
Lp = 1, respectively. The dimension of GAT’s output is 64.
The hidden dimension of each feedforward network is set as
64.

All the hyperparameter settings of the ERL follow exist-
ing studies [25] that are designed for practical application.
Specifically, we set the population size of the ERL as 40.
The maximum generation is set as 1000, while HGraphScale
converges at about 400 generations in all scenarios. The
learning rate η and the Gaussian noise standard deviation of
ERL σ are set as 0.01 and 0.05, respectively. The parameters
are updated by Adam Optimizer. The budget(T) of the opti-
mization objective Eq. 9 is set as 200 USD per day [10], [57],
while the performances under different budgets are evaluated
in Section V-E. The penalty ρ is set as 100, following [44]. The
performances of HGraphScale under different penalty settings
are discussed in Section V-E4.

C. Competing Approaches

HGraphScale is compared to two heuristic-based autoscal-
ing approaches, two state-of-the-art DRL-based autoscaling
approaches and a GNN-based autoscaling approaches. All
competing approaches and HGraphScale share the same initial
placement of containers. Moreover, they deploy newly created
containers from horizontal scaling into suitable VMs using the
Best-Fit heuristic [27]. With this heuristic, each new container
is placed on the VM with the least remaining capacity that can
still satisfy its demand. This strategy improves VM utilization
and reduces the overall cost.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III: Performance comparison in terms of ART and Vio, where Vio denotes the amount by which the cost exceeds the
budget (200 USD).

Scenario AWS-Scale ProScale DeepScale DRPC AGQ HGraphScale
ART Vio ART Vio ART Vio ART Vio ART Vio ART Vio

NASA-11 410.4 0.00 305.5 104.1 306.6± 9.8 0.00 289.9± 7.3 0.00 278.1± 11.6 0.00 255.1± 6.4 0.00
NASA-12 688.5 0.00 387.7 45.7 532.6± 10.8 0.00 433.2± 8.1 20.8± 1.5 538.6± 15.1 26.7± 8.1 268.4± 11.2 0.00
NASA-13 899.0 0.00 406.8 1.6 493.6± 7.9 88.1± 11.0 532.3± 5.0 0.00 243.8± 6.7 0.00 178.3± 5.4 0.00
NASA-14 1022.1 0.00 532.3 56.7 348.0± 20.1 66.17% 510.7± 11.3 3.3± 2.0 336.4± 22.7 323.1± 60.1 325.6± 16.0 0.00
NASA-30 491.3 0.00 303.4 140.2 407.2± 7.1 0.00 391.9± 10.5 0.00 474.4± 8.8 3.39% 389.4± 17.2 0.00

Wiki-11 489.7 0.00 532.4 0.00 318.2± 11.2 69.4± 8.6 415.4± 7.7 56.3± 4.3 361.7± 21.1 82.0± 10.3 307.7± 15.4 0.00
Wiki-12 864.6 0.00 687.0 0.00 549.9± 19.0 0.00 512.4± 27.5 25.0± 2.0 457.0± 22.1 72.8± 16.6 424.3± 12.3 0.00
Wiki-13 1080.4 0.00 482.1 26.3 675.3± 21.1 0.00 491.6± 27.2 112.3± 24.3 367.6± 15.0 27.7± 5.5 369.1± 23.1 0.00
Wiki-14 1022.1 0.00 532.3 22.7 348.0± 19.1 53.2± 14.5 510.7± 20.1 0.00 520.2± 24.0 22.5± 4.4 325.6± 14.1 0.00
Wiki-30 395.6 0.00 426.6 102.1 388.3± 55.7 112.2± 7.8 374.8± 62.1 0.00 488.2± 34.2 20.5± 6.9 350.9± 33.0 0.00

Alibaba-11 395.8 0.00 476.6 0.00 307.4± 24.1 0.00 249.6± 31.2 0.00 295.9± 27.6 0.00 222.1± 26.6 0.00
Alibaba-12 665.5 0.00 654.0 0.00 312.2± 22.3 132.4± 20.1 291.8± 24.1 0.00 292.1± 33.6 24.1± 4.7 283.7± 17.8 0.00
Alibaba-13 525.7 0.00 281.6 0.00 212.4± 19.2 111.4± 22.8 251.7± 27.9 0.00 237.9± 21.2 0.00 178.9± 20.1 0.00
Alibaba-14 988.7 0.00 549.3 0.00 327.0± 41.8 40.5± 6.0 277.0± 30.3 113.6± 38.0 421.8± 31.2 25.4± 2.6 299.2± 36.1 0.00
Alibaba-30 474.7 0.00 237.7 315.7 210.1± 22.7 25.5± 16.2 191.3± 23.7 68.2± 24.1 442.8± 26.1 0.00 183.9± 17.7 0.00

AWS-Scale [2] is a threshold-based autoscaling approach.
Referring to [36], [44], we set the upper threshold as 0.8
and the lower threshold as 0.6 for CPU utilization of each
container.

ProScale [11] is a heuristic-based proactive autoscaling
method that leverages the SMA to predict future request
workloads of each container. The horizontal scaling is made
according to the predicted future workload.

DeepScale [44] is an autoscaling approach based on DQN.
Specifically, it uses a deep neural network to make high-level
decisions, i.e., increase, decrease and maintain the amount of
resources provisioned to containers. Then, heuristics based on
queue theory is proposed to make low-level scaling actions,
including horizontal scaling and vertical scaling.

DRPC [4] is a distributed reinforcement learning approach
for autoscaling. It first trains a central module using TD3. After
training the central module, multiple deployment units are
trained to imitate the central module’s behaviors. Deployment
units make scaling actions (horizontal scaling and vertical
scaling) for each microservice in a distributed manner.

AGQ [31] applies Graph Convolution Network (GCN) for
resource estimation. The predicted future resource demand is
utilized to make horizontal scaling decisions, i.e., increase
replicas, reduce replicas and no operation. The resource ad-
justment agent is trained by Q-learning.

We conduct 10 independent runs for each approach. Within
each run, all approaches are evaluated sharing the same
random seed, while different runs use different seeds.

D. Performance Comparison

TABLE III presents the test results on each scenario, where
the best performance of ART in each scenario is highlighted
in bold. Specifically, HGraphScale decreases from 37.17%
to 80.16% of ART when compared to threshold-based AWS-
Scale. This is because a fixed threshold setting cannot adapt
effectively to workload changes across time. In the NASA-30
scenario, HGraphScale performs 28.32% worse than ProScale
in terms of ART. However, in this scenario, ProScale exceeds

the budget by 70.11%. In other 14 scenarios, HGraphScale
achieved 16.51% to 56.16% less ART than ProScale.

When compared to DeepScale, HGraphScale produces
3.33% to 63.9% less ART. As for DRPC, HGraphScale
produces 7.42% larger ART than DeepScale in Alibaba-14,
while producing 3.33% to 63.87% less ART in the remaining
scenarios. Although the ART of Alibaba-14 produced by
DRPC is slightly better than HGraphScale, the corresponding
cost exceeds the budget by 56.84%. Although AGQ is also
a GNN-based autoscaling method, it only shows a slight
advantage over HGraphScale in Wiki-13. However, in this
case, AGQ also exceeds the budget by 13.85%.

TABLE III also presents the violation degree (“Vio”) that
quantifies the percentage of cost exceeding the predefined
budget (200 USD). We can observe from this table that
the total VM rental cost of HGraphScale is always kept
under the budget. This indicates that HGraphScale can make
suitable scaling actions to avoid resource wastage. In contrast,
ProScale, DeepScale, DRPC and AGQ exceed the budget
in multiple scenarios. Although AWS-Scale also prevents
budget violation by removing containers promptly when their
CPU utilization is under the lower threshold. However, this
design makes AWS-Scale vulnerable to QoS degradation under
dynamic workloads. Container removal during low request
periods leads to increased ART when user demand rises
abruptly.

The observed performance improvements of HGraphScale
can be attributed to our hierarchical representation and
CHGNN design. These designs enable each container to
effectively capture global information from VMs and PMs.
This delivers more precise autoscaling decision than prior
studies [2], [4], [11], [31], [44], which improves QoS while
simultaneously reducing resource waste and cost.

E. Further Analysis

1) Tail Response Time: Besides the ART, the tail response
time also provides insights into the QoS of microservice
applications in the industry [4], [13], [44], [56]. Fig. 9 shows
the maximum response times at different percentiles of user

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0 200 400 600 800 1000 1200 1400 1600
Response time (ms)

0

20

40

60

80

100
Pe

rc
en

til
e

AWS-Scale
ProScale
DeepScale
DRPC
AGQ
HGraphScale (Ours)

Fig. 9: Response times of NASA-13 at different percentiles for
AWS-Scale, ProScale, DeepScale, DRPC and HGraphScale.

requests in NASA-13 (other scenarios have similar trends).
We can see that HGraphScale achieves lower response times
at all percentiles. Fig. 10 provides the details response time
distribution of HGraphScale in NASA-13. The results show
that HGraphScale ensures 95% of user requests are responded
within 500 ms, and the maximum response time is 1.095s,
showing stable performance and bounded worst-case latency.
More details of response times analysis are provided in Ap-
pendix A.

0 200 400 600 800 1000
Response time (ms)

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 70
th

 =
 1

91
.9

90
th

 =
 2

70
.8

95
th

 =
 3

17
.6

99
th

 =
 5

59
.5

m
ax

 =
 1

09
5.

2

20825
21887

12446

2182
625 495 177 89 71 41 20

Histogram
0 70%
70 90%
90 95%
95 99%
99 100%

Fig. 10: Response time distribution of HGraphScale in NASA-
13

2) Ablation Studies: To evaluate the effectiveness of the
hierarchical graph learning, we conduct ablation studies by
removing the PM layer of HGraphScale, giving rise to a
variant named w/o PM. Moreover, we design another variant
of HGraphScale without both VM and PM layers, named w/o
VM & PM. HGraphScale is compared with w/o PM and w/o
VM & PM on NASA-11, NASA-12, NASA-13 and NASA-14.

As shown in Fig. 11, both w/o PM and w/o VM & PM
ensure the cost is not exceed the budget. However, w/o PM
exhibits significantly inferior ART compared to HGraphScale,
with w/o VM & PM performing even worse than w/o PM.
These results indicate the effectiveness of both VM and PM
embedding learning in HGraphScale.

NASA-11 NASA-12 NASA-13 NASA-140

50

100

150

200

250

300

350

400

AR
T

(m
s)

HGraphScale
w/o PM
w/o VM & PM

NASA-11 NASA-12 NASA-13 NASA-140

25

50

75

100

125

150

175

200

Co
st

 ($
)

Budget

Fig. 11: The comparison results of ablation studies under
NASA workload

TABLE IV: Performance Comparison With Different Budget:
150$ and 250$.

Scenario 150$ 250$
ART (ms) Cost ($) ART (ms) Cost ($)

NASA-11 237.4± 16.5 147.5± 15.1 219.7± 15.7 209.9± 23.6
NASA-12 271.7± 9.5 91.1± 5.1 245.0± 16.1 209.3± 11.5
NASA-13 430.8± 51.2 145.5± 21.1 162.9± 21.9 249.0± 12.7
NASA-14 408.9± 33.7 140.1± 12.2 349.8± 27.5 247.2± 15.5

3) Performance Comparison with Different Budget: We
compare the performance of HGraphScale in solving the AMC
problem with different cost budgets, that is, 150$ and 250$.
TABLE IV presents the ART and cost under different budgets.
Specifically, both the stringent and relaxed budgets of the
AMC problem can be satisfied by HGraphScale. We observe
that the HGraphScale achieves lower ART under 250$ budgets
than under 150$ budgets. The reason is that a relaxed budget
allows for the provision of more resources to the containers.

0 100 200 300 400 500
Episodes

6000

4000

2000

0

Ob
je

ct
iv

e

 = 50
 = 100
 = 150
 = 200

95% CI

Fig. 12: Training curve of HGraphScale under different set-
tings of penalty ρ on NASA-13

4) Performance Comparison with Different Penalty: The
optimization objective of HGraphScale includes a penalty term
(ρ) for violating the budget. Therefore, we conduct sensitivity
analysis on different penalty settings, that is ρ = 50, ρ =
100, ρ = 150 and ρ = 200. Fig. 12 illustrates the training
curves on NASA-13 obtained by different penalty settings.
We can observe from this figure that the training process of
HGraphScale is robust to different penalty settings, as they all
achieve similar convergence stability.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE V presents the test performance of HGraphScale.
HGraphScale ensures the cost under 200$/day with different
settings of ρ. Moreover, when ρ = 50, ρ = 100, and ρ = 150,
HGraphScale achieves similar performances in terms of ART,
while performance degradation occurs with ρ = 200. This
is because the harsh penalty limits the exploration ability of
HGraphScale during training.

TABLE V: Performance Comparison With Penalty Coefficient
(ρ).

ρ
NASA-11 NASA-13

ART (ms) Cost ($) ART (ms) Cost ($)

50 273.5± 17.2 145.5± 9.3 169.4± 18.7 133.7± 20.2
100 255.1± 6.4 140.6± 7.2 178.3± 5.4 120.6± 11.9
150 256.4± 16.1 117.3± 8.8 180.1± 21.2 146.2± 15.5
200 324.0± 17.0 148.2± 8.2 203.6± 12.9 157.0± 5.5

5) Quantitative Analysis of Scaling Actions: To better un-
derstand the behavior of HGraphScale, we conduct a detailed
analysis of quantitative breakdown of autoscaling actions.
Fig. 13 demonstrates the frequencies of scaling actions gener-
ated by HGraphScale, including vertical scaling, horizontal
scaling, and no operation. This figure provides evidences
that HGraphScale tends to perform more vertical scaling than
horizontal scaling in each scenario, resulting in fewer container
replicas.

NASA-11 NASA-12 NASA-13 NASA-14 NASA-30
0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Vertical Scaling
Horizontal Scaling
No Operation

Fig. 13: Quantitative breakdown of HGraphScale’s scaling
actions.

Moreover, Fig. 13 also shows that no operation dominates
in all scenarios. These results indicate that HGraphScale
improves application performance while maintaining system
stability without frequent scaling. It further demonstrates
HGraphScale’s ability to accurately identify containers requir-
ing scaling and to determine appropriate scaling levels, thereby
avoiding resource wastage.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose HGraphScale, a novel DRL-
based autoscaling approach for microservice applications in
container-based cloud. Particularly, We propose a hierarchical
graph to capture dependencies in container-based clouds, a

CHGNN with bottom-up aggregation to learn container em-
beddings, and a scaling policy network that makes scaling
decisions based on these embeddings. The experimental results
indicate that HGraphScale reduces average response time
compared to threshold-based, DRL-based, and graph-based
autoscaling, without exceeding the cost budget. In future work,
we will investigate multi-resource autoscaling to further en-
hance our method. Meanwhile, we will consider the container
migration and respawning to further reduce cost by enabling
more efficient VM utilization.

REFERENCES

[1] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud
computing: state of the art and research challenges. IEEE Transactions
on services computing 11(2), 430–447 (2017)

[2] Amazon: AWS Auto Scaling (2022), https://aws.amazon.com/
autoscaling/, accessed: 2024-11-21

[3] Baarzi, A.F., Kesidis, G.: Showar: Right-sizing and efficient scheduling
of microservices. In: Proceedings of the ACM Symposium on Cloud
Computing. pp. 427–441 (2021)

[4] Bai, H., Xu, M., Ye, K., Buyya, R., Xu, C.: Drpc: Distributed reinforce-
ment learning approach for scalable resource provisioning in container-
based clusters. IEEE Transactions on Services Computing (2024)

[5] Bao, L., Wu, C., Bu, X., Ren, N., Shen, M.: Performance modeling
and workflow scheduling of microservice-based applications in clouds.
IEEE Transactions on Parallel and Distributed Systems 30(9), 2114–
2129 (2019)

[6] Baresi, L., Hu, D.Y.X., Quattrocchi, G., Terracciano, L.: KOSMOS:
vertical and horizontal resource autoscaling for kubernetes. ICSOC
13121, 821–829 (2021)

[7] Berry, V., Castelltort, A., Lange, B., Teriihoania, J., Tibermacine, C.,
Trubiani, C.: Is it worth migrating a monolith to microservices? an
experience report on performance, availability and energy usage. In:
2024 IEEE International Conference on Web Services (ICWS). pp. 944–
954. IEEE (2024)

[8] Blinowski, G., Ojdowska, A., Przybyłek, A.: Monolithic vs. microservice
architecture: A performance and scalability evaluation. IEEE Access 10,
20357–20374 (2022)

[9] Burns, B., Beda, J., Hightower, K.: Kubernetes: Up and Running: Dive
into the Future of Infrastructure. O’Reilly Media (2019)

[10] Cheng, K., Zhang, S., Liu, M., Gu, Y., Wei, L., Cheng, H., Liu, K.,
Song, Y., Shi, X., Zhu, A., et al.: Geoscale: Microservice autoscaling
with cost budget in geo-distributed edge clouds. IEEE Transactions on
Parallel and Distributed Systems 35(4), 646–662 (2024)

[11] Cheng, K., Zhang, S., Tu, C., Shi, X., Yin, Z., Lu, S., Liang, Y., Gu,
Q.: Proscale: Proactive autoscaling for microservice with time-varying
workload at the edge. IEEE Transactions on Parallel and Distributed
Systems 34(4), 1294–1312 (2023)

[12] Chouliaras, S., Sotiriadis, S.: An adaptive auto-scaling framework for
cloud resource provisioning. Future Generation Computer Systems 148,
173–183 (2023)

[13] Dean, J., Barroso, L.A.: The tail at scale. Communications of the ACM
56(2), 74–80 (2013)

[14] Fang, Z., Ma, H., Chen, G., Hartmann, S.: Energy-efficient and
communication-aware resource allocation in container-based cloud with
group genetic algorithm. In: International Conference on Service-
Oriented Computing. pp. 212–226. Springer (2023)

[15] Fang, Z., Ma, H., Chen, G., Hartmann, S.: A group genetic algorithm
for energy-efficient resource allocation in container-based clouds with
heterogeneous physical machines. In: Australasian Joint Conference on
Artificial Intelligence. pp. 453–465. Springer (2023)

[16] Fang, Z., Ma, H., Chen, G., Hartmann, S., Chen, S.: A communication-
aware and energy-efficient genetic programming based method for
dynamic resource allocation in clouds. In: International Conference on
the Applications of Evolutionary Computation (Part of EvoStar). pp.
421–436. Springer (2025)

[17] Foundation, F.: Gymnasium documentation. https://gymnasium.farama.
org/index.html, accessed: 2025-09-16

[18] Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation
error in actor-critic methods. In: International conference on machine
learning. pp. 1587–1596. PMLR (2018)

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://gymnasium.farama.org/index.html
https://gymnasium.farama.org/index.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[19] Garı́, Y., Monge, D.A., Mateos, C.: A q-learning approach for the
autoscaling of scientific workflows in the cloud. Future Generation
Computer Systems 127, 168–180 (2022)

[20] Garı́, Y., Pacini, E., Robino, L., Mateos, C., Monge, D.A.: Online
rl-based cloud autoscaling for scientific workflows: Evaluation of q-
learning and sarsa. Future Generation Computer Systems 157, 573–586
(2024)

[21] Hamzaoui, I., Duthil, B., Courboulay, V., Medromi, H.: A topical review
on container-based cloud revolution: Multi-directional challenges, and
future trends. SN Computer Science 5(4), 416 (2024)

[22] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 770–778 (2016)

[23] Huang, K.C., Shen, B.J.: Service deployment strategies for efficient
execution of composite saas applications on cloud platform. Journal of
Systems and Software 107, 127–141 (2015)

[24] Huang, V., Chen, G., Zhang, P., Li, H., Hu, C., Pan, T., Fu, Q.: A scalable
approach to sdn control plane management: High utilization comes with
low latency. IEEE Transactions on Network and Service Management
17(2), 682–695 (2020)

[25] Huang, V., Wang, C., Ma, H., Chen, G., Christopher, K.: Cost-aware dy-
namic multi-workflow scheduling in cloud data center using evolutionary
reinforcement learning. In: International Conference on Service-Oriented
Computing. pp. 449–464. Springer (2022)

[26] Imdoukh, M., Ahmad, I., Alfailakawi, M.G.: Machine learning-based
auto-scaling for containerized applications. Neural Computing and Ap-
plications 32(13), 9745–9760 (2020)

[27] Jangiti, S., Vijayakumar, V., Subramaniyaswamy, V.: Hybrid best-fit
heuristic for energy efficient virtual machine placement in cloud data
centers. EAI Endorsed Transactions on Energy Web 7(26) (2020)

[28] Jeong, B., Jeong, Y.S.: Autoscaling techniques in cloud-native comput-
ing: A comprehensive survey. Computer Science Review 58, 100791
(2025)

[29] Lee, S., Park, J.: Comparative performance analysis of i/o interfaces
on different nvme ssds in a high cpu contention scenario. IEICE
TRANSACTIONS on Information and Systems 107(7), 898–900 (2024)

[30] Li, T., Ying, S., Tian, X., Zhang, T., Wang, Y.: Astra: Adversarial sim-
to-real transfer reinforcement learning for autoscaling in cloud systems.
IEEE Transactions on Software Engineering (2025)

[31] Liang, P., Xun, Y., Cai, J., Yang, H.: Autoscaling of microservice
resources based on dense connectivity spatio-temporal gnn and q-
learning. Future Generation Computer Systems 174, 107909 (2026)

[32] Ma, Y., Gerard, P., Tian, Y., Guo, Z., Chawla, N.V.: Hierarchical
spatio-temporal graph neural networks for pandemic forecasting. In:
Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. pp. 1481–1490 (2022)

[33] Meng, C., Song, S., Tong, H., Pan, M., Yu, Y.: Deepscaler: Holistic
autoscaling for microservices based on spatiotemporal gnn with adaptive
graph learning. In: 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 53–65. IEEE (2023)

[34] Meng, C., Tong, J., Pan, M., Yu, Y.: Hra: An intelligent holistic resource
autoscaling framework for multi-service applications. In: 2022 IEEE
International Conference on Web Services (ICWS). pp. 129–139. IEEE
(2022)

[35] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
et al.: Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

[36] Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.:
Autonomic decentralized elasticity based on a reinforcement learning
controller for cloud applications. Future Generation Computer Systems
94, 765–780 (2019)

[37] Park, J., Choi, B., Lee, C., Han, D.: Graf: A graph neural network based
proactive resource allocation framework for slo-oriented microservices.
In: Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies. pp. 154–167 (2021)

[38] Park, J., Choi, B., Lee, C., Han, D.: Graph neural network-based
slo-aware proactive resource autoscaling framework for microservices.
IEEE/ACM Transactions on Networking 32(4), 3331–3346 (2024)

[39] Saidu, I., Subramaniam, S., Jaafar, A., Zukarnain, Z.A.: A load-aware
weighted round-robin algorithm for ieee 802.16 networks. EURASIP
Journal on Wireless Communications and Networking 2014(1), 226
(2014)

[40] Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution
strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017)

[41] Shen, Y., Chen, G., Ma, H., Zhang, M.: Cost-aware dynamic cloud
workflow scheduling using self-attention and evolutionary reinforcement
learning. In: International Conference on Service-Oriented Computing.
pp. 3–18. Springer (2024)

[42] Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-
constrained service deployment for composite applications in multi-
cloud environment. IEEE Transactions on Parallel and Distributed Sys-
tems 31(8), 1954–1969 (2020)

[43] Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application
replication and deployment in multi-cloud environment. IEEE Transac-
tions on Parallel and Distributed Systems 33(8), 1982–1995 (2021)

[44] Shi, T., Ma, H., Chen, G., Hartmann, S.: Auto-scaling containerized
applications in geo-distributed clouds. IEEE Transactions on Services
Computing (2023)

[45] Srirama, S.N., Adhikari, M., Paul, S.: Application deployment using
containers with auto-scaling for microservices in cloud environment.
Journal of Network and Computer Applications 160, 102629 (2020)

[46] Tan, B., Ma, H., Mei, Y., Zhang, M.: A cooperative coevolution genetic
programming hyper-heuristics approach for on-line resource allocation
in container-based clouds. IEEE Transactions on Cloud Computing
10(3), 1500–1514 (2020)

[47] Tong, G., Meng, C., Song, S., Pan, M., Yu, Y.: Gma: graph multi-agent
microservice autoscaling algorithm in edge-cloud environment. In: 2023
IEEE international conference on web services (ICWS). pp. 393–404.
IEEE (2023)

[48] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio,
Y., et al.: Graph attention networks. stat 1050(20), 10–48550 (2017)

[49] Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-
aware dynamic resource allocation in container-based clouds via coop-
erative coevolution genetic programming. In: International Conference
on the Applications of Evolutionary Computation (Part of EvoStar). pp.
539–555. Springer (2023)

[50] Wang, S., Ding, Z., Jiang, C.: Elastic scheduling for microservice
applications in clouds. IEEE Transactions on Parallel and Distributed
Systems 32(1), 98–115 (2020)

[51] Wang, S., Li, X., Sheng, Q.Z., Beheshti, A.: Performance analysis and
optimization on scheduling stochastic cloud service requests: A survey.
IEEE Transactions on Network and Service Management 19(3), 3587–
3602 (2022)

[52] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8, 279–292
(1992)

[53] Wen, L., Xu, M., Gill, S.S., Hilman, M., Srirama, S.N., Ye, K., Xu, C.:
Statuscale: Status-aware and elastic scaling strategy for microservice
applications. ACM Transactions on Autonomous and Adaptive Systems
20(1), 1–25 (2025)

[54] Wen, Z., Chen, Q., Deng, Q., Niu, Y., Song, Z., Liu, F.: Combofunc: joint
resource combination and container placement for serverless function
scaling with heterogeneous container. IEEE Transactions on Parallel and
Distributed Systems (2024)

[55] Wu, N., Zhao, X.W., Wang, J., Pan, D.: Learning effective road network
representation with hierarchical graph neural networks. In: Proceedings
of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining. pp. 6–14 (2020)

[56] Xie, J., Guo, D., Li, X., Shen, Y., Jiang, X.: Cutting long-tail latency of
routing response in software defined networks. IEEE Journal on Selected
Areas in Communications 36(3), 384–396 (2018)

[57] Xie, S., Wang, J., Li, B., Zhang, Z., Li, D., Hung, P.C.: Pbscaler: A
bottleneck-aware autoscaling framework for microservice-based appli-
cations. IEEE Transactions on Services Computing (2024)

[58] Yang, Y., Chen, G., Ma, H., Zhang, M.: Dual-tree genetic programming
for deadline-constrained dynamic workflow scheduling in cloud. In:
International Conference on Service-Oriented Computing. pp. 433–448.
Springer (2022)

[59] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.:
Hierarchical graph representation learning with differentiable pooling.
Advances in neural information processing systems 31 (2018)

[60] Zhang, S., Wu, T., Pan, M., Zhang, C., Yu, Y.: A-sarsa: A predictive
container auto-scaling algorithm based on reinforcement learning. In:
2020 IEEE international conference on web services (ICWS). pp. 489–
497. IEEE (2020)

[61] Zhong, Z., Li, C.T., Pang, J.: Hierarchical message-passing graph
neural networks. Data Mining and Knowledge Discovery 37(1), 381–
408 (2023)

[62] Zolfaghari, R.: Energy-performance aware virtual machines migration in
cloud network by using prediction and fuzzy approaches. Engineering
Applications of Artificial Intelligence 131, 107825 (2024)

	Introduction
	Related Work
	Heuristic-based Autoscaling
	Reinforcement Learning-based Autoscaling
	Graph Neural Network-based Autoscaling
	Summary

	Problem Description
	System Overview
	QoS and Cost Modeling
	Optimization Objective

	Proposed Autoscaling Approach
	RL Formulation
	State
	Action
	Optimization objective

	Hierarchical Graph Representation
	Cloud-Oriented Hierarchical Graph Neural Network
	Machine embedding Learning
	Bottom-Up Information Aggregation

	Scaling Policy Network
	Scaling Action Executor
	Capacity-based Load Balancing
	Evolutionary Reinforcement Learning

	Performance Evaluation
	Experiment Setup
	HGraphScale Configuration
	Competing Approaches
	Performance Comparison
	Further Analysis
	Tail Response Time
	Ablation Studies
	Performance Comparison with Different Budget
	Performance Comparison with Different Penalty
	Quantitative Analysis of Scaling Actions

	Conclusion and Future Work
	References

