
Hierarchical Dependency-Aware Scheduling for
Distributed Stream Computing Systems

Yinuo Fan1, Dawei Sun1⋆, Shuaiyi Zou1, Jonathan Kua2, and Rajkumar
Buyya3

1 School of Information Engineering, China University of Geosciences, Beijing
100083, China

fanyinuocn@email.cugb.edu.cn, sundaweicn@cugb.edu.cn,
zoushuaiyi@email.cugb.edu.cn

2 School of Information Technology, Deakin University, Geelong, VIC 3220, Australia
jonathan.kua@deakin.edu.au

3 Quantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of
Computing and Information Systems, The University of Melbourne, Parkville,

Victoria 3010, Australia
rbuyya@unimelb.edu.au

Abstract. Scheduling strategies play a crucial role in distributed stream
computing systems. Many state-of-the-art works focus on load balanc-
ing of computing nodes and dependencies of stream application tasks,
However, these methods do not sufficiently consider differentiated com-
munication costs between computing nodes. Scheduling computing nodes
with significant differences in communication costs to high-dependency
task leads to increased communication latency, thereby degrading the
overall system latency. To overcome these limitations, we propose Hd-
Stream, which is a hierarchical dependency-aware scheduling mechanism
for distributed stream systems. Our Hd-Stream mechanism comprises:
(1) The dependency relationships of stream application tasks and com-
puting nodes are hierarchically quantified by constructing a stream ap-
plication model, a task dependency model, and a resource dependency
model. (2) A Communication Dependency-aware virtual resource node
(V RN) scheduling algorithm is proposed to minimize the communication
costs between computing nodes. (3) A hierarchical dependency-aware
scheduling algorithm is proposed for reducing communication latency
and optimize resource utilization based on maximizing migration bene-
fits. (4) Multiple metrics are evaluated, including system latency, system
throughput, and resource utilization n real distributed stream comput-
ing scenarios. Our experimental results demonstrate that Hd-Stream re-
duces system latency by 42%, increases average throughput by 25%, and
achieves efficient resource utilization.

Keywords: Hierarchical dependency-aware · Scheduling · Communica-
tion latency · Distributed stream computing

⋆ Dawei Sun, sundaweicn@cugb.edu.cn

2 Y., D. et al.

1 Introduction

Distributed stream computing systems (DSC), such as Apache Storm and Spark
Streaming [1], are widely used in various applications (e.g., fraud detection
[2]) due to their ability to process dynamic, continuous, and unbounded data
streams with millisecond-level latency. Processing data streams requires not
only the rapid execution of complex computations such as filtering, aggrega-
tion, and correlation [3], but also the assurance of excellent system performance.
Although DCS systems provide rich stream data processing capabilities and effi-
cient scheduling mechanisms [4], they still face many challenges in more complex
application scenarios, such as when dealing with computational resource hetero-
geneity.

DSC systems’ key optimization includes data stream grouping [5], schedul-
ing [6], and fault tolerance management [7]. The optimization objectives are
decreasing latency, increasing throughput and resource utilization, while ensur-
ing system stability. Scheduling involves allocating computational node resources
to tasks within stream applications while avoiding frequent network transmis-
sions caused by task communication, which can lead to high communication
latency or performance bottlenecks due to uneven resource load. Additionally,
the system must dynamically monitor and adjust scheduling schemes to respond
to fluctuating data streams, ensuring system performance and data integrity [8].

In DSC systems, stream applications are typically represented as directed
acyclic graphs (DAGs) connected by data dependencies [9]. The vertices repre-
sent data processing operations, the edges indicate the direction of data stream,
and the weights reflect the communication traffic between vertices. The critical
path of the DAG reflects the system’s response latency [10]. To improve the
computational efficiency of stream applications, it is essential to utilize runtime
context information of DSC systems and minimize the latency of cross-network
communication. This is achieved by reducing the communication traffic between
computing nodes caused by interactions between tasks. Since scheduling is an
NP-hard problem [11] and the data stream continuously fluctuating, it is cru-
cial to balance the scheduling overhead with the scheduling effectiveness. This
is necessary to prevent system crashes due to message queue failures during the
execution of scheduling.

In complex network environments, a key research challenge is to comprehen-
sively integrate runtime information from both the application logic layer and the
physical resource layer in order to achieve a balance between scheduling over-
head and scheduling benefits. Although existing scheduling strategies [12, 13]
have achieved some success in optimizing operator dependencies and resource
management, they do not sufficiently consider the differences in communication
costs and distribution characteristics of physical computing nodes. As a result,
even with optimized task dependencies at the logical level, actual deployments
may still incur additional system performance overhead due to communication
latency. Therefore, scheduling strategies need to further integrate context infor-
mation, particularly by incorporating awareness of communication latency and
optimizing resource management. This approach aims to effectively mitigate the

Hd-Stream 3

aforementioned issues while ensuring system performance, achieving low latency,
high throughput, and more balanced and efficient resource utilization.

To address the aforementioned challenges, we propose Hd-Stream, which is
a hierarchical dependency-aware scheduling for distributed stream computing
systems. Hd-Stream leverages the dependencies between stream applications at
the logical layer and computing nodes at the physical layer to achieve efficient
scheduling. The contributions of this paper are as follows:

(1) We constructed a stream application model, a task dependency model, and
a resource dependency model to hierarchically quantify the dependencies
between stream applications and computing node.

(2) We proposed a communication dependency-aware virtual resource node schedul-
ing (V RN) algorithm to minimize the communication costs between com-
puting nodes.

(3) We proposed a hierarchical dependency-aware scheduling algorithm to re-
duce communication latency and optimize resource utilization according to
maximum migration benefits.

(4) We implemented Hd-Stream and integrated it into Apache Storm, and eval-
uated its performance in a real distributed stream computing environment.

1.1 Paper Organization

The rest of this paper is organized as follows: Section 2 reviews and analyzes
related work in the field of distributed stream computing scheduling. Section 3
constructs the stream application model, the task dependency model and the re-
source dependency model. Section 4 introduces Hd-Stream, including its system
architecture and algorithms. Section 5 evaluates the performance of Hd-Stream
in a real-world distributed stream computing environment. Section 6 concludes
the paper and outlines future work.

2 Related Work

Scheduling is one of the crucial research areas in DSC systems [14]. Since the com-
plexity of streaming applications and the heterogeneity of computing resources
of computing resources, it is challenging to find an optimal scheduling scheme.
We reviewed existing scheduling strategies and analyzed their advantages and
limitations.

I-Scheduler [15] first divides the streaming application into subgraphs by
graph partitioning technique, subsequently prioritizes the task subgraphs with
higher communication dependency to the most resource-sufficient computing
node based on the inverse order of resource node capacity. However, I-Scheduler
heavily relies on the optimization software and the empirical partition capacity
threshold definition.

SP-Ant [16] used the ACO algorithm to iteratively optimize the scheduling
scheme and adopted the boxing algorithm as the initial scheduling scheme to

4 Y., D. et al.

accelerate the convergence process of the ACO algorithm. However, since the
ACO algorithm requires multiple iterations to approach the optimal solution,
its overall convergence speed is slow and may introduce additional scheduling
delays in dynamic data flow environments.

The work in [17] proposed Cost-Efficient Task Scheduling Algorithm (CETSA)
and Cost-Effective Load Balancing Algorithm (LBA-CE) to optimize load bal-
ancing while reducing the cost of job execution. These algorithms ensure work-
load balancing in heterogeneous clusters while minimizing cost. However, these
algorithms do not adequately consider the real-time fluctuations in the data
stream rate.

The method presented in [18] is a resource scheduling and provisioning ap-
proach under latency constraints, designed to address the complexity and un-
predictability of dynamic streaming workflow scenarios. This approach assumes
that the data communication overhead is negligible. However, the communica-
tion overhead is an important factor that cannot be ignored in the real-world.

D-Storm [19] abstracts the scheduling problem into a crating problem and
proposed an algorithm based on a greedy policy to minimize the communication
latency between nodes. The algorithm is able to dynamically acquire resource
requirements and dynamically make scheduling decisions at system runtime.
However, the algorithm only focuses on the communication volume when order-
ing the cluster arithmetic tasks and does not fully consider the heterogeneous
arithmetic characteristics of the nodes.

The work in [20] proposed a method to reduce network latency caused by
distributed computing across multiple devices by formulating the complete conti-
nuity of computing resources through a formal scheduling optimization problem.
However, the method does not adjust the utilization of computing resources ac-
cording to the changes in data stream.

Table 1: Comparison of Ra-Stream and related work.
Scheduler Aspects

Heterogeneous cluster Communication cost Load balancing

I-Scheduler [15] ✓ ✓ ×
SP-Ant [16] ✓ ✓ ×
VM provisioner [18] ✓ × ×
D-Storm [19] × ✓ ×
Ra-Stream(Ours) ✓ ✓ ✓

The aforementioned approaches have improved the scheduling strategies and
have achieved excellent results. However, most of them do not comprehensively
consider the complexity of the computing environment, especially in data streams
fluctuation and the differentiated communication cost of computing nodes. We
systematically compare and analyze Hd-Stream with existing studies in Table 1.

Hd-Stream 5

3 System Model

The scheduling effectiveness and stability of DSC systems are influenced by
factors such as communication costs between computational nodes, available re-
sources, and data stream rates. In this work, we constructed a stream application
model, a task dependency model, and a resource dependency model to provide
a solid foundation for the scheduling strategy.

3.1 Stream Application Model

The logical topology of stream applications is often abstracted asG = {V (G), E(G)},
where V (G) = {v1, v2, · · · , vn} represent n vertices within G, each vertex vi ∈
V (G) denotes a specific logical computation, responsible for sending or process-
ing data streams. E(G) represent the directed edges in G, and E(G) = {evi,vj

|i <
j < n}, where evi,vj represents a set of directed edges between vi and vj , indi-
cating the data stream transmission.

Fig. 1: The task topology of a stream application

When a user constructs a stream application and submits it to the DSC
system, the DSC system creates the corresponding number of task instances
based on the default parallelism settings for each vertex in the submitted stream
application. Each vertex can have one or more task instances. As shown in Fig.
1, the stream application consists of four vertices: one Spout and three Bolts.
The parallelism, or number of task instances for each vertex, is 2, 3, 1, and 2,
respectively. The system applies the specified scheduling strategy, placing the
task instances to physical resource nodes within the cluster according to the
task topology of the stream application.

6 Y., D. et al.

3.2 Task Dependency Model

Due to the differing grouping strategies among task instances, there may be sig-
nificant variations in the communication traffic between instances of the same
vertex with upstream vertex task instances. Consequently, the dependencies
among the various vertex task instances will differ. During the scheduling pro-
cess, it is essential to consider the communication traffic between task instances
to quantify their dependencies. This helps optimize the scheduling strategy, re-
duce inter-node communication, and enhance overall system performance.

When task instances with communication connections are deployed on the
same computing node, their dependency is considered to be 0, as there is no data
transmission across the network. We define wvi,k,vj,m as the average data transfer
rate between upstream task instance vi,k and downstream task instance vj,m,
which represents the mathematical expectation of the data transfer rate between
the two task instances over a unit of time. We define dvi,k,vj,m to represent the
dependency between vi,k and vj,m, which can be calculated by (1):

dvi,k,vj,m =

{
0, vi,k, vj,m are deployed in the same node,
wvi,k,vj,m , Otherwise.

(1)

Communication between task instances includes inter-node communication
and intra-node communication. The latency for inter-node communication is
significantly higher than the latency for intra-node communication [21]. The
scheduling strategy should consider the communication type when partitioning
task instances in the stream application. The goal is to maximize the total task
instance dependencies within computing nodes while minimizing the total task
instance dependencies between computing nodes.

3.3 Resource Dependency Model

The communication cost between computing nodes reflects their dependencies.
The design of the scheduling strategy should fully consider dependency differ-
ences to minimize communication latency. Additionally, when the dependen-
cies between computing nodes vary significantly, the system needs to adjust the
scheduling scheme in a timely manner to avoid performance degradation. Balanc-
ing scheduling benefits and scheduling overhead is an important consideration.

The dependency of cni and cnj are denoted as Xi,j , We construct the depen-
dency feature matrix X for the computing nodes in the cluster, which satisfies
N = |X|, N is the total number of compute nodes. We introduce the concept
of resource clustering for computing nodes, grouping nodes with similar depen-
dency differences into the same cluster, referred to as virtual resource nodes
V RN .

We leverage the K-means clustering algorithm combined with the elbow
method to cluster the computing nodes. First, we randomly initialize k feature
vectors of the computing nodes as the initial cluster centers. We then calculate
the Euclidean distance between each computing node and the cluster centers to

Hd-Stream 7

measure the differences in communication dependency. The Euclidean distance
can be calculated by (2):

d(Xi, Cm) =

√√√√ N∑
j=1

(Xi,j − Cm,j)2 (2)

where Xi is the feature vector of the ith computing node, Cm is the mth cluster
center in X. We assign each computing node to the cluster whose cluster center
has the smallest Euclidean distance. After each iteration, we re-calculate the
center of each cluster to update it as the new cluster center. This process is
repeated until the cluster centers no longer change or until the maximum number
of iterations is reached.

We experimented with different numbers of clusters from k = 2 to k =
N − 1 and calculated the sum of squared errors (SSE) for each clustering result.
Subsequently, we used the elbow method to analyze the trend of SSE changes
corresponding to different k values, identifying the inflection point where the
decrease in SSE slows down significantly. The k value at this inflection point
is taken as the optimal number of clusters, resulting in the final set of virtual
resource nodes V RN . The sum of squared errors can be calculated as (3):

SSE =

k∑
i=1

∑
Xj∈V RNi

(Xj − Ci)
2, (3)

where V RNi represents the ith virtual resource node, which is the set of com-
pute nodes in the ith cluster. To enhance system stability and avoid performance
degradation due to significant fluctuations in communication dependencies of
computing nodes, we set thresholds ψ to represent the maximum tolerable net-
work fluctuation range. We quantify this using the Frobenius norm ∥X∥F of the
X at the current time window Ti and the Frobenius norm of X at the adjacent
time window Ti−1, ∥X∥F can be calculated by (4):

∥X∥F =

√√√√ N∑
i=1

N∑
j=1

|Xi,j |2. (4)

The communication fluctuation of computing nodes is calculated using (5):

∆ =

∥∥XTi
−XTi−1

∥∥
F∥∥XTi−1

∥∥
F

. (5)

If ψ > ∆ is detected within the current time window, it indicates a significant
fluctuation in the communication dependencies of computing nodes, necessitat-
ing a rescheduling of the stream application.

8 Y., D. et al.

4 Hd-Stream: Architecture and Algorithms

In this section, we provide an overview of Hd-Stream based the constructed
models presented in the previous section, including its system architecture and
algorithms.

4.1 System Architecture

Based on the aforementioned models, we implemented Hd-Stream and integrated
it into the mainstream DSC framework Apache Storm. As shown in Fig. 2, Hd-
Stream consists of four main components: Scheduling Trigger, V RN Gener-
ation, Task Deployment and Data Monitor.

Scheduling Trigger reads the current status of the running system from the
Database and determines whether to trigger re-scheduling. V RN Generation
clusters physical computing nodes into virtual resource nodes (V RN)s based
on communication dependencies and generates a scheduling sequence of V RNs.
Task Deployment generates scheduling solutions based on the dependencies of
stream application tasks and the V RN scheduling sequence. Data monitor is
responsible for the real-time collection of the resource utilization of computing
nodes, the resource requirements of tasks, and the communication traffic between
tasks.

Fig. 2: Hd-Stream’s architecture

Hd-Stream 9

4.2 Communication Dependency-aware V RN Scheduling

In scenarios where there are significant differences in communication dependen-
cies among computing nodes, if the communication dependencies of compute
nodes are overly focused, the scheduling process will involve excessive iterations,
leading to high scheduling overhead. To address this problem, we proposed a
method of fusion for virtual resource nodes (V RN) to cluster physical resource
nodes and generate a scheduling sequence for the V RNs. This method reduces
the search space for computing nodes during the scheduling process, thereby
reducing scheduling overhead.

To improve the execution efficiency of the scheduling strategy and reduce
the overhead in selecting computing nodes for deploying tasks, we calculate the
currently available resource amount for each V RN . The V RN with the maxi-
mum available resources is selected as the starting node of the V RN scheduling
sequence. Subsequently, the scheduling order of V RNs is determined based on
the communication costs between them. The communication dependency-aware
V RN fusion process is outlined in Algorithm 1.

The input to Algorithm 1 includes the dependency feature matrix X and the
maximum number of clusters kmax. The output is the V RN scheduling sequence
P . Steps 1–7 initialize data structures to store clustering metrics (WCSS) and
iterate through cluster numbers k from 2 to kmax − 1, and computing WCSS
for each k by applying K-Means clustering. Steps 9–17 generate clusters V ,
compute inter-V RN dependency matrices D, and calculate total resources R
for each V RN . Steps 18–22 construct the scheduling sequence P by greedily
selecting the V RN with the highest resource (m) and iteratively appending the
next V RN with the minimum dependency to the current sequence (t) until all
V RNs are included. The time complexity of Algorithm 1 is O(m2 · d), where m
and d are the number of rows and columns in the dependency feature matrix X,
respectively.

4.3 Hierarchical Dependency-aware Scheduling

Static scheduling lacks prior knowledge task dependencies, making it difficult to
fully utilize runtime information to optimize scheduling solutions. Therefore, we
propose a hierarchical dependency-aware strategy that comprehensively consid-
ers factors such as task migration benefits, task dependencies, computing node
dependencies, and system resource constraints. This approach optimizes the
scheduling solutions and reduces unnecessary communication overhead across
computing nodes.

For task migration between V RNs, we select tasks that can yield migration
benefits and migrate them from the current V RN to upstream or downstream
V RNs. We define the change in communication traffic between V RNs after task
migration as the migration benefit. A cost function is established to quantify this
benefit, which is used to calculate both the external and internal costs of task

10 Y., D. et al.

Algorithm 1 Communication dependency-aware V RN scheduling sequence
Input: Dependency feature matrix X , maximum number of clusters kmax

Output: V RN scheduling sequence P
1: Initialize the list T to store the Within-Cluster Sum of Squares (WCSS) for each

clustering;
2: Initialize the list R to store the total resources of each V RN ;
3: for k = 2 to kmax − 1 do
4: Run K-Means on X with k clusters for maxiter iterations;
5: t← Compute the WCSS for the current clustering;

// Store the WCSS and corresponding k
6: T.append((t, k));
7: end for
8: n← Find the optimal number of clusters using elbow rule on WCSS curve T ;
9: V ← Run K-Means on X with n clusters for maxiter iterations;

// Compute the dependency feature matrix between V RNs
10: for i = 1 to |V | do
11: for j = i+ 1 to |V | do
12: Di,j ← getDependencyOf(Vi, Vj , X);
13: Dj,i ← Di, j;
14: end for
15: end for

// Compute the total resources of each V RN
16: for i = 1 to |V | do Ri ← sumOfResource(Vi);
17: end for

// Generate the scheduling sequence
18: m = argmaxjRj ;
19: P .append(m);
20: while |P | ̸= |V | do

// Find the minimum dependency between V RNs
21: t← findMinDepend(Dm), where t ̸= m and t not in P ; P .append(t); m = t;
22: end while
23: return P

migration, as shown in (6) and (7):

Ex(v) =
∑

Pa(j)̸=Pa(v)

(wv,j + wj,v) , (6)

In(v) =
∑

Pa(j)=Pa(v)

(wv,j + wj,v) , (7)

where Pa(v) is the partition to which task v belongs, specifically the V RNs asso-
ciated with v. Ex(v) is external cost, representing the change in communication
traffic when v is moved into the adjacent partition Pa(j). In(v) is internal cost,
representing the change in communication traffic resulting from moving task v
out of Pa(v).

Based on the existing deployment scheme of stream applications, we obtain
a task subgraphs sequence R = {Ri, R2, · · · , Rm} in V RNs, where m is the

Hd-Stream 11

number of utilized V RN . Following the order of subgraphs in R, we first calculate
the boundary task sequence between the subgraphs to migration tasks. The
boundary tasks in the upstream and downstream task subgraphs are defined as
Bi = {v ∈ Ri|∃j ∈ Ri+1, wv,j > 0} and Bi+1 = {j ∈ Ri+1|∃v ∈ Ri, wv,j > 0}. Bi

and Bi+1 are the boundary tasks of Ri and Ri+1, respectively. Ri and Ri+1 are
two adjacent subgraphs. Subsequently we calculate the task migration benefit
by using (8).

g(v) = Ex(v)− In(v), v ∈ {Bi ∪Bi+1}, (8)

Additionally, the task migrations satisfy resource constraint conditions, that is
the resource requirements of the tasks do not exceed the resource constraint of
the V RN , thereby achieving load balancing of V RNs. The workflow of hierar-
chical dependency-aware scheduling is outline in Algorithm 2.

Algorithm 2 Hierarchical dependency-aware scheduling
Input: Stream application G , The task subgraph list R
Output: Scheduling scheme P ∗

1: Initialize list L to store available resources of V RNs, priority queue Ga to store
gain value of boundary tasks;

2: for i = 0 to |R| − 1 do
3: Bi, Bi+1 ← find boundary tasks of Ri and Ri+1;
4: disableTask ← initialize list to store disabled task;

// Calculate the gain value of the boundary tasks
5: for task v ∈ {Bi ∪Bi+1} do
6: Gav = Ex(v)− In(v);
7: end for

// Move the boundary tasks that generate positive returns to the adjacent
partitions

8: while |Ga| ≠ 0 do
9: gainv ← Ga.pop();

10: if gainv ≥ 0&moving v does not violate resource constraints &v /∈
disableTask then

11: move v to other partition;
12: update Bi, Bi+1;
13: disableTask.add(v);
14: else
15: P ∗.append(Ri);
16: Break;
17: end if
18: Ga.upadateGainsOf(Bi, Bi+1);
19: end while
20: end for
21: return P ∗

The input to Algorithm 2 includes the stream application G and the task
subgraph list R. The output is the Scheduling scheme P ∗. Steps 1-4 initialize

12 Y., D. et al.

a resource availability list L for V RNs and a priority queue Ga of boundary
tasks. Steps 5-6 calculate the benefit of boundary tasks. Step 8-19 is the process
of task migration. The time complexity of Algorithm 2 is O(n · k · logk), where
n is the size of the task subgraph list R, and k is the number of boundary tasks.

5 Performance Evaluation

In this section, we evaluate the performance of Hd-Stream by comparing it with
the mainstream works Storm [22] and R-Storm [23] in real-world distributed
stream computing environment.

5.1 Experimental Configuration

We configure a resource-heterogeneous computing cluster consisting of 13 com-
puting nodes, where 1 node is the master node running the Nimbus and Zookeeper
components to maintain system operation, while the remaining nodes are worker
nodes running the Supervisor to process data streams. The hardware configu-
ration and software configuration are presented in Tables 2 and 3, respectively.

Table 2: Hardware Configuration
Parameter Master Node Worker Node 1 Worker Node 2 Worker Node 3
Quantity 1 3 4 5
VCPU 2GHz, 2 cores 2GHz, 1 core 2GHz, 1 core 2GHz, 4 cores
Memory 4G 2G 4G 4G
Disk 40G 40G 40G 40G

Table 3: Software Configuration
Software Version

OS CentOs 7
Apache Storm Apache-Storm-2.4.0
JDK JDK 1.8
Zookeeper Zookeeper-3.5.7
Python Python-3.8.10
Redis Redis-5.0.7
Kafka Kafka-3.6.2

We used Yahoo Webscope S5 Dataset [24] for the stream application Ya-
hoo Streaming Benchmark [25] across the experiments. The architecture task

Hd-Stream 13

instance parallelism configurations is shown in Fig. 3. Spout reads data from
external data sources. De-serialization processes the read byte arrays for de-
serialization. Filter filters tuples that meet the specified criteria. Projection ex-
tracts the fields of interest from the tuples to create new tuples. Join associates
with external data based on the tuple ID field to form new tuples. Finally, Ag-
gregation groups and aggregates tuples based on active fields and stores them in
an external storage system for convenient querying and analysis.

Fig. 3: Task topology of Yahoo Streaming Benchmark

5.2 Resource Utilization

CPU and memory resources are the primary computational resources for dis-
tributed clusters processing data, closely related to the cluster’s energy consump-
tion and costs. We assess the overall utilization of CPU and memory resources
under different scheduling strategies by calculating the average utilization rate,
defined as (CPU resource utilization + memory resource utilization) / 2, to
evaluate how effectively each scheduling strategy utilizes cluster resources.

14 Y., D. et al.

Fig. 4: Resource utilization of Yahoo Streaming Benchmark under a stable stream
rates

Under a stable data stream rate of 1000 tuples/s, Hd-Stream improved the
cluster’s resource efficiency through dynamic scheduling. As shown in Fig. 4,
the average resource utilization for Storm, R-Storm, and Hd-Stream across 60
minutes in runtime is 43.45%, 53.66%, and 66.35%, respectively.

To observe the changes in resource utilization under fluctuating data stream
rates, the data stream rate is changed from 1000 tuples/s to 2500 tuples/s at
the 30th minute. As shown in Fig. 5, after the 30th minute, Storm and R-Storm
experienced severe resource overload. In contrast, Hd-Stream maintained load
balancing due to its dynamic scheduling mechanism, achieving an overall average
resource utilization of 83.03%. This effectively avoided performance bottlenecks
caused by imbalance resource distribution and efficiently utilized the resources
of the computing nodes in the cluster.

5.3 System Latency

System latency is defined as the time interval between when a tuple enters the
system and until it is fully processed. We evaluated the system latency for Hd-
stream, Storm and R-Storm and analyzed the reasons behind their system la-
tency trend under stable data stream rates and fluctuating data stream rates,
respectively.

Under a stable data stream rate of 3,000 tuples/s, Hd-Stream not only signif-
icantly reduces the overall system latency but also achieves a more stable latency
trend. As shown in Fig. 6, during the first 24 minutes of runtime, Hd-Stream, R
Storm, and Storm maintain low system latency around 25 ms. However, as the
stream application is running, data backlog occurs after the 24th minute. Due

Hd-Stream 15

Fig. 5: Resource utilization of Yahoo Streaming Benchmark under fluctuating
stream rates.

Fig. 6: System latency of Yahoo Streaming Benchmark under a stable stream
rate.

16 Y., D. et al.

to the lack of dynamic scheduling capabilities of Storm and R-Storm, system
latency gradually increases to 241 ms and 121 ms at 60th minutes, respectively.
In contrast, Hd-Stream dynamically re-schedule the stream application at the
28th minute. Although this introduces scheduling overhead, causing a temporary
increase in system latency at 68.2 ms, system latency gradually decreases and
stabilizes after the re-scheduling is completed.

Fig. 7: System latency of Yahoo Streaming Benchmark under fluctuating stream
rates.

To access the performance of Hd-Stream under fluctuating stream rates, the
data stream rate is gradually increased from 3000 tuples/s to 9000 tuples/s
at the 20th minute. As shown in Fig. 7, Hd-Stream rescheduled the stream
application at the 28th minute to address the fluctuating data stream, causing
a temporary increase in system latency to 103.3 ms. After the rescheduling is
completed, system latency decreased and gradually stabilized around 45 ms.
In contrast, Storm and R-Storm are unable to cope with the fluctuating data
stream, resulting in a gradual increase in system latency.

5.4 System Throughput

System throughput reflects the system’s ability to process data tuples, specifi-
cally the number of tuples processed per unit time. In the experiment, the system
throughput of Hd-Stream, R-Storm, and Storm individually was measured and
recorded every five minutes under stable and fluctuating data streams.

Under a stable data stream rate of 1000 tuples/s, Hd-Stream’s average through-
put is higher than others’ throughput. As shown in Fig. 8, the average throughput
of Storm, R-Storm and Hd-stream is 888.78 tuples/s, 913.71 tuples/s and 983.73
tuples/s, respectively. Although the average throughput of Hd-Stream is slightly

Hd-Stream 17

higher than others’ throughput, the differences are not significant due to the low
resource load on the system at this data stream rate.

Fig. 8: Average throughput of Yahoo Streaming Benchmark under a stable stream
rate.

Fig. 9: Average throughput of Yahoo Streaming Benchmark under fluctuating
stream rates.

18 Y., D. et al.

To observe the differences in average throughput under fluctuating data
stream rates, the data stream rate was changed from 1000 tuples/s to 2500 tu-
ples/s at the 30th minute. As shown in Fig. 9, Hd-Stream’s average throughput
was significantly higher than that of Storm and R-Storm, with average through-
put of 2458.38 tuples/s, 2224.55 tuples/s, and 1991.8 tuples/s respectively after
30 minutes. Due to Hd-Stream’s dynamic scheduling capabilities, when the tu-
ple input rate stabilized at 2500 tuples/s, Hd-Stream exhibited superior average
throughput compared to both Storm and R-Storm.

6 Conclusions and Future Work

To address scenarios characterized by significant communication dependency
disparities of computing nodes, we proposed Hd-Stream, which is a hierarchical
dependency-aware scheduling strategy. At the computing resource level, Hd-
Stream transforms physical computing nodes into virtual resource nodes V RNs
and generates a scheduling sequence for V RNs based on the communication de-
pendencies between these nodes. Concurrently, at the stream application level, it
dynamically schedules stream applications according to the inter-task dependen-
cies. Hd-Stream not only reduces system latency and enhances average through-
put but also achieves load balancing of computing nodes. Furthermore, in the
face of fluctuating data stream scenarios, Hd-Stream demonstrates superior sta-
bility. In the future, we aim to further explore the following areas:

(1) Implement a fair scheduling strategy for multi-stream application scenarios
based on the runtime information of the system and stream applications.

(2) Achieve superior and stable system performance through the elastic scaling
of operators within the stream applications.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant No. 62372419; the Fundamental Research Funds for the
Central Universities under Grant No. 265QZ2021001.

References

1. Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M.,
Liu, Z., Nusbaum, K., Patil, K., Peng, B.J., et al.: Benchmarking streaming com-
putation engines: Storm, flink and spark streaming. In: 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW). pp. 1789–
1792. IEEE (2016)

2. Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.A., Caelen, O., Mazzer, Y., Bontempi,
G.: Scarff: a scalable framework for streaming credit card fraud detection with
spark. Information fusion 41, 182–194 (2018)

3. Du, S., Wang, S.: An overview of correlation-filter-based object tracking. IEEE
Transactions on Computational Social Systems 9(1), 18–31 (2021)

4. Fragkoulis, M., Carbone, P., Kalavri, V., Katsifodimos, A.: A survey on the evo-
lution of stream processing systems. The VLDB Journal 33(2), 507–541 (2024)

Hd-Stream 19

5. Li, W., Liu, D., Chen, K., Li, K., Qi, H.: Hone: Mitigating stragglers in distributed
stream processing with tuple scheduling. IEEE Transactions on Parallel and Dis-
tributed Systems 32(8) (2021)

6. Tan, J., Tang, Z., Cai, W., Tan, W.J., Xiao, X., Zhang, J., Gao, Y., Li, K.: A
cost-aware operator migration approach for distributed stream processing system.
IEEE Transactions on Cloud Computing (2025)

7. Xu, H., Liu, P., Ahmed, S.T., Da Silva, D., Hu, L.: Adaptive fragment-based par-
allel state recovery for stream processing systems. IEEE Transactions on Parallel
and Distributed Systems 34(8), 2464–2478 (2023)

8. Barika, M., Garg, S., Zomaya, A.Y., Ranjan, R.: Online scheduling technique to
handle data velocity changes in stream workflows. IEEE Transactions on Parallel
and Distributed Systems 32(8), 2115–2130 (2021)

9. Fu, X., Tang, B., Guo, F., Kang, L.: Priority and dependency-based dag tasks
offloading in fog/edge collaborative environment. In: 2021 IEEE 24th international
conference on computer supported cooperative work in design (CSCWD). pp. 440–
445. IEEE (2021)

10. Al-Sinayyid, A., Zhu, M.: Job scheduler for streaming applications in heterogeneous
distributed processing systems. The Journal of Supercomputing 76(12), 9609–9628
(2020)

11. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in
stream processing. ACM Computing Surveys (CSUR) 52(2), 1–37 (2019)

12. Mortazavi-Dehkordi, M., Zamanifar, K.: Efficient deadline-aware scheduling for the
analysis of big data streams in public cloud. Cluster Computing 23(1), 241–263
(2020)

13. Mao, Y., Zhao, J., Zhang, S., Liu, H., Markl, V.: Morphstream: Adaptive scheduling
for scalable transactional stream processing on multicores. Proceedings of the ACM
on Management of Data 1(1), 1–26 (2023)

14. Liu, X., Buyya, R.: Resource management and scheduling in distributed stream
processing systems: a taxonomy, review, and future directions. ACM Computing
Surveys (CSUR) 53(3), 1–41 (2020)

15. Eskandari, L., Mair, J., Huang, Z., Eyers, D.: I-scheduler: Iterative scheduling for
distributed stream processing systems. Future generation computer systems 117,
219–233 (2021)

16. Farrokh, M., Hadian, H., Sharifi, M., Jafari, A.: Sp-ant: An ant colony optimization
based operator scheduler for high performance distributed stream processing on
heterogeneous clusters. Expert Systems with Applications 191, 116322 (2022)

17. Li, H., Xia, J., Luo, W., Fang, H.: Cost-efficient scheduling of streaming applica-
tions in apache flink on cloud. IEEE Transactions on Big Data 9(4), 1086–1101
(2022)

18. Brown, A., Garg, S., Montgomery, J., KC, U.: Resource scheduling and provision-
ing for processing of dynamic stream workflows under latency constraints. Future
Generation Computer Systems 131, 166–182 (2022)

19. Liu, X., Buyya, R.: D-storm: Dynamic resource-efficient scheduling of stream pro-
cessing applications. In: 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS). pp. 485–492. IEEE (2017)

20. Ecker, R., Karagiannis, V., Sober, M., Schulte, S.: Latency-aware placement of
stream processing operators in modern-day stream processing frameworks. Journal
of Parallel and Distributed Computing p. 105041 (2025)

21. Wu, M., Sun, D., Cui, Y., Gao, S., Liu, X., Buyya, R.: A state lossless schedul-
ing strategy in distributed stream computing systems. Journal of Network and
Computer Applications 206, 103462 (2022)

20 Y., D. et al.

22. Apache: Storm (2025), http://storm.apache.org/
23. Peng, B., Hosseini, M., Hong, Z., Farivar, R., Campbell, R.: R-storm: Resource-

aware scheduling in storm. In: Proceedings of the 16th annual middleware confer-
ence. pp. 149–161 (2015)

24. Yahoo: webscope (2025), https://webscope.sandbox.yahoo.com/
25. Yahoo: streaming benchmark (2025), https://github.com/yahoo/streaming-

benchmarks/

